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projects and new commercialized products. The results show that higher R&D employee turnover is 
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1. Introduction 

Employee turnover can be an important mechanism for innovation activities in firms. Persistent 

differences in turnover between two otherwise identical organizations will evolve very different 

tenure distributions, with implications for stability and organizational culture which in turn may 

have considerably different implications for innovation. The level of turnover can be a result of the 

human resources management (HRM) practices chosen by the firm, but the HRM practices can also 

have a direct effect on innovation activities of the firm. This paper examines the relationship 

between employee turnover, HRM practices and innovation activity in Chinese high technology 

sector firms. 

In the current stage of China’s economic development, innovation is considered as one of the key 

factors for continued increase in total factor productivity and hence sustaining high growth; see e.g., 

World Bank (2011). Very little systematic evidence of the drivers of innovation activities based on 

firm-level data exists for China.1 Empirical results from other (mostly advanced industrialized) 

countries, which are also rather scarce, do not necessarily generalize to the Chinese context, as 

labor markets in China are still relatively underdeveloped and protection of intellectual property 

rights remains weak. Moreover, Chinese firms also differ from Western firms with respect to 

corporate culture and a more important role for business groups and other networks.  

For our empirical analysis we make use of data from a survey carried out by researchers at Renmin 

University (Beijing) in 2011. The sample consists of firms in China from five (high technology) 

industries: energy, electronic information, biotechnology, equipment manufacturing and 

environmental protection. In addition to standard controls in the analysis of innovation activities, 

the data set includes information about the firm’s HRM practices as well as measures of employee 

turnover for different categories, including technical personnel. The dependent variables in our 

analysis are the number of ongoing R&D projects and new commercialized products during 2010. 

The econometric analysis is performed using a hurdle negative binomial model for count data. An 

advantage of this model is that it allows for analyses of both extensive and intensive margins. 

The empirical analysis shows that a higher turnover rate of R&D personnel is associated with a 

higher likelihood that a firm is innovating but a lower level of R&D effort and innovation 

                                                      

1
In fact, we are only aware of one article (written in English) by Wei, Liu and Herndon (2011) on this topic. 
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performance in innovating firms. Particularly important HRM practices for enhancing innovation are 

the use of job description manuals and training programs. Notably, employee turnover has larger 

impact on innovation performance for firms using more high performance HRM practices. Among 

the other drivers of innovation, external network cooperation attaches an especially large and 

positive marginal effect. This is perhaps not so surprising in view of the importance of networks and 

business groups in the Chinese corporate system.  

The remainder of the paper unfolds as follows. Next, a brief review of the previous studies of the 

relationship between HRM practices, employee turnover and innovation is given. The third section 

describes the data and the econometric method used. The results are presented and discussed in 

sections four and five, respectively. Section six briefly concludes. 

2. Previous Research 

Since the mid-nineties a fairly large literature has built up dealing with HRM and firm performance. 

Performance is typically measured by productivity (surveyed in Bloom and van Reenen, 2011), while 

there is rather little (beyond case studies) on HRM and innovation.2 Instead, the large innovation 

literature has mainly been concerned with firm size, product market competition, knowledge 

spillovers and R&D collaboration.  

It is somewhat surprising that there is relatively little amount of work on HRM practices and 

innovation in view of the fact that the interest in new work practices emphasizing delegation of 

authority, empowerment of employees, information sharing and employee involvement, originated 

from the focus on the Japanese firms’ organization of workplaces in which horizontal information 

flows play a key role. The interest in the Japanese work organization and job design was to a high 

extent due to the fact that they were largely considered as the main determinants of the high level 

of innovation and quality improvement that characterized Japanese firms; see e.g., Applebaum and 

Batt (1994). 

The first two papers to look at the relationship between HRM practices and innovation were Michie 

and Sheehan (1999), (2003) in which the authors examined British firms’ use of so-called high- and 

                                                      

2
 Notable exceptions are Michie and Sheehan (2003), Laursen and Foss (2003), Jimenez-Jimenez and Sanz-Valle (2005) 

and Zoghi, Mohr and Meyer (2010). See also the recent survey by Foss and Laursen (2012). 
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low-road HRM practices and how these were related to firms’ R&D expenditures (the 1999 study) 

and process and product innovations during a three year period (the 2003 paper), respectively. 

They find that extensive use of modern (that is high-road) practices is positively correlated with 

investments in R&D and with process (but not product) innovations.  Laursen and Foss’s (2003) 

study investigates bundles of work practices and the degree of novelty in product innovation in 

Danish firms and finds a positive relationship. Jimenez-Jimenez and Sanz-Valle’s (2005) analysis of a 

relatively small sample of Spanish firms find that participative practices and promotion plans 

significantly increases the firm’s innovation orientation. 

In a more recent study, Zoghi, Mohr and Meyer (2010) use Canadian longitudinal data to study how 

workplace organization is correlated with the adoption of process and product innovations. They 

find that decentralized decision-making, information sharing programs and (individual) incentive 

pay are associated with more innovations.3  Another recent study by Zhou, Dekker and Kleinknecht 

(2011) makes use of four waves of survey data from the Netherlands and finds that functional 

flexibility (measured by the rate at which people change their function or department within the 

firm) has a positive effect on the percentage of sales due to new products. Thus, this, as well as 

other studies, finds some evidence suggesting that internal labor mobility (functional flexibility, job 

rotation) is important for innovation activities. 

Although there are a number of studies suggesting that especially the new, high 

involvement/performance work practices are implemented more frequently in innovative firms, the 

evidence is not very strong. Summarizing and concluding from the earlier empirical studies is 

difficult because these have not only made use of many different measures of innovation as the 

dependent variable but also included quite different measures of HRM practices. Moreover, it 

should be pointed out that the mechanisms behind the relationship are not well understood. A key 

candidate is that HRM practices promote learning processes of individuals as well as organizations 

(Cohen and Levinthal (1989), Shankar and Ghosh (2013)); for a systematic study of this mechanism 

for a developing country, see Santiago and Alcorta (2012). 

                                                      

3 Notably, they also find, but do not discuss, that firms with a high vacancy rate (which is likely to be a sign of high 

employee turnover) are also more likely to innovate. 
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Could we expect the relationship between HRM practices and innovation to be different in the 

Chinese case?  A central element in the modern work practices is delegation of decision rights to 

employees. This may not, however, function well in a Chinese context where keeping distance to 

superiors and showing respect to elders is deeply rooted in the culture. Participative decision 

making also presupposes a high level of trust between employees at different levels in the 

hierarchy, which is often said not to be present in Chinese workplaces; see Wang, Yeung and Zhang, 

(2011) for empirical evidence. Another cultural difference that may weaken the effect of 

introducing modern HRM practices is that, in appraisals of performance, the employee’s attitude 

and behavior is traditionally considered more important than the results of her performance.4 

There is to the best of our knowledge, only one earlier study, Wei et al. (2011), of the relationship 

between HRM practices and innovation in firms operating in China. The data used in that study was 

collected by a survey questionnaire sent to both CEOs and HR managers in firms in various 

industries (manufacturing accounts for only 24 of the respondents). Strategic HRM is measured 

using Huselid’s (1995) eight-item instrument and the firm’s product innovativeness (relative to 

industry average) is self-reported (that is, is assessed by the respondents). The results show a 

positive relationship between the strategic HRM measure and product innovation. The correlation 

is stronger for firms with flatter structure and developmental culture. 

One particular aspect of firms’ internal labor markets that has attracted some attention recently 

(Møen, 2005; Kaiser et al., 2008; Müller and Peters, 2010) is the role of worker flows and employee 

turnover for firms’ innovation activities.5 As knowledge and competencies are embodied in people 

it is important to consider how these are transferred between firms. Two broad hypotheses have 

been put forward. The idea behind the first hypothesis is that with low employee turnover the 

result is likely to be result in too little experimentation and innovation. This is especially the case if 

the relevant employees are hired after graduation from college or university (or some vocational 

education) and therefore possess little professional experience from other firms or industries. As 

this brings few ideas from other companies, the firm itself becomes less capable of exploring new 

                                                      

4 Nevertheless, a number of studies have documented a positive relationship between the firm’s use of strategic HRM 

practices and its performance (typically measured by subjective ratings of the overall performance of the firm); see e.g., 
Björkman and Fan (2002), Chow, Huang and Liu (2008), Ngo, Lau and Foley (2008), and Wei, Liu, Zhang and Chiu (2008). 
5
Two recent papers by Balsvik (2011) and Parrotta and Pozzoli (2012) examine the impact of between firm employee 

flows on firm productivity. 
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environments and adapting to changing technologies. Instead the focus will be on existing product 

performance – the improvements are typically small – and on efficiency within existing technology 

and product variety. As long as there is not sufficient flow of “new blood”, economic incentives, 

employee empowerment and involvement, cross-functional teams and adoption of new 

information technologies can do little to radically change the innovation activities within the firm. 

All in all, this implies that a too low turnover of personnel is associated with a low level of 

innovation activity. 

The idea that employee turnover above a certain threshold is good for firm performance is related 

to the risky hires hypothesis put forward by Lazear (1995), according to which employees are 

thought of as real options and the firm’s choice is between a candidate with relatively predictable 

performance and one more risky. As long as firing costs are low, it may pay off for the employer to 

hire the risky candidate because s/he has an option value.  Potential benefits are likely to be largest 

for positions where small differences in talent can have large impacts on performance outcomes 

(such as R&D and leadership positions). Hiring risky workers is likely to result in higher employee 

turnover, but may nevertheless give better performance in terms of innovation and creativity. 

The alternative hypothesis states that in order to promote innovation a firm needs to employ and 

retain appropriate staff. As innovative employees need to undergo relatively much training, a lower 

rate of employee turnover is also typically associated with lower training costs. A related argument 

is that innovative firms should provide employment security as a means to get the employees 

involved in their firm as this is important for innovation. Another argument goes back to Jovanovic’s 

(1979) job-worker matching paper according which long job tenures reflect  good matches between 

the job (or employer) and the employee.  

All in all, whether the relationship between worker turnover and innovation is positive or negative 

is an empirical matter. However, the evidence is so far rather scant. An early paper by Ettlie (1985) 

examines (by means of cross-tabulations) the role of new personnel and net manpower flows on 

process and product innovation in a small sample of food processing firms. He finds that “new 

blood” is good for major process innovations, whereas the opposite holds for product and minor 

process innovations.6 Kaiser et al. (2008) carry out a considerably more elaborated analysis in which 

                                                      

6
 The direction of causality could in both cases go the other way.  
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they distinguish between R&D employees leaving and joining the firms. The innovation outcome is 

number of patents applied for. Their results indicate that the rate of R&D employees leaving the 

firm has, not surprisingly, a negative impact on its patent activity, while an inflow of R&D 

employees affects patents positively. The net mobility effect is found to be positive. A recent paper 

by Müller and Peters (2010) makes use of the firm level churning rate7 of R&D employees as a 

measure of workforce turnover and their empirical analysis allows for non-linearities in the 

turnover-innovation relationship. They find that an increase in the churning rate, up to a certain 

threshold, is associated with a higher likelihood that the firm has innovated during the previous 

three years. Plausibly, the threshold is lower for process innovations than for product innovations. 

There are two reasons for why the role of employee turnover for innovation is particularly 

interesting in a Chinese context. One is that after the removal of the lifelong employment (“iron 

rice bowl”) system, employment security seems to have lost some of its importance. Hence, 

average turnover rates are reported to be quite high (annual rates of 20-40 percent have been 

mentioned); see Schmidt (2011). Another reason is that the new Labor Contracts Law which came 

into force in 2008 aims at providing more employment security by requiring formal employment 

contracts and introduces costs for employers in connection with employee displacements. Thus, 

evidence shedding light on whether and to which extent employee mobility enhances or decreases 

firms’ innovation behavior is called for. It should be noted that a traditional feature of Chinese 

internal labor markets has been a relatively slow involvement of new employees in firms and 

organizations. Decision rights typically lie with small informal groups, and so, to become a member 

takes time. Thus, in firms where these features still are present, a positive relationship between 

employee turnover and innovation could be weaker, and even negative.  

3. Data Description and Econometric Method 

3.1. Data and Variables 

The data used in this study comes from a survey collected by researchers at Department of 

Organization and Human Resources at Renmin University (Beijing) in 2011. The survey targeted 

                                                      

7
 The churning rate is the employee turnover rate at which employment is unchanged, that is, it is a measure of the 

extent of replacement hires during a given time period. 
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firms in five industries: energy, electronic information, biotechnology, equipment manufacturing 

and environmental protection, all of which are considered as high tech industries in China (World 

Bank, 2011). For each firm, the data set contains in addition to basic firm information such as total 

number of employees, establishment year, industry, etc., information about its overall performance 

outcomes, inputs and outputs of innovation activities, the number of total employees as well as of 

technical employees who voluntarily left the firm in each year during the period 2008-2010, 

detailed information about the innovation environment, organizational strategy and the use of 

HRM practices.  

The sample comprises 582 companies. The five industries account for about 20% each. 45.7% of 

them are state-owned enterprises, private companies make up 26.6% and the rest have a mixed 

ownership structure. 89.4% are financed domestically, 2.2% are financed by foreign capital while 

8.4% are joint ventures. The firm size ranges from 17 employees to 300,000 employees, though 95% 

of observations have fewer than 55,000 employees; the median firm has 2,534 employees.  

 

 

 

 

 

 

 

Next we turn to discuss the key variables used in our empirical analysis. The dependent variables 

are the firm’s R&D efforts, which is measured by the number of ongoing R&D projects during year 

2010, and innovation performance, which is measured by the number of new commercial products 

in 2010.  The number of R&D projects is a direct measure of R&D effort and also highly relevant to 

outcomes of both product and process innovation; the number of new commercial products is a 
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typical measure for innovation performance. 8 They contain richer information than the binary 

indicators which are used in many earlier innovation studies. Together, these two variables provide 

a more detailed picture of the firm’s innovation activity, not only of the innovation outcome, but 

also the intermediate role of R&D efforts, which are in the black box transforming the labor and 

management input into innovation outcomes.  

On average, a sample firm has 56 ongoing R&D projects in 2010. The distribution is heavily skewed: 

14.4 per cent of the firms have no R&D project at all; among firms with at least one R&D project, 

the median number is 30, which is only half of the average. 95% of the firms have 280 or fewer 

ongoing R&D projects, while the most R&D active firms have over 1,000 projects. The distribution 

of the number of new commercial products in 2010 is also skewed: 167 firms in our sample do not 

have commercialized any new product in 2010 and the median innovating firm has 15 new 

commercial products, while the average firm has 33.4. About 95% of the firms have 100 or less new 

commercial products. 

  INSERT TABLE 1 ABOUT HERE     

One explanatory variable of interest is the voluntary turnover rate of technical employees. It is a 

proxy for the turnover of R&D employees, which is not available in our data set. This is measured by 

the number of technical employees who left the firm voluntarily9 divided by the total number of 

technical employees. In general the voluntary turnover rate of technical employees is much lower 

than the turnover rate of all employees, which is not what is found in more advanced economies, 

such as the U.S., where the opposite pattern is strong (Shankar and Ghosh, 2013). Thus, 21.5 per 

cent of the firms did not experience any turnover of technical employees in 2010 and 95% of the 

firms had less than 6.5 per cent of their technical staff leaving voluntarily. On the other hand, the 

highest turnover levels observed in the sample exceed sixty per cent.  

                                                      

8
 A weakness of this measure is that what constitutes a new product is a subjective assessment and that new products 

can also be developed by buying external resources rather than through internal innovation activities. 

9
 This concept presents no ambiguities in the context of Chinese firms as this is part of the regular reporting of their HR 

offices. 
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The HRM practices used by the firm make up the other category of variables of special interest in 

the current study. First, in order to measure high performance practices, we include four binary 

variables indicating whether the firm uses:  job rotation schemes, job description manuals, 

operation standard manuals, and training programs. In order to capture the degree of the usage of 

these high performance HRM practices, we construct a variable counting the number of these 

practices adopted by the firm. Moreover, we use a binary variable to track a special HRM practice 

that is often highlighted in Chinese context – whether there is a formal channel for employees’ 

suggestions. Two of the HRM practices are measured as continuous variables: the proportion of 

base salary of an R&D employee’s annual income, and the firm’s training expenditures in 2010.  

Table 1 contains some descriptive statistics. For two key variables, we also report the subsample 

statistics for top and bottom quintiles of their distributions. The technical employee turnover rate 

in the top (bottom) quintile with respect to the number of R&D projects is clearly below (above) 

average. The turnover rate in the top quintile with respect to new commercial products is almost 

twice as high as in the bottom quintile. The average number of the HRM practices examined in our 

study is 3.9. This number varies only little by quintiles of the number of R&D projects or new 

commercial products. The operation standards and job description manuals are adopted in almost 

all the high-tech firms in our sample. 

There seems to be a negative relationship between R&D efforts and innovation outcomes and 

employee turnover, whereas there appears to be no systematic relation regarding the number of 

HRM practices adopted by the firms. Of course, a concern is that the measures of HRM practices or 

the technical employee turnover rate are proxying some other traits of the firm (like size or 

industry). To examine this we include observable controls in the more formal regression analysis 

presented below.   

First of these firm characteristics we include is firm size, which is measured by two indicators - the 

total number of employees and firm output (sales) in 2010. A sizable literature has shown that large 

firms are more likely to innovate.10 Another factor which has been extensively studied in the 

innovation literature is product market structure. We do not have access to measures of the degree 

of competition faced by the sample firms, but expect the dummy variables for industry affiliation to 

                                                      

10
 Employee turnover has also been shown to be positively correlated with firm size, which is another reason for 

controlling for it. 
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pick up the variation in competitive pressure across (but not within) industries. A third factor which 

potentially needs to be accounted for, especially in the Chinese context, is the ownership structure 

of the company. We use two dummy variables, one for state owned enterprise (SOEs) and another 

for foreign owned firms. This is motivated by the fact that SOEs, for historical reasons, may differ 

from private firms in several respects, especially regarding management style, which may influence 

both innovation activity and employee turnover. Foreign firms may choose to limit their R&D 

activities in their Chinese subsidiaries due to the relatively weak protection of intellectual property 

rights (Yang and Jiang, 2007).  

 

Firm-level network expansion is measured by the number of new cooperating partners in 2010. 

Networks have been found to be related to innovation outcomes in earlier research (e.g., Rittera 

and Gemünden, 2004; Whittington et al., 2009; Huggins et al., 2012). It is also likely that employee 

mobility could be facilitated by inter-firm cooperation. Hence it is important to control this factor 

when examining the relation between the employee turnover rate and innovation activity. 

As we are treating R&D as a production process, it is also necessary to control for R&D inputs. Here 

we enter the total number of technical employees and total investments in R&D and innovation 

activities in order to control for the scale factor which influences the technical employee turnover 

rate, R&D and innovation. Furthermore, we control for profitability, which is measured by the 

annual profits divided by the value of assets. Previous studies suggest that higher profits are 

associated with both more innovation activity and better management practices, and so it is 

important to control for this factor to mitigate omitted variables bias.        

Finally, we include the turnover of non-technical employees as a proxy variable for unobserved 

time-invariant effects, such as management quality. Following Blundell et al. (2002), we enter the 

average number of R&D projects/new commercial products in previous years as a proxy for 

unobserved fixed effects such as the firm’s knowledge capital.  
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3.2. Econometric Model  

This paper utilizes a logit hurdle negative binomial model11, which assumes that the probability of 

observing no R&D projects or new commercial products in firm i during year 2010 is: 

           (    |  )  
 

     (  
  )

    (1) 

and the probability of observing a positive number of R&D projects or new commercial products is: 

 (     |  )  
    (    |  )  (     |  )

   (    |  )
        (2) 

where    denotes the positive number of R&D projects or the number of new products by firm i 

during 2010,    and     denote firm characteristics, and g(∙) is a probability function following a 

negative binomial II model.  

(1) is a logit model, which describes the binary process determining whether the firm carries out 

R&D projects (or has new commercial products) or not; equation (2) is a zero truncated negative 

binomial model, in which g(∙) describes the count process determining the intensity of R&D activity 

or new product commercialization. For further details of the model, see Appendix 1. 

3.2.1. Choice of Model 

The reason for choosing this particular econometric model is as follows. First, as our dependent 

variable is of count data type, it can (and does) attach multiple values and has no upper bound. This 

implies we have to make a choice between two major categories of count data models: basic 

models including the Poisson model and the negative binomial model, and furthermore, between 

one and two parts models, that is, zero inflated models and hurdle models, respectively.  

A key feature of the data set used in this paper is that the proportion of zero outcomes is large 

relative to the other count values. It is therefore important to check whether the processes 

generating zero outcomes and strictly positive outcomes differ. Since the factors influencing firm’s 

decision regarding whether to innovate or not can be quite different from those influencing the 

decision concerning the intensity of innovation, it makes intuitively sense to relax the constraint 

                                                      

11
 An alternative model for dependent variables that spread over a large range of positive values and cluster at zero is 

the Tobit model. This assumes variables are continuous and that the process generating zero outcomes is the same as 
the process generating the positive value outcomes. We have estimated our model using a Tobit specification and 
obtain largely similar results. 
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that the zeroes are generated in the same way as positives. Furthermore, even if the same factors 

influence both the decision to innovate and the innovation intensity, their influences may exhibit 

different patterns.  

The next choice is between hurdle count models and zero inflated models. The difference between 

them is that in the zero inflated models the zero outcomes can arise in two ways: as a consequence 

of strategic decisions (with probability w) and incidentally (with probability 1-w), while the hurdle 

count model assumes that zeroes are exclusively the outcomes of strategic decisions (for details, 

see Lambert, 1992; Winkelmann, 2008). In the current case, it seems very unlikely that a firm that 

has adopted an innovation strategy would not have any ongoing R&D projects/new commercial 

products during the year. Consequently, we think the hurdle count model is a more natural 

specification to adopt in this context. 

There is a further choice between a hurdle Poisson model and a hurdle negative binomial model. 

The former model nests in the latter: the Poisson model assumes that the variance equals the 

conditional expectation, while the hurdle negative binomial allows the variance to grow faster than 

the expectation (over-dispersion). The likelihood ratio test of over-dispersion factor alpha confirms 

that in our case over-dispersion is indeed present in the second part of model (see Table 2, below). 

3.2.2. Marginal Effects 

As the coefficient estimates from the hurdle negative binomial models are difficult to interpret, we 

have computed marginal effects implied by the estimated models. For binary part of the model, the 

marginal effects describe the influences on the probability of being an innovative firm; for the count 

part of the model, the marginal effects describe the influences on the expected number of R&D 

projects/new commercial products among innovating firms. These computations and their relations 

to the model estimations are discussed in more detail in Appendix 1.  

Subsequently, for each part of the model, two types of marginal effects will be reported: (i) average 

marginal effects and (ii) conditional marginal effects. The average marginal effects are calculated 

for all observations by first obtaining individual marginal effects by inserting the true values of the 

regressors into the marginal effect formula for each observation after which we compute the 

average of the individual marginal effects. The conditional marginal effects for certain groups of 

firms are calculated by inserting given values (e.g., median group values) into the marginal effects 

formula.   
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4.  The Roles of Employee Turnover Rate and HRM practices 

In the following presentation of the estimation results we will first report estimates from a 

specification with HRM practices measured as a count variable (Table 2) and next consider 

estimates of dummy variables for the individual HRM practices (Table 3). For the purpose of 

comparison, each table presents estimates of the same regressors on two dependent variables: the 

number of R&D projects and new commercialized products. This is followed by a discussion of other 

factors and the interaction of technical employee turnover and the HRM practices.  

 

4.1 The Role of Technical Employee Turnover 

From Table 2 it can be seen that the turnover rate of technical employees12 is negatively and 

significantly correlated with both the number of R&D projects and the number of new 

commercialized products. For the median firm, a one percentage point increase in the technical 

employee turnover rate is associated with about 0.7 fewer R&D projects and 0.8 fewer new 

commercial products. Thus, firms with a higher technical employee turnover rate exert less R&D 

effort and have less innovation output.  

  INSERT TABLE 2 ABOUT HERE     

On the other hand, the turnover rate of technical employees is positively and significantly 

associated with the probability of having at least one new commercialized product; on average, a 

one percentage point higher turnover rate is accompanied by about a one per cent increase in the 

probability of having a new commercial product. For the probability of having a R&D project, its 

impact is also positive, albeit imprecisely estimated.  

In sum, while a higher technical employee turnover increases the probability of having at least one new 

commercial product on a yearly basis, it is negatively associated with the intensity of both R&D effort 

and innovation output. In other words, it  takes a certain level of R&D labor mobility to bring in new 

                                                      

12 To reduce the problem of possible simultaneity bias, the employee turnover rate is entered with a one-year lag.  

 



15 

 

 

 

ideas that initiate R&D projects, but once firms cross the threshold  and engage in innovation, their  

R&D efforts and innovation performance are discouraged by a higher technical employee turnover. 

  INSERT TABLE 3 ABOUT HERE 

     

4.2. The Role of HRM Practices 

The number of high performance HRM practices adopted by the firm is significantly and positively 

correlated with both the number of R&D projects and the number of new commercial products. For 

a median firm in our sample, one additional HRM practice is associated with three more R&D 

projects and 2.5 additional new commercial products per year; see Table 2.   

As for the effects of the individual high performance HRM practices, shown in Table 3, many of the 

individual practices attach insignificant estimates. To some extent this may be due to collinearity 

among some of the more widely implement practices. Still, a few things are worth noting. First, 

introducing training programs in firms that are already innovating gives rise to a higher R&D and 

innovation intensity.  Second, firms using job rotation schemes are more likely to have produced at 

least one new commercial product. This makes sense as job rotation facilitates communication and 

exchange of ideas which in turn activates innovation. Third, job description manuals exist in nearly 

all firms with R&D projects and consequently have no impact on the probability component. 

However, they are strongly and positively associated with the number of new commercial products.  

Finally, we may note that a higher share of performance pay (that is, a lower base salary share) 

increases the probability of having at least one new commercial new product in a given year. So, 

while higher incentive pay does not lead to more ongoing R&D projects, it seems to give rise to 

more commercialized products.   
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4.3. The Impact of Other Factors13 

As for the control variables, a few results are also worth noting. In line with the earlier literature, 

the size of the firm is found to be positively related to its innovation activities. A firm with a higher 

output level is more likely to produce a new commercial product every year and an increase in the 

firm’s employees increases both the number of R&D projects and commercialized new commercial 

products. Firms with more external cooperation partners have significantly more R&D projects. For 

the median firm it means that a one per cent increase in the number of cooperation partners gives 

rise to two additional R&D projects and three additional new commercial products. More profitable 

firms have a higher number of R&D projects. Of course, here it should be noticed that causality can 

go both ways. 

The proxy for unobserved heterogeneity, the pre-2010 sample average of the dependent variable, 

turned out highly significant in all models. The estimated effect is not very large, however. The 

turnover rate of non-technical employees is negatively associated with probability of having at least 

one new commercial product. 

 

4.4. The Interaction between Employee Turnover and HRM Practices 

It seems plausible to assume that a firm’s employee turnover rate is related to its HRM policies. 

Thus, we first experimented with excluding either the HRM practices variables or the technical 

employee turnover rate in the models in Tables 2 and 3. The estimates, which are not shown to 

save space, turned out to be quite insensitive to the inclusion of the exclusion of the 

abovementioned variables. This suggests that although the turnover rate of technical employees 

and HRM practices both influence the number of R&D projects and new commercial projects, their 

                                                      

13
 As was noticed in Table 1, there is considerable variation in the key variables and hence a concern is that the 

estimates may be influenced by outliers. Therefore, we have estimated the models on shaved samples excluding the 
top 5 per cent observations on the number of R&D projects, new commercial products and firm size (number of 
employees). For the binary part the estimates are very robust whereas there are some changes and in the magnitudes 
(not sign and significance) for the count part estimates. Overall, the estimates for the saved samples do not differ much 
from those of the full sample. We also estimated the models separately for SOEs and non-SOEs. As the SOEs make up 
46 per cent of the sample, this means the estimation samples are substantially smaller. In the R&D project models the 
coefficient estimates and conditional marginal effects for the technical employee turnover rate and the number of HRM 
practices are slightly larger in magnitude (and associated with higher significance levels) for the SOEs than for the full 
sample. For the models of new commercial products, employee turnover has a larger impact for SOEs and the number 
of HRM practices attaches a positive and significant estimate for non-SOEs. 
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influences seem to operate via different channels. Simple (unreported) Tobit model regressions also 

show that the HRM practices are only weakly correlated with differences in the technical employee 

turnover rate. 

However, a closer inspection reveals that the technical employee turnover rate may have different 

influences depending on firms´ use of different sets of HRM practices.  This is shown in Table 4, 

which contains the conditional marginal effects. The firms are divided into subgroups according to 

the number of HRM practices adopted, and for each subgroup, the marginal effects are calculated 

by setting other values equal to their subsample median values. 

For the number of R&D projects we find nonlinear relations for the number of HRM practices, the 

technical employee turnover rate and the number of new cooperating partners. One additional 

HRM practices has a larger marginal effect for firms with a few practices (three or less), but as the 

firm has implemented more than three practices, the marginal effect of adopting an additional 

practice decreases. The same pattern is observed for the number new cooperating partners. The 

negative effect of the turnover rate of technical employees is also first increasing in the number of 

HRM practices but is lower when the firm has more than three practices. For the other dependent 

variable, the number of new commercial products, the magnitudes of the marginal effects are 

increasing in the number of HRM practices implemented by the firm. Thus, for instance, is the 

negative effect of the turnover rate of technical employees almost three times larger for a for firm 

having only one of the HRM practices examined than for a firm that has adopted five of the 

practices. 

 

5. Discussion 

We have found that the technical employee turnover rate is higher in innovating firms than in non-

innovating firms and that for firms that are carrying out R&D projects and are producing new 

commercial products further increases in the turnover rate discourage the firm’s R&D efforts and 

lower its innovation performance. These findings are in accordance with the inverted U-shaped 

relations between employee turnover and innovation which have also been documented by some 

previous studies; see e.g., Müller and Peters (2010).  The theoretical reasons for a positive 

relationship – new ideas brought into the firm by new employees – are supported by our study, but 
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we also find that as the marginal benefits of employee turnover decreases while its costs increases, 

the impact of higher turnover eventually turns negative. 

Thus, one of the key findings of the empirical analysis is that technical employee turnover in 

Chinese high-tech firms has a negative influence on both R&D effort and innovation performance.  

While, as discussed in Section 2, this is not necessarily inconsistent with theory, several 

distinguishing features of the Chinese innovation environment may also contribute to the 

differences observed with respect to studies for more developed economies.  

First, despite significant improvements, the protection of intellectual property in China is still 

relatively poor. For a given level of employee mobility, Chinese firms face a higher risk of being 

copied by competitors and losing benefits of innovation due to the transmission of information via 

leavers. Second, due to the large population, the average number of job candidates for one position 

in China is very large, which results in higher recruitment cost and higher risk of mismatch. Both 

factors reduce the net benefit brought by newcomers to innovation. So, again, firms facing high 

labor mobility have weaker incentives to innovate more because the high labor mobility creates 

leakages of the gains from innovation.  

Third, the Chinese corporate culture is often considered to be more conservative than Western 

culture. It is generally believed that the best strategy for new joiners is “shut the mouth and open 

the eyes and ears”, which limits the spillover of new ideas from new joiners. Since the positive 

effect of labor mobility on innovation (which is mainly brought by new employees joining the firm) 

is smaller, it is less likely that high labor mobility contributes to more R&D efforts activities or 

higher innovation performance.  

Moreover, in Chinese firms it is usually relatively small informal groups which actually make the 

decisions. A newcomer’s ideas are not be valued unless she is involved in one of these small groups 

or a member thereof speaks for her. As it takes time for small groups to accept newcomers, Chinese 

firms are slower in observing a newcomer’s innovative ideas and in reaping the benefits thereof. 

Although Chinese firms are claimed to have spent large amounts of money on poaching high level 

technical employees, the overall impact on firm level innovation seems to be negative. Lastly, the 

general level of trust in China is lower (Wang et al., 2011), which means that the newcomers are 

less trusted and as a consequence their ideas are less valued. This is reinforced by the fact that as 

lack of trust is mutual, new employees do not commit themselves to innovate either. 
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Overall, there are a number of reasons for why the higher employee turnover among technical 

employees is less likely to facilitate R&D activity in China.  This list of characteristics specific to the 

internal labor markets of Chinese firms is of course mainly speculative. It should be noted, however, 

that Aoshima (2008) also finds a negative effect of the mobility of engineers on Japanese 

companies’ innovation performance. As China and Japan have many elements of a conservative 

corporate culture in common, this may explain why the labor mobility seems to influence 

innovation activity in China and Japan differently than in Western countries. 

6. Concluding Remarks 

In this paper we have examined the empirical relationships between high-tech firms’ technical 

employee turnover rates, HRM practices, R&D efforts and innovation performance using Chinese 

firm-level survey data from five high-tech industries. Unlike earlier studies, the analysis 

distinguishes between decisions whether or not to innovate and decisions of how much to innovate 

and therefore estimates logit hurdle negative binomial models. 

A notable feature of the high-tech studied is that the turnover rate of technical employees is lower 

tthan that of the firm’s overall workforce. We find that technical employee turnover is higher in 

innovating firms but that higher turnover in firms that are already innovating has negative effects 

on R&D effort as well as on innovation performance. As for high performance HRM practices, we 

find that they contribute both higher R&D effort and innovation performance. Moreover, the 

negative relationship between employee turnover and R&D effort and innovation performance is 

stronger in firms which have adopted more of the high performance HRM practices, which indicates 

that these practices increase the value of the employees to the firm for its innovation activies.  
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APPENDIX 1: The Logit Hurdle Negative Binomial Model 

Mullahy (1986) first offered solutions for how to deal with the situation when the zero outcomes 

of the data generating process differ from the positive ones within a hurdle model framework. 

Cameron and Trivedi (1986, 1998) further developed the model. Generally, hurdle models contain 

two parts: a binary probability model which determines whether the outcome is zero or not, and a 

truncated model which describes the positive outcomes.  

This paper utilizes a logit hurdle negative binomial model. The first part of the model captures the 

probability of being non-innovative firm, which can be expressed as:  

   (    |  )  
 

     (  
  )

    (A-1) 

The second part of the model captures the process generating positive outcomes, which follows 

negative binomial model. The probability of observing   R&D projects can be expressed as: 

    

                 (     |  )  
    (    |  )  (     |  )

   (    |  )
   (A-2) 

Where g(.) is a probability function following the negative binomial II model. 

The negative binomial model is obtained by generalizing the Poisson model by introducing an 

individual unobserved effect   into the conditional mean: 

      (  |     )     (                         )   (A-3) 

The distribution of    conditional on    and    follows the Poisson form (Zaninotto and Falaschetti, 

2011):  
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The unconditional distribution  (     |  ) is the expected value over    of  (     |     ): 
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The choice of density h(.) for     (  ) defines the unconditional distribution. In the negative 

binomial II model,      (  )is assumed to be Gamma distributed with       (  )]=1: 
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where Γ(∙) is the Gamma function, such that  ( )   ∫         

 
   for r>0 (Winkelmann, 2008). 

Let 

      (                      )  (A-7) 

Then,   ( 
 
)          (  )             (  )          , and the unconditional distribution 

(A-5) can be expressed as (Greene, 2012): 

 (     |  )   
 (    )

 ( ) (    )
 (

 

    
) (

  

    
)      (A-8) 

and  

 (    |  )    (
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Hence, the latent heterogeneity     induces over-dispersion:  

      |      [  
 

 
  ]                           , 

while preserving the conditional mean: 

   (  |  )        (                      ) 

Insert functions (A-1), (A-8) and (A-9) into (A-2) and obtain the probability functions of the count 

part model: 
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)                     (A-10) 

Insert (A-7) into (A-10), then parameters β, γ, and θ can be estimated using Maximum Likelihood.  

Firm i’s expected number of R&D projects, conditional on      and    is: 

 (  |       )  
   (  |  )
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   (  
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  )                         (A-11) 

The expected number of R&D projects conditional on    is: 
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For a continuous variable     that appears only in    (count part), its conditional marginal effect of 

the count part model is obtained by differentiating A-11 with respect to    : 

  (  |       )

    
                                                                       (A-13) 

which depends on all the values of regressors   .  

Since 
 (  |         )

 (  |       )
     , the interpretation of   is that: for a change of   in    , the expected 

number of R&D projects increases by a factor of     (   ), or by        (   ) . 

For the continuous variable    that appears only in    (the binary part), its marginal effect is found 

by differentiating A-1 with respect to    : 

  (    |  )

    
  

     (  
  )
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  )  

                                                      (A-14) 

In the logit model, the reported marginal effect is calculated as: 

                                                                
  (    |  )
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                                                          (A-15) 

which also depends on all the values of regressors in   . 

Since the coefficient of the binary equation           (    |  )  (    |  )      [from (A-

1)], it can also be interpreted directly as marginal change in the log value of relative probability of 

being an innovative firm to being a non-innovative firm with respect to the change in   .  

For continuous variables that appear in both    and   such that xij=zik for some j,k, the overall 

marginal effect is obtained through differentiation of (A-12) with respect to    (   ):  

   (    |  ) 

    
 (  |       )  

  (  |       )

    
    (    |  )                        (A-16) 

which depends on all the values of regressors in    and   . 

For a discrete variable, its partial effect is the difference in predicted values as the variable 

changes from 0 to 1 while all other variables are held constant at specified values.  

For the binary part, the partial effect of a discrete variable zik is: 

 (    |                          )   (    |                                           ) 
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which can be calculated using equation (A-1).  

For the count part, the partial effect of a discrete variable xij is: 

 (  |                            )   (  |                            )           (A-18) 

which can be calculated using equation (A-11). 
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Table 1. Descriptive Statistics 

 Variables Mean Std. Dev. 

Number of  R&D Projects 55.98 126.25 

Number of  New Commercial Products 573 33.43 

Voluntary Turnover Rate of Technical Employees 1.27 3.81 

Technical 
Employees’ 
Voluntary 

Turnover Rate 
in Subsamples 

Number of R&D 
Projects 

Zero 0.15 0.34 

Top 20% Firms 0.74 1.11 

Bottom 20% Firms 2.21 7.56 

Number of New 
Commercial 

Products 
 

Zero 0.34 1.49 

Top 20% Firms 1.49 2.13 

Bottom 20% Firms 2. 70 9.61 

Firms with 5 HRM Practices 0.59 1.43 

Firms with 2 or fewer HRM Practice 2.52 4.48 

Number of HRM Practices 3.90 0.88 

Number of 
HRM Practices 
in Subsamples 

Number of R&D 
Projects 

Zero 4.38 0.83 

Top 20% Firms 4.11 0.76 

Bottom 20% Firms 3.95 0.84 

Number of New 
Commercial  

Products 

Zero 4.35 0.79 

Top 20% Firms 3.92 0.76 

Bottom 20% Firms 3.75 0.90 

Training Programmes 0.71 0.45 

Operation Standards Manuals 0.98 0.14 

Job Description Manuals 0.90 0.30 

Job Rotation Schemes 0.53 0.50 

Base Salary Share of Total Pay 0.68 0.16 

Training Expenses (10,000 Yuan) 8.80 32.70 

New Cooperation Partners 40.91 130.34 

State Owned Enterprise 0.46 0.50 

Source: Survey of firms in five high-tech industries in China, 2011 

 

 

 

 

 



6 

 

 

 

Table 2. Estimates of Hurdle Negative Binomial Model- Controlling for Unobserved Heterogeneity with Pre-Sample Average and Turnover Rate of Non-Technical Employees* 

Dependent Variable 

Independent Variable 

Intensity Equation Probability Equation 

R&D Projects New Commercial Products R&D Projects New Commercial Products  

(1) Coefficient. (2) CME
1
 (3) Coefficient (4) CME

1
 (5) Coefficient. (6) AME

2
 (7) Coefficient (8) AME

2
 

Technical Employee Turnover Rate 
-0.029* 
(0.017) 

-0.680* 
(0.411) 

-0.036** 
(0.018) 

-0.793* 
(0.421) 

3.014 
(2.543) 

0.017 
(0.014) 

0.812** 
(0.412) 

0.007** 
(0.003) 

Number of HRM Practices 
0.137** 
(0.061) 

3.249** 
(1.464) 

0.113* 
(0.060) 

2.506* 
(1.332) 

-1.030 
(1.591) 

-0.006 
(0.009) 

1.229 
(1.428) 

0.011 
(0.012) 

Formal Channel for Employee 
Suggestions 

-0.231* 
(0.140) 

-5.479 
(3.462) 

-0.037 
(0.161) 

-0.819 
(3.613) 

4.402 
(2.729) 

0.025 
(0.016) 

-1.753 
(5.245) 

-0.015 
(0.045) 

Base Salary Share of Total Pay  
-0.304 
(0.358) 

-7.189 
(8.376) 

0.178 
(0.408) 

3.950 
(9.132) 

4.296 
(3.981) 

0.025 
(0.023) 

-12.476* 
(7.427) 

-0.107* 
(0.060) 

Training Expenses (10,000 Yuan) 
-0.002 
(0.002) 

-0.051 
(0.037) 

-0.004*** 
(0.002) 

-0.091** 
(0.037) 

0.010 
(0.039) 

0.000 
(0.000) 

0.014 
(0.019) 

0.000 
(0.000) 

Log Number of New Cooperating Partners 
0.110** 
(0.056) 

2.595** 
(1.324) 

0.156*** 
(0.052) 

3.461*** 
(1.246) 

-0.437 
(1.542) 

-0.003 
(0.009) 

3.070** 
(1.615) 

0.026** 
(0.013) 

Pre-Sample Average of Dependent 
Variable 

0.006*** 
(0.001) 

0.143*** 
(0.020) 

0.009*** 
(0.001) 

0.205*** 
(0.027) 

4.882*** 
(1.548) 

0.028*** 
(0.008) 

12.185*** 
(3.711) 

0.104*** 
(0.025) 

Non-Tech Employee Turnover Rate 
0.026 

(0.029) 
0.609 

(0.697) 
0.037 

(0.039) 
0.822 

(0.886) 
0.055 

(1.522) 
0.000 

(0.009) 
-6.475** 
(2.553) 

-0.055*** 
(0.020) 

Log Investments in Innovation 
0.057 

(0.054) 
1.346 

(1.313) 
-0.036 
(0.055) 

-0.798 
(1.207) 

0.058 
(0.881) 

0.000 
(0.005) 

-1.626* 
(0.943) 

-0.014* 
(0.008) 

Profits to Asset Ratio 
0.670* 
(0.399) 

15.869* 
(9.568) 

-0.108 
(0.365) 

-2.407 
(8.130) 

-16.260 
(13.938) 

-0.094 
(0.082) 

5.155 
(7.762) 

0.044 
(0.066) 

Log Number of Technical Employees 
-0.091 
(0.071) 

-2.164 
(1.700) 

-0.102* 
(0.070) 

-2.280 
(1.601) 

2.050 
(3.200) 

0.012 
(0.018) 

5.316** 
(2.492) 

0.045** 
(0.020 

Log Number of Employees 
0.251*** 
(0.073) 

5.947*** 
(1.809) 

0.245*** 
(0.071) 

5.450*** 
(1.722) 

-0.477 
(3.314) 

-0.003 
(0.019) 

-5.309** 
(2.361) 

-0.045** 
(0.019) 

Log Output 
-0.015 
(0.060) 

-0.343 
(1.409) 

0.040 
(0.059) 

0.889 
(1.315) 

-1.064 
(1.217) 

-0.006 
(0.007) 

1.462* 
(0.876) 

0.013* 
(0.007) 

State Owned Enterprise 
-0.076 
(0.091) 

-1.792 
(2.273) 

0.047 
(0.091) 

1.043 
(1.955) 

1.970 
(1.952) 

0.011 
(0.011) 

-1.153 
(1.308) 

-0.010 
(0.011) 

Foreign Owned Enterprise 
-0.287 
(0.255) 

-6.798 
(6.149) 

0.231 
(0.259) 

5.139 
(5.732) 

--- --- 
-6.245 

(379.169) 
0.007** 
(0.003) 
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Log likelihood -2226.44 -1594.83 -11.85 -16.57 

Number of Observations 481 399 565 564 

LR (χ
2
) 545.76 488.70 451.35 648.66 

Prob > c(χ
2
) 0.000 0.000 0.000 0.000 

Pseudo R
2
 0.109 0.133 0.950 0.951 

Alpha (χ
2
) 

0.706*** 
(0.050) 

0.551*** 
(0.047) 

--- --- 

Notes: 1. Conditional Marginal Effect, conditional on Median Values; 2. Average Marginal Effect 

***: Significant at 1%;  **: significant at 5%; *: significant at 10%.. 

 

*The model included industry dummies which are not shown. They are jointly significantly different from zero in both intensity equations and in probability equation for 

new commercial products. The alpha is a test statistic for testing between the negative binomial model and the Poisson model. Data source: Survey of firms in five high-

tech industries in China, 2011 
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Table 3. Estimates of Hurdle Negative Binomial Models with Individual HRM Practices* 

Dependent Variable 

Independent Variable 

Intensity Equation Probability Equation 

R&D Projects  New Commercial Products R&D Projects New Commercial Products  

Coeff. CME1 Coefficient CME1 Coefficient AME2 Coefficient AME2 

Technical Employee Turnover Rate 
-0.028* 
(0.017) 

-0.735 
(0.461) 

-0.034* 
(0.018) 

-0.759* 
(0.435) 

3.120 
(2.670) 

0.017 
(0.014) 

0.994* 
(0.511) 

0.008** 
(0.004) 

Training programs 
0.232* 
(0.121) 

6.107* 
(3.365) 

0.278** 
(0.121) 

6.225** 
(3.016) 

-0.381 
(3.772) 

-0.002 
(0.020) 

-3.270 
(2.969) 

-0.025 
(0.022) 

Job Rotation Schemes 
0.149 

(0.131) 
3.913 

(3.530) 
0.024 

(0.136) 
0.533 

(2.985) 
-0.874 
(4.342) 

-0.005 
(0.024) 

4.821* 
(2.507) 

0.037** 
(0.017) 

Cross Functional Teams 
0.076 

(0.120) 
2.009 

(3.313) 
-0.069 
(0.107) 

-1.544 
(2.337) 

-8.229 
(6.175) 

-0.045 
(0.034) 

5.793 
(9.034) 

0.044 
(0.067) 

Formal Channel for Employee 
Suggestions 

-0.234 
(0.145) 

-6.169 
(4.040) 

0.020 
(0.164) 

0.454 
(3.661) 

6.329 
(5.230) 

0.034 
(0.029) 

0.271 
(4.477) 

0.002 
(0.034) 

Job Description Manuals 
0.154 

(0.161) 
4.066 

(4.317) 
0.386** 
(0.157) 

8.660** 
(4.231) 

--- --- --- --- 

Base Salary Share of Total Pay 
-0.353 
(0.360) 

-9.285 
(9.320) 

0.074 
(0.407) 

1.653 
(9.177) 

2.890 
(4.161) 

0.016 
(0.022) 

-14.522* 
(8.508) 

-0.110* 
(0.059) 

Training Expenses (10,000 Yuan) 
-0.002 
(0.002) 

-0.056 
(0.042) 

-0.004** 
(0.001) 

-0.081** 
(0.037) 

0.013 
(0.044) 

0.000 
(0.000) 

-0.010 
(0.021) 

-0.000 
(0.000) 

Log (Number of New Cooperating 
Partners) 

0.105* 
(0.058) 

2.760* 
(1.516) 

0.176*** 
(0.053) 

3.953*** 
(1.443) 

-1.319 
(2.147) 

-0.007 
(0.012) 

4.812* 
(2.658) 

0.037* 
(0.019) 

Pre-Sample Average of Dependent 
Variable 

0.006*** 
(0.001) 

0.160*** 
(0.024) 

0.009*** 
(0.001) 

0.200*** 
(0.039) 

4.484*** 
(1.536) 

0.024*** 
(0.007) 

14.728*** 
(5.061) 

0.112*** 
(0.028) 

Non-Tech Employee  Turnover Rate 
0.022 

(0.030) 
0.572 

(0.797) 
0.036 

(0.039) 
0.810 

(0.908) 
0.504 

(1.858) 
0.003 

(0.010) 
-8.695** 
(3.713) 

-0.066** 
(0.024) 

Log (Investment in Innovation 
0.054 

(0.056) 
1.428 

(1.487) 
-0.031 
(0.056) 

-0.699 
(1.250) 

0.129 
(0.992) 

0.001 
(0.005) 

-1.714 
(1.066) 

-0.013 
(0.007) 

Profits to Assets Ratio 0.656* 17.261 -0.101 -2.254 -16.039 -0.087 14.650 0.111 
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(0.398) (10.637) (0.366) (8.199) (15.276) (0.083) (11.751) (0.088) 

Log Number of Technical Employees 
-0.090 
(0.072) 

-2.359 
(1.896) 

-0.109 
(0.070) 

-2.447 
(1.637) 

1.557 
(3.532) 

0.008 
(0.019) 

5.827** 
(2.750) 

0.044** 
(0.018) 

Log Number of Employees 
0.245*** 
(0.073) 

6.457*** 
(2.050) 

0.245*** 
(0.070) 

5.497*** 
(1.876) 

0.019 
(3.598) 

0.000 
(0.020) 

-5.742** 
(2.550) 

-0.044*** 
(0.017) 

Log Output 
-0.021 
(0.061) 

-0.547 
(1.610) 

0.008 
(0.060) 

0.183 
(1.335) 

-1.042 
(1.296) 

-0.006 
(0.007) 

2.246** 
(1.103) 

0.017** 
(0.007) 

State Owned Enterprise 
-0.079 
(0.091) 

-2.073 
(2.557) 

0.050 
(0.090) 

1.129 
(1.953) 

1.009 
(2.201) 

0.006 
(0.012) 

-1.873 
(1.580) 

-0.014 
(0.012) 

Foreign Owned Enterprise 
-0.276 
(0.254) 

-7.262 
(6.868) 

0.237 
(0.256) 

5.310 
(5.736) 

--- --- --- --- 

Log likelihood -2225.56 -1590.91 -10.91 -14.13 

Number of Observations 481 399 565 564 

LR (χ
2
) 547.53 496.53 453.24 653.54 

Prob > (χ
2
) 0.000 0.000 0.000 0.000 

Pseudo R2 0.110 0.135 0.954 0.959 

alpha(χ
2
) 

0.704*** 
(0.050) 

0.538*** 
(0.046) 

--- --- 

Notes: .1. Conditional Marginal Effect, conditional on Median Values; 2. Average Marginal Effect 

***: Significant at 1%;  **: significant at 5%; *: significant at 10%.. 

*The model included industry dummies which are not shown. They are jointly significantly different from zero in both intensity equations and in the probability equation 

for commercialized new products. The alpha is a statistic testing between the negative binomial model and the Poisson model. Data source: Survey of firms in five high-

tech industries in China, 2011 
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Number of R&D Projects Number of New Commercial Products 

# HRM 
Practices 

 
1 2 3 4 5 1 2 3 4 5 

Turnover Rate 
of Technical 
Employees 

-0.488* 
(0.295) 

-0.574* 
(0.347) 

-1.101* 
(0.661) 

-0.691* 
(0.418) 

-0.731 
(0.449) 

-0.318* 
(0.172) 

-0.435* 
(0.231) 

-0.664* 
(0.342) 

-0.892* 
(0.475) 

-0.956* 
(0.513) 

Number of 
HRM Practices 

2.334*** 
(0.755) 

2.74*** 
(1.058) 

5.262** 
(2.342) 

3.303** 
(1.410) 

3.495** 
(1.721) 

1.005** 
(0.408) 

1.376** 
(0.649) 

2.099* 
(1.117) 

2.820** 
(1.453) 

3.023* 
(1.750) 

Log (Number of 
New 

Cooperating 
Partners) 

1.865* 
(0.977) 

2.194* 
(1.127) 

4.204* 
(2.227) 

2.639** 
(1.348) 

2.792** 
(1.421) 

1.388*** 
(0.482) 

1.901*** 
(0.645) 

2.899*** 
(1.042) 

3.894*** 
(1.420) 

4.175*** 
(1.455) 

***: Significant at 1%;  **: significant at 5%; *: significant at 10%. 

 
 

Table 4. Marginal Effects Across Firms with Different Number of High Performance HRM Practices 
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