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Abstract:

Economic research typically runs J regressions for each selected for publication — it is often
selected as the ‘best’ of the regressions. The paper examines five possible meanings of the
word ‘best’: SRO is ideal selection with no bias; SR1 is polishing: selection by statistical fit;
SR2 is censoring: selection by the size of estimate; SR3 selects the optimal combination of fit
and size; and SR4 selects the first satisficing result. The last four SRs are steered by priors and
result in bias. The MST and the FAT-PET have been developed for detection and correction
of such bias. The simulations are made by data variation, while the model is the same. It
appears that SRO generates narrow funnels much at odds with observed funnels, while the
other four funnels look more realistic. SR1 to SR4 give the mean a substantial bias that
confirms the prior causing the bias. The FAT-PET MRA works well in finding the true value.
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1. Introduction: Selecting the top of the iceberg

Empirical economic research has the iceberg property: The visible top is the published
regressions, which are selected from all regressions run. Their number follows from the
incentives and cost structure in research (see Paldam 2013a). While the visible top of an arctic
iceberg is a random sample of the whole berg, this is unlikely to be the case in economics.

This paper reports a set of simulations of this situation. First J estimates of the same
parameter are made. Then five formal rules are used to select one of the J estimates. It is
shown that rules selecting the ‘best’ estimate give substantial bias in the reported result. It is
also shown that when enough selected estimates are analyzed, the tools of meta-analysis allow
us to adjust the mean for the bias to reach a rather precise estimate of the true value.

Section 1.1 is a short introduction to the meta-tools used, while section 1.2 gives a
sketch of the simulation method used.

1.1  Tools of meta-analysis in a nutshell:?> Funnel, mean, variation, FAT and PET

The p-literature is all papers that contain estimates b of the parameter 5. All N published
estimates, b;, constitute the B-set. When the B-set is coded level one of the meta-analysis is
easy to make: From the standard errors, s;, follow t-ratios, t; = by/s;, and precisions, p; = 1/s;.
This gives the data for the basic meta-analysis: (b;, sj, ti, p;) fori=1, ..., N.

The funnel is the (bj, pi)-scatter. It has the form showed on Figures 5 to 9 below. It is
widest for low p’s, and narrows as p increases. If all regressions made are published, the
funnel is as lean as implied by the t-ratios and symmetrical. This is unlikely to be the case if
the published results are selected as the ‘best’ of many estimates.

The B-set has the (arithmetic) mean, b, and the Std that gives, u = Std/b, the
coefficient of variation, which measures the width of the funnel. In addition the FAT-PET is
estimated. The FAT is the funnel asymmetry test, Br, and the PET is the meta-average, Sw,
which adjusts the mean for the most common asymmetry, see section 2.4. For each funnel the
output-set is (b, u, Bk, fm). The publication bias is the difference: PB = b — f. To test the PET,
PBper = fim — f is also calculated. When PB is substantial, PBpgr is always much smaller.

1.2 The effect of selection rules on simulated funnels with a known f
The paper studies a set of five formal rules (SRO) to (SR4) to select b from J (=1, 5, 10, 15,

2. See the recent textbook (Stanley and Doucouliagos 2012) and the guidelines (Stanley et al. 2013).
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25, 34, 50) simulated regressions. One experiment consists of J regressions for R = 100
funnels with N = 500 points, so RN x J = 50,000 x J regressions are simulated. Within one
experiment the five SRs are applied to each set of J estimates, so the SRs are directly
comparable. The SRs are analyzed by their effects on the funnel, the output set, and the
publication bias.

The five selection rules are: (SRO) ideal selects the average b; over the J estimates.
The other four SRs are optimal rules that select by the fit and size of the estimate: (SR1)
Polishing selects by fit; (SR2) Censoring selects by size; (SR3) Combination selects by the
researcher’s indifference map for both fit and size; and (SR4) Satisficing selects the first result
exceeding some value for both criteria. The selection rules (SR1) to (SR4) give the funnels
asymmetries and a substantial publication bias.

Polishing comes from the clarity-prior of the profession demanding statistical signifi-
cance. Censoring comes from size-priors about £, which are generated by priors at a deeper
level: (i) predictions from economic theory; (ii) moral/political considerations; (iii) interests
of sponsors; and (iv) prior results of the author or his group.

The paper assumes that the deep prior is from (i). All researchers of 8 have studied
economics, so their theoretical priors about g are likely to be similar. Thus, it is a main prior.
Such priors are often for the right sign. For ease of presentation the paper assumes that the
main prior is: £ > 0. It is also assumed that the prior is true, so that it is easier to reach a
positive than a negative estimate of # though negative estimates do occur.

From Doucouliagos and Stanley (2012) we expect that this prior leads to an
exaggeration in the direction of the bias. Thus, we expect that the bias in the mean is positive
as indeed it is, see Figure 10 in section 5.1. Thus, the prior gives a confirmation bias.

In practice the variation between results in the g-literature is caused by both data and
model variation. The simulations consider data variation only, but then they are varied
considerably. Different authors use different Js and SRs, so the observed bias is a murky
average. To get tractable results the simulations look at the extreme case where all papers use
the same J and SR for each funnel generated.

Section 2 defines and illustrates the five selection rules. Section 3 describes the simu-
lation setup, while section 4 shows how each selection rule works with the seven values of J.
Section 5 compares the results from the selection rules, while section 6 concludes. The

Appendix lists the definitions used and the parameter choices in the simulation experiments.



2. Selection and publication bias and five selection rules

Section 2.1 discusses the relation between selection and publication bias. Then the five SRs,
selection rules, are defined. Section 2.2 presents the ideal selection SRO, which is the average.
Section 2.3 looks at SR1 polishing. Section 2.4 considers SR2 censoring. Section 2.5 shows
that SR1 and SR2 give different results in practice. Section 2.6 presents SR3 that mimics the
combined selection; and finally section 2.5 considers SR4 satisficing selection.

Note that underlined variables are (arithmetic) means.

2.1 Selection and publication bias

The total number of regressions made in the S-literature is:
(1) NJ = ZLJ“ where N is the published estimates, while N(J — 1) is hidden.

Each b; published is selected from the Ji-set of regressions done. The (arithmetic) means by;

and by for the Ji-set and the B-set respectively are:

(2) hsi= Zj;lbj /3, and b = Zi’ilbi IN. The selected estimate b; has the selection bias:

(3) SBi = bj — f3, so b; = SB; + . With a positive main prior SB; which is positive as well.

The B-set of published estimates has the publication bias:

4 PB=h-pg=> b/N-p=Y" (SB+A)/N-p=>"SBIN =SB

The publication bias is thus the mean of the selection bias for all b;’s. Though this is an
obvious result, it is important. It means that when a publication bias is found the average
selection is biased. The typical g-literature is done by many independent researchers. If they
have enough different priors, the selection biases may even out and leave only a small

publication bias, but main priors matter for the publication bias.

2.2 Figure 1 and the reference point SRO of an unbiased selection
Figure 1 is a stylized example of J = 25 estimates, shown as a (b, t)-scatter, which illustrates
the 5 SRs. The figure is explained as we go along. After each section explaining an SR, the

reader should check the relevant point on the figure.
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The two axes on Figure 1 divide the plane in the 4 quadrants: I, 1I, Il and V.
Quadrant I and 111 are empty by definition, and quadrant IV has wrong signs. The priors of the
researcher are for positive b’s, which have positive t’s. Consider any ray from origo into
quadrant I1: The longer one gets from origo, the ‘better’ is the result by both priors; i.e., the
estimate of b is further away from zero and it is more significant. Thus, the system of rays
defines the direction of better/worse that is used below.

The SR chooses one of the J points. The choice can be formulated in the familiar
PPF/IC terminology. The (b, t)-results are treated as a ‘production’. The PPF-curve on Figure
1 is the Production Possibility Frontier. All points are ‘worse’ (closer to origo) than a point on
the PPF. The ICs are the indifference curves of the researcher.®> The optimal choice of the
researcher is the kink-point on the PPF that touches his utmost (and hence best) IC. The PPF-

curves move out as J rises. This gives an expansion path that is assumed to be a ray.

Figure 1. A typical example of J = 25 regression estimates of S

1CO

6 PPF i

t-ratio

Coefficient estimate

Note: Drawn for = 1. The mean estimate is b = 1.01 = , while the mean t-ratio is t = 1.51, as indicated by the
two ‘Mean’ lines. If the data sample is m = 40, the t-ratio should exceed 2 at the 5 % level of significance for the
two-sided test. See text section 2.2. The J = 25 points are divided in one visible and 24 hidden ones.

3. The analysis considers vertical, horizontal and L-formed IC-curves. When the indifference curves are L-
formed as drawn by ICO0 and ICJ, it is assumed that the kinks are on the expansion ray.

5



Imagine a researcher who has no priors at all, or more likely, a researcher who is ‘ultra-
honest’ and manages to suppress his priors. He reports the average of the J regressions and
some measure of their variance. Thus, the central result for an unbiased researcher is the one
termed SRO on Figure 1. In the simulations it is close to the true value of S by design.

Note that this SRO is inside the PPF-curve, so it is not an ‘optimal’ choice.

2.3 SR1, polishing is selection by the highest t-ratio
Two factors enter into this SR:

(i) The prior for clarity afflicts all of us. It is unsatisfactory to work long and hard
with a problem and come up with wishy-washy results. We feel that we did not learn much if
an article reports unclear results, and we do not recommend it to our colleagues. Journals
want to publish articles that are read, etc. (ii) The profession is greatly concerned about
statistical significance, even at the expense of economic significance.’

Imagine a researcher who has found a theoretically satisfactory model giving an
estimate b, which he believes to be a good estimate of $, but where b is insignificant. Poli-
shing means that he searches for a model variant close to the good model that increases the fit
of b. That is, he makes the J experiments to find an estimate with a good t-ratio. The selection
rule in the polishing case is thus by the t-ratio and independent of the size of b.

SR1: Select the b with the highest t-ratio. In the PPF-IC terminology the indifference
curves are horizontal lines. The optimal point chosen on the figure is thus SR1, which

is larger than 1, as is also demonstrated in column (2) of Table 2 below.

With no polishing the numerical value of the t-ratio is proportional to the log of the degrees of
freedom. This led Card and Krueger (1995) to propose the MST to detect polishing.

(5)  MST: Inlt| =7, +7, Indf, +u,, where z» = % is the HO of no polishing.

Below it is shown that the test works rather well, but not better than the FAT-PET MRA that
gives import and additional information as discussed in section 5.4. Thus, the MST has been

encompassed, see Stanley and Doucouliagos (2012; p 77-78) for an assessment.

4. It is not uncommon to read papers where the statistical significance of the coefficients is stressed, but where it
is left to the reader to find out what the coefficients mean. D.N. McCloskey has argued that the preference for
statistical over economic significance is harmful (McCloskey 1998). She certainly has a point, but the argument
has had little apparent effect, and it has got increasingly loud, see Ziliak and McCloskey (2008). Perhaps the
argument should be that statistical significance is a necessary condition only.
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2.4 SR2, censoring is selection by the largest size of the estimate
The introduction made the assumption that the main prior in the profession is that # > 0. This
means that most researchers will discriminate against negative values. And there is a tendency

to select relatively large positive values. SR2 takes this idea to the extreme:

SR2: Select the largest b in the J-set. In the PPF-IC terminology the indifference
curves are vertical. The optimal point on the figure is thus SR2, which is larger than 1,

as shown in column (2) of Table 3 below.

This SR is easy to solve analytically, as done in Paldam (2013a).> The results reached by the
simulations are fully in accordance with the analytical solutions. The simulations are run to
make the results as comparable as possible to the results from other SRs. To handle censoring
Stanley (2008) developed the FAT-PET and showed it was a good estimate of the true value:

(6) FAT-PET:® b =/, + 5.5 +U =/f, + 5 p,+U where by is the PET meta-average
and Bk is the FAT, which indicates censoring if Sr # 0. The estimate uses:

(6b)  ti=pwmpi + P+ Vi, reached after a division of (6) by s;.

The FAT-PET consists of two parts: The FAT, and the PET estimate of the meta-average.
Many simulation experiments have been made to see how (6) behaves under different circum-
stances; see Stanley (2008) and Callot and Paldam (2011) and Paldam (2013b). It is clear that
the FAT is a powerful test for asymmetry. The PET works well if the bias is a censoring bias,

but with other biases it may fail to work. Hence, the PET bias is reported:
(7)  PBper=pu-p

2.5  Are polishing and censoring the same?
Polishing is often seen as fairly innocent, while censoring gives a substantial bias. The simu-
lations below show that they give much the same bias. However, the stylized example on

Figure 1 shows that SR1 and SR2 give different results, but this may be due to the construc-
tion of the example. However, Figure 2 shows the (b |,|t,|) -scatter of the estimates in the

AEL, development aid effectiveness literature, that has a substantial publication bias.

5. The solution assumes that the J-set is normally distributed, and then uses the inverse to the cumulative normal
distribution to calculate the largest of J observations.

6. The FAT is the funnel asymmetry test (from Egger et al. 1997) of (HO no asymmetry: S = 0) and the PET is
the precision estimate test (HO no genuine effect: Sy = 0). Since = 1, our tables should test the HO: Sy = 1.
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Figure 2. The scatter of the numerical values of the results in the AEL

5

-} 98] .

The t-ratios (negative in black)

[a—y

0 1 2 3 4 .5
Numerical coefficients (partial correlations)

Note:  The AEL is the Aid Effectiveness Literature. Until 2010 it had reported 1689 points depicted, see the
URL: http://www.martin.paldam.dk/Meta-AEL.php. 90 observations are outside the frames of the
graph. The figure uses the same format as Figure 1, but all values are numerical to compress the graph.
The negative observations are marked in black. The correlation of the two variables shown is 0.635.
The data are analyzed in Doucouliagos and Paldam (2008, 2011 and 2013).

SR1 and SR2 would have given the same results if the scatter of (b, t;)-pairs were lying on one
proportionality ray through origo. The figure contains many points that look as if they are on
proportionality rays, but these rays have different slopes.

Area A contains the observations with the highest t-ratios (between 4 and 5). It is
shaded with horizontal lines. It is likely that these 43 observations are selected by a polishing
SR. Area B contains the observations with the highest coefficients (between 0.4 and 0.5). It is
shaded with vertical lines. It is likely that these 39 observations are selected by a censoring
SR. Only 3 observations are in the checkered area where the A and B areas overlap. Thus, the
example suggests that the two selection rules lead to different outcomes.

In the simulations in section 3 the selection rules give rather similar results, especially
for the low values of J such as 5 and 10. This is a problem which is probably due to the fact

that all experiments are with data variation, and not with model variation.

2.6 SR3, selection of the best (bj, t;)-mixture

From introspection | think that researchers look for the estimate that is best by some mixture
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of size and fit. Thus, | want to use more realistic indifference curves, i.e., ICs, which bend. To
make the results simple and tractable, three sets of assumptions are made.

The researchers have read the literature and know that they should find a b that is as
large as everybody else. Also, b should be significant. Thus, the acceptance point is (ba, ta) =
(1.258, 2).

(i) The ICs have one bend at the expansion path; i.e., they are L-formed. They are
vertical to one side and horizontal to the other, as drawn by the 1C0 and 1CJ curves.

(i) The expansion path is a ray. It starts at the origin and it is fixed by one more point:
The minimum acceptance point A is (ba, ta). Thus, the expansion ray is:

(iii)  t=Aab, where the slope Aa = ta/ba = (ba/Sa)/ba = 1/sa = pa, SO that point A = (Sa, pa).

Figure 1 shows point A and the expansion ray. It is drawn as the dashed gray line. The 1CO-
curve has a kink in A. ICJ is the first indifference curve that contains one point only. It is easy
to calculate: First all J points in the J-set are converted to raypoints on the expansion ray.
Think of the point (b;, t;), as illustrated with two points on Figure 3.

(8a)  The horizontal distance to the expansion ray is: ha = bj — satj, at the point (satj, tj).
(8b)  The vertical distance to the expansion ray is to the point (b;, pab;).

If ha < 0 the raypoint is (8a), and if ha > 0 the raypoint is (8b). Thus, the bj-set is
converted to raypoints. SR3 is the point on Figure 1 with the utmost raypoint.

Figure 3. The conversion of points to raypoints

6 — (9] .//
s O O Expanstfon ray
4 Point2 -

2

3

* 5 Ragpoint2 1C2
! Ragpomntl Pomtl IC1
0 ”

0 1 2 3 4 5

Coefficient estimate (b)

Note: Drawn as a part of Figure 1. The ray has the slope 4/3, so pa = 4/3 and s, =3/4. Pointl is (1, 3) so the hori-
zontal distance to the ray is negative and Raypointl is (satj, t;) = (1, 1(3/4)) = (0.75, 1). Point2 is (2, 4,) so that
the horizontal distance to ray is positive and Raypoint2 is (b;, pabj) = (2, (4/3)-2) = (2, 2.67). Here Raypoint2 is
the preferred point as 1C2 is further from origo than IC1.
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SR3: Select the last point inside the outmost indifference curve, which has its kink at
the utmost raypoint. The optimal point on Figure 1 is thus SR3, which is larger than 1

as shown in column (2) of Table 4 below.

Due to small sample properties of the PPF-curve and the kinked indifference curves the
expansion curve zig-zags around the expansion ray drawn. The optimal choice of each
researcher is thus the points closest to this ray. | hope the reader will agree the selection

described on Figures 1 and 3 mimics a choice by indifference curves.

2.7 SR4 satisficing is selection of first satisfactory (t;, b;)-mixture
Till now it has been assumed that J is exogenous. However, researchers may use a stopping
rule and stop when a satisfactory model is reached. That is the first point with raypoint

exceeding A is chosen. If no satisfying point is reached before J, use SR3.

SR4: Select the first acceptable result where the raypoint exceeds A. On Figure 1 eight
points are within the ICO. By chance SR4 is the one reached first. All these points are

larger than 1, and so are the simulated means in column (2) of Table 5 below.

It will be by chance only if SR4 reaches the PPF. In the example the probability is 3/8 =
0.375. Note that J is endogenous in this SR.
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3. The simulation setup: running 7 million regressions

The parameter of interest S = 0y/ox is the effect of the variable of interest, x, on the outcome
y. In the simulations p is always 1. An estimate of S is termed (b, s), where b is the estimate
itself and s is its standard error.

Section 3.1 presents the simulation framework and section 3.2 defines the averages
and tests used later. The Appendix Table contains a summary of the definitions used in the

simulations for easy references.

Figure 4. The experiment for J giving one row for each of the 5 SR-tables

Generate: R =100 sets of 5 funnels, one for each SR: SRO, ..., SR4

Generate: 5 funnels with N = 500 points. Each point 1s estimated
from m simulated data, where m=21, 22, ..., 520

Generate: the J-set of simulated regressions with same m

Generate: m data and run one regression
Output: One set of regression results (b, s, #, p, Df')

Output: The J-sef of estimates. Select one by each SR

Output: Five funnels of 500 points from the ./ x 500 regressions.
Calculate one set of funnel-results for each SR: (b, i, B\ Br, Tp, T5)

Output: 100 x 5 sets of funnel-results.
Summarize the 100 sets of results for row./ in each SR-table

3.1  The setup of the simulations — explaining the ‘Chinese boxes’ of Figure 4
Each experiment is for one J. It gives one row in Tables 1 to 5, which is one table for each SR.
The five tables have 7 rows for J =1, 5, 10, 15, 25, 34 and 50, which sums to 140:

A J-set is J regressions, run on simulated data sets with m observations. One funnel point is a
selection by a SR from the J-set. Thus, the J-set provides one point for each of the 5
funnels.

N = 500 is the number of funnel points in each of the five funnels. They are selected by the
SRs from J-500 regressions made. The meta-tests are calculated per funnel.

R =100 is the number of replications of the funnels used to study the meta-tests.

Behind each funnel with 500 published estimates are thus 500 - 140 = 70,000 estimates, but

these estimates are used for five funnels — one for each SR — to make them as comparable as
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possible. Thus, the average simulated funnel of 500 observations is selected from 70,000
simulated regressions, where 69,500 remain ‘hidden’. On average 20 (= 140/7) regressions are
thus made for each published. Altogether 100 x 70’000 = seven million regressions are run.

From each regression the (b, s, Df )-set is used. Df is the degrees of freedom for the
MST. The set allows the t-ratio t = b/s and the precision p = 1/s to be calculated. The funnel is
the (b, p)-scatter as shown on Figures 4 to 8.

The estimates are done by OLS on the EM (estimation model), from data simulated by
the DGP (data generated process). Consequently, the true value for g is one. The DGP/EM
pair is made as simple as possible, so that the DGP/EM-pair has no constant.

(7)  DGP: y; = B x; + &, Where, X = N(0, 5,) and & = N(0, ¢,°). The three parameters are
=1, 62 =2 and o,” = 10.
(8) EM: y; = b x; + u;, estimated by OLS.

The reason to choose a large value of o, is to get a substantial variation, so that the estimates
of j are censored by the main size-prior (5 > 0).

3.2 The format of Tables 1 to 5 reporting the results
Each of the sections about a selection rule brings a couple of typical funnels and one table
with simulation results. The funnels are specimens from one row in the table bringing average
results for 100 such funnels. The five SR-tables have the same format to make them easy to
compare. They have seven rows for the seven values of J, and 11 columns reporting the
results for statistics used:

Column (1) gives the J-value, column (2) reports the mean, b, and (3) gives the width,
U, (coefficient of variation) of the funnel.

Columns (4) to (7) report the FAT-PET MRA. Column (4) is the PET meta-average,
Swm, While column (5) is a count of significant Sy # 1 at the 5 % level of significance, so that
the PET does not find the true value. As R = 100 it is ‘automatically’ in %, so at the 5 % level
of significance used it should be around 5 if the PET works perfectly well. Column (6) gives
the FAT, while column (7) counts of the number of funnels where the FAT rejects symmetry.

Columns (8) and (9) report the average values for the MST, zp, and a count of
rejection of the MST; i.e., where zp # 1. Each row in the five tables is for one J. The first row
is for J = 1. All selections give the same result when there is only one estimate to select.

Therefore, row 1 is always the same, but then J increases and something happens.

12



4.

The results

Sections 4.1 to 4.5 cover the five selection rules one by one. The sections first show a couple

of typical funnels generated by the selection rule, and then a table reports a set of seven

experiments varying J, as explained in section 3.2.

4.1

The ideal selection: SRO

Here the selection is unbiased, and the funnel is symmetric and as lean as predicted by the t-

ratios of the estimates (see Callot and Paldam, 2011). The funnels shown have J = 1 and 10.

Figure 5. SRO: The ideal funnel; see Table 1 rows 1 and 3

Figure 5a. ForJ=1

Figure 5b. For J =10

3] 3
SRO,J =10
2.5 2.5
g g

= 27 = 2ﬁ

& 1.57 &£ 1.59

I1e 11
R e — . st - ,
-2 -1 0 2 3 -2 -1 3

Estimates of beta (=1) Estimates of beta (=1)
Table 1. Selection rule SRO, the ideal selection
1) ) ®) (4) ©) (6) () ®) 9) (10 (1
Descriptive FAT-PET MRA MST Bias in % of
statistics for PET meta-avr. FAT, asym. Test for polishing Mean  PET
Row D U ﬂM Not 1 ﬂF Not 0 Tp Not %2 Q *ﬁ ﬁM *ﬁ

(2)* 0.998 0411 0.995 5 0.009 5 0.566 56 -0.2 -0.5
2 1.002 0.183 0.997 4 0.014 4 0.573 98 0.2 -0.3
(3)* 10 1.000 0.128 1.002 5 -0.005 6 0.576 100 0.0 0.2
4 15 1.000 0.104 1.001 4 -0.001 4 0.575 100 0.0 0.1
(5) 25 1.000 0.082 1.001 4 -0.001 4 0.574 100 0.0 0.1
(6) 34 1.001 0.070  0.999 1 0.005 1 0.573 100 0.1 -0.1
() 50 1.000 0.058 1.000 4 -0.002 3 0.574 100 0.0 0.0
Average results  1.000 - 0.999 3.9 0.003 3.9 - 93.4 0.0 -0.1

Note: * One funnel from rows (1) and (3) is shown on Figure 5. The results for zsare worse than (8) and (9).
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Table 1b. The fall in x from column (3) in Table 1 — compared with /J

J  Col (3) rel \ﬁ Dif.in% J  Col (3)rel \ﬁ Dif. in %
1 1 1 0.00 25 0.198 0.224 -0.8

5 0.445 0.447 -0.4 34 0.169 0.172 -1.2
10 0.311 0.316 -1.6 50 0,141 0,141 -0.6
15 0.254 0.258 -1.6

Note: ‘Col (3) rel’ is the data in column (3) of Table 1 divided by the estimate for J = 1.

Figure 5a is the same as the selection for J = 1 for all SRs. There is one estimate to choose
from so the choice is the same. The figure is rather close to symmetry around 1. Figure 5b
shows how quickly the funnel gets leaner when J rises.

Figure 5a is for one funnel. Row (1) of Table 1 reports the average result for 100 such
funnels. In the same way Figure 5b is generalized to 100 funnels in row (3) of the Table.

Table 1 shows that both the mean, b, and the PET, pw, are very close to 1 as they
should be in this case. The bias in columns (10) and (11) is in % of . The biases are almost
the same and always below 1 %. The FAT test is significantly different from 0 in about 5 %
of the cases, so these funnels are all symmetric.

In this case there is no polishing as confirmed by the FAT, while the MST finds a lot
of polishing. Thus, the FAT tells the right story, while the MST is misleading.

Column (3) shows that the averaging done for J > 1 reduces the width of the funnel.
Table 1b shows that the reduction is proportional to /J as it should be. Many meta-studies
(see Doucouliagos and Stanley (2012)) show that empirical funnels are rather wide. Thus, it is
obvious that researchers rarely manage to control their priors. Some do not even try — they are

proud to announce that all signs are right in accordance with economic theory!

4.2  The polished funnel: SR1
Now selection rule 1 is applied. For J = 1 the funnel is the same as Figure 5a, but already for J
= 5 something happens as shown by Figure 6a, and it becomes clearer on Figure 6b. It is

interesting to see that t and b both rise, so that the p’s rise marginally only.
@) t = b/s = bp so that p = t/b becomes the censoring lines that rise with t.

The implication is not very visible on Figure 6a, which looks like Figure 5a with some of the

left side censored. Very few negative values appear, and this becomes stronger on Figure 6b.
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Figure 6. SR1: The polished funnel; see Table 2 rows 2 and 5

Figure 6a. For J=5 Figure 6b. For J = 25
3.5] 3.5
SR1,J=5 SR1,J=25
3] 31
g 2.5 o 2.5
2 2
E 2 E 2]
= =
& 1.5 & 1.59
1- @ 0 o ] 1 o) o
S o ° 5 o0 ° § ©
0 4 5 6 0 1 2 3 4 5 6
Estimates of beta (=1) Estimates of beta (=1)
Table 2. Selection rule SR1, the polished funnel
1) ) ©) (4) ©) (6) () ®) 9) (10 11
Descriptive FAT-PET MRA MST Bias in % of
statistics for PET meta-avr. FAT, asym. Test for polishing Mean  PET
Row J b 7 Pwm Not 1 BE Not 0 7 Not%2 b-p pu-p

1) 1 0.998 0411 0.995 5 0.009 5 0.566 56 -0.2 -0.5
2)* 5 1419 0242 0.978 5 1.229 100 0.332 100 41.9 -2.2
(3) 10 1544 0230 0.975 12 1.603 100 0.295 100 54.4 -2.5
(4) 15 1.610 0229 0.964 29 1.833 100 0.276 100 61.0 -3.6
(5)* 25 1.687 0.228 0.960 39 2.075 100 0.258 100 68.7 -4.0
(6) 34 1.729 0229 0.952 48 2.234 100 0.247 100 72.9 -4.8
(7) 50 1.780 0231 0.956 46 2.377 100 0.239 100 78.0 4.4

Average results  1.538 - 0.968 26.3 - 86.4 - 93.7 53.8 -3.2

Note: * One funnel from rows (2) and (5) is shown on Figure 6. The results for zsare worse than (8) and (9).

With the form of the funnel shown it is no wonder that the mean becomes more and more
biased as J rises. And the FAT certainly shows that the funnel is asymmetric. Polishing is not,
strictly speaking, a censoring, but still the PET works rather well. Even if the PET # 1 in half
the cases for high Js it is still within 5 percentage points from 1, and much better than the
mean. Note that the bias of the mean is always positive.

It is interesting to look at column (3). While the funnel width was falling rather
strongly with J for SRO, it falls in the beginning for SR1 and then it stabilizes. This will be the
typical result for SR2, 3 and 4 as well.

The MST detects polishing in all the cases, where there is polishing, but also in half of

the cases for J = 1 where there is none. The FAT gives the right answer throughout.
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4.3 The censored funnel: SR2
Now the funnel is generated by SR2, which selects the largest value in the J-set. The two parts

of Figure 7 look much like their counterparts on Figure 6.

Figure 7. SR2: The censored funnel; see Table 3 rows 2 and 5

Figure 7a. ForJ=5 Figure 7b. For J =25
3.5 3.5
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Table 3. Selection rule SR2, the censored selection
1) (2) 3) (4) ) (6) (7 8 ©) (10) (1)
Descriptive FAT-PET MRA MST Bias in % of S
statistics for PET meta-avr. FAT, asym. Test for polishing Mean PET
Row J b u Bu Notl B Not 0 T Not%a b-8 pu-p

Q) 1 0998 0.411 0.995 5 0.009 5 0.566 56 -0.2 -05
2)* 5 1433 0.241 1.004 1 1.165 100 0.341 100 433 04
(3) 10 1570 0.231 1.014 10 1.499 100 0.310 100 570 14
4) 15 1.643 0.233 1.012 5 1.703 100 0.293 100 643 1.2
(5)* 25 1.729 0.236 1.020 12 1.904 100 0.281 100 729 20
(6) 34 1.778 0.239 1.019 10 2.036 100 0.272 100 778 1.9
(7 50 1.836 0.244 1.030 25 2.155 100 0.267 100 836 3.0
Average results  1.570 - 1.013 9.7 - 86.4 - 93.7 570 1.3
Note: * One funnel from rows (2) and (5) is shown on Figure 7. The results for zsare worse than (8) and (9).

This selection rule is solved analytically as done in Paldam (2013a), and the results tally. It is
also easy to see that the figures for J = 5 are more similar for SR1 and SR2 than for J = 25.
Table 3 shows that this is a general result: The mean rises a little more for J rising with SR2
than with SR1. In fact, the bias of the mean is quite large for SR2, where it reaches 100 % (so
that the mean is 2) for J = 70.
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This is the case T.D. Stanley had in mind when he developed the FAT-PET, and the
PET works amazingly well finding the true value. The results for the FAT and the MST are

the same as before.

4.4  The combined selection: SR3

As the combined SR3 is a mixture of SR1 and SR2 and they look alike, it is no wonder that

Figure 8 looks much like Figures 6 and 7. However, Table 4 shows a few interesting features.
Basically the results are even better than for SR1 and SR2. The PET count is higher

than in the two previous tables and the PET bias is smaller. Here the average ratio between

the PB/PBper = 50, so the gain from using the PET is high.

Figure 8. SR3: The combined funnel, see Table 4 rows 2 and 5

Figure 8a. ForJ=5 Figure 8b. For J =25
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Table 4. Selection rule SR3, the combined selection
1) ) 3) 4) () (6) () 8 ) (10)  (11)
Descriptive FAT-PET MRA MST Bias in % of 8
statistics for PET meta-avr. FAT, asym. Test for polishing Mean  PET
Row J b u Bu  Notl B Not 0 % Not% b-B Pu-p

(1) 1 0.998 0411 0.995 5 0.009 5 0.566 56 -0.2 -0.5
(2)* 5 1429 0.241 0.990 1 1.206 100 0.335 100 42.9 -1.0
3) 10 1562 0.230 0.993 6 1.567 100 0.300 100 56.2 -0.7
4) 15 1.633 0.231 0.987 7 1.786 100 0.281 100 63.3 -1.3
(5)* 25 1716  0.232  0.988 3 2.014 100 0.266 100 71.6 -1.2
(6) 34 1.763 0.235 0.983 10 2.163 100 0.256 100 76.3 -1.7
@) 50 1.819 0.238 0.989 7 2.298 100 0.249 100 81.9 -1.1

Average results  1.560 0.989 5.6 - 86.4 93.7 56,0 -1.1

Note: * One funnel from rows (2) and (5) is shown on Figure 8. The results for zsare worse than (8) and (9).
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The results from the FAT and MST are as before. They both find biased when it is actually
biased, but the MST also finds it when it is not.

The results till now suggest that it does not make a big difference if the selection rule
is SR1, SR2 or SR3. It follows that the results are rather robust to any mixture of the three

selections.

45  The satisficing choice: SR4

The results of applying SR4 are much as the three previous SRs for small Js, as expected, but
as J rises more choices differ as this SR may stop selecting well before it reaches J. This is
obvious when Figure 9b is compared to the three previous b-figures.

Figure 9. SR4: The satisficing funnel, see Table 5 rows 2 and 5

Figure 9a. ForJ <5 Figure 9b. For J <25
3.5 3.5
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Table 5. SR4: The satisficing SR, select the first acceptable result
1) ) @) 4) ®) (6) () (C)) ) (10)  (11)

Descriptive FAT-PET MRA MST Bias in % of S
statistics for PET meta-avr. FAT, asym. Test for polishing Mean  PET
Row J b u iy Not 1 Le Not 0 ) Not%2 b-p8 pu-p

(1) 1 0.998 0411 0.995 5 0.009 5 0.566 56 -0.2 -0.5
(2)* 5 1342 0.277 0.853 98 0.135 100 0.302 100 342 -147
3) 10 1429 0.280 0.841 98 1.623 100 0.273 100 429 -159
4) 15 1470 0.284 0.845 99 1.735 100 0.265 100 470 -155
(5)* 25 1520 0.290 0.855 91 1.849 100 0.261 100 520 -145
(6) 34 1545 0.293 0.858 85 1.915 100 0.261 100 545 -14.2
@) 50 1.577 0.298 0.867 80 1.981 100 0.260 100 577  -133

Average results  1.412 - 0.873 79.4 - 86.4 - 93.7 412  -127

Note: (2)* is the statistics for Figure 9a, and (5)* is shown on Figure 9b. Columns (8) and (9) will be revised.
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This also means that the publication bias increases less when J rises as seen in column (2) of
Table 5. The PET is still adjusting the average, so that it gets closer to 1 than the mean, but it

is not as efficient as for the three previous SRs.

4.6  Varying the parameters and missing aspects
The setup of the analysis contains few parameters the can be varied: J, SR, 8, m, ox and o..
The experiments reported cover SR and J. | take the m-set to be a realistic range. If £ is
changed, all that happens is a linear shift along the horizontal axis.
Thus, only the two standard deviations oy and o, remain. They have been submitted to
a set of experiments using 1 funnel for each SR. The results are rather robust to changes in oy
as long as o, is larger. Changes in o, appear as a contraction/expansion of the horizontal axis.
The paper has run through a set of experiments using a certain setup for the simula-
tions. Within this setup the results are rather robust. However, the setup is restrictive in some
respects. The most important restriction is that the experiments deal with data-variation not
model variation. This may be one reason why the results for SR1 to SR4 are fairly similar,
and it also suggests that the main reason for the excess width of empirical funnels is model

variation rather than data variation.
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5. The pattern in the results

Each of the tables 1 to 5 reports a set of experiments with one selection rule. They are
compared across rules in this section. First, section 5.1 compares the publication bias, and
then section 5.2 compares the bias in the PET. Section 5.3 looks at, u, the coefficient of
variation. Section 5.4 compares the FAT and the MST.

5.1 The publication bias, columns (10) from the five tables

The five tables give rather clear results for the publication bias (b — ) = (b — 1). They are
shown in Figure 10. The true value £ = 1 is a horizontal line at zero. The SRO-line is close to
this, but the other 4 lines are all higher, showing biases which are always upwards and

substantial.

Figure 10. The paths of the publication bias for the mean

= 80
2
= SR3
2 60 Average -
c
2 i SR4
=
£ 40
b
=
3
E 20
o
2
- SRO
0
1 5 10 15 25 34 50

J, number of estimates to select from

From interviews and introspection | believe that the researchers in a typical literature in
economics use some mixture of the five selection rules — and perhaps a few more. Often it is
even mixed in the same paper, and many researchers find it difficult to fully explain the
choices made. It may be overly brave, but perhaps we can take an average of the five SRs as a
realistic guess of the publication bias. If J is between 20 and 30, the average publication bias

is thus just a bit above 50 %. From the 500 meta-studies made so far in economics this
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appears a little on the low side.
The introduction made the assumption that economic theory predicted that g > 0, and
S was accordingly chosen at 1. This gave a bias so that the average result was well above 1.

Thus, the simulations produced a bias-exaggeration result. Theory is self-confirming.

5.2 The bias of the PET, columns (11) from the five tables
Columns (11) of the 5 tables of results show that the PET meta-average is normally much
closer to g than is the mean, even in the case of SR4. But it is rarely a perfect estimate of .

Note that Figure 11 uses a much enlarged vertical axis compared to Figure 10.

Figure 11. The paths of the bias of the PET
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SRO has no selection bias, and there the curve is horizontal at zero as it should. In the cases
SR1-3 the PET bias is still rather close to zero. For SR4 the PET bias is about 15 %. Still, the
average result is within 5 % of the true value for all Js examined. The bias of the PET is less
than one tenth of the bias of the mean.

From prior studies (Stanley 2008 and Paldam 2013b) it is known that the PET works
perfectly well if the lowest half of the points in the funnel is censored. Thus, the PET does a

good job in a range of seemingly realistic circumstances.
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5.3 The coefficient of variation, x, columns (3) from the 5 tables

One of the most puzzling observations from meta-studies is the amazing widths of funnels. It
has been analyzed by the variable 4, in the tables. Figure 12 shows the u-lines for all the SRs
like in Figure 10. All curves start at the same point 0.411 for J = 1 and then they fall, but only
the SRO-curve keeps falling. The lines are somewhat different. For SRO the line falls with

rising J’s with the square root of J, very much as expected.

Figure 12. The effect of the selection rules on, x, the funnel width
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The other four SRs all cause u to fall a little — and then they start to rise. This contrasts

somewhat to the observed excessive width of funnels in the typical meta-study.

5.4  The FAT and the MST, columns (6) and (8) from the five tables
The FAT is known as a very robust test. Figure 13 compare the results from the five tables. It
should reject asymmetry for J = 1 and all estimates using SRO, and detect asymmetry in all
other cases. This is precisely what it does. It is interesting that the results are rather similar for
all four optimizing SRs, and that the highest test-values are for SR1.

The MST gives two tests of the same and no estimate of the meta-average. It can be
run for either HO: zs = 0 or zp = %. The most reasonable picture is for zp. Figure 14 compares
the results. As usual SRO is unbiased, while the other 4 SRs are biased for J > 1.
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Figure 13. The FAT
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The MST gives results that are even closer than the FAT for the four biased SRs. In addition a

number of cases have occurred where the MST detected bias when there was none. The FAT

did not do that.
The conclusion is that the FAT is a better test, and in general the FAT-PET encom-

passes the MST. This is the same conclusion as in Stanley and Doucouliagos (2012).
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6. Conclusions

Most researchers make more regressions than they publish. This situation is simulated by
assuming that authors run J regressions to select the estimate published. The paper studies a
set of 5 selection rules, SR, which often seems to be used by authors. The simulations model
cases where all N = 500 estimates in the g-literature use the same J and the same SR-rule. In

practice studies vary in (at least) three different ways:

(V1) Authors have different selection rules.
(V2) Jdiffers between authors.

(V3) Most of the variation between the estimates is probably due to model variation.

(V1) is analyzed by showing that the results are robust to different averages of the 5 selection
rules. (V2) is analyzed by considering a broad range of Js.

(\V3) is more difficult to handle. | have tried to do this by increasing the data variation,
but the simulated funnels are not as wide as empirical funnels. One of the five selection rules
is the ideal one SRO, with no publication bias. It causes funnels to be very narrow, so it must
be rare in practice. Thus, the analysis catches some of the problems of the publication game,
but underestimates other problems.

The simulations find a publication bias that is almost as large as the typical empirical
one. One particularly troublesome finding is that all biases found are in the direction of the
prior generating the bias. Thus, empirical research has a bias towards the confirmation of
economic theory.

The good news is that the bias of the mean is insensitive to the combination of the
other four optimal selection rules, and the PET is a rather fine tool finding the true value of S.

It is not, of course, perfect, but it always has a much smaller bias than the mean.
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Appendix 1. Definitions and numbers used to generate the 5 SR-tables: Table 1to 5

One experiment: Row J in the 5 SR-tables. The numbers R, N, J and 5
The 5 SR-tables (1 to 5) each report the analysis of one selection rule, SRO, ..., SR4
J=1,5,10, 15,25, 34 and 50, with ¥ = 140. Each J gives one line in each SR table
J is the size of the J-set. One J-set is estimated on J data sets, with the same m
The same J-set is used for all 5 SRs that each gives one point for each of five funnels.
N =500 is the number of points in each funnel, reached by varying m from 21, 22, ... , 520
Each funnel is analyzed by a meta-analysis giving the meta-results (b, «, fm, CBwm, Bes CBE, o, Ct, PB, PBper)
Where CBy, CBr and Crp is 1 if By, fr o 7o £ 0, else 0
Each of the 5 funnels is replicated R = 100 times to study the robustness of the meta-results, which are
summarized as (b, &, S, ZCPwm, Br, ZCPr, o, 2C1, PB, PBper) , Where the underlining indicate a mean
The total number of regressions made is: RN £J =100 - 50 - 141 = 7,050,000

The simulation framework: The DGP/EM-pair for a given m

data x = N(0, o), where ¢,° = 2 &= N(0, 5,%), where ¢, = 10
DGP data generating process: y; = S x; + & S = 1is the parameter of interest
EM estimating model: y; = b % + uy, Estimated by OLS

The five selection rules used on each J-set
SRO Unbiased, select averages b; and t; over J See Table 1 in section 2.2, J is fixed
SR1 Polishing, best fit, select b; with largest t; See Table 2 in section 2.3, J is fixed
SR2 Censoring, best size, select largest b; See Table 3 in section 2.4, J is fixed
SR3  Best (bj, t;})-combination See Table 4 in section 2.6, J is fixed
SR4  First satisfactory (bj, tj) selected See Table 5 in section 2.7, j <J

The B-set of N = 500 estimates b; for one funnel

(bi, si) The estimate and its standard error B-set, the N estimates, i=1, ..., N
ti, pi t-ratio and precision calculated from (b;, s;)  tj=by/s; and pi = 1/si
funnel (pi, bi)- scatter. Show distribution of B-set Broad for small p’s, narrows for p growing
b, Std mean (arithmetic) and standard deviation of ~ Calculated over N
u=Std/b  Coefficient of variation Measure for width of funnel

The tests analyzed: Two MRAS, meta-regression analysis
FAT-PET  Estimate of the PET meta-average that detects and adjusts for censoring
Equation bi = v + Be S + u; or after division with s; ti = Bum pi+ Be + v; estimated with OLS

Pwm PET, Precision Estimate Test Test: HO: fy=0
e FAT, Funnel Asymmetry Test Test: HO: e = 0. Iff fe# 0 then Sy # b
MST Meta Significance Test that indicates polishing
Equation Ln Itjl = 75 + 7p In df; + y; Polishing test: HO: 7 =0

The bias analyzed
Main prior  Widespread so it significantly affect mean It is assumed to be the right sign: >0
SBi=b;—f Selection bias, SB;-set. PB is mean of SB;-set Main priors leads to exaggeration of results
PB=b — 4 Publication bias, b is the mean of B-set Due to biased selections at the hidden level
PBper = fu  Bias of PET estimate We expect that PBper < BP
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