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Abstract

The problem of allocating indivisible objects to different agents, where each indi-

vidual is assigned at most one object, has been widely studied. Pápai (2000) shows

that the set of strategy-proof, nonbossy, Pareto optimal and reallocation-proof rules

are hierarchical exchange rules — generalizations of Gale’s Top Trading Cycles mech-

anism. We study the centralized allocation that takes place in multiple markets. For

example, the assignment of multiple types of indivisible objects; or the assignment of

objects in successive periods. We show that the set of strategy-proof, Pareto efficient

and nonbossy rules are sequential dictatorships, a special case of Pápai’s hierarchical

exchange rules.

JEL classification: C78, D61, D78, I20.

Keywords: Matching, Strategy-Proofness, Nonbossiness, Pareto efficiency.

1 Introduction

A central planner often faces the problem of designing a rule to assign (at most) one indi-

visible object to each agent. For example, municipalities assign public houses to families,

education departments allocate students to public schools, and firms allocate projects among

workers. This class of assignment problems has been widely studied from many different per-

spectives. Pápai (2000) characterizes the set of strategy-proof, Pareto optimal, nonbossy,

and reallocation-proof rules. That is, if the desiderata is to implement a Pareto optimal

allocation, then a way of implementing such an allocation with a nonbossy, strategy-proof

and reallocation-proof rule (in fact, the only way when monetary transfers are not allowed)
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†School of Economics and Business, Aarhus University, Denmark. E-mail: ntumennasan@econ.au.dk
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is by using a hierarchical exchange rule.1 Not only is this result of theoretical importance,

but it also provides an important guidance for practitioners and policy makers. For example,

on April 16, 2012 it was announced that the New Orleans Recovery School District would

utilize a version of the Top Trading Cycles as the algorithm for centralized enrollment of

children in public schools (Vanacore, 2012).

In reality, some agents are typically involved in more than one assignment problem at

once: people who participate in the allocation of public housing, for example, might also

have their children enrolled in public schools. Moreover, many of these problems take place

in multiple periods. An example is the allocation of new physicians in the United Kingdom,

where each young doctor applies to two successive positions – a medical post and a surgi-

cal post (Roth, 1991; Irving, 1998). Another example of multiple market allocation is the

assignment of young children to public daycares (Kennes et al., 2012). A simple, illustra-

tive, example is the allocation of courses among the faculty of a department in which each

professor teaches one course per semester.

We study this centralized allocation problem that takes place in multiple markets, where

each market may be interpreted either as a different type of object or as a different period.

There are n agents and two (or more) markets and each agent must be assigned one object

from each market. Agents have preferences over the different bundles, where a bundle is a

vector consisting of one object per market. We mostly restrict our attention to the cases with

additively separable preferences and in which markets are independent. By independent we

mean that the set of objects available in a particular market is exogenous and not affected

by other markets. This way, we keep our setting as close as possible to the setting of Pápai

(2000).

In environments with multiple markets, if the allocation in each market is done separately,

there might be scope for a mutually beneficial trade between agents even if the allocation is

Pareto efficient within each market. In particular, if the hierarchical exchange rule is applied

in each different market, the final allocation might not be efficient. This raises the following

question: is it possible to characterize the set of rules –perhaps a subset of the hierarchical

1A hierarchical exchange rule is a generalization of Gale’s Top Trading Cycles algorithm and can be
described as follows. In the first stage, the planner distributes the objects to the agents; in particular, some
agents might receive multiple objects while others might receive none. Then, the Top Trading Cycles is
applied, with each agent pointing to her preferred object, while the object points to its owner. Once all
endowed agents receive their objects, the agents who did not participate in this first stage inherit the left-over
objects and the Top Trading Cycles is applied again. The procedure is repeated until all agents are assigned
an object.
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exchange rules– that can implement a Pareto efficient outcome?

We show that the set of rules that are strategy-proof and nonbossy and implement a

Pareto efficient allocation are the sequential dictatorships. These rules generalize the serial

dictatorship rule in that the order of agents who choose the objects might be a function of

the choices made by agents that chose previously. The sequential dictatorship rules are a

special case of Pápai’s (2000) hierarchical exchange rules.2

Our result implies that if each allocation problem is considered in isolation then efficiency

might fail to be satisfied. In particular, if one insists with Pareto efficiency within each

market, then the Top Trading Cycles–or, more generally, a hierarchical exchange rule– might

fail efficiency in the problem as whole, unless the rule is also a sequential dictatorship.

To the best of our knowledge, this is the first paper that provides a complete character-

ization of the centralized allocation in multiple markets without an endowment structure.

Konishi et al. (2001)3 considered the multi-type allocation problem, but in their work each

agent is initially endowed with an object– as in the economy proposed by Shapley and Scarf

(1974). They show that the core may be empty in these multi-type Shapley-Scarf economies

and also that there are no Pareto efficient, individually rational and strategy-proof rules.

Here, since we do not assume an initial endowment structure, we do not impose the individ-

ual rationality constraint, which plays a crucial role in the results obtained by Konishi et al.

(2001).

This paper is organized as follows. In the following section we describe the model and

state its main assumptions. In Section 3, we describe and define a mechanism and its main

properties. We also describe in greater detail two mechanisms: the coordinatewise Top

Trading Cycles and the sequential dictatorship. In Section 4, we prove the result for the

special case of 2 goods in each market and 2 players. In Section 5 we prove our main result

(theorem 3). Finally, in Section 6 we conclude the paper. The proof of Theorem 3 for the

case in which the number of players is greater than 2 is left in the Appendix.

2Pápai (2001), Ehlers and Klaus (2003), and Hatfield (2009) study the problem of multi-unit allocation.
They also show that the sequential dictatorship is the only rule that is strategy-proof, Pareto efficient and
nonbossy. While our result has a similar flavor, the problem that we study here is substantially different
from the multi-unit allocation objects.

3See Klaus (2008) for further reference.
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2 Model

Let N = {1, · · · , n} where n < ∞ be the set of agents. There are two types of indivisible

objects and A and B stand for the sets of type 1 and type 2 objects, respectively. We refer

to a pair (a, b) ∈ A × B as a bundle. For convenience we assume that an artificial null

object 0 is in both sets A and B. Throughout the paper, we assume |A \ {0}| ≥ n and

|B \ {0}| ≥ n, i.e., there are enough objects of each type to distribute to the agents. An

allocation x = (x1, · · · , xn) is a list of the assignments for the n agents, where xi ∈ A × B.

If xi = (a, b), then agent i is assigned the bundle (a, b). Often we write xAi (xBi ) to denote

the type 1 (2) object player i obtains under allocation x. An allocation x is feasible if no

object (except the 0 object) is assigned to more than 1 agent. Let X stand for the set of all

feasible allocations.

Each agent has a (weak) preference ordering Ri over A×B; where Ri is a complete and

transitive binary relation. We denote by Pi the associated strict preference ordering to Ri.

We make three assumptions on preferences:

Assumption 1 (Strictness). For any (a, b) and (â, b̂) in A × B, (a, b)Ri(â, b̂) means that

either (a, b)Pi(â, b̂) or (a, b) = (â, b̂).

Assumption 2 ((Additive) Separability). For each agent i, there exists ui : A ∪ B → R
such that

(a, b)R(â, b̂) for some a, â ∈ A andb, b̂ ∈ B iff ui(a) + ui(b) ≥ ui(â) + ui(b̂)

Assumption 3 (Desirability). For any (a, b) 6= (0, 0) and i ∈ N , (a, b)Ri(0, 0).

We remark that relaxing the separability and desirability assumptions do not affect our

main characterization result. With these two assumptions, especially separability, our al-

location problem in multiple markets remains as similar as possible to the one in a single

market.

We will use the notationR = Πi∈NRi whereRi stands for the set of separable preferences

for player i. With slight abuse of notation we write aRA
i a
′ if (a, b)Ri (a

′, b), for ∀b ∈ B.

Observe here that RA
i is a preference relation on A, due to the separability assumption. We

use RB
i in a similar manner.

Definition 1 (Pareto Dominance). An allocation x (weak) Pareto dominates y if xiRiyi for
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all i and xjPjyj for at least one j. An allocation x is (strongly) Pareto efficient if there

exists no feasible y which Pareto dominates x.

3 Mechanism and Its Properties

A mechanism ϕ is a mapping from the set of separable preferences R to the set of feasible

allocations. The notation ϕAi (R) (ϕBi (R)) denotes the type 1 (type 2) object that mechanism

ϕ assigns to agent i when the reported preference profile is R. In the subsequent sections,

we will characterize the set of mechanisms that are Pareto efficient, strategy-proof, and

nonbossy. We formally define these concepts below.

First, we say a mechanism is efficient if it returns an efficient allocation for each preference

profile.

Definition 2 (Pareto Efficiency). A mechanism ϕ is Pareto efficientif for all R, the alloca-

tion ϕ(R) is Pareto efficient under R.

A mechanism is strategy-proof if reporting one’s true preferences is a weakly dominant

strategy for every agent.

Definition 3 (Strategy-Proofness). A mechanism ϕ is strategy-proof if for all i ∈ I, all Ri,

all R̂i, and all R̂−i,

ϕi

(
Ri, R̂−i

)
Riϕi

(
R̂i, R̂−i

)
where Ri is i’s true preferences while R̂i and R̂−i are the reported preferences of i and the

others.

Finally, a mechanism is nonbossy if no player can change the others’ allocations without

changing her own allocation.

Definition 4 (Nonbossiness). A mechanism ϕ is nonbossy if for all R, i ∈ N and R̂i,

ϕi (Ri, R−i) = ϕi

(
R̂i, R−i

)
=⇒ ϕ (Ri, R−i) = ϕ

(
R̂i, R−i

)
.

Below we present examples of mechanisms and how they work in a problem of centralized

allocation in multiple markets.
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3.1 Coordinatewise Top Trading Cycles

The top trading cycles mechanism was studied, among others, by Shapley and Scarf (1974),

Roth and Postlewaite (1977), Pápai (2000) and Abdulkadiroğlu and Sönmez (2003). Let us

define the commodity-wise top trading cycle algorithm (CTTC) under the assumption that

|A \ {0}| = |B \ {0}| = n, to avoid lengthy technical discussions.4 The CTTC allocates

objects as follows:

Fix any allocation x in which each agent is assigned exactly one object of each type.

Then we allocate type 1 objects as follows:

Round 1 : Each agent i points to her favorite type 1 object under RA
i and each object

points to its owner under x. Then we look for a cycle, which is an alternating sequence of

agents and objects, {i1, ā1, i2, ā2, · · · , ik, āk}, such that āj is agent ij’s favorite type 1 object,

whereas agent il is the owner of āl−1, for l = 2, ..., k; and agent i1 is the owner of āk under

allocation x. There must exist at least one cycle and any agent or type 1 object can be a

part of only one cycle. Then each agent who is a part of a cycle obtains the type 1 object

she points to, i.e., her top choice.

In general, at:

Round k : All agents who obtain type 1 object in rounds 1, · · · , k − 1 do not participate

in step k. Each remaining agent i points to her favorite type 1 object under RA
i among the

unassigned type 1 objects. Each pointed object points to its owner under x. Again, each

agent who is a part of a cycle obtains the object she points to.

The process continues until all agents are allocated a type 1 object. After assigning all

the type 1 objects, type 2 objects are allocated in a similar manner.

Given that the agents’ preferences are separable, the CTTC mechanisms are strategy-

proof and nonbossy.5 On the other hand, it turns out that CTTC is not necessarily efficient

which we demonstrate with the following example.

Example 1 (CTTC: Failure of Pareto Efficiency). Let n = 2 and A = {a1, a2} and B =

{b1, b2}. Agent 1 owns (a1, b1) while agent 2 owns (a2, b2).

4See Pápai (2000) for a more generalized version of the top trading cycles algorithm.
5See Pápai (2000).
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The preferences of the agents are given as follows: a1R
A
i a2 and b2R

B
i b1 for both i = 1, 2.

However, (a2, b2)R1(a1, b1) and (a1, b1)R2(a2, b2).

The CTTC allocates (a1, b1) to agent 1 and (a2, b2) to agent 2. Clearly, this allocation is

Pareto dominated by the one in which (a2, b2) and (a1, b1) are allocated to players 1 and 2,

respectively.

In Example 1, CTTC yields an allocation that both players cannot improve if they

trade their allocations in one market. However, the agents will improve if they trade their

allocations in both markets. This is the reason why CTTC is not necessarily efficient. Con-

sequently, when going from the allocation problem in a single market to the one in multiple

markets, the set of strategy-proof, nonbossy and Pareto efficient mechanisms narrows, as

Pápai (2000) shows that the hierarchical exchange mechanisms — a generalized version of

TTC — are the only strategy-proof, Pareto efficient, nonbossy and reallocation proof mech-

anisms in single market settings.

We have already mentioned that CTTC is both strategy-proof and nonbossy. In fact,

because the agents have separable preferences in our setting, running strategy-proof and

nonbossy mechanisms in both markets would be strategy-proof and nonbossy. In this sense,

achieving strategy-proofness and nonbossiness in multiple market settings is no more difficult

than achieving them in single market settings. On the other hand, efficiency is much harder

to achieve in a multiple market setting than in a single market setting as we already noted

for the case of CTTC. Therefore, we conclude that efficiency is the driving force why the

set of strategy-proof, nonbossy and Pareto efficient mechanisms narrow in multiple market

settings.

3.2 Sequential Dictatorship

In this subsection, we define the sequential dictatorship mechanism which is strategy-proof,

nonbossy and Pareto efficient. In this mechanism, the first player who makes her choice is

exogenously given and is free to choose any bundle. The first player’s choice determines the

second player to make a choice and this player is free to choose any available bundle out of

the bundles left after the first player has made her choice. Then the second player’s choice

determines the third player to choose and she is free to choose any available bundle left after

the first two players’ choices. The process continues until all players have made their choices.

Below we define the sequential dictatorship algorithm formally.
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Let π : N × R → {1, · · · , n} be a permutation of N that depends on the preference

profiles of the players. In addition, let ij(R, π) be the player for whom π(ij(R, π), R) = j,

that is, if the reported preference profile is R, then ij(R, π) is the individual who will make

the jth move under the specific permutation map π(·, R).

When the order of choice is given according to π(·, R), agent i1(R, π) chooses her fa-

vorite bundle from A × B and then agent i2(R, π) chooses her favorite bundle from the

remaining set of bundles, and so on. To formalize this process, we define the favorite bun-

dle of each agent ij(R, π): the favorite bundle of player for agent i1(R, π), f(i1(R, π)) =

(fA(i1(R, π), fB(i1(R, π)), is the most preferred bundle of agent i1(R, π) in A × B. That

is, if a = fA(i1(R, π)) then aRA
i1(R,π)

a′ for ∀a′ ∈ A, and similarly for fB(i1(R, π)). We then

define f(ij(R, π)) successively as follows: f(ij(R, π)), for j = 2, 3, ..., n, is the most preferred

bundle of ij(R, π) in the set:

A \
{
∪j−1k=1f

A(ik(R, π))
}
×B \

{
∪j−1k=1f

B(ik(R, π))
}

With the above notations, the choice of player ij(R, π) is f(ij(R, π)) when the order

of the agents is given by π(·, R). Now we are ready to define the sequential dictatorship

mechanism.

Definition 5 (Sequential Dictatorship). A mechanism ϕ is a sequential dictatorship mech-

anism if there is a permutation π : N ×R → {1, · · · , n} such that

1. for all R ∈ R and j = 1, · · · , n, ϕij(R,π)(R) = f(ij(R, π)).

2. whenever i = i1(R, π) for some R, then i = i1(R
′, π) for all R′ ∈ R.

3. if i = ij(R, π) for some R and j ≤ n, then i = ij(R
′, π) for all R′ in which f(ik(R, π)) =

f(ik(R
′, π)) for all k ≤ j − 1.

The first item in the definition of the sequential mechanism means that each player must

choose her favorite bundle among the available bundles. The second item requires that there

is only one player who makes the first choice. The third item requires that if the first j − 1

players make the same choices, then the jth player who makes a choice must be the same

agent.

The standard serial dictatorship mechanism is the one in which π(·, R) is constant for all

R ∈ R. That is, the order in which the agents make their choices is the same regardless of

the reported preference profile.
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Example 2 (Example 1 revisited.). Under the sequential dictatorship mechanism, player 1

obtains (a1, b2) if she is the one who makes the first choice and (a2, b1) if she is the second

one to choose. Clearly, in both cases the final allocation is efficient.

Remark 1. In the example above, observe that the sequential dictatorship mechanism never

yields the allocation x1 = (a2, b2) and x2 = (a1, b1) which is also Pareto efficient. This

result contrasts with the result in the allocation problem in single markets, in which all

Pareto efficient allocations are reached through some serial dictatorship (Abdulkadiroğlu and

Sönmez, 1999).

4 The 2x2 Cases and the Gibbard-Satterthwaite The-

orem

In this section, we present a preview of our main result. Here, we focus on the specific case

of two objects in each market and two players only. That is, A = {a1, a2}, B = {b1, b2}
and n=2. A nice feature of this proof is that it makes use of the Gibbard-Satterthwaite

theorem.6 The key aspect here is that the allocation of one player fully determines the

allocation of the other player. For example, when the allocation of player 1 is x1 = (a1, b1),

the allocation of player 2 must be x2 = (a2, b2) and so on.7 The strict preference ordering

of each agent over the set of her own final allocations induces a strict ordering over the set

of player 1’s allocations. In this newly interpreted setting, a mechanism maps the players’

reported preferences to player 1’s allocations. Perhaps the most important observation here

is that in the reinterpreted setting, a mechanism is a social choice function as used in the

implementation literature. Now, using the Gibbard-Satterthwaite theorem (Gibbard, 1973;

Satterthwaite, 1975), one obtains that if the mechanism is strategy-proof and efficient, then

it must be a dictatorship, or in our setting a sequential dictatorship mechanism (which is

also a serial dictatorship as there are only 2 objects of each type and 2 players).

Theorem 1. Any nonbossy, strategy-proof, Pareto efficient mechanism for the |N | = |A| =
|B| = 2 case is a sequential dictatorship.

6The result can also be proved using an alternative method, which we do in the following section, for the
general case of any number of players (n ≥ 2) and any number of objects per market.

7The same is not true if there are more than 2 goods even when there are only 2 players or if there
(strictly) more than 2 agents.
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Proof. Fix an efficient and strategy-proof mechanism ϕ, where, recall, ϕ : R1 ×R2 → X.

Let us use the following notations: t1 = (a1, b1), t2 = (a1, b2), t3 = (a2, b1), t4 = (a2, b2)

and let T = {t1, t2, t3, t4}. First let us show that ϕ1 is an onto function. Fix any t = (a, b) ∈
A × B. Consider R1 ∈ R1 and R2 ∈ R2 such that (a, b) is player 1’s favorite bundle in

A × B while the remaining pair in A × B is player 2’s top choice. Because ϕ is efficient,

ϕ1(R) = (a, b). This means that ϕ1 is an onto function. Now we will show that ϕ1 : R → T
must be dictatorial.

We will view ϕ1 : R → T as a social choice function that assigns player 1 some object

t. Specifically, t ∈ T stands for the objects that player 1 obtains. On the other hand, if

player 1 is assigned t1/t2/t3/t4 then player 2 is assigned t4/t3/t2/t1 by feasibility. Player 1’s

preferences rank alternatives assuming that these are the alternatives she would obtain, while

player 2’s preferences rank alternatives based on what is left after player 1 is allocated some

alternative. With this relabeling, one can view ϕ1 : R → T as a social choice function. Then

the Gibbard-Satterthwaite theorem8 yields the desired result (Gibbard, 1973; Satterthwaite,

1975)

5 Efficiency and Strategy-Proofness

In this section we characterize the nonbossy, strategy-proof and Pareto efficient mechanisms.

First let us note that any sequential dictatorship mechanism is nonbossy, strategy-proof and

Pareto efficient.

Theorem 2. The sequential dictatorship mechanisms are nonbossy, strategy-proof and Pareto

efficient.

Now we turn our attention to the main result of the paper: only the sequential dictator-

ship mechanisms satisfy nonbossiness, strategy-proofness and Pareto efficiency. In the body

of the text, we prove the result for n = 2, and we leave the proof of the case in which n > 2

for the Appendix.

Now let us give the definition of monotonicity which is closely related to the notion of

Maskin Monotonicity used in the implementation literature.

8The precise statement of the Gibbard-Satterthwaite theorem is the following: In any environments with
at least three social alternatives, any strategy-proof and onto social choice function is a dictatorship (The
proof is well-known and can be found, for example, in Mas-Colell et al. (1995), Proposition 23.C.3).
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Definition 6 (Monotonicity). A preference profile R1 is a monotonic change of R with

respect to mechanism ϕ if for each agent i, the relative ranking of the allocation ϕi(R)

weakly improves under R1, i.e.,

{(a, b) ∈ A×B : ϕi(R)Ri(a, b)} ⊆
{

(a, b) ∈ A×B : ϕi(R)R1
i (a, b)

}
.

A mechanism ϕ is monotonic if ϕ(R) = ϕ(R1) for any R and R1 where R1 is a monotonic

change of R with respect to ϕ.

In words, a mechanism is monotonic if whenever each agent’s lower contour set of ϕ(R)

expands weakly going from preference profile R to R1, the allocations prescribed by the

mechanism under R and R1 must be the same. The next lemma which establishes that all

the nonbossy and strategy-proof mechanisms are also monotonic is from Svensson (1999).

Lemma 1 (Lemma 1 of Svensson (1999)). If a mechanism ϕ is nonbossy and strategy-proof,

then ϕ is monotonic.

We are now ready for our main result in the paper. Here, we present the proof for the

n = 2 case, and we leave the general proof of n > 2 for the Appendix.

Theorem 3. Any nonbossy, strategy-proof, and Pareto efficient mechanism is a sequential

dictatorship.

Proof. Assume that n = 2 and fix an efficient and strategy-proof mechanism ϕ.

Claim 1. For any a ∈ A and b ∈ B, there exists j ∈ N such that whenever player j reports

Pj in which (a, b) is her most preferred bundle, ϕj(Pj, P−j) = (a, b) for any P−j.

Proof of Claim 1. Without loss of generality (WLOG) let a = a1 and b = b1. Consider the

preference profile (P 1
1 , P

1
2 ) in which the most preferred 4 choices of the players are shown in

the table below (ordered from top to bottom):

P 1
1 P 1

2

(a1, b1) (a1, b2)

(a2, b1) (a2, b2)

(a1, b2) (a1, b1)

(a2, b2) (a2, b1)

... ...

11



In this case, efficiency yields that players 1 and 2 must obtain either (1) (a1, b1) and

(a2, b2), respectively, or (2) (a2, b1) and (a1, b2).

Case (1). Now we will show that player 1 obtains (a1, b1) under ϕ if she reports (a1, b1)

as her most preferred bundle regardless of player 2’s report.

Let us consider 2 more preference profiles P 2
1 for player 1 and P 2

2 for player 2.

P 2
1 P 2

2

(a1, b1) (a1, b2)

(a1, b2) (a1, b1)

(a2, b1) (a2, b2)

(a2, b2) (a2, b1)

... ...

As (P 2
1 , P

1
2 ) is a monotonic change of (P 1

1 , P
1
2 ) with respect to ϕ, ϕ(P 2

1 , P
1
2 ) = ϕ(P 1

1 , P
1
2 )

by Lemma 1. Now let us show that ϕ(P 1
1 , P

2
2 ) = ϕ(P 1

1 , P
1
2 ). The strategy-proofness of ϕ im-

plies that ϕ2(P
1
1 , P

2
2 ) is either (a2, b2) or (a1, b1). If ϕ2(P

1
1 , P

2
2 ) = (a1, b1), then ϕ1(P

1
1 , P

2
2 ) =

(a2, b2) by efficiency. But this allocation is Pareto dominated by the allocation which assigns

(a2, b1) to player 1 and (a1, b2) to player 2. This means that ϕ2(P
1
1 , P

2
2 ) = (a2, b2) which along

with efficiency implies ϕ1(P
1
1 , P

2
2 ) = (a1, b1). Finally, let us show ϕ(P 2

1 , P
2
2 ) = ϕ(P 1

1 , P
2
2 ).

This easily follows from Lemma 1 as (P 2
1 , P

2
2 ) is a monotonic change of (P 1

1 , P
2
2 ) with respect

to ϕ.

Now consider preferences for player 2, P 3
2 in which player 2’s top 4 choices are:

P 3
2

(a1, b1)

(a1, b2)

(a2, b1)

(a2, b2)

...

Now let us show that ϕ(P 1
1 , P

3
2 ) = ϕ(P 1

1 , P
2
2 ). The strategy-proofness of ϕ implies that

ϕ2(P
1
1 , P

3
2 ) is either (a2, b2) or (a2, b1). If ϕ2(P

1
1 , P

3
2 ) = (a2, b1), then ϕ1(P

1
1 , P

3
2 ) = (a1, b2)

by efficiency. But this allocation is Pareto dominated by the one in which players 1 and

2 obtain (a2, b1) and (a1, b2), respectively. Hence, ϕ2(P
1
1 , P

3
2 ) = (a2, b2). Then efficiency

implies that ϕ1(P
1
1 , P

3
2 ) = (a1, b1). This shows that ϕ(P 1

1 , P
3
2 ) = ϕ(P 1

1 , P
2
2 ). Furthermore,
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recall that (a1, b1) is player 1’s most preferred bundle in both P 1
1 and P 2

1 , thus, as (P 2
1 , P

3
2 ) is

a monotonic change of (P 1
1 , P

3
2 ), we must have that ϕ(P 2

1 , P
3
2 ) = ϕ(P 1

1 , P
3
2 ) by Lemma 1. In

addition, the strategy-proofness of ϕ implies that player 2 can never obtain any of (a1, b1),

(a2, b1), and (a1, b2) as long as player 1 reports P 1
1 or P 2

1 . Combining this with Lemma 1, we

obtain that player 2 can never obtain any of (a1, b1), (a2, b1), and (a1, b2) as long as player 1

reports preferences in which (a1, b1) is her most preferred bundle. Note that this completes

the proof for the case in which |A| = |B| = 2.

From now on, let at least one of the markets have more than two objects, i.e. |A| > 2 and

|B| > 2 is satisfied. To complete the proof we must show that player 2 can never obtain any

of (a, b1) where a 6= a1, a2 or (a1, b) where b 6= b1, b2 for as long as player 1 reports preferences

in which (a1, b1) is her most preferred bundle. Consider P 4
2 in which the most preferred 5

bundles of player 2 are:

P 4
2

(a1, b1)

(a1, b2)

(a2, b1)

(a, b1)

(a2, b2)

...

The strategy-proofness of ϕ implies that ϕ2(P
1
1 , P

4
2 ) is either (a2, b2) or (a, b1). If ϕ2(P

1
1 , P

4
2 ) =

(a, b1) then efficiency yields that ϕ1(P
1
1 , P

4
2 ) = (a1, b2). But this allocation is Pareto dom-

inated by the allocation in which players 1 and 2 obtain (a2, b1) and (a1, b2) respectively.

Therefore, ϕ2(P
1
1 , P

4
2 ) = (a2, b2) and then efficiency yields that ϕ(P 1

1 , P
4
2 ) = ϕ(P 1

1 , P
1
2 ). This

along with the strategy-proofness of ϕ and monotonicity yields that player 2 can never obtain

any of (a, b1) where a 6= a1, a2 as long as (a1, b1) is the most preferred bundle in player 1’s

reported preferences. Finally, consider P 5
2 in which the most preferred 5 bundles of player 2

are
P 5
2

(a1, b1)

(a1, b2)

(a2, b1)

(a1, b)

(a2, b2)

...

13



The strategy-proofness of ϕ implies that ϕ2(P
2
1 , P

5
2 ) is either (a2, b2) or (a1, b). If ϕ2(P

2
1 , P

5
2 ) =

(a1, b) then efficiency yields that ϕ1(P
2
1 , P

5
2 ) = (a2, b1). But this allocation is Pareto dom-

inated by the allocation in which players 1 and 2 obtain (a1, b2) and (a2, b1) respectively.

This along with the strategy-proofness of ϕ (and using monotonicity) yields that player 2

can never obtain any of (a1, b) where b 6= b1, b2 as long as (a1, b1) is the most preferred bundle

in player 1’s reported preferences. This completes the proof of case (1).

Case (2). Now we will show that player 2 obtains (a1, b1) under ϕ if she reports (a1, b1)

as her most preferred bundle regardless of player 1’s report.

The similar proof used in Case (1) yields that player 2 obtains (a1, b2) under ϕ if she

reports (a1, b2) as her most preferred bundle regardless of player 1’s report. Now consider

the preference profile (Q1
1, Q

1
2) in which the most preferred 4 bundles of the two players are

Q1
1 Q1

2

(a1, b2) (a1, b1)

(a2, b2) (a2, b1)

(a1, b1) (a1, b2)

(a2, b1) (a2, b2)

... ...

In this case, efficiency yields that players 1 and 2 obtain either (i) (a1, b2) and (a2, b1)

respectively or (ii) (a2, b2) and (a1, b1). In case (ii), using a similar logic as in Case (1) we

know that player 2 always obtains (a1, b1) as long as she reports (a1, b1) as her top choice.

This completes the proof. In case (i), again using the logic in case (1), we know that player

1 always obtains (a1, b2) as long as she reports (a1, b2) as her most preferred bundle. Then

suppose both players report (a1, b2) as their top choice. But both players cannot obtain

(a1, b2) which means case (i) cannot occur.

To complete the proof, we need to show that there is a player who obtains her most

preferred reported bundle regardless of the other player’s report. It suffices to show that for

any (a, b) and (â, b̂), there is only 1 one player who obtains (a, b) whenever she reports (a, b)

as her most preferred bundle and (â, b̂) whenever she reports (â, b̂) as her most preferred

bundle choice. By Claim 1, there must be a player who obtains (a, b) when she reports (a, b)

as her most preferred choice. WLOG assume that this is player 1. Now let us argue that

player 1 obtains (a, b̂) when she reports (a, b̂) as her most preferred choice. Otherwise, player

14



2 must obtain (a, b̂) (by Claim 1) when she reports it as her most preferred choice. But then

when player 1 reports (a, b) as her most preferred choice and while player 2 reports (a, b̂), a

has to be assigned to both players which is a contradiction. Hence, player 1 obtains (a, b̂)

when she reports (a, b̂) as her most preferred choice. Iterating this argument one more time,

we conclude that player 1 obtains (â, b̂) when she reports (â, b̂) as her most preferred choice.

6 Conclusion

We have studied the problem of centralized assignment in multiple markets, which includes

the class of dynamic matching problems. In our main result, we showed that the set of rules

that are strategy-proof, nonbossy and implement a Pareto efficient allocation is the set of

sequential dictatorship rules. This result sharply contrasts with the centralized allocation

in a single market, and with the single object allocation in static environments. In those

problems, the Top Trading Cycles–and its generalizations denoted hierarchical exchange

rules– satisfy the above mentioned criteria.

Our result provides further support for the use of sequential dictatorships in applications

of dynamic matching problems. While these rules have the shortcoming that some agents

might have a larger choice set than others, in some applications this shortcoming is less severe.

For example, Kennes et al. (2012) suggest the use of a mechanism which is a variation of the

sequential dictatorship for the dynamic problem of allocating children to public daycares.

There, they proved that there is no algorithm that is both strategy-proof and stable and

they also argued that, due to the dynamic nature of the problem and the fact that all agents

have a known exit rate from daycares, the shortcoming described above is much less severe.

The result of the current paper provides an additional –and perhaps stronger– justification

for the use of the sequential dictatorship mechanism in the daycare problem.

We conclude by suggesting three practical approaches for this important class of market

design problems. One approach is to use the sequential dictatorship algorithm, which is both

Pareto efficient and strategy-proof. As we argued in the previous paragraph, in some contexts

the shortcomings of this mechanism might be less severe. The other approach is to search for

an algorithm that may not be strategy-proof but delivers a Pareto efficient matching. The

difficulty here is that whenever revealing the true preferences is not a dominant strategy,

coordination failure is likely to occur – unless the algorithm yields a unique Nash equilibrium
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that is simple enough such that all agents can fully understand the strategic nature of the

game. Finally, one might want to weaken the solution concept and search for a strategy-proof

algorithm that yields a matching that, although not necessarily Pareto efficient, achieves

some appropriately defined welfare criterion.

One possible direction for future research is to identify classes of problems (appropriate

restrictions on the preference profiles) within the multiple matching framework presented

herein, for which Pareto efficiency and strategy-proofness are not incompatible with rules

other than the sequential dictatorships.

References
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7 Appendix

Here, we prove Theorem 3 for the n ≥ 3 case. One of the challenges of the main proof is that

one has to use separable preferences only. Specifically, if one changes the relative ranking of

(a, b) and (a, b̂) then the ranking of (ā, b) and (ā, b̂) must also be changed. Therefore, we do

not have the luxury of isolating the relative ranking change of only two bundles. However,

it turns out there is a set of specific preferences that are easy to work with. Below we define

these preferences formally.

Definition 7 (Generalized lexicographical preference). Consider a bijective function η :

A ∪ B → {1, · · · , |A| + |B|}. The preference relation of agent i, Ri, is a (generalized)

lexicographical preference of the order η if for any (a, b), (ā, b̄) ∈ A×B, (a, b)Pi(ā, b̄) implies

that one of the following conditions is satisfied:

min{η(a), η(b)} < min{η(ā), η(b̄)}

min{η(a), η(b)} = min{η(ā), η(b̄)}& max{η(a), η(b)} < max{η(ā), η(b̄)}.

Before we move on, let us consider an example of lexicographical preferences. Let A =

{a1, a2 · · · , am}, B = {b1, b2, · · · , bm}, η(ai) = 2i − 1 and η(bi) = 2i. Then any agent with

the lexicographical preferences of the order η would rank alternatives as follows:

(a1, b1)Pi(a1, b2)Pi · · ·Pi(a1, bm)Pi

(a2, b1)Pi(a3, b1)Pi · · ·Pi(am, b1)Pi

(a2, b2)Pi(a2, b3)Pi · · ·Pi(a2, bm)Pi

(a3, b2)Pi(a4, b2)Pi · · ·Pi(am, b2)Pi
...

We often use the following notation: Aη(c) = {a ∈ A : η(a) ≥ η(c)} and Bη(c) = {b ∈
B : η(b) ≥ η(c)}. Let a set D be the totally ordered set of (A ∪ B) in which the order of

its members is determined by η. We find it convenient to say that Ri is a lexicographical

preference of order D instead of saying that Ri is a lexicographical preference of order η.

Also, we use AD(c) and BD(c) instead of Aη(c) and Bη(c), respectively.

We will use the lexicographical preferences extensively in the proof of our main theo-

rem because they are separable and possess several nice properties. First, let us show the
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separability of the lexicographical preferences in the following lemma.

Lemma 2 (Separability). Any lexicographical preference Ri of order η is separable.

Proof. For all c ∈ A ∪ B, set ui(c) = 2−η(c). Consider any a, â ∈ A and b, b̂ ∈ B. One can

easily check that (a, b)Ri(â, b̂) if and only if u(a) + u(b) ≥ u(â, b̂).

Below let us state three additional properties of the lexicographical preferences which

will be used later.

Lemma 3. Let ā and b̄ be some neighboring members of D, i.e.
∣∣η (ā)− η

(
b̄
)∣∣ = 1. Let Ri

be player i’s lexicographical preference of order D.

1. Then (ā, b̄) is the most preferred bundle of player i in the set AD(ā)×BD(b̄) under Ri.

2. Let D′ be the ordered set which is obtained from D by only reversing the orders of ā and

b̄. Let R′i be player i’s lexicographical preference of order D′. Then AD
′
(ā)×BD′

(b̄) =

AD(ā)×BD(b̄), and (ā, b̄) is the favorite bundle of player i in the set AD
′
(ā)×BD′

(b̄)

under both Ri and R′i.

3. Let D′′ be another ordered set in which any alternative’s relative orders of ā and b̄

to the other alternatives are the same as under D. Suppose R′′ is a lexicographical

preference of order D′′. Then AD
′′
(ā)×BD′′

(b̄) = AD(ā)×BD(b̄) and (ā, b̄) is the top

choice of player i within the set AD
′′
(ā)×BD′′

(b̄) under both Ri and R′′i .

Proof. This lemma follows directly from the definition of lexicographical preferences.

Proof of Theorem 3. Let n ≥ 3, |A| ≥ n and |B| ≥ n. To prove the theorem for this case we

will use an induction argument.

Induction Assumption For all n = 2, · · · ,m − 1 where m − 1 ≥ 2, |A| ≥ m − 1, and

|B| ≥ m − 1, there is a player to whom ϕ always assigns her favorite reported bundle. We

already know that this is true for the n = 2 case.

Now we will show that there exists player j such that ϕ always assigns player j her fa-

vorite reported bundle for any case in which n = m, |A| ≥ m, and |B| ≥ m. For this proof

we will need several steps.
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Claim 2. Let |A| ≥ m ≥ 2 and |B| ≥ m ≥ 2. Consider any set of agents S ⊂ N and P ∈ P.

Let AS = {a ∈ A : ϕAi (P ) = a for some i ∈ S}. Similarly, define BS. Then there must be

player i /∈ S such that ϕi(P ) is the favorite bundle of i in the set A \ AS ×B \BS.

Proof of Claim 2. Suppose not. Let P 1 be a monotonic change of P with respect to ϕ

satisfying the following conditions:

1. if j ∈ S, then ϕj(P ) is the favorite bundle of j in A×B

2. if i /∈ S, then i’s preferences satisfy that

(a) whenever (a, b) ∈ A\AS×B \BS and (ā, b̄) /∈ A\AS×B \BS, then (a, b)P 1
i (ā, b̄)

(b) whenever (a, b) ∈ A\AS×B \BS and (ā, b̄) ∈ A\AS×B \BS, then (a, b)P 1
i (ā, b̄)

if and only if (a, b)Pi(ā, b̄)

By Lemma 1, ϕ(P 1) = ϕ(P ). We will reach a desired contradiction once we show that

there is a player i /∈ S whose favorite bundle in A \ AS ×B \BS is ϕi(P
1).

To show this consider the class of preferences PS such that P ′ ∈ PS satisfies the following

conditions:

1. if j ∈ S, then P ′j = P 1
j

2. if i /∈ S, then i’s preferences satisfy that

(a) whenever (a, b) ∈ A\AS×B \BS and (ā, b̄) /∈ A\AS×B \BS, then (a, b)P ′i (ā, b̄)

Observe that P 1 ∈ P . For this class of preferences, each player i ∈ S must obtain ϕi(P )

as ϕ is efficient. Consequently, for PS , we can treat ϕ as the allocation rule that allocates

A \ AS × B \ BS among the players not in S. Now by the induction assumption, we know

that ϕ must assign some player j /∈ S her reported favorite bundle in A \AS ×B \BS. This

means that ϕj(P
1) is the favorite bundle of player j in A\AS×B\BS reaching a contradiction.

In fact, we can strengthen Claim 2 as follows:

Claim 3. Suppose that whenever a set of players S ⊂ N reports P S = (Pi)i∈S then ϕ assigns

the same allocation to each i ∈ S regardless of the other players’ reports. Then there must

be a player j /∈ S who obtains her favorite reported bundle in A \AS ×B \BS. In addition,
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if ϕi(P ) = ϕi(P̄ ) for all i ∈ S ⊂ N , there must be a player j /∈ S who obtains her favorite

reported bundle in A \ AS ×B \BS for both reported preferences.

Proof of Claim 3. This immediately follows from the previous claim and the induction

assumption.

In the next 3 claims (4-6), we prove that for any (a, b) ∈ A × B, there exists player j who

obtains (a, b) whenever she reports (a, b) as her favorite bundle. WLOG, let us set a = a1

and b = b1.

Claim 4. Let us consider a lexicographical preference profile L in which the order of the ob-

jects is (a1, b1, a2, b2, · · · ).9 Then each (ak, bk) where k ≤ n must be allocated to some player

under L.

Proof of Claim 4. Since n ≥ 3 there must be a player who does not obtain neither a1 nor

b1. Now using Claim 2, we obtain there must be a player i who obtains (a1, b1). Given that

player i gets (a1, b1) under L, by Claim 2 there must be a player j 6= i who obtains (a2, b2).

We complete the proof by applying Claim 2 repeatedly.

WLOG, let us assume ϕi(L) = (ai, bi). Now we show that ϕ assigns player 1 (a1, b1) if it is

her favorite reported bundle.

Claim 5. Consider any lexicographical preference profile in which all players’ order of the

objects is the same and starts with (a1, b1) and then alternates the remaining elements of A

and B. Then player 1 must obtain (a1, b1).

Proof of Claim 5. We will first prove the following statement: Consider another lexicograph-

ical preference profile L̂ which is obtained from L by changing the order of the objects as

follows:

(a1, b1, a2, b2, · · · , aj−1, bj−1, aj,bj+1, aj+1,bj, aj+2, bj+2, aj+3, bj+3, · · · )

where j ≥ 2. Then for each i < j, ϕi(L̂) = ϕi(L) and ϕj(L̂) = (aj, bj+1).

Observe that the proof of the statement above yields Claim 5 as any lexicographical prefer-

ence profile specified in Claim 5 can be reached through a sequence of changes which starts

from L and in each change in the sequence, the order of only two neighboring objects of the

same type is reversed.

If j > n, then L̂ is a monotonic change of L with respect to ϕ. Hence, Lemma 1 yields

9If |A| > |B| (or |A| < |B|), then aj where j > |B| is listed at the end.
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the statement above. Let j ≤ n. Consider a lexicographical preference profile L1 in which

(i) for player i < j the order of the objects is (a1, b1, · · · , ai, bi, aj, bj+1, · · · )

(ii) for player j the order of the objects is (a1, b1, · · · , aj, bj, bj+1, aj+1, · · · )

(iii) for player i > j, (aj, b1, a1, b2, · · · , aj−1, bj, aj+1, bj+1, · · · , ai, bi, · · · ).

Clearly L1 is a monotonic change of L with respect to ϕ. Hence, ϕ(L) = ϕ(L1). Now let

L2 be a lexicographical preference obtained from L1 by changing only player j’s order of the

objects as follows: (a1, b1, · · · , aj, bj+1, bj, aj+1, · · · ). Going from L1 to L2 only the relative

ranking of (aj, bj+1) improves with respect to (aj, bj) for player j. As ϕ is strategy-proof,

ϕj(L
2) is either (aj, bj) or (aj, bj+1). In the first case, thanks to nonbossiness, ϕ(L2) = ϕ(L1).

Then by Claim 3, player j should obtain her favorite bundle among A \ {a1, · · · , aj−1} ×
B \ {b1, · · · , bj−1} which is (aj, bj+1) under L2. This is a contradiction. Hence, ϕj(L

2) =

(aj, bj+1). Because (a1, b1) is the favorite bundle of every player in the set {A\aj×B \bj+1},
someone other than j must obtain (a1, b1) by Claim 2. In addition, when j > 2, (a2, b2) is the

favorite bundle of every player in the set {A \ {aj, a1}×B \ {bj+1, b1}, someone must obtain

(a2, b2) by Claim 2. A similar logic yields that each of the {(a1, b1), · · · , (aj−1, bj−1)} must

be allocated to some player. However, observe that (a1, b1) cannot be allocated to any player

i > j. Otherwise, there is a Pareto improvement by swapping the allocations of players j and

i. Similarly, we obtain that none of the {(a1, b1), · · · , (aj−1, bj−1)} are allocated to players

{j + 1, · · · , n}. Now let us show that player 1 obtains (a1, b1). Otherwise, she obtains

one of the {(a2, b2), · · · , (aj−1, bj−1)}. But then players 1 and j can swap their allocations

and Pareto improve. Then player 2 must earn (a2, b2); otherwise players 2 and j can swap

their allocations and Pareto improve. A similar logic yields that all players i ≤ j − 1,

ϕi(L
2) = (ai, bi) and ϕj(L

2) = (ai, bj+1).

Now we need to change every player’s preferences to L̂ and show that this change does

not alter the allocation of the players {1, · · · , j} under L2. To prove this, we need some extra

steps. First, observe that Claim 2 yields that there must be a player who obtains (aj+1, bj)

under L2. Call this player k > j. Now consider a lexicographical preference L3 under which

the preferences of players N \ k is the same as the ones under L̂ but k’s is the same as the

one under L2. Observe that this is a monotonic change of L2, hence ϕ(L3) = ϕ(L2).

Let us consider L4 in which
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(i) for player i < j the order of the objects is (a1, b1, · · · , ai, bi, aj+1, bj+1, ai+1, bi+1, · · · )

(ii) for player j the order of the objects is (a1, b1, · · · , aj, bj+1, aj+1, bj, aj+2, bj+2, · · · )

(iii) for player k the order of the objects is (a1, b1, · · · , aj, bj, bj+1, aj+1, · · · ) and

(iv) for player i > j and i 6= k, (aj+1, b1, a1, b2, · · · , aj−1, bj, aj, bj+1, · · · , ai, bi, · · · ).

Clearly L4 is a monotonic change of L3 with respect to ϕ. Hence, ϕ(L4) = ϕ(L3).

Now let L5 be a lexicographical preference obtained from L4 by changing player k’s order

of the objects as follows: (a1, b1, · · · , aj, bj+1, aj+1, bj, · · · ). Going from L4 to L5 only the

relative ranking of (aj+1, bj+1) improves with respect to ϕk(L
4) = (aj+1, bj) for player k.

As ϕ is strategy-proof, ϕj(L
5) is either (aj+1, bj) or (aj+1, bj+1). Now we rule out the lat-

ter case. Suppose the latter case occurs. Using the same steps as we used to prove that

{(a1, b1), · · · , (aj−1, bj−1)} is allocated among the players {1, · · · , j− 1} under L2, we obtain

that {(a1, b1), · · · , (aj, bj)} is allocated among the players {1, · · · , j}. If player 1 does not ob-

tain (a1, b1), by swapping the allocations of 1 and k, we can Pareto improve. Similarly, players

i ≤ j−1, must obtain (ai, bi). Therefore, player j obtains (aj, bj). But this is a contradiction

with Claim 3 as j is not obtaining her favorite bundle in A\{a1, · · · , aj−1}×B\{b1, · · · , bj−1})
under L5. Hence, ϕk(L

5) = ϕk(L
4) = (aj+1, bj). Now nonbossiness gives that ϕ(L5) = ϕ(L4).

Now change everyone’s preferences to L̂ which is a monotonic change of L5 with respect to

ϕ. Hence, ϕ(L̂) = ϕ(L5). This completes the proof of Claim 5.

Claim 6. For any preference profile in which player 1 ranks (a1, b1) as her favorite bundle,

player 1 obtains (a1, b1) regardless of what others report.

Proof of Claim 6. Pick any preference profile P in which player 1 ranks (a1, b1) as her favorite

bundle. Now let us construct a lexicographical preference Ln in n iterative rounds.

Round 1. Set i1 = 1. Pick any lexicographical preference L1 in which everyone’s order of

the objects is the same and starts with (a1, b1) and alternates the members of A1 and B1.

Set I1 = {i1} and A1 = A \ a1 and B1 = B \ b1. Observe that ϕi1(L
1) = (a1, b1) by Claim 5.

Round 2. Pick the player who is in N \ I1 and who obtains her favorite bundle under

L1 in A1 ×B1. This is always feasible thanks to Claim 3. (In fact, this player is the second

player.) Call her i2. Set I2 = I1 \ i2. Pick the highest ranked alternative of player i2 among

A1 × B1 under preference profile P . Let it be (â2, b̂2). Set A2 = A1 \ â2 and B2 = B1 \ b̂2.
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Pick a lexicographical preference L2 in which the order of the objects is the same for ev-

eryone, starts with (a1, b1, â2, b̂2) and alternates the members of A2 and B2. Observe that

ϕi1(L
2) = (a1, b1) and ϕi2(L

2) = (â2, b̂2).

Round k. Pick the player who is in N \ Ik−1 and who obtains her favorite bundle un-

der Lk−1 in the set Ak−1 × Bk−1. This is always feasible thanks to Claim 3. Call her ik

and set Ik = Ik \ Ik−1. Pick the most preferred bundle of player ik among Ak−1 × Bk−1

under preference profile P . Let it be (âk, b̂k). Set Ak = Ak−1 \ âk and Bk = Bk−1 \ b̂k.
Pick a lexicographical preference Lk in which the order of the objects is the same, starts

with (a1, b1, â2, b̂2, · · · , âk, b̂k) and then alternates the members of Ak and Bk. Observe that

ϕi1(L
k) = (a1, b1) and ϕij(L

k) = (âj, b̂j) where j ≤ k.

Now consider Ln. Now observe that Ln is a monotonic change of P with respect to ϕ.

Therefore, by Lemma 1, player 1 must obtain (a1, b1). This completes the proof of Claim 6.

Claim 7. There exists a player who obtains her favorite reported bundle.

Proof of Claim 7. Claims 2-6 show that for any (a, b) there is a player who obtains her top

choice whenever she reports (a, b) as her top choice. This claim is proved once we show

that for any other (â, b̂) the same player obtains (â, b̂) whenever she reports (â, b̂) as her top

choice. Suppose otherwise. This means that there exists a player i who obtains (a, b) if she

reports (a, b) as her favorite bundle. Then there must be a player who obtains (â, b) whenever

she reports (â, b) as her favorite bundle. This player must be i: otherwise, when this player

reports (â, b) as her favorite bundle and player i reports (a, b) as hers, both players must

obtain b which is a contradiction. Iterating this argument one more time we obtain Claim 7.

Claim 8. Any strategy-proof, Pareto efficient mechanism is a sequential serial dictatorship.

Proof of Claim 8. From Claim 7, we know that there is a player who obtains her favorite

reported bundle. Let this player be i1. Now consider any two profiles P 6= P ′ in which i1’s

favorite bundles are the same under both profiles. Then by Claim 3, there must be a player

i2 who obtains her favorite bundle after player i1 chooses her favorite alternative. Iterating

this argument we obtain Claim 8.
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