
  Au 
 
Deparemtn of Economics 

and business 
 

Economics Working Paper 
  

2011-13 

Department of Economis and Business 

Business and Social Sciences 

Aarhus University 

Bartholins Allé 10, Building 1322 

DK-8000 Aarhus C - Denmark 

Phone +45 8942 1610 

Mail: oekonomi@econ.au.dk 

Web: www.econ.au.dk 
 

 

 
Quantity Precommitment 

and Price Matching 

 
Norovsambuu Tumennasan 

 

 

 

 

 

 



Quantity Precommitment and Price Matching

Norovsambuu Tumennasan∗

The School of Economics and Management, Aarhus University
Denmark

First Version: March 2010
This Version: September 2011

Abstract

We revisit the question of whether price matching is anti-competitive in a capacity constrained
duopoly setting. We show that the effect of price matching depends on capacity. Specifically, price
matching has no effect when capacity is relatively low, but it benefits the firms when capacity is rel-
atively high. Interestingly, when capacity is in an intermediate range, price matching benefits only the
small firm but does not affect the large firm in any way. Therefore, one has to consider capacity seriously
when evaluating if price matching is anti-competitive.

If the firms choose their capacities simultaneously before pricing decisions, then the effect of price
matching is either pro-competitive or ambiguous. We show that if the cost of capacity is high, then price
matching can only (weakly) decrease the market price. On the other hand, if the cost of capacity is low,
then the effect of price matching on the market price is ambiguous due to the multiplicity of equilibria.
Therefore, this paper challenges the widely accepted belief that price matching is an anti-competititive
practice if the firms choose their capacities simultaneously before pricing decisions.

Keywords: Price matching, capacity constraint, quantity precommitment
JEL Classifications: L00, L01, L02

1 Introduction

Many businesses offer price matching, i.e., if one of the firm’s competitors is selling the same product for a

lesser price, then the firm will sell the product for the same price. Examples of firms using price matching

range from the electronic retail giant, BestBuy to tiny pizza parlors.1 Given its prevalence2 in practice, price

matching has attracted a considerable interest among economists.
∗This paper is a chapter of my Ph.D. dissertation from Brown University. I am indebted to my advisors Roberto Serrano, Geof-

froy de Clippel, and Sergio Turner for their continual advice and encouragement. I would like to thank Antonio Cabrales, Alexander
Koch, John Kennes, Julia Nafziger, Per Baltzer Overgaard and participants at the Brown University and Aarhus University seminars
for their many useful comments and suggestions. All remaining errors are my own.

1Pizza parlors often accept competitors’ coupons which is one form of price matching.
2Moorthy and Winter (2006) point out that a Google search on “price matching” returns more than two hundred thousand hits

demonstrating how widespread price matching is.
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A price matching firm informs the market that its price is the lowest, hence, it seems to embrace com-

petition. However, the price matcher warns its competitors that it will not be undersold, thus, it eliminates

the rivals’ incentive to undercut the price (Salop, 1986). As a result, any price which is usually reached

through collusion is a market price when firms have an option to price match.3 From this point of view,

price matching is a tool for firms to enforce collusive agreements.

Another line of research argues that price matching is a form of price discrimination: Belton (1987), Png

and Hirshleifer (1987) and Edlin (1997) show that by offering to match its competitors’ price, a firm gives

discounts to customers who are aware of the market prices but it keeps the price high to other customers. As

a result, economists as well as legal scholars4 predominantly view price matching as an anti-competititive

practice. However, the literature on price matching implicitly assumes that firms can adjust their capacities

instantly. This naturally leads to the question we consider in this paper: What are the effects of price

matching if the competing firms are constrained in terms of capacity? Specifically, in this paper, we study

the effects of price matching in two well studied models: (1) a price-setting duopoly in which each firm has

limited capacity and (2) firms select their capacity simultaneously before pricing decisions.

We adopt the setting of Kreps and Scheinkman (1983) (KS) in which firms install their capacity in the

first period and name their price in the second period. As pointed out in the original paper, the KS model can

be interpreted as follows: In the first period, firms produce, and then in the second period, having observed

the other’s production level, they engage in a Bertrand (price) competition. However, each firm cannot sell

more than its first period production. The KS model covers a wide range of applications because customers,

instead of calling to pre-order, usually visit a store to buy what they need. As a result, firms must hold a

stock of their product before they meet customers. In addition, because firms meet their customers after

producing their stock, the firms’ prices are set in the second period.

Formally, this paper considers a dynamic model in which firms install their capacity in the first period

and choose their price and price matching option in the second period. What we add to the KS model is

that the firms can price match in the second period. We believe that the price matching decision belongs in

the second stage after installing capacities because capacity cannot be instantly changed, while the pricing

decisions can be modified almost instantly.

First we show that when the capacity of each firm is limited, the effects of price matching vary with

the firms’ capacities. Specifically, the larger the capacity, the stronger are the effects of price matching

on the firms. This is intuitively plausible because for price matching to be effective, the equilibrium price

(in the absence of price matching) needs to be low enough that some price beyond it simultaneously im-

proves the firms. But when capacity is relatively small, without price matching, the equilibrium price is

already very high (Kreps and Scheinkman (1983) and Osborne and Pitchik (1986)). Thus price matching

does not affect the firms. At the other extreme, when capacity is relatively high, without price matching,

the equilibrium price is sufficiently low, thus price matching affects both firms in a positive way. Most

interestingly, when industry capacity is in an intermediate range, price matching benefits the small firm but
3Salop (1986) shows that the equilibrium price in the presence of price matching option ranges from the monopolistic to the

Bertrand price. Doyle (1988) further points out that only the monopolistic price survives the process of iterative elimination of
weakly dominated strategies.

4For a comprehensive literature review, see Arbatskaya et al. (2004).
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not the large one. Without price matching in this case, the equilibrium strategies involve randomization

(Kreps and Scheinkman (1983) and Osborne and Pitchik (1986)) because whenever the small firm offers a

price exceeding the market clearing price, the large firm prefers a price slightly lower than that of the small

firm. With price matching, the small firm can eliminate the large firm’s incentive to underprice. Therefore,

the equilibrium price increases but the firms split the equilibrium market demand so that the small firm

sells its full capacity. This is the reason why price matching has disproportionate effects on the firms. Our

analysis on capacity constrained duopoly suggest that capacity is a key factor to whether price matching is

anti-competitive or not.

Second, we show that if firms choose their capacities simultaneously before pricing decisions, then the

effect of price matching is either pro-competititive or ambiguous. We prove the following 2 results. (1) If

the cost of capacity is low,5 then some SPE prices are higher than the Cournot price – the only SPE price

in the KS setting – while some are lower. (2) If the cost of capacity is high, then the SPE prices are always

(weakly) lower than the Cournot price. The reason is as follows: to take advantage of price matching, firms

need to have a capacity exceeding a certain threshold, but this threshold does not depend on the cost of

capacity because it is sunk once the second period starts. Furthermore, when firms’ capacity exceeds this

threshold, there is a range of equilibrium prices as in Salop (1986), and the highest price in this range is

always the Monopolistic price associated with the cost of production. But the Cournot price is lower than

the Monopolistic price associated with the cost of production only if the cost of capacity is low. Therefore,

price matching can only decrease the market price below the Cournot one when the cost of capacity is high.

However, when the cost of capacity is low, some SPE prices exceed the Cournot price while some do not.

Therefore, the effect of price matching on the market price is ambiguous if the cost of capacity is low.

We furthermore use an equilibrium refinement that requires the firms to coordinate on the best equilib-

rium from their perspective in the second period. In the Salop (1986) model, this refinement leads to the

equilibria that result in the Monopolistic price (Doyle, 1988). However, when we apply the refinement to

our model, SPE does not exist if the installation cost is low when price matching could potentially have an

anti-competititive effect. Therefore, this refinement does not help in determining the effect of price matching

on the market price when the installation cost is low.

A handful of papers challenge the conventional wisdom that price matching is anti-competitive. Corts

(1995) checks the robustness of the anticompetitive effect of price matching. He extends the price matching

policy to the price beating policy and restores the Bertrand price as the unique equilibrium.6 The difference

between the price beating and matching policies is that the former allows firms to undercut the price of

others, while the latter only allows firms to tie their price to those of the others. This is the reason behind

Corts’s result. Also, Hviid and Shaffer (1999) introduce hassle costs, i.e., consumers have to bear certain

costs to convince a price matching firm that there is a lower price in the market. In their model, a firm can

steal the other’s market share by underpricing because customers save the hassle costs by buying from the
5The formal condition requires the total Cournot quantity with the combined cost of capacity installation and production to

exceed the monopolistic quantity with the production cost. However, for the ease of presentation, the introduction uses the condition
that coincides with the formal condition in the case of linear demand and cost.

6Kaplan (2000) further extends the strategy set to include effective price strategies and restores the possibility of monopoly
pricing.
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price cutter, thus, restoring the Bertrand price.7 The common thread between Corts (1995) and Hviid and

Shaffer (1999) is that in both papers, the firms’ incentive to undercut the others’ price is restored. In this

paper, we do not restore the firms’ incentive to undercut the others’ price, but introduce capacity as a choice

variable. Moorthy and Winter (2006) introduce cost heterogeneity among firms and shows that only a low

cost firm uses price matching to signal that it is low priced.

The paper is organized as follows: Section 2 lays out the model. Section 3 investigates the effect of price

matching in a capacity constrained duopoly. Section 4 studies the effect of price matching in the full game.

Lastly, section 5 concludes.

2 Model

Two identical firms offer the same product and the market demand for this product is P (x) or D(p) =

P−1(p) where x and p are quantity and price, respectively.

The two firms compete in two stages: In the first stage, each firm installs its capacity which is the

maximal quantity that the firm can sell in the second stage. Firm i’s cost of capacity ki ∈ R+ is c(ki).

In the second period, after observing each other’s capacity, each firm i chooses its announced price pi
and price matching option oi ∈ {0, 1} where 1 means “match” and 0 means “do not match”. Without loss

of generality, we normalize the cost of production in this period to 0. The buyers are informed about the

firms’ second period actions.8 Consequently, by choosing different price matching options, a firm alters the

actual price of its product. Specifically, if firm i does price match, then it sells its product for the lowest

price on the market. But if firm i does not price match, then it sells its product for its announced price.

We use the terminology effective price of firm i to refer to the price the firm sells its product for, i.e.,

pei (pi, oi, pj , oj) ≡ (1 − oi)pi + oi min{pi, pj}. A firm can offer any effective price by properly choosing

its price and price matching option, but it cannot underprice the other if the rival price matches. We use the

effective prices extensively because these prices ultimately determine the sales quantity of the firms.

Now let us formulate the sales quantity of firm i which of course depends on the firms’ capacities and

effective prices. Let pe1 and pe2 be the corresponding effective prices for firms 1 and 2. Then firm i sells

xi(p
e
i , p

e
j , ki, kj) =


min {ki, D(pei )} if pei < pej

min
{
ki,max

{
D(pej)− kj ,

D(pej)

2

}}
if pei = pej

min {ki,max{0, D(pei )− kj}} if pei > pej .

(1)

The above formulation implicity assumes that the firms split the market if they announce the same price

as long as each has a sufficient capacity. In addition, the efficient rationing rule is used, i.e., the consumers

with a higher valuation buy from the firm with the lower effective price.

Now let us consider the full game. The strategy set of firm i is R+ × {(pi, oi) : R2
+ → R+ × {0, 1}}.9

7Dugar and Sorensen (2006) take the model of Hviid and Shaffer (1999) to an experimental lab, and find a significantly different
price than the Bertrand price.

8Perhaps through newspaper or internet advertising.
9When discussing the strategies, the notations pi(k1, k2) and oi(k1, k2) are the functions of the capacities chosen in period 1.
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Let (s1, s2) denote a generic strategy profile. Then the profit function of firm i is

πi(si, sj) = pei (si, sj)xi(si, sj)− c(ki)

where pei (si, sj) and xi(si, sj) are the effective price and sales quantity of firm i corresponding to the

strategy profile (si, sj). We use the notion of subgame perfect equilibrium (SPE) to analyze the full game.

As in KS, we make the following two assumptions.

Assumption 1. P (x) is strictly positive on some bounded interval (0, x̄) on which it is twice continuously

differentiable, strictly decreasing, and concave. For x ≥ x̄, P (x) = 0.

Assumption 2. The cost function is twice differentiable, increasing and convex, i.e., c′ > 0 and c′′ ≥ 0. In

addition, c(0) = 0. Furthermore, c′(0) < P (0) - production at some level is profitable.

Osborne and Pitchik (1986) study a model similar to KS’s under the relaxed assumption that demand is

decreasing but not necessarily concave. They show that there could be multiple SPEs but this complicates

our goal of determining the effects of price matching in the full game.10 To avoid this problem, we maintain

assumption 1.

We now turn our attention to the standard Cournot competition with cost function b, where b(x) = 0 or

b(x) = c(x). Thanks to assumptions 1 and 2, one can easily show that the profit function P (x+ y)x− b(x)

is concave on [0, x̄ − y]. Let rb(y) be the Cournot best response to the rival’s production y, i.e., rb(y) =

arg max0≤x≤x̄−y xP (x+ y)− b(x).

The following lemma, which is instrumental in our analysis, is from KS.

Lemma 1. (a)For cost function b, rb is nonincreasing in y, and rb is continuously differentiable and strictly

decreasing over the range where it is strictly positive

(b) r′b ≥ −1 with strict inequality for y such that rb(y) > 0

(c) If b and d are two cost functions such that b′ > d′, then rb(·) < rd(·)
(d) If x ≥ rb(x), then x ≥ rb(rb(x))

Proof. See KS.

As pointed out in KS, thanks to assumptions 1 and 2, there is a unique Cournot equilibrium associated

with cost b, with each firm supplying xcb. Let pcb ≡ P (2xcb) and πcb ≡ pcbx
c
b − b (xcb). Also, let xmb ≡

arg maxx P (2x)x − b(x), pmb ≡ P (2xmb ) and πmb ≡ pmb x
m
b − b (xmb ). Observe that if each firm supplies

xmb when b = 0, then the total market supply, 2xmb , equals the monopolistic quantity associated with 0 cost.

Hence, we refer to xmb as the monopolistic quantity. Since the second period cost of production is 0, the

b(·) = 0 case is used extensively in our analysis. To simplify the notations, we omit the subscripts from the

notations.

Before we move to the next section, let us review Salop (1986) and KS which this paper is based

upon. Salop (1986) studies the effect of price matching in the standard Bertrand setting in which firms have
10However, in capacity constrained games, we believe that relaxing assumption 1 as in Osborne and Pitchik (1986) does not

change the effects of price matching found in this paper.
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unlimited capacity. Therefore, his model corresponds to the subgame in our model in which both firms have

a sufficiently large capacity. Salop finds that all the prices ranging from 0 to pm can be supported as a Nash

equilibrium.

KS, on the other hand, models capacity but not price matching. As we mentioned earlier, our model

is an extension of the KS model in which firms can price match. Consequently, to see the effects of price

matching on the market price, we compare the equilibrium prices found in our model to the ones found in

KS.

3 Price Matching in a Capacity Constrained Doupoly

In this section, we analyze the effect of price matching in capacity constrained games, i.e, the second stage

of our full game.

Let us fix a capacity constrained game in which the firms’ respective capacities are k1 and k2. The

total capacity is k = k1 + k2 and without loss of generality, we assume that k1 ≤ k2. Sometimes we

refer to firm 2 (firm 1) as the large (small) firm. Since we are concentrating capacity constrained games,

we simplify the notations by using pi and oi for pi(k1, k2) and oi(k1, k2), respectively. In this paper, we

will only concentrate on pure strategies.11 If k1 ≥ D(0), our model is equivalent to the standard Salop

model, hence, any price in the interval [0, pm] can be supported as an equilibrium price. Henceforth, we will

concentrate on the k1 < D(0) cases.

If firm i sets its effective price to pei and firm j to pej , then firm i nets:

Ri(p
e
i , p

e
j) =


Li(p

e
i ) ≡ pei min {ki, D(pei )} if pei < pej

Ei(p) ≡ pmin
{
ki,max

{
D(p)− kj , D(p)

2

}}
if pei = pej = p

Gi(p
e
i ) ≡ pei min {ki,max{0, D(pei )− kj}} if pei > pej .

(2)

Observe that each of Li, Ei, and Gi is a continuous function and Li(p) ≥ Ei(p) ≥ Gi(p). In figure

1, we show the examples of the functions Li, Ei and Gi. Generally, E2 has a more complex shape than

its counterpart E1 because firm 2 has a higher capacity than firm 1. To see this, let us examine E1 and E2

for different prices. If the price is lower than P (k), there is undercapacity in the market, thus each firm

sells its full capacity. Consequently, Ei(p) = pki if p ≤ P (k). The firms have enough capacity to meet

the market demand as soon as the price reaches P (k). Then half of the total market demand is allocated to

each firm which the small firm cannot meet if the market price is lower than P (2k1). If this is the case, then

the excess demand is allocated to firm 2. Consequently, E1(p) = pk1 and E2(p) = p(D(p) − k1) on the

interval [P (k), P (2k1)]. Once the price passes P (2k1), firm 1’s capacity is large enough to meet half of the

market demand. As a result, for both firms, E1(p) = E2(p) = pD(p)
2 if p ≥ P (2k1). Here, we note that E2

is equal to G2 for all prices p ≤ P (2k1) and to pD(p)
2 for all p ≥ P (2k1). This will be used repeatedly in

our subsequent analysis.

Because the functions Li, Ei and Gi play important roles in characterizing the equilibria, we investigate
11One can consider mixed strategies which complicates the analysis significantly without providing additional insights. The

analysis that considers mixed strategies can be obtained from the author.
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Figure 1: The Functions Li, Ei and Gi for i = 1, 2

them in detail. Let L̄i(k1, k2) ≡ maxp≥0 Li(p) and pLi (k1, k2) ≡ arg maxp≥0 Li(p). In a similar way,

we define Ēi(k1, k2), pEi (k1, k2), Ḡi(k1, k2) and pGi (k1, k2). For these notations, we often exclude the

arguments when this does not cause confusion. For example, L̄i is the shorthand notation for L̄i(k1, k2).

First let us examine Gi because L1, L2 and E1 turn out to be special cases of Gi. First we identify

the maximizer and the maximal value of Gi depending on the capacities of the firms. Suppose firm i has

unlimited capacity. Then at price p, Gi(p) = p(D(p) − kj) which can be interpreted as the revenue firm

i earns by selling quantity D(p) − kj for price p. From the perspective of firm i, this is equivalent to the

case in which firms i and j bring respective quantities D(p)− kj and kj to the market, and the market price

adjusts to clear the market — the quantity (Cournot) competition in which firms i and j produce D(p)− kj
and kj , respectively. Accordingly, we know that firm i maximizes Gi(p) by selling r(kj) (the Cournot best

response to firm j’s capacity) for P (kj + r(kj)). Now let us consider the cases in which firm i is capacity

constrained. If firm i has a capacity that exceeds r(kj), firm i can always sell r(kj) by setting its price to

P (kj +r(kj)). As a result, for firm i,Gi (P (kj + r(kj))) equals the maximalGi for capacity unconstrained

firm i. As a capacity constrained firm i cannot have a higher Ḡi(ki, kj) than a capacity unconstrained firm

i, it must be that Ḡi(ki, kj) = P (kj + r(kj))r(kj) and pGi (ki, kj) = P (kj + r(kj)) if firm i’s capacity

exceeds r(kj). If firm i’s capacity is less that r(kj), then by setting its price to P (kj + r(kj)), firm i cannot

sell r(kj) because of its capacity. Consequently, in this case, pGi (ki, kj) must be P (k) — the minimal price

at which firm i can meet the market demand. Now that we have fully identified the maximizer of Gi, let us

consider the shape of Gi which is composed of two functions: pki on the right of P (k) and p(D(p)−kj) on

the left of it. The former function is an increasing function while the latter one is a hump-shaped (inverted

U ) function. In addition, becauseGi is continuous, it must be a hump-shaped function. We summarize these

results in the following lemma.

Lemma 2. (a) For each firm i,

pGi =

{
P (k) if ki ≤ r(kj)
P (kj + r(kj)) if ki > r(kj)

and Ḡi =

{
P (k)ki if ki ≤ r(kj)
P (r(kj) + kj)r(kj) if ki > r(kj).

In addition, Gi strictly increases on
[
0, pGi

)
and strictly decreases on

(
pGi , P (kj)

)
.
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(b) For each firm i,

pLi =

{
P (ki) if ki ≤ 2xm

pm if ki > 2xm
and L̄i =

{
P (ki)ki if ki ≤ 2xm

2pmxm if ki > 2xm.

In addition, Li strictly increases on [0, pLi ) and strictly decreases on
(
pLi , P (0)

)
.

(c) For firm 1,

pE1 =

{
P (2k1) if k1 ≤ xm

pm if k1 > xm
and Ē1 =

{
P (2k1)k1 if k1 ≤ xm

pmxm if k1 > xm.

In addition, E1 strictly increases on
[
0, pE1

)
and strictly decreases

(
pL1 , P (0)

)
.

Proof. See Appendix.

Now we turn our attention to E2 which can have two local (maybe global) maxima because E2 is the

upper envelope of two hump-shaped functions, G2 on the left of P (2k1) — the intersection of G2 and

pD(p)/2 — and pD(p)/2 on the right of it. If G2 peaks on the left of P (2k1) and pD(p)/2 peaks on the

right of it, then E2 has two local maxima.

Now we will find the maxima of E2 depending on the capacities of the firms. As the previous paragraph

suggests, this can be done by analyzing where the peaks of G2(p) and pD(p)/2 are positioned relative to

P (2k1). The function G2 peaks, by definition, at pG2 which turns out to be on the left of P (2k1) only if

k1 < xc (see the proof of lemma 3). The function pD(p)/2 peaks at pm which is located on the left of

P (2k1) only if k1 < xm. As xm < xc, we consider 3 cases: (I) k1 < xm (II) k1 ∈ [xm, xc] and (III)

k1 > xc. In each case, we show the corresponding E2 in figure 2.

From figures 2a and 2d, one can see that the function E2 is hump-shaped in cases (I) and (III) thanks

to the fact that both G2 and D(p)p/2 are peaked on one side of the intersection of the two functions. In

case (II), E2 is (usually) double-hump-shaped because G2 and D(p)p/2 are peaked on different sides of

the intersection of the two functions. In other words, in case (II), E2 has two local maxima. The following

lemma summarizes our findings on E2.

Lemma 3. For firm 2,

Ē2 =


Ḡ2 if k1 < xm

max
{
Ḡ2, π

m
}

if k1 ∈ [xm, xc]

πm if k1 > xc
and pE2 =

{
pG2 if Ē2 = Ḡ2

pm if Ē2 = πm

In addition, if k1 < xm or if k1 > xc, then E2 strictly increases on
[
0, pE2

)
and strictly decreases on(

pE2 , P (0)
)
. If k1 ∈ [xm, xc], then E2 strictly increases on the intervals

[
0, pG2

)
and [P (2k1, p

m) and

strictly decreases on the intervals
(
pG2 , P (2k1)

]
and [pm, P (0)).12

12Sometimes, some of these intervals are empty. For example, when k1 = k2 = xm, pG2 = P (2k1) = pm, and then the intervals
[P (2k1, p

m) and
(
pG2 , P (2k1)

]
are empty.
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(a) Case (I): k1 < xm (b) Case (IIa): xm ≤ k1 ≤ xc and Ḡ2 > πm

(c) Case (IIb): xm ≤ k1 ≤ xc and Ḡ2 ≤ πm (d) Case (III): k1 > xc

Figure 2: The Functions E2 and G2

Figure 3: The function E2 is maximized at pG2 in regions I and IIa, and at pm in regions IIb and III

9



Proof. See Appendix.

In figure 3, we depict the capacity constrained games in which E2 is maximized at pG2 (or at pm). This

information turns out to be crucial in characterizing the equilibria as we will see later. We already know

that E2 is maximized at pG2 in region I of figure 3 and at pm in region III. Hence, we only concentrate

on regions IIa and IIb which are separated by curve M . For the games on this curve, Ḡ2 = πm and

k1 ∈ [xm, xc]. Curve M starts at k2 = k1 = xm and always stays above the 45◦ line because on this line,

Ḡ2(k1, k2) = P (2k1)k1 by lemma 3a (recall k1 ≤ xc) and the function P (2k1)k1 reaches its peak value πm

at k1 = xm and decreases when k1 > xm. Also, it is not hard to show that M continues northeast13 starting

k2 = k1 = xm until it intersects with r(k1) (at x∗ in figure 3) at which point curve M turns into a vertical

half line (recall that Ḡ2(x∗, k2) = Ḡ2(x∗, r(x∗)) for all k2 > r(k2) by lemma 2a). Finally, let us point out

that Ē2 is maximized at pG2 in the games above M (region IIa) and at pm in the ones below M (region IIb).

In the next two lemmas, we narrow down the set of strategy profiles that can arise at equilibrium. Lemma

4 shows that the firms must offer the same effective price at any equilibrium. The argument for this result

is simple: if the firms offer different effective prices, then the firm with the higher announced price must be

not price matching. Consequently, the firm with the lower price must be earning what a monopolist (with a

capacity constraint) would have earned; otherwise the firm with the lower price can profit by increasing its

price slightly. But a monopolist’s price is always high enough that its capacity can meet the corresponding

market demand. As a result, the firm with the higher price earns 0 revenue because its price is too high that

there is no excess demand beyond what the firm with the lower price can handle. Certainly, the firm with

the higher price can earn a revenue higher than 0.

Lemma 4. At equilibrium both firms must offer the same effective price, i.e., pe1 = pe2.

Proof. Suppose pei < pej . This means pi < pj and oj = 0. Consequently, firm i nets Li(pi) while firm j

nets Gj(pj). It must be that pj > pLi because if pj ≤ pLi , firm i can increase its revenue by naming a price

in the interval (pi, pj) as Li(·) is a strictly increasing function on
[
0, pLi

)
(lemma 2b). But for all p ≥ pLi ,

ki ≥ D(p), thus ki > D(pj). Consequently, Gj(pj) = pj max{0, D(pj) − ki} = 0. However, by price

matching firm j nets a positive revenue, which is a contradiction.

We use the terminology market price at an equilibrium to refer to the unique effective price the firms

offer at this equilibrium. In addition, at any equilibrium, each firm i’s revenue must be Ei at the market

price corresponding to this equilibrium. Now let us determine whether there is any equilibrium in which

one of the firms does not price match. If such an equilibrium exists, the market price corresponding to this

equilibrium must be the announced price of the non price matching firm. But then the rival firm must have

an incentive to undercut the market price as long as the rival firm does not sell its full capacity . In other

words, a firm may not price match at an equilibrium only when the rival firm must sell its full capacity. But

firms 1 and 2 sell their respective full capacities, only if the market price must not exceed P (2k1) and P (k),

respectively. Consequently, we find that if firm 1 does not price match, then the market price is P (k) —

13One can show the continuity of M on the interval k1 ∈ [xm, x∗] by using the implicit function theorem on the expression
Ḡ2(k1,M(k1)) = πm.
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the lowest possible equilibrium price. On the other hand, if firm 2 does not price match, then market price

cannot exceed P (2k1). We present this result in the following lemma.

Lemma 5. If o1 = 0 at an equilibrium, then the corresponding market price to this equilibrium must be

P (k). However, if o2 = 0, then the market price cannot exceed P (2k1).

Lemma 5 implies that by unilaterally deviating from an equilibrium, the revenue of firm 2 is either E2

or G2. Specifically, if firm 2 sets its effective price (weakly) below firm 1’s price, then firm 2 nets E2. This

is because at equilibrium, firm 1 must either price match or set its price to P (k), and in the latter case L2

and E2 coincide for all prices below P (k) (figure 1). On the other hand, by setting its effective price above

firm 1’s, firm 2 nets G2.

Finally, we are ready to characterize the equilibria. First let us consider the games in which k1 < xm

(region I in figure 3) or in which k1 ∈ [xm, xc] and Ḡ2(k1, k2) > πm (region IIa). In this case, the

equilibrium market price must be pG2 . Otherwise, by setting its effective price to pE2 = pG2 (lemma 3), firm 2

nets Ē2 = Ḡ2, the maximal value ofE2. To support pG2 as an equilibrium market price, consider the strategy

profile in which both firms name pG2 and price match. Observe that the market price corresponding to this

strategy profile is pG2 . To argue that this proposed strategy profile is an equilibrium, we only need to show

that firm 1 cannot profit by deviating unilaterally. At the proposed strategy, firm 1 nets E1(pG2 ) and sells its

full capacity because pG2 ≤ P (2k1) (recall pG2 ≤ P (2k1) whenever k1 ≤ xc) Thus, there is no incentive to

name a lower price. Naming a higher price also will not profit firm 1 because E1(pG2 ) ≥ G1(pG2 ) (see figure

1) and G1 decreases for the prices higher than pG2 (see the formal proof).

Next we consider the games in which k1 ∈ [xm, xc] and Ḡ2(k1, k2) ≤ πm (region IIb) or in which

k1 > xc (region III). To determine the equilibria in these subgames, we need one more notation: p∗ is the

price level in [P (2k1), pm] such that E2(p∗) = D(p∗)p∗/2 = Ḡ2. The examples of p∗ are shown in figures

2c and 2d. Sometimes we will write p∗(k1, k2) because p∗ depends on the capacities of the firms. First, note

that p∗ < pG2 only in the subgames with k1 > xc. Also, from figures 2c and 2d, one can see that on the

interval [0, p̄] where p̄ ∈ [p∗, pm], E2 is maximized at p̄ and E2(p̄) ≥ Ḡ2.

Now let us identify the set of equilibrium market prices in the games we started considering in the

previous paragraph. The equilibrium market price cannot strictly exceed pm: otherwise, firm 2 would

bring down its effective price to pm and net πm, the highest E2 (see figures 2c and 2d). In addition, the

equilibrium market price cannot be strictly lower than p∗ unless it is pG2 (recall that pG2 < p∗ only in region

IIb). Otherwise, by setting its effective price to pG2 , firm 2 can earn at least Ḡ2 which is superior to E2 at

any price lower than p∗ (see figures 2c and 2d). As a result, we conclude that the equilibrium market price

must be in the set pG2 ∪ [p∗, pm].

To show that any price in the interval pG2 ∪ [p∗, pm] can be an equilibrium market price, consider a

strategy profile in which both firms name p̄ in the set [p∗, pm] and price match. At this strategy profile, both

firms earn E2(p̄) = E1(p̄). There is no incentive to deviate for firm 2: by increasing its effective price, firm

2 nets G2 but unfortunately, even the highest value of G2 cannot exceed firm 2’s income E2(p̄) (see figures

2c and 2d). By decreasing its effective price, firm 2 nets E2 but E2(p̄) is the maximal value of E2 on the

interval [0, p̄]. Now we need to argue that firm 1 cannot profitably deviate. Because the proposed strategy

profile is symmetric for the firms and yield the same revenue, whenever there is a profitable deviation for
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the small firm from the proposed strategy, the same deviation must be also profitable for the large firm.

Therefore, the small firm cannot profitably deviate. Now we are left to show that p = pG2 /∈ [p∗, pm] is an

equilibrium price. We know that pG2 < p∗ only in games in which k1 ∈ [xm, xc] and Ḡ2(k1, k2) ≤ πm. For

these games pG2 ≤ P (2k1), hence, using a similar logic used in the games in region IIa, we show that both

firm naming pG2 and price matching is an equilibrium. Consequently, the set of equilibrium market prices is

pG2 ∪ [p∗, pm]. We summarize these results in the following proposition.

Proposition 1.

(a) If k1 < xm (region I in figure 3) or if k1 ∈ [xm, xc] and Ḡ2(k1, k2) > πm (region IIa in figure 3),

then the only equilibrium market price is pG2 and firms 1 and 2 net pG2 k1 and Ḡ2, respectively.

(b) If k1 ∈ [xm, xc] and Ḡ2(k1, k2) ≤ πm (region IIb), then the set of equilibrium market prices is

pG2 ∪ [p∗(k1, k2), pm]. If the equilibrium market price is pG2 , then firms 1 and 2 net pG2 k1 and Ḡ2,

respectively. If the market price is p ∈ [p∗(k1, k2), pm], then each firm nets D(p)p
2 ∈

[
Ḡ2, π

m
]
.

(c) If k1 > xc (region III), then the set of equilibrium market prices is [p∗(k1, k2), pm]. If the equilibrium

market price is p ∈ [p∗(k1, k2), pm], then each firm nets D(p)p
2 ∈

[
Ḡ2, π

m
]
.

Proof. See Appendix.

Proposition 1 fully characterizes the equilibrium market prices in each capacity constrained game. Now

we investigate the effects of price matching in capacity constrained games. For this we need the results

found in the KS model as our model is an extension of the KS model that allows the firms to price match.

The following proposition summarizes the results of KS in capacity constrained games.

Proposition 2. (Proposition 1 in KS) Suppose that the firms do not have a price matching option. Then the

equilibrium outcomes are given as follows:

(a) if k2 ≤ r(k1) (the region between the 45◦ line and the r(k1) curve in figure 3), then there is a unique

pure equilibrium in which each firm i names pGi = P (k) and nets Ḡi = P (k)ki.

(b) if k2 > r(k1) (the region above the 45◦ line and the r(k1) curve), then there is no pure equilibrium. At

any mixed equilibrium, the highest price in the support of equilibrium strategy is pG2 = P (k1 +r(k1)).

In addition, firm 2 nets Ḡ2 = P (k1 + r(k1))r(k1) while firm 1’s equilibrium revenue does not exceed

Ḡ2.

With the help of propositions 1 and 2 we are ready to identify the effects of price matching in a given

capacity constrained game. Once the firms have an option to price match, there are many new equilibria in

certain games. Most interestingly, in the games with k2 > r(k1), pure equilibria exists in our model but not

in the KS model.14 Let us explain why any of our equilibria is not an equilibrium in the KS model. In our

setting, the equilibrium price always (strictly) exceeds P (k) in the games with k2 > r(k1). Consequently,

14In fact, the mixed equilibria in the KS model is no longer an equilibrium in our model because for those strategies, firm 1 must
price match once it has a price matching option. This in turn alters firm 2’s responses.
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firm 2 does not sell its full capacity at any of our equilibria. In the KS setting, by underpricing, firm 2

improves as its market share increases significantly. Therefore, none of our equilibrium prices can be an

equilibrium price in the KS model. In our model, when firm 1 price matches, by underpricing, firm 2 cannot

steal the market share of firm 1. Thus, these strategy profiles can be supported as equilibria in our model.

Now let us turn our attention to how price matching affects the market price and the firms’ revenues in

different games. We summarize these effects in table 3, for which we use figure 3.

(Region I or IIa) (Region IIb) (Region III)
The Market Price — ↗

k2 ≤ r(k1) Firm 1’s revenue — ↗ n.a.
(on or below r(k1)) Firm 2’s revenue — ↗

The Market Price ↗ ↗ ambiguous
k2 > r(k1) Firm 1’s revenue ↗ ↗ ↗
(above r(k1)) Firm 2’s revenue — ↗ ↗

Table 1: The effect of price matching on the market price and the revenues of the firms.

We highlight the key results in table 3 below:

1. Price matching has absolutely no effect if k2 ≤ r(k1) and either k1 ≤ xm or Ḡ2 > πm. In these

games, there is undercapacity in the market, hence, no firm wants to “compete” with the other: each

firm produces at capacity, and so cannot benefit from undercutting its rival. In addition, the market

price (without price matching) is already high enough that no price higher than the market price can

benefit both firms simultaneously. Therefore, price matching has no effect in these games.

2. Price matching (weakly) increases the market price if k1 ≤ xc. This is because in these games the

lowest equilibrium market price in our model is pG2 (k1, k2) but this is the highest equilibrium price in

the KS model.

3. The effect of price matching on the market price is ambiguous if k1 > xc. This is because in these

games the lowest equilibrium market price in our model is p∗(k1, k2) but it is lower than pG2 (k1, k2) –

the highest price in the KS model.

4. Price matching affects the firms positively. This effect on firm 2 can be seen easily because in the KS

model firm 2 always nets Ḡ2 but it is the lowest equilibrium revenue of firm 2 in our model. To see

the effect of price matching on firm 1, observe that at equilibrium, firm 1 either nets the same revenue

as firm 2 or sells its full capacity at price pG2 . In the former case, firm 1’s revenue (weakly) exceeds

Ḡ2, the highest revenue firm 1 can net in the KS model (proposition 2). In the latter case, firm 1 sells

its full capacity for the highest possible equilibrium price in the KS model.

Our analysis of this section demonstrates that price matching is not anti-competitive if the capacities

of the firms are low. However, as the firms’ capacities increase, price matching becomes increasingly anti-

competitive. Hence, capacity must be considered seriously when evaluating the effects of price matching in

situations where capacity cannot be changed instantly.
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In the next section, we analyze the full game, hence, answer the question of how price matching affects

the market price if the firms choose their capacity simultaneously before pricing decisions.

4 Equilibria in the Full Game

First of all, let us fix some terminologies: to avoid confusions, the second period monopolistic price (quan-

tity) refers to pm (xm), while the Cournot price (quantity) refers to pcc (xcc). The (k1, k2) subgame refers to

the subgame in which firms 1 and 2 have capacities of k1 and k2, respectively.

Now we consider a class of strategy profiles that plays an important role in our subsequent analysis: firms

1 and 2 install capacities k1 ≤ xc and k2 > k1, respectively, and in each capacity constrained subgame, the

equilibrium market price is the large firm’s pGi (which is always possible thanks to proposition 1). Within

this class of strategy profiles, let us look for an SPE capacity pair (k∗1, k
∗
2). If k∗2 > r(k∗1), firm 2 nets a

constant revenue Ḡ2 = P (k∗1 + r(k∗1))r(k∗1) (proposition 1 and lemma 2). But additional capacity is costly,

and thus, k∗2 ≤ r(k∗1). From proposition 1 and lemma 2, we know that when k1 ≤ xc and k2 ≤ r(k1), each

firm i nets pG2 ki = P (ki + kj)ki, but this revenue is the one firm i would have earned if there was no price

matching available (see proposition 2). In other words, when k1 ≤ xc and k2 ≤ r(k1) we are in the KS

world. From KS, we know that unless firm i’s capacity is rc(k∗j ), then it has an incentive to deviate towards

rc(k
∗
j ) (without leaving the region of subgames in which k1 ≤ xc and k2 ≤ r(k1)). This means the only

SPE within the class of strategy profiles we are considering is the one in which both firms install xcc (< xc

by lemma 1c) and the market price is pcc. This has 2 important consequences:

1. The Cournot price pcc is always an SPE price because pG1 = pG2 = pcc in the subgame in which both

firms’ capacity is xcc.

2. If price matching affects the market price, i.e., if there is an SPE price other than pcc, then both firms

must install capacity which strictly exceeds xm. To see this, observe that when one of the firms, say

firm 1, installs a capacity less than xm, the equilibrium market price always pG2 . Now thanks to the

arguments above, one obtains that if there exists any SPE in which firm 1 installs less than xm, then

at this SPE, the capacities of both firms must be xcc and the market price pcc.

Now let us consider the question of whether price matching could increase the market price above the

Cournot price pcc. The answer hinges on whether the second period monopolistic quantity xm exceeds the

Cournot quantity xcc (or equivalently, on whether pm is higher than pcc). The key insight for this is simple:

we know that if price matching affects the market price, then both firms must install a capacity exceeding

xm. But for these subgames, the highest equilibrium market price is the second period monopolistic price

pm (see proposition 1) which exceeds the Cournot price only if xm < xcc. This means that the condition

xm < xcc is necessary for price matching to increase the market price. This condition also turns out to be

sufficient for price matching to increase the market price beyond the Cournot price pcc.

Let us explain why the second period monopolistic price pm is an SPE price if xm > xcc. Earlier we

argued that the Cournot price emerges as the market price at the SPE in which both firms install xcc and the

market price is the large firm’s pGi in each subgame. Now we modify this SPE profile only on its equilibrium
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path so that the market price is pm (instead of pcc) in the (xcc, x
c
c) subgame. As a result, both firms’ revenue

increases from pccx
c
c to πm on the equilibrium path, but stays the same off the equilibrium path. Now observe

that the firms should not have any incentive to deviate from the modified strategy profile because they do

not have any from the original one. Therefore, pm must be an SPE. The following theorem extends this

argument and shows that any price in [pcc, p
m] is an SPE price.

Theorem 1. There exists a pure SPE which results in a price greater than pcc if and only if xm < xcc. In

addition, if xm < xcc, then any p ∈ [pcc, p
m] is an SPE price.

Proof. See Appendix.

To prove the sufficiency part of the equilibrium, we show that each firm installing xcc and naming a price

in the interval (pcc, p
m) is an SPE. Observe that at none of these SPEs, the firms do sell their capacity. We

remark that there are other SPEs in which the market price is higher than pcc yet firms install capacities

lower than xcc. However, as we will see later in proposition 4, firms must hold extra capacity if they want a

market price higher than pcc. To see the intuition behind this, let us interpret the strategy profile in the proof

of theorem 1 as follows: if both firms install xcc, then they cooperate and set the market price to p̂ > pcc.

However, if one of the firms deviate, then the other firm retaliates by setting the market price to the lowest

equilibrium price. But this price will not be low enough to deflect the other if the firms do not have any extra

capacity. This is the reason why the firms carry extra capacity.

Theorem 1 demonstrates that price matching could increase the market price only if the Cournot quantity

is less than the second period Monopolistic quantity. To understand this condition better, let us consider the

following example:

Example 1. Consider a market whose demand is linear, P (x) = a − bx. In addition, let c(x) = cx. Then

xm 5 xcc if and only if c 5 a/4.

In the above example, price matching potentially increases the market price only if the cost of installation

is high. The main intuition behind this result is the following: to take advantage of price matching, the firms

need to install a high capacity which is simply too expensive when the cost of installation is high. Hence,

price matching does not increase the market price if the cost of installation is high.

So far we have investigated whether price matching can increase the market price. However, in order to

fully understand the impact of price matching, we need to know whether price matching can decrease the

market price. To answer this question, let us define the following property which plays a key role in our

analysis.

Definition 1. Property α is satisfied if there exists x̂ ∈ (max{xcc, xm}, xc) such that

pccx
c
c − c (x̂) > P (x̂+ rc(x̂)) rc(x̂)− c (rc(x̂)) . (3)

To understand property α, suppose that the firms collude to build a capacity of x̂ and charge the Cournot

price. To enforce the collusion, if a firm deviates and installs a capacity other than x̂, then in the resulting
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subgame, the firms name the large firm’s pGi , which minimizes the deviator’s equilibrium revenue. Hence,

if the firms follow the agreement, then each firm’s profit is given by the left hand side of inequality 3. If

one deviates, then the maximal profit the deviating firm can earn is given by right hand side of inequality

3 thanks to our earlier discussion. Hence, property α is satisfied if there exists a capacity x̂ for which the

collusion described above is enforceable. In other words, when property α is satisfied, one can find an SPE

which results in market price pcc and in which each firm installs a capacity x̂ > xcc. In fact, as the left hand

side of inequality 3 strictly exceeds the right hand side, there should be an SPE price slightly below pcc.

Theorem 2. If property α is satisfied, then there exists an SPE price p̂ < pcc .

Proof. See appendix.

Theorem 2 shows that whenever property α satisfied, there is always an SPE which results in a price

lower than the Cournot price. We also remark that the firms carry an extra capacity in the strategy profile

used in the proof of theorem 2. Again the firms hold extra capacity for the retaliation purposes.

Now we turn our attention to the question of when property α is satisfied. First we consider the xcc > xm

case for which price matching could increase the market price. Then it turns out that property α is satisfied

as shown in proposition 6. To prove the proposition, observe that the 2 sides of inequality 3 are the same

when evaluated at xcc. However, when we move to the right of this quantity, the left hand side decreases at a

slower rate than the right hand side. This means that there must be a capacity level x̂ slightly higher than xcc
for which inequality 3 is satisfied.

Lemma 6. If xcc > xm, then property α is satisfied.

Proof. See Appendix

A direct consequence of this lemma is that there are SPEs lower than the Cournot price if xm < xcc.

Therefore, when combined with theorem 1, this proposition shows that if xm < xcc, then two types of SPEs

exist: the ones that increase the market price and the ones that decrease the market price. Therefore, when

the cost of installation is reasonably high, whether price matching increases the market price is completely

dependent on which SPE is realized. This begs the following question: can SPEs be refined in a reasonable

way to eliminate some of the SPEs. We will investigate this possibility in the next subsection.

Now let us turn our attention to the xm ≥ xcc case, for which price matching does not increase the market

price (theorem 1). Proposition 3 shows that there exists a case in which xm = xcc and property α is satisfied.

To prove this, consider any setting in which xm = xcc, P
′′ < 0 on [0, x̄] and c′′ > 0. Then at xcc, not

only do the two sides of inequality 3 coincide but their first order derivatives also coincide. Yet the second

order derivative of the right hand side exceeds the one of the left hand side. However, for any x∗ > xcc, the

proof shows that one can perturb c′′ so that (1) xcc and rc(x∗) are not affected and (2) the second derivative

of the left hand side is 0 while the one of the right hand side is negative. When x∗ is close enough to xcc,

applying the Taylor theorem, one can show that there exists a quantity (1) which exceeds x∗ and (2) at which

inequality 3 is satisfied.

Proposition 3. Property α is sometimes satisfied even if xm = xcc.
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Proof. See Appendix.

By modifying the proof of proposition 3, we can find an example satisfying property α when xm is

slightly greater than xcc. As a result, when xm ≥ xcc, there are SPEs that yield a market price lower than pcc.

This and theorem 1 show that price matching could only decrease the market price if xm ≥ xcc. Therefore,

if firms are starting its business from scratch, i.e., if firms install their capacity before pricing decisions, and

if the cost of capacity installation is reasonably high, the belief that price matching has an anti-competitive

effect seems misleading.

Finally, we now show that at any SPE that yields a price different than the Cournot price, at least one

firm carries extra capacity. As we already hinted, extra capacity allows the firms to retaliate in the case that

one of them deviates from the pre-coordinated capacity.

Proposition 4. At any SPE resulting in a price different than the Cournot price, at least one firm carries

extra capacity.

Proof. Contrary to proposition 4, suppose there exists an SPE that results in a price different than the

Cournot price and in which each firm sells its full capacity. Let k1 and k2 be the corresponding capac-

ity that each firm builds at this SPE. Since both firms are selling their full capacity, the effective price in the

(k1, k2) subgame must be P (k1 + k2) and each firm must earn a profit of P (k1 + k1)ki− c(ki). This means

that if firm i has an incentive to deviate towards rc(kj) unless ki = rc(kj). But if ki = rc(kj), then each

firm’s capacity is xcc, yielding the desired contradiction.

4.1 Equilibrium Refinement

In this subsection, we investigate the question of whether the equilibrium refinements used in the standard

Bertrand setting can help determine the effect of price matching on the market price.

In the standard Bertrand setting, when the price matching option is available to firms, the equilibrium

market price ranges from the Bertrand to the monopolistic price. However, one can argue that the monop-

olistic price is most likely to arise in practice for several reasons: (1) the only strategy that survives the

iterative elimination of weakly dominated strategies results in the monopolistic price (Doyle, 1988) (2) the

only strong Nash15 equilibrium results in the monopolistic price and (3) the equilibrium resulting in the

monopolistic price Pareto dominates all other equilibria from the firms’ perspective. According to these

criteria, one can identify the equilibrium prices in each capacity constrained subgame. Specifically, one

can show that when k1 ≤ k2, the most likely equilibrium price is (i) pG2 if k1 < xm or k1 ∈ [xm, xc] and

Ḡ2 > πm and (ii) pm in all other subgames. This result lends support to the argument that price matching

is an anti-competitive practice in capacity constrained games as long as the firms’ capacities are sufficiently

high.

Now we investigate whether there is any SPE in which the firms coordinate on a Pareto dominant equilib-

rium in each subgame. In other words, we assume that the firms are rational enough to realize that they will

reach the best equilibrium for themselves once they fix their capacities. Hence, such an SPE is likely to arise
15A Nash equilibrium is a strong Nash equilibrium in which no coalition can cooperatively deviate in a way that benefits all of

its members.
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in practice if it exists. Unfortunately, when the effect of price matching is ambiguous, i.e., xm < xcc, no SPE

exists within the class of strategy profiles in which the firms coordinate on a Pareto dominant equilibrium in

each subgame.

Proposition 5. Within the class of strategy profiles in which the firms coordinate on a Pareto dominant

equilibrium in each subgame, there is no SPE when xm < xcc.

Proof. See Appendix.

Proposition 5 shows that no SPE exists if the refinement used to the Bertrand setting is extended to our

setup. The refinements that lend support to the argument that price matching is anti-competitive in the stan-

dard Bertrand setting do not help determine the effects of price matching if the firms choose their capacities

simultaneously before pricing decisions.

5 Conclusion

We have studied the effects of price matching in the setting of KS in which the firms install their capacities

in the first period and set their prices in the second period.

We show that when the capacities of the firms are fixed, the effect of price matching varies with the

capacities of the firms. If the total capacity is low, then price matching has no effect; if the total capacity is

high, then price matching affects both firms positively. When the total capacity is in an intermediate range,

price matching affects only the small firm.

If firms choose their capacities simultaneously before pricing decisions, then the effect of price matching

is pro-competitive or ambiguous. We show that if the cost of installation is “low,” then the availability of the

price matching option to firms generates two types of SPEs: the ones that increase the market price and the

ones that decrease the market price. Hence, whether price matching increases or decreases the market price

depends on which SPE is reached at equilibrium. As a result, in an ex-ante stage, it is difficult to determine

the effect of price matching on the market price when the cost of installation is “low.” On the other hand,

if the cost of installation is “high,” then price matching does not increase the market price. In fact, in some

settings, price matching can decrease the market price. Hence, if the cost of installation is “high,” then price

matching can only reduce the market price. As a result, in the setting of KS, price matching seems not to be

as anti-competitive as feared.
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Appendix

Proof of Lemma 2. First observe that all pGi , pEi , and pLi must (weakly) exceed P (k). This is because

Gi(p) = Ei(p) = Li(p) = pki for all p < P (k) and pki is a strictly increasing function.

(a). As pGi ≥ P (k), Ḡi = maxp≥P (k) pmax {0, D(p)− kj} because D(p) − kj ≥ ki for all p ≥ P (k). If

kj ≥ D(0), then Ḡ = 0, proving the lemma. If kj < D(0), then Ḡi = maxp≥P (k) (pmax{0, D(p)− kj}).

It must be that pGi ≤ P (kj). By setting x = D(p)− kj , one obtains Ḡi = maxx∈[0,ki] P (x+ kj)x. Because

P (x+ kj)x is concave and maximized at r(kj), we obtain the desired result:
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Ḡi(ki, kj) =

{
P (k)ki if ki ≤ r(kj)
P (r(kj) + kj)r(kj) if ki > r(kj).

To see thatGi is a hump shaped function, observe that p(D(p)−kj) is a strictly concave function maximized

at P (kj + r(kj)). Also recall that Gi is a continuous function which is equal to pki on the interval [0, P (k)]

and to p(D(p)− kj) on [P (k), P (kj)]. In addition, because the function pki is increasing and the function

p(D(p)− kj) is hump-shaped, one obtains the desired result.

(b). Observe that Gi(p) = Li(p) if kj = 0. In addition, r(0) = 2xm and P (0 + r(0)) = pm. These results

along with (a) yield (b).

(c). Observe that for p ≥ P (k),D(p)−k2 ≤ D(p)
2 because k1 ≤ k2. Consequently,E1(p) = pmin

{
ki,

D(p)
2

}
for any p ≥ P (k). Set d(p) = D(p)/2 and observe that max pd(p) = pmxm. With the new notation

E1(p) = pmin {ki, d(p)}. Now using (b) one obtains the result in (c).

Proof of Lemma 3. We know that

E2(p) =

{
G2(p) if p ≤ P (2k1)
pD(p)

2 if p ∈ [P (2k1), P (0)].

We will show that (i) pG2 (k1, k2), the maximizer of G2 (lemma 2a), satisfies pG2 (k1, k2) ≤ P (2k1) if and

only if k1 ≤ xc and (ii) The function pD(p)
2 is a hump-shaped function maximized on the left of P (2k1)

if and only if k1 5 xm. Then (i) and (ii) prove lemma 3, because E2 is continuous, G2 and pD(p)
2 are

hump-shaped, and xm < xc.

(i) Recall that k1 5 r(k1) if and only if k1 5 xc. In addition, because P (·) is decreasing, we obtain

P (k1 + r(k1)) 5 P (2k1) if and only if k1 5 xc. Consequently, if k1 5 xc, then P (k1 + r(k1)) 5 P (2k1)

and in addition, P (k) ≤ P (2k1) as k2 ≥ k1. These inequalities and that pG2 is either P (k) or P (k1 + r(k1))

(lemma 2a) yield that pG2 ≤ P (2k1) if k1 ≤ xc. Now we are left to consider the k1 > xc case. In this case,

P (k1 + r(k1)) > P (2k1) and in addition, pG2 = P (k1 + r(k1)) because k2 ≥ k1 > r(k1) (lemma 2a).

These imply pG2 > P (2k1) if k1 > xc.

(ii) This is a consequence of assumption 1 and the definition of pm.

Proof of Proposition 1. (a) First we show that the strategy profile in which both firms play (pG2 , 1) is an

equilibrium. Recall that in this case, pE2 = pG2 ≤ P (2k1) and Ē2 = Ḡ2. Thus firm 2 nets Ē2. Because

firm 1 is price matching, by setting its effective price to p 6= pG2 , firm 2 nets either E2(p) or G2(p), but

G2(p) ≤ E2(p) (see figure 1) and E2(p) < Ē2 (because E2 has a unique maximizer at pG2 ). Consequently,

firm 2 cannot profitably deviate. Firm 1, on the other hand, netsE1(pG2 ) at the proposed profile. If firm 1 sets

its effective price to p < pG2 , it earns E1(p), but E1(p) = pk1 because p < pG2 ≤ P (2k1). Consequently,

E1(p) < E1(pG2 ), thus firm 1 does not deviate to p < pG2 . If firm 1 sets its effective price to p > pG2 , then

it earns G1(p). Recall that G1 is maximized at pG1 and G1 is a decreasing function on (pG1 , P (k2)) (lemma

2a). Using the definition of pGi and lemma 1b, pG1 ≤ pG2 or equivalently, pG2 ∈ [pG1 , P (k2)). Consequently,
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for all p > pG2 , G1(p) < G1(pG2 ) and in addition, as G1(pG2 ) ≤ E1(pG2 ), p > pG2 cannot be a profitable

deviation for firm 1. Therefore, the strategy profile in which both firms play (pG2 , 1) is an equilibrium. To

prove that pG2 is the unique market price, recall that both firms offer the same effective price at equilibrium

(lemma 4). If both firms set their effective price to p 6= pG2 , then firm 2 nets E2(p), but as we argued earlier,

E2(p) < Ē2. By setting its effective price to pG2 , firm 2 nets at least Ē2, thus the market price cannot be

p 6= pG2 . As a result, the market price is pG2 which yields the remaining part of proposition 1a.

(b) First we show that the strategy profile in which both firms play (pG2 , 1) is an equilibrium. Recall that

in this case, pG2 ≤ P (2k1) and E2(pG2 ) = Ḡ2. Thus firm 2 nets E2(pG2 ) = Ḡ2. If firm 2 sets its effective

price to p < pG2 ≤ P (2k1), then firm 2 nets E2(p) = G2(p). Hence, E2(p) < E2(pG2 ). If firm 2 sets its

effective price to p > pG2 , it nets G2(p), but G2(p) < Ḡ2 = E2(pG2 ). Consequently, firm 2 has no profitable

deviation. Following the exact same steps as in (a), one can prove that firm 1 has no profitable deviation.

Therefore, the strategy profile in which both firms play (pG2 , 1) is an equilibrium.

From the definition of p∗ we know that p∗ ∈ [P (2k1), pm] and E2(p∗) = Ḡ2. Fix any p̄ ∈ [p∗, pm].

Then E2(p̄) ≥ E2(p∗) = Ḡ2 because E2 is an increasing function on [P (2k1), pm] (lemma 3) and [p∗, p̄] ⊆
[P (2k1), pm]. Thanks to lemma 3, for all p ∈ [0, P (2k1)], E2(p) ≤ E2(pG2 ) = Ḡ2 and for all p ∈
[P (2k1), p̄], E2(p) ≤ E2(p̄). Combining the previous 3 inequalities, we obtain that E2(p̄) ≥ E2(p) for

all p ≤ p̄. Now we show that the strategy profile in which both firms play (p̄, 1) is an equilibrium. At the

proposed strategy, both firms net E2(p̄) = E1(p̄). If firm 2 sets its effective price to p < p̄, then firm 2 nets

E2(p), but E2(p) < E2(p̄) as we have already shown. If firm 2 sets its effective price to p > p̄, it netsG2(p)

but G2(p) ≤ Ḡ2 ≤ E2(p̄). As a result firm 2 cannot profitably deviate from the proposed strategy. Observe

that the firms play a symmetric strategy at the proposed equilibrium and net the same revenue. This and that

firm 2 (the large firm) cannot profitably deviate from the proposed strategy imply that firm 1 (the small firm)

cannot profitably deviate. Hence, the strategy profile in which both firms play (p̄, 1) is an equilibrium.

To prove that the market price is in the set pG2 ∪ [p∗, pm], recall that both firms offer the same effective

price at equilibrium (lemma 4). If both firms set their effective price to p > pm, then firm 2 nets E2(p),

but E2(p) < Ē2 = πm (lemma 4). By setting its effective price to pm, firm 2 nets at least Ē2, thus the

market price cannot be p > pm. If the market price is p such that p 6= pG2 and p < p∗, then firm 2 nets

E2(p), but E2(p) < Ḡ2 = E2(pG2 ) (lemma 4). By setting its effective price to pG2 , firm 2 nets at least Ḡ2,

thus the market price cannot be p 6= pG2 and p < p∗). This shows that the market price must be in the set

pG2 ∪ [p∗, pm] and this in turn, yields the remaining part of proposition 1b.

(c) By following the same steps used in the proof of part (b), one can prove part (c).

Proof of Theorem 1. Necessity. Suppose there exists an SPE resulting in a price higher than pcc when

xcc ≤ xm. At this equilibrium, let firms 1 and 2 install capacities k1 and k2, respectively. Let firm i be

the firm with ki = min{k1, k2} and firm j be the one with kj = max{k1, k2}. There can be 2 possible

cases: (1) ki ≥ xm and (2) ki < xm.
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Case (1). In this case, the maximum equilibrium price in the (k1, k2) subgame is pm (see proposition 1) but

pm ≤ pcc, contradicting that the SPE price is higher than pcc.

Case (2). It suffices to show that k1 = k2 = xcc because pcc is the unique equilibrium price in the (xcc, x
c
c)

subgame thanks to proposition 1 (recall that xcc ≤ xm). As a result, we only need to show that ki = rc(kj)

and kj = rc(ki).

In this case, ki < xm and consequently, the equilibrium price is pGj (ki, kj) (proposition 1). First,

kj ≤ r(ki) because for all subgames with kj > r(ki), firm j nets the constant revenue Ḡ2
i = P (ki +

r(ki))r(ki) and therefore, whenever kj > r(ki), firm j can increase its profit by installing some capacity in

the interval (r(k1), k2) (since firm j saves its cost of capacity without losing any revenue). Because kj ≤
r(ki), pGj (k1, k2) = P (k) (lemma 2) and the profits of firms i and j are P (k)ki− c(ki) and P (k)kj− c(kj),

respectively. Recall that the function P (k)kj−c(kj) is maximized at rc(ki) (lemma 1). In addition, because

rc(ki) < r(ki) (lemma 1)c), the equilibrium price in the (ki, rc(ki)) subgame is P (k) = P (ki + rc(ki))

and consequently, it must be kj = rc(ki) (otherwise; firm j will deviate to rc(ki)). Similarly, the function

P (k)ki − c(ki) is maximized at rc(kj), but in order to to argue that whenever ki 6= rc(kj), firm i must

deviate and install rc(kj), we need to make sure that the equilibrium price is P (k) = P (kj + rc(kj)) in the

(kj , rc(kj)) subgame. This is always true when rc(kj) < xm thanks to proposition 1. Recall that ki < xm

and kj = rc(ki). Consequently, kj > rc(x
m) as rc(·) is a decreasing function (lemma 1b). This and rc(·)

is a decreasing function yield rc(kj) < rc(rc(x
m)). We know that xcc ≤ xm, which means xm ≥ rc(x

m).

Now using lemma 1d, we obtain that rc(rc(xm)) < xm. This in turn yields that rc(kj) < xm, the result we

seek.

Sufficiency. Pick any p̂ ∈ (pcc, p
m]. Consider the following strategy profile in the full game which results in

p̂:

1. In the first stage both firms choose the capacity of x̂cc.

2. In each (k1, k2) capacity constrained subgame,

(p1, o1) = (p2, o2) =

{
(p̂, 1) if k1 = k2 = xcc

(pGj (k1, k2), 1) otherwise
where j is the firm with kj ≥ ki.

We need to show that the strategy profile above is indeed an SPE. In other words, we need to show that (a)

the proposed strategy profile is an equilibrium in each subgame and (b) no firm has a profitable first stage

deviation.

(a) Because pGj (k1, k2) is an equilibrium price in each subgame, (a) is proved for all subgames except for

the one where k1 = k2 = xcc. Because xcc > xm and xcc < xc (lemma 1c), in the k1 = k2 = xcc subgame, the

equilibrium price must be somewhere in [p∗(xcc, x
c
c), p

m] (proposition 1). In addition, the proposed strategy

profile yields p̂ in the (xcc, x
c
c) subgame, and consequently, we need to show that p̂ ∈ [p∗(xcc, x

c
c), p

m]. Be-

cause xcc < xc, it must be that xcc < r(xcc). Hence, pG2 (xcc, x
c
c) = P (2xcc) = pcc and Ḡ2 = pccx

c
c. Using the

definition of p∗(xcc, x
c
c), we obtain that p∗ = pcc. Hence, [p∗(xcc, x

c
c), p

m] = [pcc, p
m] 3 p̂. This completes the
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proof that the proposed strategy profile is an equilibrium in each subgame.

(b) Because the proposed strategy profile is symmetric, we only show that firm 2 has no profitable first

stage deviation. First observe that at the proposed strategy, the firms earn p̂D(p̂)
2 − c(xcc). Let us find the

best first period unilateral deviation from firm 2 perspective. According to the proposed strategy, each de-

viation with k2 ≥ r(xcc) brings a constant revenue Ḡ2
i = P (xcc + r(xcc))r(x

c
c) to firm 2 (lemma 2a) but

the deviation k2 = r(xcc) requires the lowest cost of capacity among all the deviations with k2 ≥ r(xcc).

Hence, at the best deviation of firm 2, it must be that k2 ≤ r(xcc). If firm 2 deviates to k2 ≤ r(xcc), ac-

cording to the proposed strategy, the resulting market price is pG2 = P (k) = P (xcc + k2) and firm 2 earns

a profit of Ḡ2 − c(k2) = k2P (xcc + k2) − c(k2). By definition, k2P (xcc + k2) − c(k2) is maximized at

k2 = rc(x
c
c) and because rc(xcc) < r(xcc) (lemma 1c), the most profitable deviation for firm 2 is rc(xcc). At

this deviation, firm 2’s profit is P (xcc + rc(x
c
c))rc(x

c
c)− c(rc(xcc)) but this does not exceed p̂D(p̂)

2 − c(xcc) —

firm 2’s profit if it does not deviate. To see this observe that by definition, P (xcc + rc(x
c
c))rc(x

c
c) = p̂D(p̂)

2

and in addition, c (rc(x
c
c)) ≥ c(xcc) because xcc ≤ xcc and rc(x) ≥ x for all x ≤ xcc. This completes the proof.

Proof of Theorem 2. Fix x̂ ∈ (max{xcc, xm}, xc) for which

pccx
c
c − c (x̂) > P (x̂+ rc(x̂)) rc(x̂)− c (rc(x̂)) .

One can write pccx
c
c as pccD(pcc)

2 . When xcc ≥ xm, choose p̂ ∈ (P (2x̂), pcc) such that

p̂D(p̂)

2
− c (x̂) > P (x̂+ rc(x̂)) rc(x̂)− c (rc(x̂)) . (4)

This is feasible because the function pD(p)
2 is continuous. When xcc < xm, choose p̂ ∈ (P (2x̂), pm) so

that inequality 4 is satisfied. This is feasible because pD(p)
2 is a hump shaped function maximized at pm.

Observe that in any case, p̂ must satisfy the following conditions (in addition to inequality 4): p̂ < pcc,

p̂ ∈ (P (2x̂), pm), and x̂ > D(p̂)
2 .

Consider the following strategy profile in the full game that results in p̂:

1. In the first stage both firms install a capacity of x̂.

2. In each (k1, k2) capacity constrained subgame,

(p1, o1) = (p2, o2) =

{
(p̂, 1) if k1 = k2 = x̂

(pGj (k1, k2), 1) otherwise
where j is the firm with kj ≥ ki

We need to show that the strategy profile above is an SPE. In other words, we need to show that (a) the

proposed strategy profile is an equilibrium in each subgame and (b) no firm has a profitable first stage

deviation.
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(a) Because pGj (k1, k2) is an equilibrium price in each subgame, (a) is proved for all subgames except for

the one where k1 = k2 = x̂. Let us fix the (x̂, x̂) subgame. Observe that in this subgame, the the proposed

strategy yields p̂. As x̂ < xc, thanks to lemma 2a, pG2 = P (2x̂) in the (x̂, x̂) subgame, pG2 = P (k) = P (2x̂)

and Ḡ2 = P (2x̂)x̂. To complete the proof we need to show that p̂ ∈ [p∗ = P (2x1), pm] (proposition 1), but

this is true as p̂ is chosen to satisfy this.

(b) Because the proposed strategy profile is symmetric, we only show that firm 2 has no profitable first stage

deviation. First observe that at the proposed strategy, the firms earn p̂D(p̂)
2 − c(x̂). Now following the same

steps in the proof of the sufficiency part of theorem 1, by deviating, the maximal profit firm 2 can earn is

P (x̂+ rc(x̂))rc(x̂)− c(rc(x̂)). But this never exceeds the profit firm 2 earns at the proposed strategy profile

(inequality 4).

Proof of Lemma 6. As xcc > xm, we need to find x̂ ∈ (xcc, x
c) satisfying inequality 3. Let g(x) = pccx

c
c −

c(x) and f(x) = P (x + rc(x))rc(x) − c (rc(x)). This means that we need to find x̂ ∈ (xcc, x
c) such that

g(x̂) − f(x̂) > 0. This we will accomplish by showing that there must exist a small enough ∆ > 0, such

that g(xcc + ∆)− f(xcc + ∆) > 0. By the Taylor theorem,

g(xcc + ∆)− f(xcc + ∆) = g(xcc)− f(xcc) +
(
g′(xcc)− f ′(xcc)

)
∆ + o2.

Because rc(xcc) = xcc,

g(xcc) = pccx
c
c − c(xcc) = P (x+ rc(x))rc(x

c
c)− c(rc(xcc)) = f(xcc).

Consequently, we only need to show g′(xcc) > f ′(xcc).

Clearly, g′(xcc) = −c′ (xcc). Applying the envelope theorem on f(x) and substituting rc(xcc) = xcc, we

obtain that f ′(xcc) = P ′(2xcc)x
c
c. By the definition of rc(x), P (xcc) +P ′(2xcc)x

c
c− c′ (xcc) = 0. Accordingly,

f ′(xcc) = P ′(2xcc)x
c
c + 0 = P ′(2xcc)x

c
c +P (xcc) +P ′(2xcc)x

c
c− c′ (xcc) = P (2xcc) + 2P ′(2xcc)2x

c
c− c′ (xcc) .

To show that g′(xcc) > f ′(xcc), it suffices to show that P (2xcc) + 2P ′(2xcc)2x
c
c < 0. But this is true because

xcc > xm implies that
∂P (2x)x

∂x

∣∣∣∣
x=xc

c

= 2P ′(2xcc)x
c
c + P (2xcc) < 0.

Proof of Proposition 3. Suppose P (x) is a concave and decreasing function. We now show that if c(x) is

strictly convex and satisfies assumption 2, then c(x) can be perturbed so that the resulting example satisfies

property α and assumption 2.

Let f(x) = P (x + rc(x))rc(x) − c (rc(x)) and g(x) = pccx
c
c − c(x). Clearly, f(xcc) = g(xcc). Now

consider f ′(xcc) and g′(xcc). We know that f ′(x) = P ′(x + rc(x))rc(x) and g′(x) = −c′ (x). Hence,

f ′ (xcc) = P ′(2xcc)x
c
c and g′ (xcc) = −c′ (xcc). Since xcc = xm, 2P ′(2xcc)x

c
c + P (2xcc) = 0. Therefore,
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g′ (xcc) = 2P ′(xcc)x
c
c + P (2xcc)− c′ (xcc). Because xcc = rc (xcc), the definition of rc (·) yields P ′ (2xcc)x

c
c +

P (2xcc)− c′ (xcc) = 0. Hence, g′ (xcc) = P ′(2xcc)x
c
c. As a result, f ′(xcc) = g′(xcc).

On the other hand, g′′(x) = −c′′(x) and f ′′(x) = P ′′(x+rc(x))(1+r′c(x))rc(x)+P ′(rc(x)+x)r′c(x).

Then r′c(x) = − P ′′(x+rc(x))rc(x)+P ′(x+rc(x))
P ′′(x+rc(x))rc(x)+P ′(x+rc(x))−c′′(rc(x)) thanks to the implicit function theorem. Substituting

r′c(x), f ′′(x) = −P ′′(x+rc(x))rc(x)c′′(rc(x))+(P ′(x+rc(x)))2

P ′′(x+rc(x))rc(x)+P ′(x+rc(x))−c′′(rc(x)) . Observe that when c′′(rc(x)) is sufficiently large,

then f ′′(x) < 0.

Since f (xcc) = g (xcc) and f ′ (xcc) = g′ (xcc), for any δ > 0, pick x∗ > xcc, such that |f(x∗)− g(x∗)| < δ

and |f ′(x∗)− g′(x∗)| < δ. Consider f(x∗+∆)−g(x∗+∆). By the Taylor theorem f(x∗+∆)−g(x∗+∆) =

f(x∗)− g(x∗) + (f ′(x∗)− g′(x∗))∆ + 1
2(f ′′(x∗)− g′′(x∗))∆2 + o3.

Claim. Suppose P (x) is a strictly concave and decreasing function. If c(x) is strictly convex and satisfies

assumption 2, then c′′(·) can be modified as follows:

1. For any given x∗ > xcc, both rc(xcc) and rc(x∗) stay unchanged.

2. c′′(·) satisfies assumption 2 and c′′(rc(x∗)) is large enough and c′′(x∗) = 0 so that f ′′(x∗)) < 0 but

g′′(x∗) = 0.

For now assume the claim is true. Then we can modify the cost function without upsetting xcc and rc(x∗)

and so that f ′′(x∗)) < 0 and g′′(x∗)) = 0. Hence, f(x∗ + ∆) − g(x∗ + ∆) = f(x∗) − g(x∗) +

(f ′(x∗)− g′(x∗)) ∆ + 1
2f
′′(x∗)∆2 + o3. When δ → 0, f(x∗ + ∆) − g(x∗ + ∆) → 1

2f
′′(x∗)∆2 < 0.

This proves the proposition.

Proof of the Claim. Pick any x that satisfies P ′(x+rc(x))rc(x)+P (x+rc(x))−c′(rc(x)) = 0. This implies

that as long as c′(rc(x)) is unchanged, the cost function can be modified in any way without upsetting rc(x).

Therefore, whatever change is considered, c′(xcc/2) and c′(x∗) must be unchanged. Thanks to the fundamen-

tal theorem of calculus, c′(rc(x∗)) = c′(0)+
∫ rc(x∗)

0 c′′(t)dt and c′(xcc) = c′(rc(x
∗))+

∫ xc
c

rc(x∗) c
′′(t)dt. Since

c′′ > 0, to keep c′(rc(x∗)) unchanged,
∫ rc(x∗)

0 c′′(t)dt needs to stay unchanged which is easily achieved re-

gardless of how big c′′(rc(x∗)) is made. Similarly, to keep c′(xcc)) unchanged, only
∫ xc

c

rc(x∗) c
′′(t)dt needs

to stay unchanged which is again easily achieved regardless of how big c′′(rc(x∗)) is made. Also, observe

that any change to c′′(·) when x > xcc will not even affect c′′(rc(x∗)) and c′(xcc)). Hence, modifying c′′(·)
so that c′′(x∗) = 0 without affecting rc(x∗) or xcc can be achieved easily. This concludes the proof of the

claim.

Proof of Proposition 5. Suppose otherwise. Since in the second period, the firms choose the Pareto optimal

price among the equilibrium prices, in any (ki, kj) subgame, the following conditions are satisfied:

(a) If kj ≥ ki ≥ xm and Ḡj(k1, k2) ≤ πm, then the equilibrium market price is pm

(b) In all other cases, the equilibrium effective price is pGj (k1, k2) where j is the firm with kj ≥ ki.

Let x̂1 and x̂2 be the corresponding SPE capacities for firm 1 and 2. Assume that x̂1 ≤ x̂2 without loss of

generality. We consider the following 2 cases:

1. x̂1 ≥ xm and Ḡ2(x̂1, x̂2) ≤ πm
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2. x̂1 < xm or x̂1 ∈ [xm, xc] and Ḡ2(x̂1, x̂2) > πm

1. First suppose x̂2 > xm. Then x̂1 > xm; otherwise, Ḡ2 always exceeds the monopolistic revenue.

Hence, if firm 2 decreases its capacity slightly, then the market price will still be pm, hence, its revenue

stays the same. However, its cost of capacity decreases, hence firm 2 has a profitable deviation which

is a contradiction. If x̂1 = x̂2 = xm, then each firm sells its full capacity at a price of pm. Then

each firm has an incentive to deviate to rc (xm) because the price in the (xm, rc (xm)) subgame

is P (xm + rc (xm)) and P (xm + rc (xm)) rc (xm) − c (rc (xm)) > P (2xm)xm − c (xm) by the

definition of rc(·).

2. In this case, x̂1 < xc (otherwise, it must be Ḡ2(x̂1, x̂2) ≤ πm). Now using the proof of theorem 1

proof (sufficiency part), we obtain that x̂2 = rc(x̂1). In addition, because Ḡ2(x̂1, rc(x̂1)) = P (x̂1 +

rc(x̂1))rc(x̂1) > πm and xm < xcc, one can show that x̂1 < xcc and x̂2 = rc(x̂1) > xcc (see figure ??).

Because x̂1 < xcc, by lemma 1d, rc(x̂2) = rc(rc(x̂1)) > x1. This means that firm 1 has an incentive

to increase slightly its capacity as the market price is still P (k) in the resulting subgame.
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