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Abstract

Economists perceive moral hazard as an undesirable problem because it undermines effi-

ciency. Carefully designed contracts can mitigate the moral hazard problem, but this assumes

that a team is already formed. This paper demonstrates that these contracts are sometimes

the reason why teams do not form. Formally, we study the team formation problem in which

the agents’ efforts are not verifiable and the size of teams does not exceed quota r. We show

that if the team members can make only balanced transfers, then moral hazard affects stability

adversely. However, if the team members cannot make transfers, then moral hazard affects

stability positively in a large class of games. For example, a stable team structure exists if

teams produce public goods or if the quota is two. However, these existence results no longer

hold if efforts are verifiable.
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1 Introduction

Economists have long recognized the importance of the moral hazard problem: a Google Scholar
search returns more than 3000 articles with titles containing the term “moral hazard.” This vast
literature offers two rather robust conclusions: (1) moral hazard undermines efficiency and (2)
carefully designed contracts can mitigate the moral hazard problem. A typical article in the “moral
hazard” literature considers a team (possibly 1 agent team) and then searches for possible ways
to improve efficiency under moral hazard. However, the literature is silent on how these teams
came to existence. This paper contributes in filling this gap. In other words, we investigate what
team structure — a collection of teams — would emerge if the agents had freedom to form a team.
Formally, we study the team formation problem when the efforts of the agents are not verifiable.

Once the agents can form a team, the most important issue is stability: because the agents
endogenously form teams leading to a certain team structure, no group of agents should be able to
improve themselves by forming a new team. Hence, efficiency is of secondary importance in our
team formation problem.

In this paper, the agents with different productivities endogenously form teams that produce lo-
cal goods. The production outcome (deterministically) depends on the total productivity weighted
efforts of the team members, i.e., the efforts of different agents are perfect substitutes. To accom-
modate the roommate problems, we impose an exogenous quota or limit r on the team size.

When efforts are not verifiable, a credibility issue arises, i.e., teams cannot supply certain effort
profiles because individual members can shirk without being identified. What effort profiles are
credible depends on the transfer the team members can make amongst themselves. We consider
two cases: (1) the team members can make balanced transfers only or (2) the team members cannot
make any transfers.

Our first main result shows that if the team members can make balanced transfers only, then
moral hazard affects stability negatively. This result is directly based on the results of Hölmström
(1982) and Legros and Matthews (1993). Hölmström (1982) shows that, through balanced trans-
fers, teams cannot achieve the efficient level of welfare when efforts are not verifiable. On the
other hand, Legros and Matthews (1993) demonstrate that, through balanced transfers, teams can
approximate their efficient welfare to any degree. Therefore, the utility possibility set for any team
is open, implying that any two or more agents cannot agree on a balanced transfer as there is al-
ways another one which improves them. Consequently, if there is any stable structure, then each
agent works alone. This result is robust, as it does not rely on the assumption that the efforts of
different agents are perfect substitutes. In addition, our first main result implies that the core — a
fundamental concept in cooperative game theory — is empty if efforts are not verifiable and the
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agents can make only balanced transfers.
Our second main result shows that if the team members cannot make transfers at all, then moral

hazard positively affects stability in a large class of games. For example, if teams produce public
goods or if the quota is 2 (the standard roommate problem), then a stable team structure always
exists when efforts are not verifiable. However, this is not the case if efforts are verifiable. Hence,
the inability to make transfers could completely reverse the effect of moral hazard on stability. In
general, the combination of moral hazard and the inability to make transfers leads to the worst
efficiency loss. Yet in terms of stability, this combination is desirable.

A key reason for our second main result is that each team has a unique credible effort profile
once team members cannot make transfers. Hence, whether a team can block an already formed
team structure depends on its credible effort profile. To prove our existence results, we construct
a simple algorithm: the most productive agent chooses her team, and then the most productive
unmatched agents chooses her team out of the unmatched agents and so on. The proofs use the
finding that, the team an agent prefers, out of teams of equal size, is that of the most productive
agents. In addition, if teams produce public goods, recruiting an additional agent is always bene-
ficial to each team member. Consequently, the preference of the most productive agent perfectly
aligns with the preferences of the agents she chooses in her team. Similarly, if the quota is 2, again
the preferences of the team members (possibly one) the most productive agent chooses in her team
are also aligned. Hence, no team can break down the team structure resulted from the canonical
algorithm. If the quota exceeds 2 and the local good is not public, then some of the members
of the team the most productive agent chooses might prefer a smaller team. By exploiting this
disagreement, we construct an example with no stable team structure for this case.

We also show that if efforts are not verifiable and the team members cannot make transfers,
then, in a large class of games, the stable team structures are assortative by productivity, i.e., the
more productive agents form a team while the less productive agents form a team. This is the case,
for example, if teams produce public goods or if the quota is two. Assortativeness is an interesting
property which seems to be observed in life. However, one cannot generalize this result to non-
public goods when the quota exceeds 2. Hence, the assortativeness property seems to be restricted
only to the public good or the quota 2 cases.

The team formation problem under moral hazard has not been explored to my knowledge. Dam
and Prez-Castrillo (2006) consider the principal agent model in a two sided matching markets
setting: each player is either a principal or an agent and each principal matches with an agent.
We do not have this restriction in our paper. The “moral hazard in teams” literature started by
Hölmström (1982) studies whether some contract can deliver the efficient outcomes under moral
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hazard. This paper, on the other hand, studies whether teams endogenously form under moral
hazard.

Bogomolnaia and Jackson (2002) and Banerjee et al. (2001) study team formation for hedonic
games. In hedonic games, the players’ payoffs from a given team depend on the identities the team
members. If the team members cannot make transfers, then our team formation game under moral
hazard is a hedonic game as there is a unique Nash equilibrium. The above mentioned papers
provide sufficient conditions for the existence of stable partitions. In fact, our team formation
problem under moral hazard satisfies the (weak) top team property defined by Banerjee et al. (2001)
if teams produce public goods or if the quota is 2. A well studied subclass of hedonic games is the
roommate problem1 which is a team formation problem with a quota of two. When the quota is
2, our team formation problem under moral hazard satisfies the no odd rings condition defined by
Chung (2000).

The paper is organized as follows: we build the model in section 2, and study team formation in
the absence of moral hazard in section 3. We investigate team formation in the presence of moral
hazard in section 4. Lastly, we conclude in section 5.

2 Model

Let N = {1, ..., n} be the set of players and let S ⊆ N stand for a team. The model consists of
two periods: team formation and production.

In the team formation period, the players form teams of size r or less. We shall refer to r

as the quota. Various factors justify the quota;physical constraints (the size of the laboratory),
coordination issues (too hard to coordinate when there are more than r players), or social norm.
The use of quota allows us to accommodate the roommate problem in our model.

Each player can be a member of only one team. Thus, we define the concept of r-partition to
model the team formation period: r-partition Πr = {S1, · · · , Sm} is a partition of N such that, for
any S ∈ Πr, |S| ≤ r. As we deal with r-partitions only, we say “partition” instead of “r-partition.”
In addition, the notation Πr(i) denotes the team which includes player i under partition Πr.

In the production period, each team produces local goods that benefit only its members.2 Player
i is endowed with a productivity λi ∈ R++ and supplies an effort ei in the production period. Each
team’s production function f(·) depends on the team’s total productivity weighted effort (weighted

effort from here on), i.e., f
(∑

i∈S λiei
)
. Consequently, the efforts of different players are perfect

1For more information see Gale and Shapley (1962), Tan (1991), and Chung (2000).
2Local public goods are sometimes known as club goods. For more information, see Buchanan (1965) and Sandler

and Tschirhart (1980).
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substitutes, which is a somewhat restrictive assumption. There is another interpretation to our
model: in the production period, each team produces one unit of local goods and the quality
of local goods f depends on the weighted effort. We impose the following restrictions on the
production function.

Assumption 1. The production function f is twice differentiable, strictly increasing, and concave,

i.e., f ′ > 0 and f ′′ ≤ 0.

Let ρ : N → [0, 1] be the ”team” credit function; if team S produces x amount of local goods,
then its each member can consume ρ (|S|)x amount of local goods. The credit function allows us
to analyze a broad range of goods. For example, the credit function with ρ(·) = 1 corresponds to
public goods while the one with ρ (s) = 1/s for all s ∈ N corresponds to private goods. In addition
to these two well-known cases, there are some intermediate cases of interest. For example, suppose
a researcher is being considered for tenure. Her research papers are evaluated; a coauthored paper
is valued less than 1 but not less than 1/2 single-authored paper assuming that the quality of the
papers are the same. We can model this case easily thanks to the credit function.

The credit function depends on the size of a team, but not on the team itself. Furthermore, the
credit function is not individual specific, which is somewhat restrictive. We normalize ρ(1) = 1

and assume that the credit function is a non-increasing function, i.e., the members of a smaller
team receive more credit than the ones of a bigger team.

The quota can be modeled using the credit function; by setting ρ(s) = 0 for s > r, one effec-
tively eliminates the formation of teams with size greater than r. However, for the interpretational
purposes we use the quota explicitly in our analyses.

The team members can transfer money among themselves. A transfer scheme for team S spec-
ifies how much transfer one receives based on the production outcome. We restrict our attention
to the balanced transfer schemes, i.e., the total transfer for each team is 0. Formally, a transfer
scheme for team S is a function φS : R+ → R|S| satisfying

∑
i∈S φ

S
i (x) = 0 for all x ∈ R+.

Observe that the 0 transfer schemes indicate the cases in which the team members cannot/do not
make transfers.

The transfer schemes do not depend on the efforts. This might seem too restrictive for the
verifiable effort case. However, this is not the case for the following reason: when efforts are
verifiable, any transfer scheme dependent on the efforts can be rewritten in terms of the production
outcome as the team members can contract on efforts and the production function is deterministic.

The players’s utility depends on the consumption of local good (xi) and effort (ei) as follows:

Ui(xi, ei) = xi − c(ei)
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where c : R+ → R+ is the cost of effort.

Assumption 2. The cost function c(·) is twice differentiable, strictly increasing, strictly convex,

c(0) = 0 and c′(0) = 0. In addition, there exists ē such that λif ′(λiē) < c′(ē) for all i ∈ N .

Thanks to assumption 2, each player exerts a finite effort if one stays unmatched.
If the members of team S supply an effort profile eS = (eSi )i∈S and make transfers according

to φS , the utility of player i ∈ S is:

Ui(S, φ
S, eS) = ρ (|S|) f

(∑
j∈S

λje
S
j

)
+ φSi

(
f

(∑
j∈S

λje
S
j

))
− c(eSi ) (1)

Finally, suppose the players form teams according to a partition Πr and each team S ∈ Πr ex-
erts eS and make transfers according to φS . Let eΠr =

(
eS
)
S∈Πr

and φΠr =
(
φS
)
S∈Πr

. Then
player i’s utility from

(
Πr, φ

Πr , eΠr
)

is Ui
(
Πr, φ

Πr , eΠr
)

= Ui
(
Πr(i), φ

Πr(i), eΠr(i)
)
. If the trans-

fer scheme is 0, we simplify the notations by using Ui(S, eS) for Ui(S, 0, eS) and Ui
(
Πr, e

Πr
)

for
Ui
(
Πr, 0, e

Πr
)
.

Before analyzing the team formation problem, let us introduce the notion of assortative parti-
tion which is used in the matching literature: under an assortative partition, the more productive
players form a team while the less productive players form a team. Formally, partition Πr is assor-
tative (by productivity) if, for any two distinct teams S, T ∈ Πr, either mini∈S λi ≥ maxi∈T λi or
mini∈T λi ≥ maxi∈S λi.

3 Team Formation in the Absence of Moral Hazard

To study the effects of moral hazard on team formation, this section investigates team formation
under verifiable efforts.

When efforts are verifiable, teams can contract on efforts. Suppose that the players are about to
form teams which would lead to partition Πr. Each team fixes its transfer scheme and effort profile.
Hence, the players know their utility if the current plan is implemented. Now the players start
looking for better options: if some players can improve themselves over the status quo by forming
a team and specifying the corresponding transfer scheme and effort profile, they will abandon the
current plan. If not, the current plan is implemented. This is the logic behind the definition of
blocking and stable partition. We consider two notions of stability depending on whether the team
members can make transfers.
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Definition 1. Team S blocks (Πr, φ
Πr , eΠr) with (φS, eS) if

Ui(S, φ
S, eS) > Ui

(
Πr, φ

Πr(i), eΠr(i)
)

for all i ∈ S

1. A partition Πr is stable if, for some φΠr and eΠr , no team S blocks (Πr, φ
Πr , eΠr) with any

φS and eS .

2. A partition Πr is stable under 0 transfer schemes if, for some eΠr , no team S blocks (Πr, 0, e
Πr)

with any (0, eS).

Before investigating the existence of stable partitions, let us consider the utilities that each team
can achieve using transfer schemes when efforts are verifiable. This is instrumental in our analysis
of team formation under non-verifiable efforts, as we will see in the next section.

As the players’ utilities are linear in local goods, each team’s welfare (the sum of utilities) for
a given effort profile eS is

W S(eS) = |S|ρ(|S|)f

(∑
i∈S

λie
S
i

)
−
∑
i∈S

c(eSi ).

An effort profile is efficient for S if it maximizes the welfare for S. Our assumptions on the cost
and production functions guarantee the existence of a unique efficient effort profile for each team.
Let the welfare corresponding to the efficient effort profile be W̄ S . Clearly, team S can achieve an
utility vector uS ∈ R|S|+ if and only if

∑
i∈S u

S
i ≤ W̄ S . In fact, team S can achieve any utility vector

uS ∈ R|S|+ with
∑

i∈S u
S
i = W̄ S through a balanced transfer scheme. This means that the utility

possibility set and the pareto frontier for coalition S are V S = {uS ∈ R|S|+ :
∑

i∈S u
S
i ≤ W̄ S} and

∂V S = {uS ∈ R|S|+ :
∑

i∈S u
S
i = W̄ S}, respectively.

Now, we are ready to study the existence of stable partitions. Proposition 1 states that if the
teams produce public goods and there is no quota restriction, then a stable partition exists. The
main intuition for this result is that the public nature of the local good eliminates the penalty for
forming a bigger team. In addition, because there is no quota restriction, the players can form one
big team.

Proposition 1. If teams produce public goods and there is no quota restriction (r = n), then

1. Π = {N} is the unique stable partition

2. Π = {N} is the unique stable partition under 0 transfer schemes

Proof. See Appendix.
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The main idea of the proof is to transform our team formation problem into cooperative game
defined by Scarf (1967) and then show that this game is balanced. The core for balanced games is
not empty implying that the only stable partition is Π = {N}. The non-emptiness of the core is
not surprising since similar results were established in public good economies which are somewhat
different than ours.3

If the quota is binding (r < n) or if the credit function is strictly decreasing, then there might
not exist a stable partition. We illustrate this point in the next example.

Example 1. Let r = 2 and N = {1, 2, 3}. If ρ(·) = 1 and λ1 = λ2 = λ3 > 0, then

1. there does not exist stable partition

2. there does not exist stable partition under 0 transfer schemes.

Proof. Let e∗ = arg maxei Ui({i}, ei). Then if player i works alone, then her utility is Ui({i}, e∗).

1. Suppose a stable partition Π exists. Thanks to proposition 1, Π 6= {{1}, {2}, {3}}. Hence,
without loss of generality, assume that Π = {{1, 2}, {3}}. Let eΠ =

(
e{1,2}, e{3}

)
and

φΠ =
(
φ{1,2}, φ{3}

)
be the efforts and the transfer scheme that support Π. If, for both players

i = 1, 2, Ui
(
{1, 2}, φ{1,2}, e{1,2}

)
> Ui({i}, e∗), then {1, 3} can block

(
Π, φΠ, eΠ

)
with(

φ{1,3}, e{1,3}
)

where φ{1,3}1 = φ
{1,2}
1 , φ{1,3}3 = φ

{1,2}
2 , e{1,3}1 = e

{1,2}
1 and e{1,3}3 is slightly

higher than e
{1,2}
2 . Therefore, Ui

(
{1, 2}, φ{1,2}, e{1,2}

)
= Ui({i}, e∗) for at least one of

i = 1, 2. Without loss, assume U1

(
{1, 2}, φ{1,2}, e{1,2}

)
= U1({i}, e∗). Then {1, 3} will

block Π, by each supplying e∗ with 0 transfers because f is strictly increasing.

2. Suppose a stable partition Π exists. Thanks to proposition 1, Π 6= {{1}, {2}, {3}}. Hence
without loss of generality, assume that Π = {{1, 2}, {3}}. Let eΠ =

(
e{1,2}, e{3}

)
be the

efforts that support Π. If, for both players i = 1, 2, Ui
(
{1, 2}, e{1,2}

)
> Ui({i}, e∗), by of-

fering a slightly higher effort than player 2’s to player 1, players 3 and 1 will block
(
Π, 0, eΠ

)
.

Therefore, Ui({1, 2}, e{1,2}) = Ui({i}, e∗) for at least one i = 1, 2. Without loss, assume
U1

(
{1, 2}, e{1,2}

)
= U1({i}, e∗). Then {1, 3} will block

(
Π, eΠ

)
by each supplying e∗ since

f is strictly increasing.

In the above example, even though players 2 and 3 are identical, because efforts are verifiable,
player 1 accepts player 3’s offer as long it is slightly better than that of player 2. This causes
instability.

3For more information see Foley (1970), Demange (1987), and Moulin (1987).
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By slightly modifying example 1, one obtains an example with no stable partition for the r = 3

case. Specifically, if we decrease ρ(3) sufficiently, and ρ(2) slightly, then no stable partition exists
when r = 3.

Finally, let us remark that the players have no incentive to form a bigger coalition if the credit
function decreases fast enough. Therefore, in these cases, each player works on her own. Indeed
this is the case for private goods.

Proposition 2. If teams produce private goods, then

1. Π = {{1}, · · · , {n}} is the unique stable partition

2. Π = {{1}, · · · , {n}} is the unique stable partition under 0 transfer schemes.

Proof. Proving the first part yields the second one because, for any one player team, the transfer
scheme is 0 due to balancedness. First let us show that Π = {{1}, · · · , {n}} is a stable partition.
Let e∗i = arg maxei Ui({i}, ei). Under partition Π, each player’s utility is f(λie

∗
i )−c(e∗i ). Suppose

team S blocks Π. Then, for some φS and eS , Ui(S, φS, eS) > Ui({i}, e∗) for all i ∈ S. Conse-
quently,

∑
i∈S Ui(S, φ

S, eS) >
∑

i∈S Ui({i}, e∗) or equivalently, f(
∑

i∈S λie
S
i ) −

∑
i∈S c(e

S
i ) >∑

i∈S(f(λie
∗
i ) − c(e∗i )). We will show this inequality is not satisfied, reaching a contradiction.

Observe that the function
∑

i∈S(f(λiei) − c(ei)) is maximized if ei = e∗i for all i ∈ S. Hence, it
suffices to show f(

∑
i∈S λie

S
i ) <

∑
i∈S f(λie

S
i ). Let j be the player with λjeSj = maxi∈S{λieSi }.

Then, by the concavity of f , f(
∑

i∈S λie
S
i ) < f(λje

S
j ) + f ′(λje

S
j )
∑

i 6=j∈S λie
S
i . By the concavity

of f , f ′(λjeSj ) < f ′(λie
S
i ) for all i ∈ S. Hence, f(

∑
i∈S λie

S
i ) < f(λje

S
j )+

∑
i 6=j∈S(f ′(λie

S
i )λie

S
i ).

Because f(0) = 0 and f is concave, f ′(λieSi )λie
S
i < f(λie

S
i ). This yields f(

∑
i∈S λie

S
i ) <∑

i∈S f(λie
S
i ).

To show Π = {{1}, · · · , {n}} is a unique stable partition, observe that the proof of Π =

{{1}, · · · , {n}} being a stable partition implies that any team S with 2 or more players is blocked
by one of its members. Therefore, Π = {{1}, · · · , {n}} is the unique stable partition.

4 Team Formation in the Presence of Moral Hazard

In this section, we study the team formation problem under non-verifiable efforts, which is the
main interest of this paper.

When efforts are not verifiable, the first question we have to answer is what efforts each
team can credibly commit. The answer to this question depends on how freely the players can
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make transfers among themselves. As in the previous section, suppose the players are about
to form teams, leading to partition Πr. Again each team has to fix its transfer scheme as well
as its effort profile. However, not all effort profiles are enforceable, as efforts are not verifi-
able. Hence, if a team decides to supply a certain effort profile, then it must be credible; in
the production stage, no member of the team should find it profitable to deviate from the previ-
ously decided effort profile. To model this, suppose team S uses a transfer scheme φS . Then
Γ(S, φS) = 〈S,R|S|+ , (Ui(S, φ

S, ·))i∈S〉 is a normal form game in which the members of S choose
their effort. We assume that the players can use mixed strategies; σS stands for a mixed strategy
effort profile for team S. By abusing the notations, we use eS for a pure strategy effort profile for
team S. Each game results in a Nash equilibrium. Hence, let NE(S, φS) be the set of Nash equi-
librium effort profiles (including mixed) for team S. Therefore, the members of any team S can
coordinate on one of the Nash equilibrium effort profiles. LetNE

(
Πr, φ

Πr
)

=
∏

S∈Πr
NE(S, φS)

be the Nash equilibrium effort set for partition Πr. For the 0 transfer schemes case, we simplify
the notations by using Γ(S) for Γ(S, 0), NE(S) for NE(S, 0) and NE (Πr) for NE (Πr, 0).

In order to define the stable partitions we must incorporate the credibility criteria into the
definitions of stable partition. As for the verifiable effort case, we define two notions of stable
partition.

Definition 2. In the presence of moral hazard,

1. a partition Πr is stable if, for some φΠr and σΠr ∈ NE(Πr, φ
Πr), no team S blocks

(Πr, φ
Πr , σΠr) with any φS and σS ∈ NE(S, φS).

2. a partition Πr is stable under 0 transfer schemes if, for some σΠr ∈ NE(Πr), no team S

blocks (Πr, 0, σ
Πr) with φS = 0 and any σS ∈ NE(S).

This definition states that in order to block the status quo, a blocking team must specify a trans-
fer scheme and the corresponding credible effort profile which improves all the members of the
team over the status quo. This implicitly assumes that the players understand that they cannot base
their decision to leave the status quo partition on non-Nash equilibrium effort profiles.

Team Formation under Moral Hazard with Transfer Schemes

To study the existence of stable partitions, one must find the utility possibility set for each team.
For private goods, this set is already found in the multi-agent moral hazard literature. In order to
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use these results, we need to transform our problem into a problem in which the teams produce
private goods. To do this, consider any non-private, local goods, i.e., ρ(s) 6= 1

s
for some 2 ≤ s ≤ r.

For each team S, let the production function be f̄S = |S|ρ(|S|)f , the credit function be ρ̄(·) where
ρ̄(s) = 1/s for all s = 1, · · · , n, and the transfer scheme be φ̄S(·) where φ̄Si (x) = φSi

(
x

ρ(|S|)|S|

)
.

With this relabeling, the teams produce a private good. As a consequence, we can use the results
from the multi-agent moral hazard literature in our setting.

For private goods, Hölmström (1982) shows that, for any balanced transfer scheme, the efficient
effort profile cannot be supported as an equilibrium. The main argument behind this result is that
some agent is always able to shirk without being identified. However, Legros and Matthews (1993)
show that the teams can approximate their efficient level of welfare to any degree using balanced
transfer schemes. They construct a transfer scheme and the corresponding mixed equilibrium that
approximate the efficient level of production. The incentives are provided as follows: one of
the agents (agent 1) should be indifferent between supplying 0 effort or her efficient effort when
everyone else supplies their efficient effort. Let agent 1 supply 0 effort with probability ε. In
addition, if the production outcome is lower than the one corresponding to the case in which all but
agent 1 supply their efficient effort while agent 1 supplies 0 effort, then every other player pays a
large fine to agent 1. To avoid this large fine, everyone supplies their efficient effort. We present
the Legros and Matthews (1993) result in the following lemma.

Lemma 1. For any ε > 0, there exists a balanced transfer scheme φS such that Γ(S, φS) has

a mixed equilibrium σS according to which expected welfare is within ε of the efficient level of

welfare:

EσS(W S(ẽS)) > W̄ S − ε

Proof. See Legros and Matthews (1993).

Lemma 1 has a striking implication for stability: if a stable partition exists, then each player
must work alone. The reason is that any team of two or more players cannot agree on any transfer
scheme and effort profile, as there is always some other transfer scheme and effort profile that
improve everyone over the original one.

Proposition 3. If a partition Πr is stable under non-verifiable efforts, then Πr = {{1}, · · · , {n}}.
In addition, a stable partition under non-verifiable efforts exists if and only if Πr = {{1}, · · · , {n}}
is a stable partition under verifiable efforts.

Proof. The first part directly follows from the definition of partition Πr and lemma 1. To prove the
second part, observe that the effort an one person team exerts does not depend on the verifiability
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of efforts. Hence, the utility one obtains working alone is not affected by the non-verifiability of
efforts. Clearly, if no team can block Πr = {{1}, · · · , {n}} with any transfer scheme and efforts
when efforts are verifiable, then no team can block Πr with any balanced transfer scheme and
credible efforts when efforts are not verifiable. On the other hand, if Πr is blocked under verifiable
efforts, then it is blocked under non-verifiable efforts thanks to lemma 1.

Remarks:

• Proposition 3 implies that moral hazard undermines stability as it significantly reduces the
set of stable partitions. For example, for public goods, the set of stable partitions is always
empty when efforts are not verifiable. In addition, this negative conclusion is not the artifact
of our assumption that the efforts of different players are perfect substitutes. In fact, as
long as efforts are bounded below and the production function is differentiable, lemma 1
is satisfied (Legros and Matthews (1993)). Hence, in all these cases, moral hazard affects
stability negatively.

• Let us comment on the core under non-verifiable efforts as it is a fundamental concept in co-
operative game theory. In our setting, the core under non-verifiable efforts is always empty.
The main reason is that the utility possibility set forN is open when efforts are non-verifiable
and the team members make only balanced transfers. Hence, there is no hope for the non-
emptiness of the core regardless of the kind of goods teams produce.

Coalition Formation under Moral Hazard without Transfer Schemes

As in the previous case, let us start by exploring the utility possibility set for each team. Because
the team members cannot make any transfers, the utility possibility set for any team will shrink
significantly. In fact, in our setting, the utility possibility set reduces to a single point. We show
this in the next lemma.

Lemma 2. For any game Γ(S) there exists a unique Nash equilibrium.

Proof. First let us show the existence of the Nash equilibria. Consider function g : R+ → R+

such that g(e) =
∑

i∈S λiei(e) where ei(e) is the solution to c′ (ei) = ρ (|S|)λif ′ (e) for all i ∈ S.
Observe that any Nash equilibrium effort vector ēS satisfies the following condition: c′

(
ēSi
)

=

ρ (|S|)λif ′
(∑

j∈S λj ē
S
j

)
for all i ∈ S. Hence, if we show that g(·) has a fixed point, then the

existence of Nash equilibria is guaranteed. Clearly, g(·) is continuous. In addition, the concavity
of f(·), the convexity of c(·) and c′(0) = 0 imply that ei(0) ≥ 0 for all i ∈ S. Hence, g(0) ≥ 0.
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Furthermore, the concavity of f(·), the convexity of c(·) and the existence of ē with λif ′(λiē) <
c′(ē) for all i imply that there exists ẽ > 0 such that ẽ > g(ẽ). Hence, by the intermediate value
theorem, there must exist e∗ such that g(e∗) = e∗. This completes the proof that a Nash equilibrium
exists.

To show the uniqueness of the equilibria for each game Γ(S), suppose there are two distinct
equilibrium efforts eS, ēS ∈ NE(S). By definition, eSi = arg maxei Ui

(
S, (ei, e

S
−i)
)

and ēSi =

arg maxei Ui
(
S, (ei, ē

S
−i)
)

for all i ∈ S. By the first order conditions, ρ (|S|)λif ′
(∑

j∈S λje
S
j

)
=

c′
(
eSi
)

and ρ (|S|)λif ′
(∑

j∈S λj ē
S
j

)
= c′

(
ēSi
)

for all i ∈ S. If
∑

i∈S λie
S
i =

∑
i∈S λiē

S
i , then the

strict convexity of c(·) and the first order conditions imply that eSi = ēSi for all i ∈ S. Hence, eS =

ēS . If
∑

i∈S λie
S
i <

∑
i∈S λiē

S
i , then, by the concavity of f(·), f ′(

∑
i∈S λie

S
i ) ≥ f ′

(∑
i∈S λiē

S
i

)
.

Then the convexity of c(·) and the first order conditions imply that eSi ≥ ēSi for all i ∈ S. This
contradicts

∑
i∈S λie

S
i <

∑
i∈S λiē

S
i .

Thanks to the uniqueness of the Nash equilibria, the players know their utility from each team.
Hence, the players have a well-defined preference relation over the teams which include her. Con-
sequently, when efforts are non-verifiable, our team formation problem under 0 transfer schemes
is a hedonic game defined by Bogomolnaia and Jackson (2002).

To study the existence of stable partitions, it would be ideal if one knows how a player ranks any
two teams by the utility the teams bring to her. Unfortunately, this is impossible without specifying
the credit and production function. However, we can characterize a player’s ranking of two teams
with equal size in some cases. Specifically, the following lemma shows that each player prefers
to replace a less productive member (not herself) of her team with a more productive player. The
reason is that a more productive player supplies more (productivity weighted) effort at equilibrium
than a less productive one does. Before presenting the lemma, let us fix some notations: Ui(S), and
eλ(S) denote the equilibrium utility of player i ∈ S, and equilibrium weighted effort, respectively.

Lemma 3. Consider any S with |S| ≥ 2 and S̄ = S\{i} ∪ {̄i} where i ∈ S. Then, for all j 6= i in

S, Uj(S̄) = Uj(S) if and only if λī = λi.

Proof. Let eS and eS̄ be the Nash equilibrium effort profiles for teams S and S̄, respectively. First
let us show that eλ(S̄) = eλ(S) if and only if λī = λi. If λī = λi, then the uniqueness of Nash
equilibria yields that eλ(S̄) = eλ(S). If eλ(S̄) ≤ eλ(S) when λī > λi , then by the concavity
of f(·), f ′

(
eλ(S̄)

)
≥ f ′ (eλ(S)). Then the convexity of c(·) and the first order conditions imply

that eS̄j ≥ eSj for all j ∈ S\{i} and eS̄ī ≥ eSi . Therefore,
∑

j∈S̄ λje
S̄
j >

∑
j∈S λje

S
j , contradicting

eλ(S̄) ≤ eλ(S). This shows that if λī > λi, then eλ(S̄) > eλ(S). Similarly, one can show that if
λī < λi, then eλ(S̄) < eλ(S). Hence, eλ(S̄) = eλ(S) if and only if λī = λi.
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Now we show that eλ(S̄) = eλ(S) if and only if Uj(S̄) = Uj(S). If eλ(S̄) = eλ(S), then
the strict convexity of c(·) yields eS̄j = eSj for all j ∈ S\{i}. Therefore, Uj(S̄) = Uj(S) for all
j ∈ S\{i}. If eλ(S̄) > eλ(S), then the strict convexity of c(·) yields eS̄j ≤ eSj for all j ∈ S\{i}.
Since f is strictly increasing, Uj(S̄) > Uj(S) for all j ∈ S\{i}. Similarly, one can show that if
eλ(S̄) < eλ(S), then Uj(S̄) < Uj(S) for all j ∈ S\{i}.

Next lemma states that by recruiting a player to one’s current team, the player’s equilibrium
effort decreases. Hence, the players always save their cost (from efforts) by expanding their current
team.

Lemma 4. If S̄ = S ∪ {̄i}, then eS̄i ≤ eSi where eSi and eS̄i are player i’s equilibrium efforts

corresponding to team S and S̄.

Proof. Let eλ(T, ρ) and eT (ρ) denote the total weighted effort and the equilibrium effort pro-
file for team T when ρ(|T |) = ρ. Slightly modifying the proof of lemma 3, one can prove
that eλ(S̄, ρ(|S|)) > eλ(S, ρ(|S|)). Then the convexity of c(·) and the first order conditions
imply that eS̄i (ρ(|S|)) ≤ eSi (ρ(|S|)) for all i ∈ S. Now let us show that if ρ(|S̄|) ≤ ρ(|S|)
then ρ(|S̄|)f ′

(
eλ(S̄, ρ(|S̄|))

)
≤ ρ(|S|)f ′ (eλ(S, ρ(|S|))). If this is not true, then the first order

conditions and the convexity of c(·) imply that eS̄i (ρ(|S̄|)) ≥ eS̄i (ρ(|S|)). Then eλ(S̄, ρ(|S̄|)) ≥
eλ(S̄, ρ(|S̄|)). Then the concavity of f(·) implies that ρ(|S̄|)f ′

(
eλ(S̄, ρ(|S̄|))

)
≤ ρ(|S|)f ′ (eλ(S, ρ(|S|)))

which is a contradiction.
If ρ(|S̄|)f ′

(
eλ(S̄, ρ(|S̄|))

)
≤ ρ(|S|)f ′ (eλ(S, ρ(|S|))), then eS̄i (ρ(|S̄|)) ≤ eSi (ρ(|S|)) thanks to

the first order conditions and the convexity of c(·).

Now we are ready to present our results on the existence of the stable partition and its charac-
terization. Without loss of generality, we assume that the players are indexed by productivity in
decreasing order, i.e., if i < j, then λi ≥ λj .

Our first result states that if teams produce public goods, then a stable partition exists. The
key reason behind this result is the lack of punishment for forming a bigger team due to the public
nature of the good. Therefore, a player can only benefit by recruiting an additional player to
her current team since the total weighted effort increases while each player’s equilibrium effort
decreases. Therefore, every team is of size r except maybe one. To be specific, the most productive
r players are matched, and then the next most productive r players are matched and so on. This
also implies that if r ≥ n, then the unique stable partition is Πr = {N}.

Proposition 4. If teams produce public goods, then there exists a stable partition. Furthermore, if

λi 6= λj for all i 6= j, then there is a unique stable partition. Moreover, every stable partition is

assortative.
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Proof. To prove the existence consider the following canonical partition Πr resulting from the
following algorithm.

1. Player 1 picks a team respecting the quota. If there are multiple best matches then she
picks the team whose total indices are the smallest (There will not be any case in which one
player’s best matches have the same total indices).

2. The lowest indexed unmatched player picks a team out of the remaining players respecting
the quota.

3. Continue with step 2 until all the players are matched.

Claim. Partition Πr is stable.
Proof of the Claim. Consider the above canonical algorithm. Slightly modifying the proof of
lemma 3, one obtains that if ρ(·) is constant, then, for each i ∈ S, Ui(S∪{j}) > Ui(S). Combining
this with lemma 3, one obtains that player 1 chooses to match with the most productive r players
(including herself) if r ≤ n . Observe here that in step 2 of the algorithm the player who chooses
a team is the most productive player out of the unmatched players. As player 1, she will choose
to match with the most productive unmatched r players if r ≤ n/2. This logic extends to all the
remaining teams. Let {S1, ..., SJ} be the teams resulting from the canonical algorithm in which
they are indexed by the order they were formed.

To prove the stability, observe that everyone in team 1 obtains her best possible match, so no
one would be a part of any blocking team. Given this, anyone in the second team would not be
a part of any blocking team. Continuing with this logic, we can see that no team blocks partition Πr.

When the productivities of no two players are the same, S1 is the unique best match for anyone
in S1. Given this, S2 is the unique best match out of N\S1 for anyone in S2 and so on. Therefore,
Πr is obviously the unique stable partition.

Now let us prove that the stable partitions are assortative. Suppose that Br is a stable parti-
tion. Let Br = {T1, ..., TK} where the teams are indexed by the total productivity coefficients in
decreasing order. Observe here that there must be a bijection π1 : S1 → T1 such that λi = λπ1(i)

for all i ∈ S1; otherwise, S1 must block Br because S1 is the best match for all of its members.
Similarly, there exists πj : Sj → Tj such that λi = λπj(i) for all i ∈ Sj . This implies that Br is
assortative.

Remark:
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• Our team formation game for public goods satisfies the top team property defined by Baner-
jee et al. (2001). This property says that for any subset V ⊂ N there exists team S ⊂ V

such that each member of S (weakly) prefers S to any team T ⊂ V . To see that our problem
satisfies the top team property, observe that team S, which consists of r players with the
highest productivity out of team V , brings no less utility to its members than any other team
T ⊂ V .

Now we consider the case in which credit function ρ is not constant. In this case, recruiting an
additional player to an already formed team has three effects on each existing member: (1) each
player earns less credit (2) each player exerts less effort, hence saves some cost of efforts (lemma
4) and (3) the equilibrium weighted effort changes, affecting each player’s consumption of local
goods. The direction of the equilibrium weighted effort change depends on the credit function
and the cost function. However, one can imagine that if ρ is decreasing fast enough, then the first
effect must dominate the other two, eliminating the incentives to form a bigger team. Indeed, this
is the case for private goods we already know from proposition 2. Thus, for the private goods case,
no player finds it profitable to work with other players who have a lower productivity. Therefore,
every player works by herself which is a stark contrast to the public good case in which the players
form teams of a size as big as possible.

Now we will consider the case in which the local goods are neither public nor private. In this
case, if the quota does not exceed 2, then one can prove the existence of stable partitions. The
reason behind this result is that the most productive player obtains the highest utility by working
alone. However, if two players work together, then the least productive player obtains a better
utility than the other. Therefore, if the most productive player offers someone to partner, then the
other must accept the offer. Exploiting this property, we design a canonical algorithm in which the
most productive player chooses her match and then the most productive unmatched player chooses
her match from the unmatched players and so on. Now let us present the result.

Proposition 5. A stable partition Πr exists if r = 2. In addition, stable partitions are assortative.

Proof. To prove the existence of stable partitions, consider partition Πr which is the result of the
algorithm used in the proof of proposition 4.
Claim. Πr is stable.
Proof of the claim. It suffices to prove that no player in Πr(1) is part of a blocking team. If
Πr(1) = {1}, then, by construction, U1({1}) ≥ U1({1, 2}). Therefore, player 1 is not a part of any
blocking team.
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If |Πr(1)| = 2, then due to lemma 3 and the construction of the canonical mechanism, Πr(1) =

{1, 2}. By lemma 3, no team of size 2 can block {1, 2}. By construction, U1({1}) < U1({1, 2}),
hence, player 1 will not block {1, 2}. Now, to show player 2 will not block {1, 2} by herself, it
suffices to show that (1) U2({1, 2}) ≥ U1({1, 2}) and (2) U2({2}) ≤ U1({1}). To see (1), observe
that the first order conditions yield ρ (2)λif

′ (λ1e1 + λ2e2) = c′ (ei) for i = 1, 2. Therefore,
c′(e1)
λ1

= c′(e2)
λ2

. Because c is strictly convex and λ1 ≥ λ2, e1 ≥ e2. As a result,

U2({1, 2}) = ρ (2) f (λ1e1 + λ2e2)− c (e2) ≥ ρ (2) f (λ1e1 + λ2e2)− c (e1) = U1({1, 2})

To see (2), observe that maxe1 {f(λ1e1)− c (e1)} ≥ maxe2 {f(λ2e2)− c (e2)} because, for all e,
f(λ1e)− c (e) ≥ f(λ2e)− c (e) as λ1 ≥ λ2.

Now let us show that all stable partitions are assortative when r = 2.
Consider any non-assortative partition B. Since B is non-assortative, there must exist S, T ∈ B
such that maxi∈S λi > mini∈T λi and maxi∈S λi > mini∈T λi. Let ī/i and j̄/j be the lowest/highest
indexed players in team S and T , respectively. Without loss of generality, we assume λī ≥ λj̄ .
Consequently, |S| = 2; otherwise mini∈S λi ≥ maxi∈T λi. Now we show that B is blocked by
some team.
Let Uī({̄i}) ≥ Uī({̄i, j̄}). Then {̄i} blocks B because Uī({̄i}) ≥ Uī({̄i, j̄}) > Uī(S) due to lemma
3 as λj̄ > λi.
Let Uī({̄i}) < Uī({̄i, j̄}). Then by lemma 3, Uī({̄i, j̄}) > Uī(S) as λj̄ > λi. If |T | = 2, by lemma
3, Uj̄({̄i, j̄}) > Uj̄(T ) as λī > λj . As a result, {̄i, j̄} blocks B. Lastly, if |T | = 1, then, from the
first part of this proof, Uj̄({j̄}) < Uj̄({̄i, j̄}) as λī > λj̄ and Uī({̄i}) < Uī({̄i, j̄}). Hence, {̄i, j̄}
blocks B, completing the proof.

Let us remark some interesting features of the stable partitions with quota r = 2.

1. Our team formation game with quota r = 2 satisfies the top team property. Therefore,
to prove the existence of stable partitions, we could have shown first that our team forma-
tion game satisfies the top team property and then obtained the existence as a corollary of
theorem 1 in Banerjee et al. (2001). However, we chose the current approach because the
canonical algorithm used in the proof has certain value as it demonstrates how to obtain a
stable partition.

2. Our team formation game with quota r = 2 satisfies the no odd rings condition defined by
Chung (2000).
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3. The size of teams resulting from the algorithm could differ from team to team. The following
example illustrates this point.

Example 2. Let the set of players be {1, 2, 3, 4, 5} and the probability of a project succeeding

be f(e) = exp(e)
1+exp(e)

. Suppose c(ei) = 1
2
e2
i , λ1 =

√
70, λ2 = λ3 =

√
50, λ4 =

√
20, and

λ5 =
√

10. Finally, let ρ(1) = 1, ρ(2) = 0.95 and r = 2.

In this game, the stable partition is {{1, 2}, {3}, {4, 5}}. Even though player 3 could match

with player 4, she decides to stay unmatched. When matched with player 4, there are two

contradicting effects for player 3. The first one is the utility gain resulting from player

4’s positive effort and the second one is the utility loss because of a decreased ρ. When

the difference between productivity coefficients is significant, player 4 puts too low of an

effort relative to that of player 3 when matched with player 3. Therefore, the utility gain

from player 4’s positive effort is not enough to overcome the utility loss from decreased ρ.

However, for player 4 partnering with player 5 is beneficial since the effort player 5 supplies

is comparable to that of player 4.

The existence of stable partitions when r > 2 depends on the cost function. For example,
lemma 6, which we will see shortly, proves that the existence of stable partitions is guaranteed
when r ≤ 4 if the cost function is quadratic. Let us take a moment to explore the quadratic
cost case which provides an additional structure that we will exploit in constructing an example
with no stable partition. An interesting feature of the quadratic cost function is that the equilibrium
weighted effort for team S depends only on

∑
i∈S

λ2
i

a
. This allows us to derive a player’s preference

ranking of the teams with same size. Before presenting the result, let us fix some notations; ti =
λ2
i

a
,

t(S) =
∑

j∈S tj , and t−i(S) =
∑

j 6=i,j∈S tj .

Lemma 5. If c(e) = a
2
e2, then

a. for any game Γ(S), eλ(S) satisfies the following condition.

eλ(S) = ρ (|S|) t(S)f ′ (eλ(S)) (2)

Furthermore, player i’s utility function at the equilibrium is

Ui(S) = ρ (|S|) f (eλ(S))− ti
2

(
eλ(S)

t(S)

)2

(3)

b. Suppose teams S and T have the same size (|S| = |T |) and S ∩ T 6= ∅. Then for player

i ∈ S ∩ T , Ui(S) ≤ Ui(T ) if and only if t−i(S) ≤ t−i(T ).
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Proof. See Appendix.

Proposition 6 proves the existence of stable partitions for the r ≤ 4, quadratic cost case. The
reason for the existence of stable partition is that the most productive player in any team is not
expendable when the quota is low. For example, suppose players 1, 2 and 3 team up and let u1, u2

and u3 be the corresponding utilities for players 1, 2, and 3. The only potential conflict between
players 1 and 2 is that player 1 might prefer to recruit player 4 while player 2 does not. Then,
player 2 would consider replacing player 1 with player 4 from the original team which is costly
to player 2 because player 4 is less productive than player 1. This replacement cost for player 2
exceeds the cost player 2 incurs if player 4 joins team {1, 2, 3}. By exploiting this property, we
consider the canonical algorithm in which the most productive player chooses her team and then
the most productive unmatched player chooses her team and so on.

Proposition 6. If r ≤ 4 and c(e) = a
2
e2, then a stable partition exists. In addition, the stable

partitions are assortative.

Proof. See Appendix.

Remark:
Our team formation game with quota r ≤ 4 and quadratic cost function may not satisfy the top
team property but does satisfy the weak top team property defined in Banerjee et al. (2001).

To identify the effects of moral hazard on stability, we have investigated the existence of stable
partitions under 0 transfer schemes. Now let us summarize all the results of this section in the
following theorem.

Theorem 1. In the presence of moral hazard, there exists a stable partition under 0 transfer

schemes if

1. teams produce public or private goods

2. r = 2

3. the cost function is quadratic and r ≤ 4

In all above cases, all stable partitions are assortative.

Based on theorem 1 and example 1, we conclude that the combination of moral hazard and the
lack of transfer schemes greatly increases the set of stable partitions in certain cases. For example,
for public goods, a stable partition always exists regardless of the quota. For non-public goods,
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the quota plays an important role for whether stable partition exists or not: if r = 2 or if r ≤ 4

and the cost function is quadratic, there is always a stable partition. For all these cases, example 1
and proposition 3 demonstrate that we need both moral hazard and the lack of transfer schemes to
guarantee the existence of stable partitions. Therefore, we conclude that the combination of moral
hazard and the lack of transfer schemes positively affects stability in a large class of games. But
this gain in stability comes with a considerable loss in efficiency because the combination of moral
hazard and the lack of transfer scheme deteriorates efficiency the most.

Now let us discuss the reason why in some cases there is no stable partition when efforts are
verifiable but there is one when efforts are not verifiable and there is no transfer scheme. The
biggest difference between these cases is the expectations of the other players’ efforts after a team
is formed. Suppose S is formed. To break down team S, some players not in S must recruit some
members of S to form a new team. To accomplish this, they must propose an effort profile which
improves the members of the new team. For the verifiable case, this task is relatively easy as all
efforts are enforceable. However, for the non-verifiable case, everyone expects the new team to
exert only credible effort profile in the production stage. In our setting, there is only one credible
effort profile, and if this does not cause instability then team S will form.

Another interesting feature of our model is the assortativeness property of stable partitions
in the presence of moral hazard. This seems to be observed in life. For example, the top tier
researchers coauthor with one another while the more modest researchers work with each other.

We now show that the combination of moral hazard and lack of transfer schemes does not
necessarily guarantee the existence of stable partitions. We demonstrate this point in the following
example.

Example 3. Let the set of players be {1, 2, · · · , 500}, f(e) = 1 − 1
(1+e)3 and c(ei) = 1

2
e2
i . In

addition, t1 = 101, t2 = t3 = t4 = 100 and t5 = · · · = t500 = 99. Finally, let ρ(1) =

ρ(2) = ρ(3) = 1 but ρ(j) where j ≥ 4 satisfies the following condition U2({1, 2, 3, 4}) = · · · =

U2({1, 2, 3, 4, · · · , k}) = U2({2, 3, 4}) − ε where k = 5, · · · , 500 and ε is an arbitrarily small,

positive number. If there is no quota restriction, then no stable partition exists when ε→ 0.

Proof. 4 Contrary to the claim, suppose there exists a stable partition Π. Clearly, Π(1) ≥ 3 as
ρ(1) = ρ(2) = ρ(3) = 1. There are several cases to consider:

1. |Π(1)| ≥ 4 and at least one of players 2, 3 or 4 is in Π(1)

2. |Π(1)| ≥ 4 and none of players 2, 3, or 4 is in Π(1)

4Due to the lack of closed form solutions, some of the calculations are performed in Matlab.
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3. |Π(1)| = 3 and at least 2 of players 2, 3, and 4 are not in Π(1)

4. |Π(1)| = 3 and 2 of players 2, 3, and 4 are in Π(1)

1. Pick any i = 2, 3, 4, and let Π(i) = S. If |S| ≤ 3, then 1 /∈ S because |Π(1)| ≥ 4 in
this case. Consequently, t2 + t3 + t4 > tS , implying Ui({2, 3, 4}) > Ui(S) because ρ(1) =

ρ(2) = ρ(3) = 1. If |S| ≥ 4, then consider S1 = {1, 2, 3, 4, · · · , |S|}. By construction,
Ui({2, 3, 4}) > Ui(S1). In addition, Ui(S1) ≥ Ui(S) thanks to lemma 5.b. Therefore, player
i strictly prefers {2, 3, 4} to S. Hence, Π is blocked by {2, 3, 4}

2. When ε → 0, U1({1, 2, 3}) = 0.980299045 and U1({1, 5, · · · , 500}) = 0.980299041. In
addition, U1({1, 5, 6, · · · , k}) increases with k ≥ 6 from a matlab calculation. Therefore,
U1(Π(1)) < U1({1, 2, 3}). At the same time, Uj({1, 2, 3}) > Uj({2, 3, 4}) for any j = 2, 3

thanks to lemma 5.b. In addition, Uj({2, 3, 4}) ≥ Uj(S) for any S 6= {1, 2, 3}) and S 3 j as
we noted earlier. Therefore, Uj(Π(j)) < Uj({1, 2, 3}) where j = 2, 3. Hence, Π is blocked
by {1, 2, 3}.

3. In this case, U1(Π(1)) < U1({1, 2, 3}) thanks to lemma 5.b. At the same time, as noted
earlier, {1, 2, 3} brings a better payoff to players 2 and 3 than any other team. Hence, Π is
blocked by {1, 2, 3}.

4. Without loss of generality, assume Π(1) = {1, 2, 3}. As ε → 0, U1({1, 4, 5, · · · , 500}) =

0.98029905. Hence, U1({1, 4, · · · , 500}) > U1({1, 2, 3}). In addition, a matlab calculation
yields U4({1, 4, · · · , 500}) = 0.98029907 > U4(S) for any team S 3 4 but 1 /∈ S, and
Uj({1, 4, · · · , 500}) = 0.980299091 > Uj(T ) where j = 5, · · · , 500, T 3 j and 1 /∈ T .
Hence, Π is blocked by team {1, 4, · · · , 500}.

The key difference between the r ≤ 4 and the r > 4 cases is that the most productive player
wants to form such a large team that is blocked by a smaller team. Hence, the partition resulting
from the algorithm used in proposition 4 is blocked. To see the intuition, suppose players 1, 2 and
3 (t1 > t2 > t3) form a team and let u1, u2 and u3 be the corresponding utilities. The only potential
conflict between players 1 and 2 is that player 1 might prefer to bring other players while player 2
does not. In addition, the larger the team size is, the smaller the utility difference between players 2
and 1 will be. Therefore, if player 1 wants to form a very large team which yields a slightly greater
utility than u1 to player 1, then player 2’s utility will be in a close neighborhood of u1. But u1 is
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lower than u2. Therefore, if player 2’s utility from team {2, 3, 4} is strictly greater than u1, then
{2, 3, 4} blocks the large team player 1 prefers. Example 3 is constructed based on this intuition.

Based on theorem 1, one might expect that the stable partitions are always assortative. How-
ever, this turns out not to be true as the following example illustrates.

Example 4. Let the set of players be {1, 2, · · · , 550}, f(e) = 1 − 1
(1+e)3 and c(ei) = a

2
e2
i . In

addition, t1 = 101, t2 = t3 = t4 = 100 and t5 = · · · = t500 = 99. Finally, let ρ(1) =

ρ(2) = ρ(3) = 1 but ρ(j) where j ≥ 4 satisfies the following condition U2({1, 2, 3, 4}) = · · · =

U2({1, 2, 3, 4, · · · , k}) = U2({2, 3, 4}) − ε where k = 6, · · · , 550 and ε is an arbitrarily small,

positive number. If there is no quota restriction, then Π = {{2, 3, 4}{1, 5, · · · , 550}}.

Proof. 5 Due to the proof of example 3, we need to make sure thatU1({1, 5, · · · , 550}) > U1({1, 2, 3})
and team {1, 5, · · · , 550}} is not blocked by any team. The former is easily obtained as a matlab
calculation yields that U1({1, 5, · · · , 550}) = 0.980299047 and U1({1, 2, 3}) = 0.980299046. The
latter is true because, according to a matlab calculation, U1({1, 5, 6, · · · , k}) andU5({1, 5, 6, · · · , k})
increases with k ≥ 7, U5({5, 6, · · · , k}) < U5({1, 5, 6, · · · , k− 1}) where k ≥ 8 thanks to lemma
5.b, and U5({5, 6, 7}) < U5({1, 5, 6, 7}).

This example shows that the assortativeness property is not generalized. Hence, we conclude
that assortative team structure emerges if the good is public or if the quota is 2. In other cases, the
stable team structures may not be assortative.

5 Conclusion

In this paper, we have studied the team formation problem under moral hazard. First, we show that
moral hazard significantly worsens stability when the team members can make balanced transfers
only. This result implies the emptiness of the core. However, if the team members cannot make
transfers, then moral hazard positively affects stability in a large class of games. Therefore, even
though the lack of transfer scheme and moral hazard hurts the efficiency the most, they are desir-
able in a large class of games.

5Due to the lack of closed form solutions, some of the calculations are done in Matlab.
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Appendix

In order to prove proposition 1, we will transform our team formation problem into the setting of
cooperative game defined in Scarf (1967); then we proceed to show this game is balanced in the
sense of Scarf (1967). Since the core for the balanced game is not empty, the balancedness implies
that partition Πr = {N} is the only stable partition. Let us start with some definitions.

A cooperative game is a pair 〈N, (V S)S⊆N〉 where V S ⊂ R|S| is the set of utility vectors for
team S. It is assumed that V S is closed and every vS is in V S if vS � uS for some uS ∈ V S .
Let the boundary of utility vector set be ∂V S ≡ {vS ∈ V S : @uS ∈ V S s.t. uS � vS}. The
projection for team S is πS : Rn → R|S| satisfying πSi (yN) = yNi for all i ∈ S. The domain for the
projection for team S could be the set efforts or the set of utility vectors.

Definition 3. A utility vector u ∈ V N is in the core of game 〈N, (V S)S⊆N〉 if πS(u) /∈ V S\∂V S

for any S ⊆ N .

Denote the possible set of teams by N = 2N\∅. Let B be a subset of N and let Bi = {S ∈ B :

i ∈ S}. Set B is balanced if there exists non-negative weights w such that
∑

S∈Bi w(S) = 1 for all
i ∈ N .

Definition 4. An n person game 〈N, (V S)S⊆N〉 is balanced if for every balanced set B, a utility

vector u is in V N if πS(u) ∈ V S for all S ∈ B.

Proof of Proposition 1. Part 1. In our team formation problem with transfers, we set V S ≡ {uS ∈
R|S| : ∃eS &φS s.t. uSi ≤ Ui(S, φ

S, eS)}. It can easily be shown that V S is closed and vS ∈ V S if
vS ≤ uS for some uS ∈ V S , so our team formation problem with transfers is a cooperative game.
Claim. Team formation problem with transfers is a balanced game.
Proof of the Claim. We need to prove that u ∈ RN is V N if, for any balanced set B, πS(u) ∈ V S

for all S ∈ B.
Fix a balanced set B. Letw be a corresponding balancing weight to B. Consider any u such that

πS(u) ∈ V S for all S ∈ B. This means that there exist φS and eS , such that Ui(S, φS, eS) > ui for
all S ∈ B and for all i ∈ S. Since

∑
S∈Bi w(S) = 1 for all i ∈ N ,

∑
S∈Bi w(S)Ui(S, φ

S, eS) ≥ ui.
Consider an effort profile ē ∈ Rn and a transfer scheme φ̄ : R+ → Rn such that ēi =∑
S∈Bi w(S)eSi and φ̄i(·) =

∑
S∈Bi w(S)φSi

(
f
(∑

j∈S λje
S
j

))
. Observe that φ̄i is a constant

function. We will show that
∑

i∈N φ̄i ≤ 0 and Ui(N, φ̄, ē) ≥
∑

S∈Bi w(S)Ui(S, φ
S, eS), prov-

ing u ∈ V N .
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To show
∑

i∈N φ̄i ≤ 0, observe that

∑
i∈N

φ̄i =
∑
i∈N

∑
S∈Bi

w(S)φSi

(
f

(∑
j∈S

λje
S
j

))
=
∑
S∈B

w(S)
∑
i∈S

φSi

(
f

(∑
j∈S

λje
S
j

))
.

Since for all S,
∑

i∈S φ
S
i

(
f
(∑

j∈S λje
S
j

))
≤ 0, it must be

∑
i∈N φ̄i ≤ 0.

To show Ui(N, φ̄, ē) ≥
∑

S∈Bi w(S)Ui(S, φ
S, eS), we need to prove the following inequality

for each i ∈ N :

f

(∑
j∈N

(λj ēj)

)
+ φ̄i − c (ēi) ≥

∑
S∈Bi

w(S)

[
f

(∑
j∈S

λje
S
j

)
+ φi

(
f

(∑
j∈S

λje
S
j

))
− c

(
eSi
)]
.

(4)
First, rearranging the terms, we obtain

f

(∑
j∈N

(λj ēj)

)
= f

∑
j∈N

λj ∑
S∈Bj

w(S)eSj

 = f

(∑
S∈B

w(S)

(∑
j∈S

λje
S
j

))
.

The concavity of f yields:

f

(∑
S∈Bi

w(S)

(∑
j∈S

λje
S
j

))
≥
∑
S∈Bi

w(S)f

(∑
j∈S

λje
S
j

)

for all i ∈ N .
By combining the last two expressions with f is an increasing function, one obtains that

f
(∑

j∈N (λj ēj)
)
>
∑

S∈Bi w(S)f
(∑

j∈S λje
S
j

)
for all i ∈ N .

Secondly, φ̄i =
∑

S∈Bi w(S)φSi

(
f
(∑

j∈S λje
S
j

))
.

Lastly, because c(·) is convex, c
(∑

S∈Bi w(S)eSi
)
≤
∑

S∈Bi w(S)c
(
eSi
)
.

Therefore, we have proved inequality 4.

Part 2. In our team formation problem without transfers, we set V S ≡ {uS ∈ R|S| : ∃eS s.t. uSi ≤
Ui(S, e

S)}. It can be easily shown that V S is closed and vS ∈ V S if vS ≤ uS for some uS ∈ V S ,
so the team formation problem without transfers is a cooperative game.
Claim. team formation problem without transfers is a balanced game.
Proof of the Claim. We need to prove that u ∈ RN is V N if, for any balanced set B, πS(u) ∈ V S

for all S ∈ B. Fix a balanced set B. Let w be a corresponding balancing weight to B. Consider any
u such that πS(u) ∈ V S for all S ∈ B. This means that there exists eS , such that Ui(S, eS) > ui
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for all S ∈ B and for all i ∈ S. Since
∑

S∈Bi w(S) = 1 for all i ∈ N ,
∑

S∈Bi w(S)Ui(S, e
S) ≥ ui.

Consider ē ∈ Rn where ēi =
∑

S∈Bi w(S)eSi . To prove that u ∈ V N , we will now show that
Ui(N, ē) ≥

∑
S∈Bi w(S)Ui(S, e

S). In other words, we need to show

f

(∑
j∈N

(λj ēj)

)
− c(ēi) ≥

∑
S∈Bi

w(S)

(
f

(∑
j∈S

λje
S
j

)
− c(eSi )

)
. (5)

By rearranging the terms we get

f

(∑
j∈N

(λj ēj)

)
= f

∑
j∈N

λj ∑
S∈Bj

w(S)eSj

 = f

(∑
S∈B

w(S)

(∑
j∈S

λje
S
j

))
.

On the other hand, the concavity of f yields

f

(∑
S∈Bi

w(S)

(∑
j∈S

λje
S
j

))
≥
∑
S∈Bi

w(S)f

(∑
j∈S

λje
S
j

)

for all i ∈ N .
Combining the last two expressions with f being an increasing function, one obtains that

f
(∑

j∈N (λj ēj)
)
>
∑

S∈Bi w(S)f
(∑

j∈S λje
S
j

)
for all i ∈ N .

Since c(·) is convex, c
(∑

S∈Bi w(S)eSi
)
<
∑

S∈Bi w(S)c
(
eSi
)
.

Therefore, we have proved the equation 5.

Proof of Lemma 5. 1. Let eS ∈ NE(S). Then eSi = arg maxei Ui
(
S, (ei, e

S
−i)
)

for all i ∈ S.

The first order condition yields ρ (|S|) f ′
(∑

j∈S λje
S
j

)
= a

λi
eSi for all i ∈ S. Since the

left hand side of the FOC is the same for all players at an equilibrium, eSj =
λj
λi
eSi for

all j ∈ S. By substituting eSj -s back into the FOC and rearranging the terms, we obtain

ρ(|S|)f ′
(
a
λi
tSeSi

)
= a

λi
eSi . Since eλ(S) = a

λi
tSeSi , we obtain equation 2. The uniqueness

of Nash equilibria is proved by observing that equation 2 has a unique solution and eSi =
λi

at(S)
eλ(S).

Equality 3 follows by substituting the expression eSi = λi
at(S)

eλ(S) into utility function.

2. From part (a), the equilibrium weighted effort eλ(S) depends only on tS and ρ(|S|). This
implies that the players’ equilibrium utility from team S depends only on ρ(|S|), ti and t−i.
Therefore, we use the following notations: eλ(t, ρ) is the solution to the equation e = ρtf ′(e)

and Ui(ti, t−i, ρ) = ρf(eλ(ti + t−i, ρ))− ti
2

(
eλ(ti+t−i,ρ)
ti+t−i

)
.
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Because |S| = |T |, it suffices to show that ∂Ui(ti,t−i,ρ)
∂t−i

> 0 for any i. Let t = ti + t−i. Then

∂Ui(ti, t−i, ρ)

∂t−i
= ρf ′(eλ(t, ρ))

∂eλ(t, ρ)

∂t
− ti

eλ(t, ρ)

t

t∂eλ(t,ρ)
∂t
− eλ(t, ρ)

(t)2
.

Since eλ(t, ρ) = ρtf ′(eλ(t, ρ)), using the implicit function theorem, we obtain

∂eλ(t, ρ)

∂t
=

ρf ′ (eλ(t, ρ))

1− ρtf ′′ (eλ(t, ρ))
=

eλ(t, ρ)

(1− ρtf ′′(eλ(t, ρ))) t
(6)

where the second equality follows from the FOC. Now by substituting the expression for
∂eλ(t,ρ)
∂t

and rearranging the terms, we obtain

∂Ui(ti, t−i, ρ)

∂t−i
=

1− ρtif ′′ (eλ(t, ρ))

1− ρtf ′′ (eλ(t, ρ))

(
eλ(t, ρ)

t

)2

> 0 (7)

as f ′′ ≤ 0.

Lemma 6. At equilibrium, each player’s utility

Ui(S) >

(
t(S)− ti

2

)(
eλ(S)

t(S)

)2

Proof. Lemma 5.a and the fundamental theorem of calculus yield,

Ui(S) = ρ(|S|)f (eλ(S))− ti
2

(
eλ(S)

t(S)

)2

= ρ(|S|)

(∫ eλ(S)

0

f ′(e)de

)
− ti

2

(
eλ(S)

t(S)

)2

.
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Since f ′′ ≤ 0, for any e ∈ [0, eλ(S)], f ′(e) ≥ f ′(eλ(S)). Hence,

Ui(S) > ρ(|S|)

(∫ eλ(S)

0

f ′(eλ(S))de

)
− ti

2

(
eλ(S)

t(S)

)2

= eλ(S)ρ(|S|)f ′(eλ(S))− ti
2

(
eλ(S)

t(S)

)2

.

By substituting ρ(|S|)f ′(eλ(S)) = eλ(S)
t(S)

(lemma 5.a), we obtain the desired result.

Lemma 7. If S ⊆ T , then eλ(S)
t(S)
≥ eλ(T )

t(T )

Proof. Let us consider ∂eλ(t,ρ)/t
∂t

= ρf ′′(eλ(t,ρ))
1−ρtf ′′(eλ(t,ρ))

eλ(t,ρ)
t

< 0. This means eλ(tS ,ρ(|S|))
tS

≥ eλ(tT ,ρ(|S|))
tT

since tT ≥ tS . Now showing eλ(tT , ρ(|T |)) ≤ eλ(t
T , ρ(|S|)) completes the proof. Since ρ(|T |) ≤

ρ(|S|), it suffices to show ∂eλ(t,ρ)
∂ρ

> 0. Because e(t, ρ) = ρtf ′(e(t, ρ)), by using the implicit
function, we obtain

∂eλ(t, ρ)

∂ρ
=

eλ(t, ρ)(
1− ρtf ′′(eλ(t, ρ))

)
ρ
. (8)

This expression is positive as f ′′ ≤ 0.

Proof of Proposition 5. Before we start the proof let us consider what happens to the equilibrium
utility of player i if ti changes.

∂Ui(ti, t−i, ρ)

∂ti
= ρf ′ (eλ(t, ρ))

∂eλ(t, ρ)

∂t
− 1

2

(
eλ(t, ρ)

t

)2

− ti
eλ(t, ρ)

t

t∂eλ(t,ρ)
∂t
− eλ(t, ρ)

t2
.

By using the expression for ∂eλ(t,ρ)
∂t

(equation 6) and rearranging the terms,

∂Ui(ti, t−i, ρ)

∂ti
=

1− (ti − t−i)ρf ′′(eλ(t, ρ))

2 (1− ρtf ′′(eλ(t, ρ)))

(
eλ(t, ρ)

t

)2

(9)

Now we are ready to start proving the first part of the proposition.
Part 1. There exists a stable partition if r ≤ 4.
Consider partition Πr which is the result of the algorithm used in the proof of proposition 4.
Claim. The above canonical partition is stable when r ≤ 4.
Proof of the claim. To prove this claim, we first prove that no member of Πr(1) is a part of a
blocking team. Thereafter, by iterating the argument to the other teams of Πr in the order they
were formed when the algorithm is applied, we complete the proof.
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Observe that the algorithm and lemma 5.b imply that Πr(1) = {1, · · · , |Πr(1)|}. To prove that
no member of Πr(1) is a part of a blocking team, we proceed in several steps .
Step 1. No member of Πr(1) is a part of a blocking team with a size no less than |Πr(1)|.
Proof of Step 1. Contrary to the claim in step 1, let S be a team that blocks Πr and contains
player i ∈ Πr(1) and |S| > |Πr(1)|. If S contains 2 or more players of Πr(1), then let i be
the lowest indexed one of these players. In addition, i 6= 1 because player 1 picked Πr(1) to
match with. Therefore, step 1 is proved if |Πr(1)| = 1, leaving the cases in which |Πr(1)| > 1.
Consider team {1, · · · , |S|}, which must contain player i because |S| > |Πr(1)|. By lemma 5.b,
Ui({1, · · · , |S|}) ≥ Ui(S) because t1 + · · ·+ t|S| ≥ t(S) as 1 /∈ S. In addition,

Uj ({1, · · · , |S|})− Uj (Πr(1)) =

ρ(|S|)f (eλ ({1, · · · , |S|}))− ρ(|Πr(1)|)f (eλ(Πr(1)))︸ ︷︷ ︸
1

+

tj
2︸︷︷︸
2

(eλ(Πr(1))

tΠr(1)

)2

−

(
eλ ({1, · · · , |S|})∑|S|

j=1 tj

)2


︸ ︷︷ ︸
3

(10)

where j = 1 or i. Observe here that expression 10 for player 1 and i differs in the second term.
Term 3 is positive due to lemma 7. In addition, expression 10 is not positive for player 1 since she
chose to match with Πr(1). Thus, the first term, common to both players, is not positive. Since
t1 ≥ ti, expression 10 is clearly negative for player i. This contradicts that i is a part of blocking
team S, completing the proof of step 1.

Step 2. No member of Πr(1) can be a member of a blocking team with size 1.
Proof of Step 2. On the contrary, let i ∈ Πr(1) be a player who blocks Πr by herself. Thanks to
the previous step, |Πr(1)| ≥ 2. Since player 1 chose to match with Πr(1), i 6= 1 and U1(Πr(1)) >

U1({1}). In addition, Ui(Πr(1)) ≥ U1(Πr(1)) from equation 3 since t1 ≥ ti. Because player i
blocks Πr, Ui(Πr(1)) < Ui({i}). When combined these inequalities imply Ui({i}) > U1({1}).

However, from equation 9, ∂Ui(ti,0,ρ)
∂ti

= 1
2

(
eλ(ti,ρ)
ti

)2

> 0, implying that U1({1}) ≥ Ui({i}). This
contradicts Ui(Πr(1)) < Ui({i}). This completes the proof of step 2.

Step 3. No member of Πr(1) can be a member of a blocking team with size 2.
Proof of Step 3. On the contrary, let S be a team with a size of 2 that contains a player in Πr(1).
Thanks to step 1, |Πr(1)| ≥ 3. Let i be the lowest indexed player in Πr(1) ∩ S. Hence, i is the
most productive player in S. Since player 1 chose to match with Πr(1), i 6= 1 and U1(Πr(1)) >

U1({1, i}). In addition, Ui(Πr(1)) ≥ U1(Πr(1)) from equation 3 since t1 ≥ ti. Because team
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S blocks Πr, Ui(Πr(1)) < Ui(S). When combined these inequalities imply Ui(S) > U1({1, i}).
Recall equation 9 and observe that ∂Ui(ti,t−i,ρ)

∂ti
≥ 0 if ti ≥ t−i. Therefore, U1({1, i}) ≥ Ui({i, i}).

6 From lemma 5.b, Ui({i, i}) ≥ Ui(S) because i is the most productive player in S. The previous
2 inequalities imply U1({1, i}) ≥ Ui(S) which is a contradiction. This completes the proof of step
3.

Step 4. No member of Πr(1) can be a member of a blocking team with size 3.
Proof of Step 4. On the contrary, let S be a team with a size of 3 that contains a player in Πr(1).
Thanks to step 1, |Πr(1)| = 4, meaning Πr(1) = {1, 2, 3, 4}. As noted earlier i 6= 1. Now we will
show that players 2 or 3 are not in S.
Suppose otherwise and let the lowest indexed player in S be player i = 2 or 3. Let T = {1, 2, 3}.
Because player 1 chose to match with Πr(1), U1(Πr(1)) > U1(T ). In addition, Ui(Πr(1)) ≥
U1(Πr(1)) from equation 3 since t1 ≥ ti. Because team S blocks Πr, Ui(Πr(1)) < Ui(S). When
combined, these inequalities imply the following 2 inequalities:

U1(T ) < U1(Πr(1)) (11)

Ui(S)− U1(T ) > Ui(Πr(1))− U1(Πr(1)) (12)

From expression 3, Ui(Πr(1)) − U1(Πr(1)) = t1−ti
2

(
eλ(ρ(4),tΠr(1))

tΠr(1)

)2

which is decreasing in ρ(4)

thanks to the proof of lemma 7. As the left side of expression 12 does not depend on ρ(4), the
lower ρ(4) is, the easier inequality 12 is to satisfy. However, ρ(4) affects inequality 11 since player
1’s utility U1(Πr(1)) moves in the same direction with ρ(4) as

∂Ui(ti, t−i, ρ)

∂ρ
= f(eλ(t, ρ)) + ρf ′(eλ(t, ρ))

∂eλ(t, ρ)

∂ρ
− ti

eλ(t, ρ))

t2
∂eλ(t, ρ)

∂ρ

= f(eλ(t, ρ)) +
t−i
t

eλ(t, ρ))

t

∂eλ(t, ρ)

∂ρ
> 0.

Therefore, if inequalities 11 and 12 are satisfied for ρ(4), then inequality 12 must be satisfied

6The RHS expression can be thought of as player i being matched with a player whose productivity is the same as
her own.
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for ρ∗ which equates inequality 11, i.e.,

U1(T ) = U1(Πr(1)) =

= ρ∗f
(
eλ
(
tΠr(1), ρ∗

))
− t1

2

(
eλ
(
tΠr(1), ρ∗

)
tΠr(1)

)2

.

To complete the proof of the current step, it suffices to show that inequality 12 is always vio-
lated when ρ(4) = ρ∗. The rest of the proof proceeds to show that the right hand side of inequality
12 is greater than the left hand side of inequality 12 for ρ(4) = ρ∗.

First, let us calculate the RHS of inequality 12. Observe that since t(Πr(1)) > t(T ), lemma
5.b implies that ρ∗ < ρ(3) as ∂Ui(ti,t−i,ρ)

∂ρ
> 0. Consider function ρ̄ : [t−1(T ), t−1(Πr(1))] → [0, 1]

which satisfies U1(t1, t−1, ρ̄(t−1)) = U1(T ). Observe that ρ̄(t−1(T )) = ρ(3) and ρ̄(t−1(Πr(1))) =

ρ∗. Hence, U1(t1, t−1(T ), ρ̄(t−1(T ))) = U1(t1, t−1(Πr(1)), ρ̄(t−1(Πr(1)))).
By the fundamental theorem of calculus, the right hand side of inequality 12 is

Ui(Πr(1))− U1(Πr(1)) =
t1 − ti

2

(
eλ (t(Πr(1)), ρ̄(t−1(Πr(1)))

t(Πr(1))

)2

=
t1 − ti

2

(
eλ (t(T ), ρ̄(t−1(T )))

t(T )
+

∫ t−1(Πr(1))

t−1(T )

∂ (eλ (t, ρ̄(t−1)) /t)

∂t−1

dt−1

)2

.

Let us find ∂(eλ(t,ρ̄(t−1))/t)
∂t−1

. Using the implicit function theorem and substituting the expressions for
∂U1(t1,t−1,ρ̄)

∂t−1
and ∂U1(t1,t−i,ρ̄)

∂ρ̄
,

∂ρ̄(t−1)

∂t−1

= −
∂U1(t1,t−1,ρ̄)

∂t−1

∂U1(t1,t−i,ρ̄)
∂ρ̄

= −
ρ̄ (1− t1ρ̄f ′′)

(
eλ(t,ρ̄)
t

)2

(1− tρ̄f ′′) ρ̄f + (t− t1)
(
eλ(t,ρ̄)
t

)2

.
.
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With the help of the above expression, we find that

∂ (eλ (t, ρ̄(t−1)) /t)

∂t−1

=
t
(
∂eλ(t,ρ̄)
∂ρ̄

∂ρ̄
∂t−1

+ ∂eλ(t,ρ̄)
∂t−1

)
− eλ (t, ρ̄)

t2

=
ρ̄2ff ′′ −

(
eλ(t,ρ̄)
t

)2

(1− tρ̄f ′′) ρ̄f + (t− t1)
(
eλ(t,ρ̄)
t

)2

eλ (t, ρ̄)

t
.

The above inequality is negative as f ′′ ≤ 0. In addition,

∂2 (eλ (t, ρ̄(t−1)) /t)

∂t−1∂f ′′
=

(
ρ̄f − t1

(
eλ(t,ρ̄)
t

)2
)
ρ̄2f(

(1− tρ̄f ′′) ρ̄f + (t− t1)
(
eλ(t,ρ̄)
t

)2
)2

eλ (t, ρ̄)

t

> 0.

The last inequality is due to lemma 6 and f ′′ ≤ 0. Consequently, ∂(eλ(t,ρ̄(t−1))/t)
∂t−1

> −1
t
eλ(t,ρ̄(t))

t

where the RHS is the value of ∂(eλ(t,ρ̄(t−1))/t)
∂t−1

when f ′′ → −∞. Moreover, thanks to lemma
7, for any t−1 ∈ [t−1(T ), t−1(Πr(1))], eλ(t(T ),ρ̄(t−1(T )))

t−1(T )
≥ eλ(t,ρ̄(−1))

t
. Therefore, for any t−1 ∈

[t−1(T ), t−1(Πr(1))], ∂(eλ(t,ρ̄(t−1))/t)
∂t−1

> − 1
t(T )

eλ(t(T ),ρ̄(t−1(T )))
t(T )

.
As a result, we find that

Ui(Πr(1))− U1(Πr(1)) >
t1 − ti

2

(
1− t(Πr(1))− t(T )

t(T )

)2(
eλ (t(T ), ρ(3))

t(T )

)2

>
t1 − ti

2

(
t1 + t2

t1 + t2 + t3

)2(
eλ (t(T ), ρ(3))

t(T )

)2

The last inequality is due to t3 ≥ t4. Now we turn our attention to the left hand side inequality
12. Clearly, Ui(S) − U1(T ) = Ui(T ) − U1(T ) − (Ui(T )− Ui(S)). The fundamental theorem of
calculus along with expression 9 yields

Ui(T )− Ui(S) =

∫ t(T )

t(S)

1− ρ(3)tif
′′

1− ρ(3)tf ′′

(
e(t, ρ(3))

t

)2

dt > 0
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It can easily be shown that 1−ρ(3)tif
′′

1−ρ(3)tf ′′
increases with f ′′. Consequently,

Ui(T )− Ui(S) >

∫ t(T )

t(S)

ti
t

(
e(t, ρ(3))

t

)2

dt

where the RHS is the value of Ui(T )−Ui(S) corresponding to f ′′ → −∞. In addition, e(t
T ,ρ(3))
tT

<

e(t,ρ(3))
t

for any t ∈ [t(S), t(T )] (lemma 4). Hence, Ui(T ) − Ui(S) > (t(T )−t(S))ti
t(T )

(
e(t(T ),ρ(3))

t(T )

)2

.
Therefore,

Ui(S)− U1(T ) <
t1 − ti

2

(
e(t(T ), ρ(3))

t(T )

)2

− (t(T )− t(S))ti
t(T )

(
e(t(T ), ρ(3))

t(T )

)2

<
t1 − ti

2

t1 + t2 + t3 − 2ti
t1 + t2 + t3

(
e(t(T ), ρ(3))

t(T )

)2

.

The last inequality is obtained as t(T )− t(S) ≥ t1 − ti.
Now we are ready to compare the left and right hand sides of inequality 12. Clearly, Ui(Πr(1))−

U1(Πr(1)) > Ui(S)−U1(T ) as
(

t1+t2
t1+t2+t3

)2

> t1+t2+t3−2ti
t1+t2+t3

. This means that players 2 and 3 cannot
be part of a blocking team.

Now let us show that player 4 cannot be a member of a blocking team to Πr. It suffices to show
that U4(t4,

∑3
j=1 tj, ρ(4)) ≥ U4(t4, 2t4, ρ(3)). Let us perturb the productivity coefficients of play-

ers 4, 5, and 6 so that t′4 = t′5 = t′6 = t3. When the canonical algorithm is applied to the set of play-
ers with perturbed productivity, Πr(1) = {1, 2, 3, 4}) because U1({1, 2, 3, 4}) does not decrease
as t′4 ≥ t4 and U1({1, 2, 3}), U1({1, 2}) and U1({1}) are unchanged. As we already know, player
3 cannot be a member of any blocking team, so player 4 also cannot a member of any blocking
team. Hence, U3(t3,

∑3
j=1 tj, ρ(4)) > U3(t3, 2t3, ρ(3)). Now we consider U4(t4,

∑3
j=1 tj, ρ(4))

and U4(t4, 2t4, ρ(3)).
Observe that U4(t4,

∑3
j=1 tj, ρ(4)) = U3(t3,

∑3
j=1 tj, ρ(4)) +

∫ t4
t3

∂Ui(ti,
∑3
j=1 tj ,ρ(4))

∂ti
dti thanks to

the fundamental theorem of calculus. Let t = t1 + t2 + t3 + ti. Thanks to expression 9,

U4(
3∑
j=1

tj, ρ(4)) = U3(t3,
3∑
j=1

tj, ρ(4))− 1

2

∫ t3

t4

1− ρ(4)(2ti − t)f ′′

1− ρ(4)tf ′′

(
e(t, ρ(4))

t

)2

dti

> U3(t3,
3∑
j=1

tj, ρ(4))− t3 − t4
2

(
eλ(t({1, 2, 3, 4}), ρ(4))

t({1, 2, 3, 4})

)2

The last inequality is obtained by setting f ′′ = 0 and e(t,ρ(4))
t

= eλ(t({1,2,3,4}),ρ(4))
t({1,2,3,4}) as 1−ρ(4)(2ti−t)f ′′

1−ρ(4)tf ′′
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is increasing in f ′′ and eλ(t({1,2,3,4}),ρ(4))
t({1,2,3,4}) > eλ(t,ρ(4))

t
for any t ∈ (t({1, 2, 3, 4}), t({1, 2, 3, 3})] due

to lemma 7.
On the other hand, U4(t4, 2t4, ρ(3)) = U3(t3, 2t3, ρ(3)) +

∫ t4
t3

∂Ui(x,2x,ρ(3))
∂x

dx thanks to the fun-
damental theorem of calculus. It can be easily calculated that

∂Ui(x, 2x, ρ(3))

∂x
=

(
1

2
+

2

1− 3xρ(3)f ′′

)(
e(3x, ρ(3))

3x

)2

Hence,

U4(t4, 2t4, ρ(3)) < U3(t3, 2t3, ρ(3))− t3 − t4
2

(
e(3t3, ρ(3))

3t3

)2

.

The last inequality obtained by setting f ′′ = −∞ and e(3x,ρ(3))
3x

= e(3t3,ρ(3))
3t3

as 2
1−3tiρ(3)f ′′

> 0

and e(3t3,ρ(3))
3t3

< e(3x,ρ(3))
3x

for any x ∈ [t4, t3) (lemma 7).
To show U4(t4,

∑3
j=1 tj, ρ(4)) > U4(t4, 2t4, ρ(3)), we only need to show

U3(t3,
3∑
j=1

tj, ρ(4))− t3 − t4
2

(
eλ(t({1, 2, 3, 4}), ρ(4))

t({1, 2, 3, 4})

)2

≥

U3(t3, 2t3, ρ(3))− t3 − t4
2

(
e(3t3, ρ(3))

3t3

)2

.

As we noted earlier, U3(t3,
∑3

j=1 tj, ρ(4)) ≥ U3(t3, 2t3, ρ(3)). In addition, e(3t3,ρ(3))
3t3

≥ e(t({1,2,3,4}),ρ(4))
t({1,2,3,4})

thanks to lemma 7 as t({1, 2, 3, 4}) > 3t4. This completes the proof of step 4 as well as the proof
of part 1.

Part 2 Any stable partition is assortative when r ≤ 4.
Proof of Part 2 Consider any non-assortative partition Br where r ≤ 4. Since Br is non-assortative,
there must exist S, T ∈ Br such that maxi∈S ti > mini∈T ti and maxi∈S ti > mini∈T ti. Let ī/i and
j̄/j be the players with the highest/lowest productivity from team S and T , respectively. Without
loss of generality, we assume t̄i ≥ tj̄ . Now we show that Br is blocked by some team. Then there
are three cases to consider.

1. |S| < |T |

2. |S| = |T |

3. |S| > |T |

1. If Uj̄(S\{i} ∪ {j̄}) ≥ Uj̄(T\{j} ∪ {̄i}), then S\{i} ∪ {j̄} blocks Br. To see this, observe
that, for any i ∈ S\{i}, Ui(S\{i} ∪ {j̄}) > Ui(S) thanks to lemma 5.b as tl̄ > ti. In
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addition, Uj̄(S\{i} ∪ {j̄}) ≥ Uj̄(T\{j} ∪ {̄i}) > Uj̄(T ) where the last inequality is due to
lemma 5.b as t̄i > tj . As a result, all the members of S\{i}∪{j̄} strictly prefer S\{i}∪{j̄}
over Br, hence, block Br.
If Uj̄(S\{i}∪{j̄}) < Uj̄(T\{j}∪{̄i}), then T\{j}∪{̄i} blocks Br. To see this, observe that,
for any i ∈ T\{l}, Ui(T\{j} ∪ {̄i}) > Ui(T ) thanks to lemma 5.b as t̄i > tj . In addition,
Uī(S\{i} ∪ {j̄}) > Uī(S) thanks to lemma 5.b as tj̄ > ti. Furthermore, equation 10 implies
that Uī(T\{j} ∪ {̄i}) > Uī(S\{i} ∪ {j̄}) because Uj̄(T\{j} ∪ {̄i}) > Uj̄(S\{i} ∪ {j̄}) and
t̄i ≥ tj̄ . As a result, all the members of T\{j} ∪ {̄i} strictly prefer T\{j} ∪ {̄i} over Br,
hence, block Br.

2. Let S̄ be the team of the lowest indexed |S| players in S ∪ T . Observe that tS̄ > tS because
j̄ ∈ S̄ as tj̄ > ti. Similarly, tS̄ > tT because ī ∈ S̄ as t̄i > tj . Hence, for all i ∈ S̄ ∩ S,
Ui(S̄) > Ui(S) and, for all i ∈ S̄ ∩T , Ui(S̄) > Ui(T ) thanks to lemma 5.b. Hence, S̄ blocks
Br.

3. Let S̄ be the team of the lowest indexed |S| players in S ∪ T . Similarly, let T̄ be the team
of the lowest indexed |T | players in S ∪ T . Observe that ī ∈ S̄ and ī ∈ T̄ . In addition, by
construction, T̄ ⊂ S̄. As noted in case 2, tS̄ > tS . Furthermore, tT̄ > tT because ī ∈ T̄ as
t̄i > tj . Consequently, by lemma 5.b, Ui(S̄) > Ui(S) for all i ∈ S̄ ∩ S and Ui(T̄ ) > Ui(T )

for all i ∈ T̄ ∩ T . Now we show that T̄ blocks Br if Uī(T̄ ) ≥ Uī(S̄) or S̄ blocks Br if
Uī(T̄ ) < Uī(S̄).
Let Uī(T̄ ) ≥ Uī(S̄). We already know that if i ∈ T̄ ∩ T , Ui(T̄ ) > Ui(T ). If i ∈ T̄ ∩ S,
then equation 10 implies that Ui(T̄ ) ≥ Ui(S̄) as player i is the most productive player in T̄
and Uī(T̄ ) ≥ Uī(S̄). In addition, we already know that Ui(S̄) > Ui(S) for all i ∈ T̄ ∩ S.
Therefore, if i ∈ S ∩ T̄ , then Ui(T̄ ) ≥ Ui(S). As a result, T̄ blocks Br.
Let Uī(T̄ ) < Uī(S̄). We already know that if i ∈ S̄ ∩ S, then Ui(S̄) > Ui(S). Consider
i ∈ S̄ ∩ T . From the proof of part 1, one obtains that for all i ∈ S̄ ∩ T , Ui(S̄) ≥ Ui(T̄ )

because ī is the most productive player in S̄, Uī(S̄) > Uī(T̄ ) and ī /∈ T . In addition,
we already know that, for all i ∈ S̄ ∩ T , Ui(T̄ ) > Ui(T ). Hence, for any i ∈ S̄ ∩ T ,
Ui(S̄) > Ui(T ). Consequently, T̄ blocks Br.
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