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Abstract

We study the classical implementation problem when players are prone to make mis-

takes. To capture the idea of mistakes, Logit Quantal Response Equilibrium (LQRE)

is used, and we consider a case in which players are almost rational, i.e., the sophisti-

cation level of players, λ, approaches infinity. We show that quasimonotonicity, a small

variation of Maskin Monotonicity, and no worst alternative conditions are necessary

for restricted Limiting LQRE (LLQRE) implementation. Moreover, these conditions

are sufficient for both restricted and unrestricted LLQRE implementations if there are

at least three players and each player’s worst alternative set is constant over all states.

Keywords: implementation; mechanisms; bounded rationality; quantal response equi-

libria.

JEL classification: C72, D70, D78.

1 Introduction

Nowadays the fields of bounded rationality and mechanism design are increasingly attracting

the attention of economists. This paper contributes to solving the classical implementation
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errors are my own.
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problem when the players are boundedly rational.

In implementation theory, we consider the cases in which there are many different states

of the world but in each state what is optimal for a society (summarized by social choice

rule (SCR)) is known. In the election problem, for example, states are defined by the society

members’ preferences, and the society agrees that the candidate who is preferred by the

majority should be elected. In King Solomon’s problem, states are defined by who the true

mother of the baby is and the social optimum is to give the baby to the true mother. Even

though the SCR is fixed, there are usually states in which the social optima contradict the

individual optima for some agents. Therefore, it is unreasonable to expect the society to

make a choice consistent with the SCR after a state is realized. However, a benevolent third

party who is not aware of the realized state, or the society itself before the realization of a

state, may be able to guarantee the socially optimal outcomes in each state by designing a

mechanism (a set of rules that result in an outcome based on the information sent by the

society members) that is played by the society members once the uncertainty is resolved.

Implementation theory investigates whether any mechanism can deliver the socially optimal

outcomes in each state.

Since Hurwicz’s seminal works in 1960 and 1972, the implementation problem has been

studied from many different perspectives.1 However, a majority of papers assume that players

are fully rational. But what if the players are not fully rational? That is the main concern

of this paper.

In this paper, we model irrationality as simple mistakes that occur when the players

evaluate their best responses. This means that the players try to be rational, but because

of their imperfect calculating ability, they might play non-optimal strategies. If some prob-

abilistic structure is imposed on the mistakes, then the players have probabilistic responses.

Now, assuming that the players are aware that the others are mistake prone, one can define

equilibrium as a fixed point of the players’ responses. This equilibrium is the well known

Quantal Response Equilibrium (QRE) from McKelvey and Palfrey (1995).

Logit QRE (LQRE) is a QRE when mistakes are distributed iid with an extreme value

distribution parameterized by λ ∈ R+ which we here interpret as the sophistication level.

Thanks to this specification of the mistakes, the logit quantal response function has two

desirable features. First, the players are more likely to make a smaller mistake than a bigger

one. Second, as the sophistication level approaches infinity, the probability of a player

playing a strategy not in the true best response monotonically decreases to 0. Therefore,

the higher the λ, the more rational players are. In addition, if λ =∞, then the players are

fully rational, hence, any limit LQRE (LLQRE) is a Nash equilibrium. This equilibrium has

1For more information see Jackson (2001), Maskin and Sjostrom (2002) and Serrano (2004).
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the following nice property: if the players are close enough to being fully rational, then any

resulting LQRE is very close to one of the LLQREs.

In addition to its desirable theoretical features, LQRE seems to explain the experimental

results better than the Nash Equilibrium does. The original paper of McKelvey and Pal-

frey (1995) demonstrates the predictive ability of LQRE on several well known experiments

whose results systematically deviated from the ones Nash equilibrium predicts. Since then,

LQRE has been used to explain many experimental results such as the ones in Anderson

et al. (1998) (all-pay auctions), Goeree et al. (2002) (first price auction), Anderson et al.

(2001) (coordination games), Capra et al. (1999), Goeree and Holt (2001) (the “traveler’s

dilemma”), and Goeree et al. (2007) (information cascade).

Given the theoretical and empirical plausibility of LQRE, we assume that games result

in LQREs. This paper studies the implementation problem when the equilibrium concept

is LLQRE (not LQRE) for the following reason. If the players’ sophistication level is high

enough, then the LQREs can be proxied by the corresponding LLQREs. Therefore, any

mechanism which implements an SCR in LLQREs will implement the SCR in LQREs with

high probability.

First we characterize the sufficient conditions for LLQRE implementation. In environ-

ments with at least three players, if each player’s worst alternative set is constant over all

states, then any SCR satisfying quasimonotonicity (a small variation of Maskin Monotonicity

(Maskin (1999))) and no worst alternative (NWA) is LLQRE implementable. Quasimonotic

SCRs must satisfy the following condition: if an alternative stops being an SCR alternative

going from one state to another, then for some player, some other alternative must become

weakly better than the original social alternative in the second state from being strictly

worse in the first state. We say SCR satisfies NWA if it does not prescribe any player’s worst

alternative in any state.

In the proof of the sufficiency result, we construct a mechanism that delivers each SCR

alternative in each state through some strict LLQRE of the corresponding state. We should

remark that this does not mean that all the LLQREs have to be strict; there can be some

non-strict LLQREs in any state as long as each one of them yields an alternative prescribed

by the SCR in the corresponding state. We use the above mentioned restriction because

non-strict LLQREs are sometimes not preserved2 under monotonic transformations (includ-

ing affine) of the utility functions of the players. This becomes a problem if the planner only

has information about the players’ preference relations in which case she needs to ensure

that LLQRE implementation is robust to monotonic transformations of the utility functions

of the players. Otherwise, some social choice alternatives might not be implemented for

2See example 2.7.
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certain utility representations which must be avoided. In this paper, we were able to show

that strict LLQREs do not depend on the utility representations of the players’ preferences.

In addition, using several examples, we demonstrate some complexities of determining the

conditions under which non-strict LLQREs are robust to monotonic transformations of the

utility functions of the players. Consequently, for our sufficiency result, we look for a mech-

anism that delivers each SCR alternative in each state through some strict LLQRE of the

corresponding state. If one concentrates on the LLQRE implementation in which each SCR

alternative in each state is delivered by some strict LLQRE, then our next result shows that

quasimonotonicity and NWA are also necessary conditions. In this sense, the paper (almost)

fully characterizes LLQRE implementation under the restriction that each SCR alternative

in each state is delivered by some strict LLQRE.

There are a handful of papers which consider the irrationality of players in implementation

theory. Cabrales (1999) and Cabrales and Ponti (2000) consider implementation in existing

mechanisms under learning dynamics. Cabrales and Serrano (2007) investigate the case in

which the players adjust their strategies in the direction of better responses. Interestingly,

quasimonotonicity, which is found to be crucial in our analysis, is also key for implementation

in recurrent strategies of better response dynamics. These papers require dynamic settings,

while the setting used for this paper is static. Sandholm (2005) studies simple pricing schemes

used in implementing efficient SCRs in evolutionary setting. The idea that some players are

completely unpredictable has been studied by Eliaz (2002). Even though in LQRE, players

play in this fashion when the sophistication level approaches 0, there is a big difference

between our paper and that of Eliaz. In his setup only some of the players make mistakes

while the others are rational. In contrast, in this paper every player makes small mistakes.

This paper is organized as follows: Section 2 contains preliminaries. Section 3 defines

LLQRE and restricted LLQRE implementations and discusses their sufficient and necessary

conditions. Section 4 considers variants of LQRE implementation, and Section 5 concludes.

2 Preliminaries

2.1 Implementation

Let the set of players be N = {1, .., n} and let A = {a1, ..., ak} be the set of social alternatives.

Finite set Θ is the set of states and we use θ for a typical state. Each player i has a utility

function3 ui : A × Θ → R. Let the environment E be E = 〈N,A, (ui(·, θ))i∈N〉 and denote

3Since QRE is defined using utilities, we are using utilities instead of preferences. However, the results in
this paper are robust to monotonic transformations of the utilities, so we can easily translate utilities into
preferences.
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the set of possible environments by E . We define social choice rule (SCR) as a mapping F

which associates each state with a subset of A, i.e., F : Θ → 2A\∅. The SCR, depending

on the state, specifies the social alternatives desirable to the planner — someone who has

authority to implement a social alternative for the society. Consequently, after a state is

realized, the planner is willing to choose any of the SCR alternatives in the realized state,

but this information is unavailable to her. The players, on the other hand, know the state.

The planner controls the design of a mechanism (game form) which is a pair Γ =

((Mi)i∈N , g) where Mi is player i’s message (strategy) space, and g :
∏

i∈N Mi → A is

the outcome function mapping message space to social alternatives. Each pair 〈E,Γ〉 is a

game in which the set of players is N , the set of strategy profiles is M =
∏
Mi, and the payoff

function for each player i is ui(g(m), θ) where m = (mi)i∈N is a message profile. Let S be a

solution concept of game theory. We say Γ implements SCR F via S if g(S(Γ, E)) = F (θ)

for any E ∈ E . This says when the solution concept is S, the outcomes of the game in a given

state must coincide with the social alternatives in the SCR in that state. Moreover, SCR

F is S implementable if there exists a mechanism which implements F via S. This paper

investigates the implementation problem when the game theoretic solution is the Limiting

Logit Quantal Response Equilibrium (LLQRE) concept.

2.2 Logit Quantal Response Equilibrium

In this subsection we define LLQRE and investigate its properties.

Consider a game 〈E,Γ〉 or equivalently 〈N, (Mi)i∈N , (ui(·, θ))i∈N〉. Let the set of strategy

profiles M be finite and let each Mi consist of Ji pure strategies, i.e., Mi = {mi1, ...,miJi}.
Since the state is fixed throughout this section, we exclude state θ from the notation of the

utility function. Moreover, we write ui(m) for ui(g(m)). Also, for each strategy profile m,

let m−i = (mj)j 6=i. Sometimes we write (mi,m−i) for m.

Let ∆i = {pi ∈ RJi :
∑

j=1,...,Ji
pij = 1} be the set of mixed strategies for player i.

Sometimes the notation pi(mij) is used for pij. We write ∆ =
∏

∆i and let a typical element

of ∆ be p = (pi)i∈N . Denote p−i = (pl)l 6=i. We use the shorthand notation p = (pi, p−i).

Slightly abusing the notation, we use mij for pi with pij = 1. The players’ utility functions

are assumed to be of the expected utility form (von Neumann-Morgenstern), i.e., ui(p) =∑
m∈M p(m)ui(m) where p(m) =

∏
i∈N pi(mi).

In this model, the players try to be rational but they have an imperfect calculating ability.

Specifically, given a strategy profile p, each player calculates the expected payoff for each

of her strategies. However, she may make mistakes in the calculations and so could play

non-optimal strategies.
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For every player i and for each pure strategy mij, define the function ūij : ∆ → R as

ūij(p) = ui(mij, p−i). If player i has a perfect calculating ability, then ūij(p) would be her

evaluation of strategy mij. Let ūi(p) = (ūij(p))j=1,··· ,Ji .

Now we introduce mistakes into the players’ evaluations. For each player i, the mistake

εi ∈ RJi is distributed with a CDF Fi. Define player i’s evaluation of the strategies with

respect to mistake structure εi as:

ûi(p) = ūi(p) + εi.

For a given realization of the mistakes, the players choose a strategy with the highest

ûij(p) (instead of the one with highest expected utility) against p ∈ ∆. In other words, player

i will play strategy mij if ûij(p) ≥ ûik(p) for all k 6= j when the others are following p−i.

Because of the random structure of the mistakes, the players respond stochastically against

others’ strategies. Let us define player i’s ij response set Rij ∈ RJi for a given strategy

profile p by

Rij(p) = {εi ∈ RJi : ūij(p) + εij ≥ ūik(p) + εik for all k 6= j}.

Now we can find the probability of player i playing strategy mij for a given mistake

structure εi

σij(p) =

∫
Rij(p)

dFi(εi).

The function σi(p) = (σij(p))j=1,··· ,Ji is called the quantal response function. Now assuming

that each player knows that the others are mistake prone, we can define an equilibrium

concept which is known as the quantal response equilibrium (QRE).

Definition 2.1. Let G = 〈N, (Mi)i∈N , (ui)i∈N〉 be a game in normal form and the mistake

for each player i be distributed with a CDF Fi. A quantal response equilibrium (QRE) is a

mixed strategy π ∈ ∆ such that for all i ∈ N , 1 ≤ j ≤ Ji

πij = σij(π).

We will put the following restriction on the structure of the mistakes, following McKelvey

and Palfrey (1995).

Assumption 2.2. For each player i, εijs are independently and identically distributed with

CDF Fij(εij) = exp (− exp(−λεij − γ))

This assumption says that each players’ mistakes are independent of each other and follow
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the extreme value distribution.4 Then the mean mistake is 0 and the variance is 1π2

6λ2 . Hence,

as parameter λ increases, the mistakes will be more concentrated around 0. Therefore, we

call λ the sophistication level. With the above specification of the mistakes, the logit quantal

response function σi(p) is given by

σij(p, λ) =
exp(λūij(p))∑

k=1,··· ,Ji exp(λūik(p))
.

The logit quantal response function has the following desirable properties. First, the

strategies with a higher expected payoff is played more frequently for any level of sophistica-

tion λ 6= 0. Secondly, as the sophistication level increases, the players play the strategies not

in the best response less frequently. Therefore, when λ converges to infinity, the logit quan-

tal response function pointwise converges to the best response whenever it is single valued.

If it is multi valued, all strategies in the best response are played with equal probabilities.

Therefore, in the λ =∞ case the players respond optimally to others’ strategies, hence, they

are rational.

The logit quantal response equilibrium (LQRE) is an QRE under assumption 2.2. We

will denote the set of LQREs for a given game G and sophistication level λ by L(λ,G).

Now let us consider the Limiting LQRE which is the game theoretic solution concept for

implementation in this paper.

Definition 2.3. Consider a finite game G = 〈N, (Mi)i∈N , (ui)i∈N〉. π∗ ∈ ∆ is Limiting

LQRE if there exists {πt} → π∗ where πt ∈ L(λt, G) for some {λt} → ∞. Denote L(G) as

the set of LLQREs.

This equilibrium has an attractive property: if the players’ sophistication level is high

enough, then any resulting LQRE will be very close to one of the LLQREs. Therefore, if a

mechanism implements an SCR in LLQREs, then the mechanism implements the SCR in

LQREs with a high probability as long as the playerss are sophisticated enough.

Before we move on, we need to clarify the connection between the set of LLQREs and

the one of Nash equilibria. It is well known that the former is a subset of the latter 5, but

exactly what Nash equilibria are LLQREs is not clear. Since this information plays a crucial

role for LLQRE implementation, we study when a pure Nash equilibrium is an LLQRE.

Lemma 2.4, which we will consider shortly, shows that all strict Nash equilibria are

LLQREs. The reason is that in a close enough neighborhood of a strict Nash equilibrium, the

logit quantal response must be arbitrarily close to the Nash equilibrium if the sophistication

4See McKelvey and Palfrey (1995) for the justification of this specification.
5For more information see McKelvey and Palfrey (1995).
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level of the players is high enough. Therefore, if the sophistication level of the players is

high enough, then the logit quantal response function maps a small enough neighborhood of

a strict Nash equilibrium to itself, implying that there is a fixed point or an LQRE thanks

to the Brower’s fixed point theorem. This intuition is formalized in lemma 2.4.

Lemma 2.4. Let π∗ be a pure strict Nash Equilibrium, i.e., ui(π
∗) > ui(πi, π

∗
−i) for all i ∈ N

and πi 6= π∗i . Then π∗ is an LLQRE.

Proof. Define Bδ(π
∗) :≡ {π ∈ ∆ : |π−π∗| ≤ δ} and let bi(π) be the best response correspon-

dence. Since π∗ is a strict pure Nash equilibrium, there exists δ̄ such that π∗i = bi(π) for any

π ∈ Bδ̄(π
∗) and i ∈ N . Pick any {λt} → ∞. We know the sequence of logit quantal response

functions, {σ(·, λt)}, pointwise converges to π∗ on Bδ̄(π
∗). Since Bδ̄(π

∗) is compact and each

σ(·, λt) is continuous, we can find τt = maxπ∈Bδ̄(π∗) |σ(π, λt)− π∗|. Clearly, the sequence {τt}
converges to 0. Therefore, there must exist t̄ such that τt ≤ δ̄ for t > t̄. This implies that if

t > t̄, then σ(π, λt) ∈ Bδ̄(π
∗) for any π ∈ Bδ̄(π

∗). Consider any t > t̄. Since Bδ̄(π
∗) is convex

and compact, and σ(π, λt) is continuous and maps Bδ̄(π
∗) to itself, there must exist a fixed

point by Brower’s fixed point theorem. Denote this fixed point by πt. Since {σ(π, λt)} → π∗

for any π ∈ Bδ̄(π
∗), {πt} must also converge to π∗. This proves the lemma.

Thanks to lemma 2.4, it is clear that the set of strict LLQREs coincides with the set

of strict Nash equilibria. It is also well known that strict Nash equilibria are preserved

under monotonic transformations of the players’ utilities.6 Consequently, strict LLQREs are

preserved under monotonic transformations of the players’ utilities.

Now let us turn our attention to the relation between non-strict Nash equilibria and

LLQREs. First, in the next lemma, we show that any pure Nash equilibrium for which

exactly n − 1 players have a single valued best response cannot be an LLQRE. To see the

intuition, consider a Nash equilibrium to which exactly n − 1 players have a unique best

response. We know that the odd players’ logit quantal response to this Nash equilibrium is

to play all strategies in her best response with equal probability. Therefore, in order for the

odd player to play the strategy that is part of the Nash equilibrium, the others should not

play strategies that are “too close” to the Nash equilibrium. However, it happens that the

quantal response function converges at an infinitely faster rate to the best response function

for the players whose best response correspondence is single valued, compared to the one

whose best response correspondence is not single valued. Therefore, the n − 1 players who

have a unique best response play exactly those strategies that are “too close” to the Nash

equilibrium, hence, we obtain a contradiction.

6This is also true for non-strict Nash equilibria.
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Lemma 2.5. Let G be a game in which each player has at least two pure strategies. If π∗ is

a pure LLQRE in G, then

(a) there cannot exist exactly n− 1 players whose best response set to π∗ is single valued.

(b) for any player i and her strategy miji with π∗iji = 1, there cannot exist any other strategy

mij 6= miji such that ui(mij,m−i) ≥ ui(miji ,m−i) for all m−i.

Proof. See Appendix.

As a result of lemmas 2.4 and 2.5, we know that if any pure Nash equilibrium is an

LLQRE, then either this Nash equilibrium is strict or there are at least two players who

have a multi-valued best response to this equilibrium. We must remark that lemmas 2.4 and

2.5 do not completely specify the relation between pure Nash equilibria and LLQREs, which

one would like to determine. However, the examples we will consider next demonstrate that

such a hope is, perhaps, too optimistic.

Example 2.6. Consider the following two player game:

P2

m1 m2

P1 m1 (a, b) (c, b)

m2 (a, d) (0, 0)

Suppose a, b, c, and d are strictly positive, then unlike the conditions in lemma 2.5, neither

players’ best response to (m1,m1) is unique. In this game, (m1,m1) is an LLQRE.

To show this, let pij be the probability that player i plays strategy j. Then the following

condition must be satisfied for any p ∈ L(λ).

d(1− p11) ln
p11

1− p11

= c(1− p21) ln
p21

1− p21

(1)

From the proof of lemma 2.5, we know that both sides of equation 1 would go to 0, if pi1 → 1

where i = 1, 2. This implies that there exists a small enough ε > 0 and δ > 0, such that

for any p11 ∈ [1 − ε, 1), there exists p21 ∈ [1 − δ, 1) satisfying equation 1. This means there

is a function p21 : [1 − ε, 1) → [1 − δ, 1). From p11

1−p11
= exp (λc(1− p21(p11))) we can find

λ(p11) =
ln

p11
1−p11

c(1−p21(p11))
. Observe that λ(p11)→p11→1 ∞ from 1. Now pick any strictly increasing

sequence of p11s converging to 1, then find the corresponding sequence of λ(p11)s. For this

sequence of λ(p11)s, p11 and p21(p11) are LQREs and they converge to 1. Hence, (m1,m1) is

an LLQRE. �
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Example 2.6 illustrates that sometimes a Nash equilibrium to which at least 2 players’

best response is multi-valued is an LLQRE. Based on this example, one might expect similar

results to emerge in games with more than 2 players. The following example shows that is

not necessarily the case.

Example 2.7. Let n = 3 and the strategies and the payoffs are given in the following table.

P3

m1 m2

P2 P2

m1 m2 m1 m2

P1 m1 (1, 0.5, 1) (1, 0.5, 1) P1 m1 (1, 0.5, 1) (0, 0, 0)

m2 (1, 0.5, 1) (0, 0, 0) m2 (0, 0, 0) (0, 0, 0)

For this game (m1)i=1,2,3 is not an LLQRE.

To show this, suppose (m1)i=1,2,3 is an LLQRE; this means that there exists a sequence

{pt} → (m1)i=1,2,3 such that pt ∈ L(λt) for some {λt} → ∞. For any p ∈ {pt}, the following

conditions must be satisfied.

(p11p320.5 + p12p310.5) ln
p11

p12

= (p21p32 + p22p31) ln
p21

p22

(p11p320.5 + p12p310.5) ln
p31

p32

= (p11p22 + p12p21) ln
p21

p22

By symmetry p11 = p31 at LQRE since p11 and p31 are around 1, so we obtain:

p11p12 ln
p11

p12

= (p21p12 + p22p11) ln
p21

p22

For this equation to hold the following two inequalities must be satisfied: p11p12 ln p11

p12
>

p21p12 ln p21

p22
and p11p12 ln p11

p12
> p22p11 ln p21

p22
. The first one yields p11 > p21 and the second

one gives p11 < p21 if p21 is close to 1. These inequalities contradict each other, so (m1)i=1,2,3

is not an LLQRE. �

The above example shows the difficulties of supporting a non-strict Nash equilibrium as

an LLQRE, and this example is quite robust to perturbations of payoffs.

Another equally important feature of non-strict LLQRE is that it is not preserved under

monotonic transformation (including affine) of the utilities of players. To see this, suppose

that we doubled player 2’s utilities in example 2.7. Now we can easily show that (m1)i=1,2,3

is an LLQRE. This complicates implementation in LLQREs if the planner has information

only about the preferences of players, as discussed in the next section.
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Equipped with definitions of LQRE and lemmas 2.4 and 2.5, we can start investigating

the LLQRE implementation in the next section.

3 LLQRE Implementation

In this section, we introduce the concept of LLQRE implementation and identify the suf-

ficient and necessary conditions that characterize the family of SCRs which are LLQRE

implementable. Before we start, let us remark that we concentrate only on implementation

in pure LLQREs, which is somewhat restrictive.

For a given mechanism Γ = ((Mi)i∈N , g), let L (λ,Γ, θ) be the set of LQREs of 〈E,Γ〉
when the sophistication level of the players are λ. In addition, L (Γ, θ) be the set of pure

LLQREs of 〈E,Γ〉. Now we are ready to define the LLQRE implementation.

Definition 3.1. Mechanism Γ = ((Mi)i∈N , g) implements7 SCR F via LLQREs if g (L(Γ, θ)) =

F (θ) for each E ∈ E . We say SCR F is LLQRE implementable if there exists a mechanism

that implements F via LLQREs.

In the above definition, if a mechanism implements a given SCR then it must satisfy two

requirements: (1) in each state, each SCR alternative must be reached via some LLQRE of

the mechanism and (2) in each state, each LLQRE of the mechanism must deliver some SCR

alternative.

3.1 Sufficient Conditions

Now we present the sufficient conditions that characterize the family of SCRs that can

implemented in LLQREs.

Definition 3.2. SCR F is quisimonotonic if whenever an alternative a ∈ F (θ) and a /∈ F (θ′)

for some θ and θ′, there exist player i ∈ N and ai ∈ A such that

ui(ai, θ) < ui(a, θ) and ui(ai, θ
′) ≥ ui(a, θ

′) (2)

Player i and corresponding alternative ai that satisfy condition 2 are called test player and

test alternative for player i with respect to triplet (a, θ, θ′); we use notation I(θ, θ′, a) for the

set of test players with respect to (a, θ, θ′) and Ai(θ, θ
′, a) for the set of test alternatives for

test player i with respect to (a, θ, θ′). Furthermore, we decompose I(a, θ, θ′) into I1(θ, θ′, a)

7The message space must be finite, otherwise the probability of playing any specific strategy is 0 at any
LQRE regardless of λ, so this probability remains 0 at LLQRE.
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and I2(θ, θ′, a), and Ai(a, θ, θ
′) into A1

i (θ, θ
′, a), and A2

i (θ, θ
′, a). For any player i ∈ I(a, θ, θ′),

social alternative ai ∈ Ai(a, θ, θ
′) that satisfies the second inequality of condition 2 with

strict inequality/equality belongs to A1
i (a, θ, θ

′)/A2
i (a, θ, θ

′). Player i ∈ I(a, θ, θ′) whose

A1
i (a, θ, θ

′) 6= ∅/A1
i (a, θ, θ

′) = ∅ belongs to I1(θ, θ′, a)/I2(θ, θ′, a).

Quasimonotonicity is closely related to Maskin Monotonicity which is known to be the

necessary and almost sufficient condition for implementation in Nash equilibria. To make

the differences between the two conditions clear, let us give the formal definition of Maskin

Monotonicity.

Definition 3.3. SCR F is Maskin monotonic if whenever an alternative a ∈ F (θ) and

a /∈ F (θ′) for some θ and θ′, there exist player i ∈ N and ai ∈ A such that

ui(ai, θ) ≤ ui(a, θ) and ui(ai, θ
′) > ui(a, θ

′) (3)

If a Maskin monotonic SCR prescribes social alternative a in state θ and if every player’s

lower contour set of a weakly expands from state θ to state θ′, then the SCR must prescribe

a in state θ′. On the other hand, if a quasimonotonic SCR prescribes social alternative a

in state θ and if every player’s strict lower contour set of a weakly expands from state θ to

state θ′, then the SCR must prescribe a in state θ′. Logically, quasimonotonicity is neither a

weaker nor stronger condition than Maskin monotonicity. However, these conditions coincide

if the preferences of players are strict or continuous in every state.

Even though quasimonotonicity is very similar to Maskin monotonicity, there are some in-

teresting SCRs that are quasimonotonic but not monotonic or vise versa. For example, weak

pareto correspondence is well known to be monotonic, yet is not necessarily quasimonotonic.

To illustrate this point let us consider the following example:

Example 3.4. There are two players {1, 2}, two alternatives {a, b}, and two states {θ, θ′}.
Suppose the utilities and SCR are given as follows:

θ θ′

P1 P2 P1 P2

a 5 5 5 5

b 5 0 0 0

F (θ) = {a, b} F (θ′) = {a}

One can easily check that SCR F is Maskin monotonic, however it is not quasimonotonic.�

On the other hand, strong pareto correspondence is well known to be not necessarily

Maskin monotonic, however, it is quasimonotonic with a slight restriction on the preferences

of the players.
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Example 3.5. Consider environments in which at least one player has strict preferences in

all states. Then the strong pareto correspondence F is quasimonotonic.

Suppose that F is not quasimonotonic. Then there must exist a, θ and θ′ such that a ∈ F (θ),

a /∈ F (θ′) and for any i and ai ∈ A, ui(ai, θ) < ui(a, θ) implies that ui(ai, θ
′) < ui(a, θ

′).

However, since F is a strong pareto correspondence, there must exist a′ which weakly pareto

dominates a in state θ′ but not in state θ. Let i∗ be the player whose preferences are

strict in all states. First, let us eliminate the ui∗(a
′, θ) < ui∗(a, θ) case. If ui∗(a

′, θ) <

ui∗(a, θ), then ui∗(a
′, θ′) > ui∗(a, θ

′) thanks to i∗ having a strict preference and a′ weakly

dominating a in state θ′. This contradicts that for any i and ai ∈ A, ui(ai, θ) < ui(a, θ)

implies ui(ai, θ
′) < ui(a, θ

′). Hence, ui∗(a
′, θ) > ui∗(a, θ). Then there must exist i′ 6= i∗ such

that ui′(a
′, θ) < ui′(a, θ). Otherwise, ui(a

′, θ) ≥ ui(a, θ) for all i 6= i∗ and ui∗(a
′, θ) > ui∗(a, θ)

for i∗. Consequently, a′ weakly pareto dominates a in state θ which contradicts that a ∈ F (θ).

Now observe that for i′, ui′(a
′, θ) < ui′(a, θ) and ui′(a

′, θ′) ≥ ui′(a, θ
′). This contradicts that

for all i and ai ∈ A, ui(ai, θ) < ui(a, θ) implies ui(ai, θ
′) < ui(a, θ

′). As a result, F is

quasimonotonic. �

Now that we have discussed the differences between quasimonotonicity and Maskin mono-

tonicity, let us now present the final condition required for LLQRE implementation.

Definition 3.6. SCR F satisfies no worst alternative (NWA) property if a ∈ F (θ) implies

that for any i there exists an alternative b such that ui(b, θ) < ui(a, θ).

We use the notation Ai(a, θ) to denote the set {b : ui(b, θ) < ui(a, θ)}

This property says that in any given state, SCR must not prescribe any player’s worst

alternative which could differ from one state to another. In many situations NWA property

is satisfied naturally. For example, in an exchange economy setting consider Paretian SCR

F which prescribes some consumption greater than the subsistence level of consumption,

ε > 0, to every player in every state. This SCR F satisfies NWA.

We derive the sufficiency conditions for LLQRE implementation for the environments

satisfying the following assumption.

Assumption 3.7. For every player i ∈ N there exists an alternative set Wi ⊂ A such that

1. ui(wi, θ) < ui(a, θ) for all θ ∈ Θ, wi ∈ Wi, and a ∈ A\Wi

2. ui(wi, θ) = ui(wj, θ) for all θ ∈ Θ, and wi, wj ∈ Wi if |Wi| > 1.

This assumption says that for each player there must exist a social alternative set whose

elements are the worst for the player in each state. We call Wi the worst alternative set player

i. The worst alternative set for different players can vary. Even though this assumption is
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somewhat restrictive, many natural situations do satisfy it. For example, in an exchange

economy setting with strictly increasing preferences, 0 consumption is the worst alternative

for everyone. If an environment satisfies assumption 3.7, then NWA reduces to condition

Wi ∩ F (θ) = ∅ for all θ.

Now we are ready to present the sufficiency result for LLQRE implementation.

Theorem 3.8. Suppose n ≥ 3 and the environment satisfies assumption 3.7. If SCR F

satisfies quasimonotonicity and NWA then F is LLQRE implementable.

Sketch of the proof. Consider a mechanism Γ = ((Mi)i∈N , g), such that Mi = A× Θ× Θ×
{0, 1}. Let a typical message mi of player i be of the form (ai, θ

1
i , θ

2
i , νi). The outcome

function g is as follows:

1. Every player sends mi = (a, θ, θ, 0) where a ∈ F (θ). Then g(m) = a

2. Every player i 6= j sends mi = (a, θ, θ, 0) where a ∈ F (θ) and player j sends message

mj = (aj, θ
1
j , θ

2
j , νj) 6= (a, θ, θ, 0). Then

(a) g(m) = aj if mj = (aj, θ, θ
2
j , νj), j ∈ I(a, θ, θ2

j ), and aj ∈ Aj(a, θ, θ2
j )

(b) g(m) = wj where wj ∈ Wj if mj violates one of the conditions in 2a

3. Some players send mi = (a, θ, θ, νi) where a ∈ F (θ) while at least 2 players send

mj = (aj, θ, θ
2
j , νj). If j ∈ I(a, θ, θ2

j ), and aj ∈ Aj(a, θ, θ2
j ), then g(m) = al where l is

the lowest indexed player among those whose message contains differing states. (If all

players send mj = (aj, θ, θ
2
j , νj), we check whether there exists a ∈ F (θ) such that all

j ∈ I(θ, θ2
j , a) and aj ∈ Aj(θ, θ2

j , a). If such a exists, then a1 is implemented.)

4. In all other cases,

(a) g(m) = a1 if θ1
1 6= θ2

1

(b) g(m) = w1 if θ1
1 = θ2

1

The above mechanism LLQRE implements F . We delegate the formal proof to the Appendix.

Here, let us demonstrate the key reasons why the canonical mechanism implements F in

LLQREs using an example. Suppose there are 3 players, 2 states {θ, θ′}, and 4 alternatives

{a, b, c, w}. Let the preference ranking of the players be given in the following way.
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θ θ′

P1 P2 P3 P1 P2 P3

a a ∼ b a a b a

b ∼ c c b b a b

w w c c c c

w w w w

Let F (θ) = {a} and F (θ′) = {a, b}
Obviously this SCR does not satisfy Maskin Monotonicity, hence, Nash implementation is

impossible. However, this SCR is LLQRE implementable.

The hardest part to prove is that the message profile (b, θ′, θ′, 0)i=1,2,3, which would im-

plement b, is not an LLQRE in state θ. Other cases can be handled easily.

Now let us consider message profile (b, θ′, θ′, 0)i=1,2,3 in state θ. Clearly, player 3 cannot

unilaterally deviate without strictly hurting herself, but thanks to rule 2, players 1 and 2

can do so by deviating to (c, θ′, θ, ν1) and (a, θ′, θ, ν2), respectively. Furthermore, if players 1

and 2 deviate at the same time then the outcome would be c. This is shown in the following

table in which we assume player 3 sends (b, θ′, θ′, 0).

P2

(b, θ′, θ′, 0) (a, θ′, θ, ν2)

P1 (b, θ′, θ′, 0) b a

(c, θ′, θ, ν1) c c

We can see clearly that if player 3 sends (b, θ′, θ′, 0), then player 2 is indifferent between

(b, θ′, θ′, 0) and (a, θ′, θ, ν2) as long as player 1 plays (b, θ′, θ′, 0) or (c, θ′, θ, ν1). This feature

allows us to prove that (b, θ′, θ′, 0)i=1,2,3 is not an LLQRE in state θ.

In the proof of theorem 3.8, we construct a mechanism that LLQRE implements any

given SCR F satisfying NWA and quasimonotonicity in environments with at least three

players if the players’ worst alternative set is constant. As mentioned earlier, the mechanism

must satisfy the following two requirements: (1) in each state, each alternative in the SCR

must be reached via some LLQRE and (2) in each state, each LLQRE of the mechanism

must yield an SCR alternative. In fact, each SCR alternative in any state is reached via

some strict LLQRE in our proposed mechanism. Hence, this mechanism satisfies an even

stronger requirement than (1). To be specific, in our proposed mechanism, each player sends

a message consisting of four components: a social alternative, two states, and one of 0 or

1. If every player reports the true state, coordinates on an SCR in the true state, and

sends 0 as the last component of her message, then the outcome function “implements” the
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alternative every one selects according to rule 1. If anyone unilaterally deviates from this

message profile, then the outcome function must follow rule 2 which is constructed so that

it punishes the deviator. We are able to do this thanks to NWA. Therefore, the message

profile in which every player reports the true state, the same social social choice alternative

in the true state, and 0 as the last component of one’s message is a strict Nash Equilibrium.

This profile is also a strict LLQRE thanks to lemma 2.4.

We need rules 2, 3, and 4 to satisfy requirement (2). These rules are designed so that any

message profile in which someone’s message contains different states cannot be an LLQRE

strategy. This is because the outcome function never follows rule 1 whenever a player sends

different states in her message. Then this player must be indifferent between this message

and the one in which she changes only the fourth component of her original message. Con-

sequently, if some message profile is an LLQRE in some state, then everyone’s message must

contain two identical states. This means that any message profile for which the outcome

function follows rules 2a, 3 or 4a is not an LLQRE. For any message profile for which the

outcome function follows rule 2b, the deviator’s worst alternative is implemented. Then

deviator can unilaterally change her message and induce the case in which the outcome

function follows rule 1. Hence, for any LLQRE strategy profile, the outcome function must

not follow rule 2b. Also, for any message profile for which the outcome function follows

rule 4b, player 1’s worst alternative is implemented. But by appropriately changing the first

and second components of her message, player 1 can induce the case in which the outcome

function follows rule 4a and in which her top choice is implemented. Hence, for any LLQRE

strategy profile, the outcome function must not follow rule 4b. Consequently, if a message

profile is an LLQRE in some state, then for this profile, the outcome function must follow

rule 1. Consider such a profile. If this profile yields an SCR alternative of the realized state,

then we are done. If not, then quasimonotonocity and rule 2a guarantee the existence of

an player who can unilaterally deviate from the original profile without hurting her. If this

player strictly improves by a unilateral deviation, then the original profile is not LLQRE.

Consequently, there is no player who improves strictly by unilaterally deviating from the

original message profile. However, there is at least one player who has multiple best re-

sponses to the original profile. If there is only one such player, then lemma 2.5 yields that

the original message profile is not an LLQRE. Now suppose there are multiple players who

have multiple best responses to the original profile. Then rule 3 ensures that the player with

the highest index among those who have multiple best responses to the original profile is

indifferent between her best responses as long as every other player plays some best response

strategy to the original profile. This property enables us to prove that the original message

profile is not an LLQRE which we show in the formal proof.
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We also must remark that the mechanism in the proof of theorem 3.8 does not use a

modulo game or integer game. However, for the proof of the sufficiency result, we restrict

our attention only to pure LLQREs, which enables us to dispose of the undesired LLQREs.

Jackson (1992) points out the shortcomings of not considering mixed equilibria in the con-

text of Nash implementation. This criticism is not easily addressed in our setting. First, by

considering mixed LLQREs, one complicates the analysis significantly. An even bigger issue

of considering mixed LLQREs is that they are not robust to monotonic transformations of

the utility functions. We discuss this complication in detail when we study the necessary

conditions for LLQRE implementation.8

Implementation in LLQREs vs. Implementation in Strict Nash Equilibria

Cabrales and Serrano (2007) find that quasimonotonicity and NWA are necessary condi-

tions for implementation in strict Nash equilibria. Furthermore, they show that these condi-

tions are sufficient if there are at least 3 players. As we have seen in this section, theorem 3.8

shows that if the players’ worst alternative set is constant over all states, quasimonotonicity

and NWA are sufficient conditions for implementation in LLQREs in environments with at

least 3 players. Consequently, we obtain the following corollary.

Corollary 3.9. Suppose n ≥ 3 and the environment satisfies assumption 3.7. Then any

strict Nash implementable SCR F is LLQRE implementable.

The connection between the sufficient conditions for implementation in LLQREs and the

ones for implementation in strict Nash equilibria can be explained easily. Let us fix some SCR

and consider the mechanism used in the proof of theorem 3.8. This mechanism implements

the SCR in strict Nash equilibria. As we mentioned earlier, this mechanism delivers each

SCR alternative in any state via some strict LLQRE of that state. But we know that any

strict LLQRE is a strict Nash equilibrium thanks to lemma 2.4. Hence, the mechanism

indeed delivers each SCR alternative in any state via some strict Nash equilibrium. Now

all we have to do is to show that in any state the mechanism has no “bad” strict Nash

equilibrium in the sense that it delivers some non-SCR alternative in that state. But if a

“bad” strict Nash equilibrium existed in some state, it would be a strict LLQRE in the same

state thanks to lemma 2.4. Hence, the mechanism would fail in LLQRE implementing the

SCR. As a result, the mechanism considered in the proof of theorem 3.8 implements a given

SCR in both LLQREs and strict Nash equilibria.

However, one should point out that not all mechanisms that implement a given SCR in

8The discussion for mixed LLQREs is the same as the one for non-strict LLQREs.
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strict Nash equilibria will implement the same SCR in LLQREs. To see this consider some

mechanism that implements a given SCR F in strict Nash equilibria. Then the definition of

strict Nash implementation and lemma 2.4 yield that each SCR alternative in each state is

delivered by some strict LLQRE of the mechanism in the same state. However, the definition

of strict Nash implementation does not rule out the possibility of the mechanism having a

“bad” non-strict Nash equilibrium in some state that delivers a non-SCR alternative in that

state. If this “bad” non-strict Nash equilibrium is an LLQRE, then the mechanism cannot

implement F in LLQREs. We demonstrate this point in example 3.10. First we need one

more definition: let SNE(Γ, θ) denote the set of strict Nash equilibria of game 〈E,Γ〉.

Example 3.10. Consider the following three player {1, 2, 3}, two state {θ, θ′} and four

alternative example {a, b, c, w}. The utility function of player i = 1, 2, 3 in state θ̂ = θ, θ′ is

given as follows:

θ θ′

P1 P2 P3 P1 P2 P3

a 2 2 2 2 2 2

b 2 2 2 1 1 1

c 1 1 1 1 1 1

w 0 0 0 0 0 0

Suppose F (θ) = {a, b} and F (θ′) = {a}. Consider the following mechanism Γ = (M, g): For

each player i, Mi = {mi1,mi2,mi3}. The outcome function g is as follows. If each player

i sends message mi1, then b is implemented. If each player i 6= j sends mi1 while player

j = 1, 2, 3 alone sends mj2, then c is implemented. If each player i sends mi3, then a is

implemented. In all other cases w is implemented.

Claim: Mechanism Γ implements F in strict Nash equilibria but not in LLQREs.

Proof of the Claim Step 1. Γ implements F in strict Nash equilibria.

First let us consider state θ. Then the players play the game in which each player’s payoffs

are described as follows:

P3

m1 m2 m3

P2 P2 P2

m1 m2 m3 m1 m2 m3 m1 m2 m3

m1 2 1 0 m1 1 0 0 m1 0 0 0

P1 m2 1 0 0 P1 m2 0 0 0 P1 m2 0 0 0

m3 0 0 0 m3 0 0 0 m3 0 0 2
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It is easy to see that (mi1)i=1,2,3 and (mi3)i=1,2,3 are strict Nash equilibria in state θ. Clearly,

(mi1)i=1,2,3 results in b and (mi3)i=1,2,3 in a. In addition, these two message profiles are the

only Nash equilibria. To see this consider any message profile m that results in w according

to g. Because w is the worst alternative for each player, by unilaterally deviating, each

player cannot get worse. Hence, m is not a strict Nash equilibrium. Now consider a message

profile m′ that results in c according to g. Then two players must send message 1, while one

sends message 2. However, if the odd player sends her message 1, b is implemented. Since,

the odd player prefers b to c in state θ, she has a profitable deviation. Hence, m′ is not a

strict Nash equilibrium. Consequently, F (θ) = SNE(Γ, θ).

Now let us consider state θ′. Then the players play the game in which each player’s payoffs

are described as follows:

P3

m1 m2 m3

P2 P2 P2

m1 m2 m3 m1 m2 m3 m1 m2 m3

m1 1 1 0 m1 1 0 0 m1 0 0 0

P1 m2 1 0 0 P1 m2 0 0 0 P1 m2 0 0 0

m3 0 0 0 m3 0 0 0 m3 0 0 2

Now we show that (mi3)i=1,2,3 which results in a is the unique strict Nash equilibrium in

state θ′. It is easy to see that (mi3)i=1,2,3 is a strict Nash equilibrium. Now we need to

show that there is no other strict Nash equilibrium strategy profile. To see this consider any

message profile m that results in w according to g. Because w is the worst alternative for

each player, by unilaterally deviating, each player cannot get worse. Hence, m is not a strict

Nash equilibrium. Now consider a message profile m′ that results in c according to g. Then

two players must send message 1, while one sends message 2. However, if the odd player

sends her message 1, b is implemented. Since the odd player is indifferent between b and c

in state θ′, m′ is not a Nash equilibrium. Lastly, consider m′′ that results in b. This means

every player sends message 1. However, if any of the players unilaterally deviate to message

2, then c is implemented. Since each player is indifferent between b and c in state θ′, m′′ is

not a strict Nash equilibrium. Hence, F (θ′) = SNE(Γ, θ′).

Step 2. Γ does not implement F in LLQREs.

We show that (mi1)i=1,2,3 which results in b is an LLQRE in state θ′. This means we must

show that there exists a sequence of {pt} → (mi1)i=1,2,3 such that pt ∈ L(λt,Γ, θ
′) for some
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{λt} → ∞. For any p ∈ {pt}, then the following conditions must be satisfied.

ln
p11

p12

= λ (p21p32 + p22p31)

ln
p11

p13

= λ (p21p31 + p21p32 + p22p31 − 2p23p33)

Using the symmetry between the players’ payoffs, we assume that p11 = p21 = p31 = π1,

p12 = p22 = p32 = π2 and p13 = p23 = p33 = π3. As a result, the above 2 equations reduce to:

ln
π1

π2

= λ (2π1π2)

ln
π1

π3

= λ
(
π2

1 + 2π1π2 − 2π2
3

)
Equating by λ, the above 2 equations yield

2π1π2 ln π3 +
(
π2

1 − 2π2
3

)
lnπ1 −

(
π2

1 + 2π1π2 − 2π2
3

)
ln π2 = 0. (4)

Now fix sufficiently small π3 > 0. We proceed to show that the above equation has a solution.

By definition, π2 = 1 − π1 − π3. Clearly, the left hand side of equation 4 is a continuous

function. When π1 → 0.5, π2 → 0.5 − π3. Since π3 is small enough, the term 2π1π2 lnπ3

dominates the left hand side of equation 4 as this term approaches −∞ as π3 → 0 while the

other terms are bounded. On the other hand, if π1 → 1− π3, π2 → 0. When π2 < π3, from

the proof of lemma 2.5, the left hand side of equation 4 is approximately − (π2
1 − 2π2

3) lnπ2

which converges to +∞. Now using the intermediate value theorem we obtain that for any

small enough π3, there must exist π1(π3) and π2(π3) that satisfy equation 4. Now let us

show that π1(π3)→ 1 when π3 → 0. Suppose otherwise. The the term 2π1π2 lnπ3 dominates

the left hand side of equation 4 as this term approaches −∞. Hence, equation 4 is never

satisfied. Thus π1(π3)→ 1 when π3 → 0. Now set

λ(π3) =
ln π1(π3)

π3

(π1(π3))2 + 2π1(π3)π2(π3)− 2π2
3

Clearly, when π3 → 0, λ(π3) → ∞. To complete the proof, consider any sequence of π3s

converging to 0. Now find the corresponding λ(π3)s. As argued earlier, the sequence of

λ(π3)s converge to∞. Now for each λ(π3), everyone playing a strategy in which p11 = p21 =

p31 = π1(π3), p12 = p22 = p32 = π2(π3) and p13 = p23 = p33 = π3 is an LQRE. As argued

earlier, this sequence of LQREs must converge to (mi1)i=1,2,3. Hence, Γ does not LLQRE

implement F . �
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Based on example 3.10, one can say that the paper contributes to the literature by

designing a mechanism that implements any given SCR in both LLQREs and strict Nash

equilibria.

3.2 Necessary Conditions and Restricted LLQRE Implementation

As we mentioned before, the mechanism used in the proof of theorem 3.8 delivers each SCR

alternative in any state through a strict LLQRE of the same state. This naturally leads

to the question of why one wants each SCR alternative in any state to be delivered via

a strict LLQRE but not via a non-strict LLQRE. To answer this question, let us suppose

that the planner has information only about the players’ preferences. In other words, the

planner does not know the utility representations of the players’ preferences. In this case, the

mechanism must be designed so that for all utility representations of the players’ preferences,

it delivers the SCR alternatives in each state via LLQREs. In addition, it is well known that

if a utility function represents the underlying preference, a monotonic transformation of the

utility function must also represent the underlying preference. Consequently, one needs to

make sure that implementation in LLQREs is robust under monotonic transformation of

utility functions. But as we discussed in the previous section, non-strict LLQREs are not

preserved under monotonic or even affine transformation of the players’ utilities in some

cases. Hence, even if a mechanism delivers an SCR alternative in some state through an

LLQRE for some utility representations, the same mechanism might not deliver the same

SCR alternative in the same state through any LLQRE for some other ulity representations.

We illustrate this point in the following example.

Example 3.11. Consider the following three player {1, 2, 3}, two state {θ, θ′} and five

alternative example {a, b, c, d, w}. The utility function of player i = 1, 2, 3 in state θ̂ = θ, θ′

is given as follows:

θ θ′

P1 P2 P3 P1 P2 P3

a 0 0 0 2 2 2

b 2 2 2 1 1 1

c 0 0 0 1 1 1

d 0 0 0 0 0 0

w -1 -1 -1 -1 -1 -1

Suppose F (θ) = {b} and F (θ′) = {a, b}. Consider the following mechanism Γ = (M, g): For

each player i, Mi = {mi1,mi2,mi3}. The outcome function g is as follows. If each player
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i sends message mi1, then b is implemented. If each player i 6= j sends mi1 while player

j = 1, 2, 3 alone sends mj2, then c is implemented. If each player i sends mi3, then a is

implemented. In all other cases d is implemented.

Claim: Mechanism Γ implements F in LLQREs. However, mechanism Γ does not implement

F in LLQREs if player 2’s payoffs are scaled down by two.

Proof of the Claim. Step 1. Γ implements F in LLQREs.

Consider state θ. Then the players play the game in which each player’s payoffs are described

as follows:

P3

m1 m2 m3

P2 P2 P2

m1 m2 m3 m1 m2 m3 m1 m2 m3

m1 2 0 0 m1 0 0 0 m1 0 0 0

P1 m2 0 0 0 P1 m2 0 0 0 P1 m2 0 0 0

m3 0 0 0 m3 0 0 0 m3 0 0 0

It is easy to see that (mi1)i=1,2,3 is the only LLQRE in state θ.

Now let us consider state θ′. Then the players play the game in which each player’s

payoffs are described as follows:

P3

m1 m2 m3

P2 P2 P2

m1 m2 m3 m1 m2 m3 m1 m2 m3

m1 1 1 0 m1 1 0 0 m1 0 0 0

P1 m2 1 0 0 P1 m2 0 0 0 P1 m2 0 0 0

m3 0 0 0 m3 0 0 0 m3 0 0 2

Clearly, every player i sending mi3 is a strict Nash equilibrium, hence is an LLQRE. In

addition, from example 4 we know that every player i sending mi1 is an LLQRE in state θ′.

Therefore, Γ implements F in LLQREs.

Step 2. Γ does not implement F in LLQREs if player 2’s payoffs are scaled down by two.

We need to show that every player i sendingmi1 is not an LLQRE in state θ′. On the contrary,

suppose (mi1)i=1,2,3 is an LLQRE; this means that there exists a sequence {pt} → (mi1)i=1,2,3

such that pt ∈ L(λt,Γ, θ
′) for some {λt} → ∞. For any p ∈ {pt}, the following conditions

must be satisfied.

(p11p320.5 + p12p310.5) ln
p11

p12

= (p21p32 + p22p31) ln
p21

p22
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(p11p320.5 + p12p310.5) ln
p31

p32

= (p11p22 + p12p21) ln
p21

p22

By symmetry p11 = p31 at LQRE since p11 and p31 are around 1. Thus we obtain:

p11p12 ln
p11

p12

= (p21p12 + p22p11) ln
p21

p22

For this equation to hold the following two inequalities must be satisfied: p11p12 ln p11

p12
>

p21p12 ln p21

p22
and p11p12 ln p11

p12
> p22p11 ln p21

p22
. The first one yields p11 > p21 and the second one

gives p11 < p21 if p21 is close to 1. These inequalities contradict each other, so (mi1)i=1,2,3 is

not an LLQRE in state θ′. �
As example 5.4 demonstrates, whether a mechanism succeeds in implementing a given

SCR in LLQREs could depend on the utility representations of the players’ preferences if a

mechanism is designed so that some SCR alternative in some state is delivered by a non-

strict LLQRE in that state. One must avoid this problem. Hence, one must determine

the conditions required for non-strict LLQREs to be robust to utility representations of the

players’ preferences. However, this seems to be a rather complicated problem given examples

2.6, 2.7 and lemma 2.5.

Another simple way to ensure that LLQRE implementation is robust under different

utility representations of the players’ preferences is to use the fact that strict LLQREs are

preserved under monotonic transformation. In other words, when designing a mechanism

one can make sure that (1) any social choice alternative in any state to be delivered by a

strict LLQRE in that state and (2) in any state, any LLQRE (strict or non-strict) must

yield an SCR alternative. Requirement (1) ensures that each SCR alternative in each state

is delivered by some LLQRE without depending on utility representations. For some utility

representations, there might be non-strict LLQREs but they should not cause any harm as

requirement (2) ensures that each LLQRE in any state delivers some SCR alternative of the

same state. This is exactly what our mechanism in the proof of theorem 3.8 accomplishes.

Now let us formalize the above discussed requirements (1) and (2) and define a slightly

stronger version of LLQRE implementation. We call this restricted LLQRE implementation.

Definition 3.12. Social choice rule F is restricted LLQRE implementable if there is a

mechanism Γ = ((Mi)i∈N , g), such that

1. for every environment E ∈ E and for any a ∈ F (θ), there exists m∗ ∈ L(Γ, θ) such that

g(m∗) = a and every player’s best response to m∗ is single valued

2. if m∗ ∈ L(Γ, t), then g(m∗) ∈ F (θ)
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Now let us present the following theorem which characterizes the necessary conditions

for restricted LLQRE implementation.

Theorem 3.13. If SCR F is restricted LLQRE implementable, then

1. F is quasimonotonic

2. F satisfies NWA.

Proof. Let Γ = ((Mi)
n
i=1, g) restricted LLQRE implement SCR F . Now let us prove F

is quasimonotonic. Suppose otherwise. Then there exists a mechanism Γ = ((Mi)
n
i=1, g)

which restricted LLQRE implements a non quasimonotonic SCR F . This means there exist

states t and θ′, and a social alternative a such that a ∈ F (θ) but a /∈ F (θ′), while all

b ∈ {c ∈ A : ui(c, θ) < ui(a, θ)} remain in {c ∈ A : ui(c, θ
′) < ui(a, θ

′)} for any player i ∈ N .

Let m∗ be a strict LLQRE in environment E that delivers a. Since no one’s relative ranking

of a to some alternative b, which is strictly less preferred to a in state t, worsened in state

θ′, m∗ stays as a strict Nash equilibrium in state θ′. Now by lemma 2.4, m∗ is an LLQRE in

environment E ′. This contradicts Γ restricted LLQRE implements SCR F .

Proof of a ∈ F (θ) not being the worst alternative for anyone in state θ directly follows from

lemma 2.4.

As discussed earlier, thanks to theorem 3.8 the sufficiency result for restricted LLQRE

implementation remains the same as the one for LLQRE implementation.

Corollary 3.14. Suppose n ≥ 3 and assumption 3.7 is satisfied. If SCR F satisfies quasi-

monotonicity and NWA, then F is restricted LLQRE implementable.

Thanks to theorem 3.13 and corollary 3.14 we fully identify the necessary and sufficient

conditions for restricted LLQRE implementation if the are at least 3 players and if each

player’s worst alternative set is constant over all states.

4 Other Variants of LQRE Implementation

This section discusses possible variants of LLQRE implementation. Specifically, we are ask

the question of what would happen if the players’ sophistication level does not approach

infinity. Then the first observation to make is that there is no hope for the exact LQRE

implementation, given that an LQRE is always in the interior of probability simplex when λ

is finite. In other words, in an LQRE all strategies are played with positive probabilities and

as a result, any non constant SCR is not exact LQRE implementable. Therefore, instead
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of the exact implementation we have to consider the LQRE implementation with almost

certainty9.

We could think of many possible LQRE implementation concepts depending on the plan-

ner’s knowledge of the sophistication levels of the players, but we consider only the extreme

cases.

1. The planner does not know the players’ sophistication level. In this case the planner’s

goal would be to design a mechanism which LQRE implements a given SCR with high

probability for all values of λ. Not surprisingly, this task is not feasible because when

λ approaches 0, players choose their strategies in a completely random fashion. This

eliminates any hope of LQRE implementation with probability more than 1/2 for all

values of λ.

2. The planner knows the exact value of the players’ sophistication level. In this case it is

impossible to talk about LQRE implementation in a general setting because LQRE is

very dependent on a utility representation. In addition, it is hard to imagine the case in

which the authority designs a mechanism for the specific value of players’ sophistication

level. Even if one manages this task, it would have very little value since the mechanism

is unlikely to be robust.

5 Conclusion

This paper has studied LLQRE implementation where the players are assumed to be sus-

ceptible to making mistakes. In particular, we have identified necessary and sufficient condi-

tions for restricted LLQRE implementation. Quasimonotonicity, a slight variation of Maskin

Monotonicity, and NWA emerge as critical conditions to our exercise.

Appendix

Proof of Lemma 2.5. (a) Let us prove this lemma by contradiction. Suppose that there

exists a sequence {πt} → π∗ where πt ∈ L(λt, G) for some {λt} → ∞ and exactly n−1 players

have a unique best response strategy to π∗. Since π∗ is a pure equilibrium, denote the strategy

that player i plays with probability 1 by miji , i.e., π∗iji = 1. Therefore, ūiji(π
∗) = ui(π

∗)

for every i ∈ N . Let player i∗ be the player whose best response set to π∗ is not single

valued, i.e., there exists a strategy mi∗j for player i∗ such that ūi∗j(π
∗) = ūi∗ji∗ (π

∗). Also, by

condition of the lemma for every player i 6= i∗, π∗ satisfies ūiji(π
∗) > ūik(π

∗) for all k 6= ji.

9As in virtual implementation considered in Matsushima (1988) and Abreu and Sen (1991).
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We know any π ∈ {πt} must satisfy:

1.
πiji
πik

=
exp(λūiji (π))

exp(λūik(π))
for all i 6= i∗ and k 6= ji

2.
πi∗ji∗
πi∗j

=
exp(λūi∗ji∗

(π))

exp(λūi∗j(π))

Combining the above equations we obtain

(ūi∗ji∗ (π)− ūi∗j(π)) ln
πiji
πik

= (ūiji(π)− ūik(π)) ln
πi∗ji∗
πi∗j

for all i 6= i∗ and k 6= ji. (5)

By supposition, we know that {πt} → π∗. For this proof we will use the abusive notation

π → π∗ to denote {πt} → π∗. Now let us evaluate the left and right hand sides of equation 5

when π → π∗. If the LHS and RHS do not converge to the same value for some i and k 6= ji

then we obtain the desired contradiction.

Right Hand Side: Since ūiji(π
∗) > ūik(π

∗) for any player i 6= i∗ and k 6= ji if π is close

enough to π∗, then ūiji(π) > ūik(π). Combining this condition with π∗i∗ji∗ = 1 guarantees

that the RHS approaches ∞ for all k 6= ji when π → π∗.

Left Hand Side: Now we will show for some k 6= ji, the LHS converges to 0 as π → π∗.

This is true if the absolute value of the LHS converges to 0.

|ūi∗ji∗ (π)− ūi∗j(π)| =

∣∣∣∣∣∣
∑

m−i∗∈M−i∗

(ui∗(mi∗ji∗ ,m−i∗)− ui∗(mi∗j,m−i∗))prob(m−i∗)

∣∣∣∣∣∣
≤ max

m−i∗∈M−i∗
|ui∗(mi∗ji∗ ,m−i∗)− ui∗(mi∗j,m−i∗)|

(
1−

∏
l 6=i∗

πljl

)
.

To see this, observe that
(

1−
∏

l 6=i∗ πljl

)
is the probability of at least one player l 6= i∗ not

playing strategy mljl . Define o :≡ maxm−i∗∈M−i∗ |ui∗(mi∗ji∗ ,m−i∗)− ui∗(mi∗j,m−i∗)|, then

|LHS| ≤ o
(

1−
∏

l 6=i∗ πljl

)
ln

πiji
πik

for all i 6= i∗. Clearly, limπ→π∗
(

1−
∏

l 6=i∗ πljl

)
lnπiji = 0.

Therefore, we only need to show that there exists a player i 6= i∗ and strategy k 6= ji

such that limπ→π∗
(
−
(

1−
∏

l 6=i∗ πljl

)
lnπik

)
→ 0. Clearly there exists at least one strat-

egy k satisfying πik ≥
1−πiji
|Ji|−1

for any π and i, and accordingly −
(

1−
∏

l 6=i∗ πljl

)
lnπik ≤

−
(

1−
∏

l 6=i∗ πljl

)
ln

1−πiji
|Ji|−1

. Let Zi(π) =
{
k : πik ≥

1−πiji
|Ji|−1

}
. Consider Z̄i :≡ lim supZi(πt).

This set is finite and not empty because cardinality of strategy space is finite. Fix any k ∈ Z̄i.
Consider any subsequence {πts} such that k ∈ Zi(πts). Then −

(
1−

∏
l 6=i∗ πljl

)
ln πik ≤

−
(

1−
∏

l 6=i∗ πljl

)
ln

1−πiji
|Ji|−1

for any π ∈ {πts}. Without loss of generality, assume that player

ī 6= i∗ is the player with the smallest πiji . For player ī, we know −
(

1−
∏

l 6=i∗ πljl

)
ln

1−πīj̄i
|Jī|−1

≤
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−
(

1− π|N |−1

ījī

)
ln

1−πīj̄i
|Jī|−1

. Now applying L’Hospital’s rule and simplifying the terms, we obtain

−
(

1− π|N |−1

ījī

)
ln

1− πījī
|Jī| − 1

→πīj̄i
→1 0. (6)

Expression 6 shows that equation 5 is not satisfied in the limit of some subsequence for some

strategy k of player ī. This means that for π ∈ {πt}, which is close enough to π∗, equation

5 is violated, contradicting the supposition π∗ is an LLQRE.

(b) Suppose for some player i and her strategy miji with π∗iji = 1, there exists strategy mij

such that ui(mij,m−i) ≥ ui(miji ,m−i) for all m−i. This implies that ūij(π) ≥ ūiji(π) for all

π ∈ ∆. Now let us show that π∗ is not an LLQRE. Suppose otherwise. Then there must

exist sequences {πt} → π∗ and {λt} → ∞ such that πt ∈ L(λt, G). Consider any π ∈ {πt}
and λ ∈ {λt} such that π ∈ L(λ,G). Then by the definition of LQRE,

πij
πiji

= exp (λ(ūij(π)− ūiji(π))) .

Because ūij(π)− ūiji(π) ≥ 0, the above equation yields that πij ≥ πiji . Since this is true for

all π ∈ {πt}, {πt}9 π∗.

Proof of Theorem 3.8. Consider the mechanism Γ defined in the sketch of the proof.

Step 1. For any a ∈ F (θ) and θ ∈ Θ, there exists an LLQRE m∗ ∈ L(Γ, t) with g(m∗) = a.

Proof of step 1. Observe that a is implemented if the players send message profile m∗ =

(a, θ, θ, 0)i∈N . In order to prove m∗ ∈ L(Γ, t), we need to show that m∗ is a strict Nash

equilibrium in 〈N,Γ, (u(·, θ))i∈N〉 thanks to lemma 2.4. If any player unilaterally deviates

from m∗, then the outcome function must follow rule 2. Obviously, the deviator will be

strictly worse off. Therefore, m∗ is a strict Nash equilibrium which yields the desired result.

Step 2. If m′ ∈ L(Γ, θ) then g(m′) ∈ F (θ).

Proof of step 2. Suppose m′ ∈ L(Γ, θ). First, assume that g(m′) falls under rule 1. Let

m′ = (a′, θ′, θ′, 0)i∈N . To simplify the notations let s′ = (a′, θ′, θ′, 0). As g(m′) falls under

rule 1, a′ ∈ F (θ′). If a′ ∈ F (θ), then we are done. Suppose that a′ /∈ F (θ). Then, by

quasimonotonicity, there exists a player i and a social alternative ai such that ui(ai, θ
′) <

ui(a
′, θ′), but ui(ai, θ) ≥ ui(a

′, θ). This means that player i can unilaterally deviate from m′

without worsening herself. This could be consistent with 3 possible cases:

1. I1(a′, θ′, θ) 6= ∅

2. If not 1

(a) |I2(a′, θ′, θ)| = 1
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(b) |I2(a′, θ′, θ)| ≥ 2

Suppose that case 1 occurs. If player i ∈ I1(a′, θ′, θ) sends message (ai, θ
′, θ, νi) where

ai ∈ A1
i (a
′, θ′, θ) then ai would be implemented by rule 2a. As player i strictly prefers ai to

a′ in state θ, (ai, θ
′, θ, νi) is a profitable deviation. Therefore, m′ is not a Nash equilibrium.

Hence, m′ /∈ L(Γ, θ), which is a contradiction.

Suppose that case 2 occurs. Observe that for any player j /∈ I2(a′, θ′, θ), s′ must be the

unique best response to m′. Let us consider case 2a. Player i ∈ I2(a′, θ′, θ) has more than

one best response strategies to m′. For example, s′ and (ai, θ
′, θ, νi) where ai ∈ A2

i (a
′, θ′, θ)

are best responses to m′ thanks to rules 1 and 2a. Because |I2(a′, θ′, θ)| = 1, m′ /∈ L(Γ, θ)

by lemma 2.5. This is a contradiction.

Suppose that case 2b occurs. Obviously, s′ must be one of the best response strategies

to m′ for everyone. Consider player i ∈ I2(a′, θ′, θ). First let us show that any player

i’s best response strategy to m′ must be of the form (ai, θ
′, θ2

i , νi) where ai ∈ Ai(a′, θ′, θ2
i ).

Suppose otherwise. Let player i play a such strategy m̄i in response to m′. Then thanks to

rule 2b, wi ∈ Wi is implemented. But because NWA is satisfied, F (θ′) ∩Wi = ∅. Hence,

ui(wi, θ) < ui(a
′, θ). Consequently, m̄i is not a best response strategy to m′, meaning that

player i’s best response strategy to m′ is of the form (ai, θ
′, θ2

i , νi) where ai ∈ Ai(a′, θ′, θ2
i ).

It is clear that for player i ∈ I2(a′, θ′, θ), (ai, θ
′, θ, νi) where ai ∈ A2

i (a
′, θ′, θ) is a best

response strategy to message profile m′. In addition to s′ and (ai, θ
′, θ, νi) where ai ∈

A2
i (a
′, θ′, θ), player i could have other best response strategies to m′. To see this, suppose

there is a state θ2
i 6= θ and an alternative āi such that ui(āi, θ

′) < ui(a
′, θ′) and ui(āi, θ

2
i ) ≥

ui(a
′, θ2

i ). If player i sends (āi, θ
′, θ2

i , νi), then āi is implemented by rule 2a. The case

ui(āi, θ) > ui(a
′, θ) cannot occur. Otherwise, this contradicts I1

i (a′, θ′, θ) = ∅. However, one

cannot rule out the case ui(āi, θ) = ui(a
′, θ). Indeed, if ui(āi, θ) = ui(a

′, θ), then (āi, θ
′, θ2

i , νi)

is a best response strategy for player i to m′. In this case, one should note that ai ∈
A2
i (a
′, θ′, θ).

For each player i let us define Si to be player i’s best response correspondence strategies10

to message profile m′. Observe that for player i ∈ I2(a′, θ′, θ), Si consists of strategies of

the form (ai, θ
′, θ2

i , νi) where ai ∈ A2
i (a
′, θ′, θ) and ai ∈ A2

i (a
′, θ′, θ2

i ). If each player i sends

a message si ∈ Si, then the outcome function follows one of rules 1, 2a and 3. Let ī be the

highest indexed player in set I2(a′, θ′, θ). Player ī is indifferent between strategies in Sī as

long as each player i ∈ N sends a message in Si thanks to rules 1, 2a and 3.

Now we show that m′ /∈ L(Γ, θ). Let π be a mixed strategy profile and let notation

π∗ denote the strategy profile in which every player plays strategy s′ with probability 1.

10Observe Si is defined for all players.
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Suppose π∗ ∈ L(Γ, θ). Then there exist sequences {πt} → π∗ and {λt} → ∞, such that

πn ∈ L(λt,Γ, θ). Since the proof is done for state θ, we omit θ from the notations for the

remainder of this proof, whenever the omission does not cause confusion.

We will use si and li to denote the typical strategy in Si and in Mi\Si, respectively.

Clearly, Si is not empty. In addition, Mi\Si is not empty as we argued that ui(wi, θ) <

ui(a
′, θ). Let πimi be the probability that player i plays strategy mi. If π ∈ {πt}, the

following conditions must be satisfied.

1.
πis′
πili

=
exp(λūis′ (π))

exp(λūili (π))
for all li /∈ Si and for all i 6= ī

2.
πīs′
πīsī

=
exp(λūīs′ (π))

exp(λūīsī
(π))

where sī ∈ Sī and sī 6= s′

Combining the above equations we obtain

(
ūīs′(π)− ūīsī(π)

)
ln
πis′

πili
= (ūis′(π)− ūili(π)) ln

πīs′

πīsī
for all i 6= ī, li /∈ Si and sī ∈ Sī. (7)

By supposition, we know that {πn} → π∗. We simplify the notations by using π → π∗ to

denote {πn} → π∗. Now let us evaluate the left and right hand sides of equation 7 when

π → π∗. If the LHS and RHS do not converge to the same value for some i and li /∈ Si, then

we get the desired contradiction.

Right Hand Side: Since li /∈ Si, ūis′(π∗) > ūili(π
∗). Combining this condition with πīs′ → 1

guarantees that the RHS approaches infinity.

Left Hand Side: Now we show that for some player i 6= ī and li /∈ Si, the LHS converges

to 0 as π → π∗. This is true if the absolute value of the LHS converges to 0.

∣∣ūīs′(π)− ūīsī(π)
∣∣ =

∣∣∣∣∣∣
∑

m−ī∈M−ī

(uī(s
′,m−ī)− uī(sī,m−ī))prob(m−ī)

∣∣∣∣∣∣
≤ max

m−ī∈Mī

|uī(s′,m−ī)− uī(sī,m−ī)|

1−
∏
j 6=ī

∑
sj∈Sj

πjsj


This inequality is due to the fact that player ī is indifferent as long as all players play

strategies from their best responses to m′. Define o :≡ maxm−ī∈Mī
|uī(s′,m−ī)− uī(sī,m−ī)|.

Then it must be that |LHS| ≤ o
(

1−
∏

j 6=ī

(∑
sj∈Sj πjsj

))
ln

πis′
πili

for all i 6= ī and li /∈ Si.

Since limπ→π∗
(

1−
∏

j 6=ī

(∑
sj∈Sj πjsj

))
ln πis′ = 0, we are left to evaluate

− lim
π→π∗

1−
∏
j 6=ī

∑
sj∈Sj

πjsj

 ln πili
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for all li /∈ Si and for all i 6= ī.

Let |Mi| be the cardinality of player i’s strategy set. We know that for any player i 6= ī,

there exists at least one strategy li such that πili ≥
1−(

∑
si∈Si

πisi )

|Mi|−|Si| for any π ∈ {πn}. The

remaining part of the proof that the LHS converges to infinity is the exact replica of the

proof of lemma 2.5, hence, we omit the rest of the proof. This concludes the proof that

m′ /∈ L(Γ, θ) if g(m′) /∈ F (θ) and falls under rule 1.

Suppose that g(m′) falls under rule 2. Let player i be the dissident player who sends m′i =

(ai, θ
1
i , θ

2
i , νi) while others send (a′, θ′, θ′, 0) where a′ ∈ F (t′). If g(m′) falls under rule 2a,

then θ1
i 6= θ2

i . Observe that as long as player i sends (ai, θ
1
i , θ

2
i , νi) where θ1

i 6= θ2
i , no

matter what messages others send, the outcome function never falls under rule 1. Then

by construction of the outcome function, whatever messages the other players send, the

implemented alternative when i sends (ai, θ
1
i , θ

2
i , 0) does not change if i sends (ai, θ

1
i , θ

2
i , 1).

Hence, at any LLQRE, player i plays (ai, θ
1
i , θ

2
i , 0) and (ai, θ

1
i , θ

2
i , 1) with equal probability

thanks to lemma 2.5b. This contradicts that m′ ∈ L(Γ, θ). Suppose g(m′) falls under rule

2b. Then wi is implemented. But wi ∈ Wi, hence, player i strictly improves by sending

message (a′, θ′, θ′, 0). Therefore, m′ /∈ L(Γ, θ) if g(m′) falls under rule 2.

Suppose that g(m′) falls under rule 3. Then for some player i, θ1
i 6= θ2

i . Observe that

as long as player i sends (ai, θ
1
i , θ

2
i , νi) where θ1

i 6= θ2
i , no matter what messages others

send, the outcome function never falls under rule 1. Then, by construction of the outcome

function, whatever messages the other players send, the implemented alternative when i

sends (ai, θ
1
i , θ

2
i , 0) does not change if i sends (ai, θ

1
i , θ

2
i , 1). Hence, at any LLQRE, player

i plays (ai, θ
1
i , θ

2
i , 0) and (ai, θ

1
i , θ

2
i , 1) with equal probability thanks to lemma 2.5b. This

contradicts that m′ ∈ L(Γ, θ). Therefore, m′ /∈ L(Γ, θ) if g(m′) falls under rule 3.

Suppose g(m′) falls under rule 4. If θ1
1 = θ2

1, then w1 is implemented. But player 1 can obtain

her top choice by changing only her first and second messages. This means θ1
1 6= θ2

1. Observe

that as long as player 1 sends (a1, θ
1
1, θ

2
1, ν1) where θ1

1 6= θ2
1, no matter what messages others

send, the outcome function never falls under rule 1. Then, by construction of the outcome

function, whatever messages the other players send, the implemented alternative when player

1 sends (a1, θ
1
1, θ

2
1, 0) does not change if player 1 sends (ai, θ

1
i , θ

2
i , 1). Hence, at any LLQRE,

player 1 plays (a1, θ
1
1, θ

2
1, 0) and (a1, θ

1
1, θ

2
1, 1) with equal probability thanks to lemma 2.5b.

This contradicts that m′ ∈ L(Γ, θ). Therefore, m′ /∈ L(Γ, θ) if g(m′) falls under rule 4. This

completes the proof.
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