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Abstract

We augment the mechanism used in Nash implementation with a political process

that collects the opinions of a subset of individuals with a fixed probability distribution.

The outcome is a function of only the collected opinions. We show that the necessary

– and sometimes sufficient – condition for implementation by a specific political pro-

cess can be either weaker or stronger than Maskin monotonicity. We study three such

processes: oligarchy, oligarchic democracy and random sampling. Oligarchy collects

only the opinions of the oligarchs (a strict subset of the individuals). We present a

Nash implementable social choice rule (SCR) that cannot be implemented by any oli-

garchy. Oligarchic democracy “almost always” collects the opinions of the oligarchs

but sometimes, there is a referendum (i.e., everyone’s opinions are collected). We show

that in economic environments, every Nash implementable SCR can be implemented

by oligarchic democracy in which any three individuals act as oligarchs. In random

sampling, a sample of opinions are collected randomly. We show that in economic

environments, every Nash implementable SCR can be implemented by randomly sam-

pling opinions of 4 individuals. We also provide necessary and sufficient conditions for

implementation when the planner has the flexibility to choose any political process.
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1 Introduction

Consider a community of n individuals having a social choice rule (SCR) that specifies the

socially desirable alternatives conditional on the state of the economy (preferences, technol-

ogy etc.). The community would like to design a mechanism such that individuals’ incentives

in the mechanism are “aligned” with its SCR, i.e., given the state, any Nash equilibrium

of the mechanism must lead to a socially desirable alternative and every socially desirable

alternative must be obtained under some Nash equilibrium of the mechanism. This is the

implementation problem under complete information.1 The standard mechanism used in

this literature has two components: a message space for each individual and a single out-

come function that maps everyone’s messages to an alternative. Thus, the planner collects

everyone’s messages and then decides on the outcome. This is analogous to direct democ-

racy since everyone’s opinions are considered while making the decision. However, direct

democracy is seldom used at national, state or even local levels. Indeed, when n is large,

it will be too costly and time consuming to collect everyone’s opinions while making social

decisions. By the time a data collector gathers everyone’s opinions, the state of the economy

might change, rendering the whole exercise meaningless.

In this paper, we augment the standard mechanism with a political process that selects a

senate (i.e., a subset of the individuals) with an exogenous probability distribution.2 Thus,

a mechanism now has three components: a message space for each individual, a political

process, and a set of outcome functions, one for each possible senate, that map messages

of the senators to alternatives. This mechanism defines a strategic-form game in which

all individuals simultaneously announce their messages. The political process then selects

the senate and transmits the messages of only the selected senators to the planner; the

messages of other individuals are ignored.3 Finally, the planner implements an alternative

using the transmitted messages and the outcome function of the corresponding senate. We

are interested in the relationship between a political process and the SCRs that a community

can “implement” if it were to adopt a mechanism which uses that political process.

In designing the mechanism, the planner could face two alternative scenarios. First, the

planner could be restricted to use a specific political process. In this case, we say that

an SCR is implementable by the political process p or p–implementable if there exists a

mechanism that uses p as the political process and the set of Nash equilibrium outcomes

1See Maskin and Sjöström (2002) and Serrano (2004) for surveys of implementation theory.
2Alternatively, one can consider political processes in which the senate is selected endogenously, e.g.,

through elections. This is an interesting area of research that we hope will be pursued in future.
3It is possible to alter the mechanism so that an individual announces a message if and only if she

is selected as the senator (see Remark 2.10). There is no change in our results under this participation
requirement.
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of the mechanism coincides with the SCR in each state. Although lotteries over the set of

alternatives can be generated in the mechanism (since the selection of the senate under p

could be stochastic), only off-the-equilibrium outcomes can be lotteries. Nash equilibrium

outcomes are deterministic with the same socially desirable alternative being implemented

for all possible senates. Second, the planner could have the flexibility to use any political

process. In this case, we say that an SCR is implementable by a political process if there

exists some political process p such that the SCR is p–implementable. We study both these

scenarios in this paper.

First, consider the scenario when the planner must use a specific political process. In

his seminal contribution, Maskin (1999) studied Nash implementation which is equivalent to

implementation by the process of direct democracy. In direct democracy, the probability of

referendum (i.e., selecting the set of all individuals as the senate) is 1 and hence, messages of

all individuals determine the outcome. Maskin (1999) showed that any Nash implementable

SCR must be Maskin monotonoic. He further proved that if n ≥ 3, then Maskin monotonicity

and no-veto power are sufficient conditions for an SCR to be Nash implementable.4 It follows

that in economic environments (i.e., when at most n − 2 individuals have a common most-

preferred alternative) with at least 3 individuals, Maskin monotonicity is sufficient for Nash

implementation. We use these results for Nash implementation as benchmarks. In particular,

for each political process p, we are interested in knowing whether every SCR that is Nash

implementable is also p–implementable. If the answer is yes, then replacing direct democracy

with such a political process that considers the messages of a smaller number of individuals

can reduce the costs and time involved in collecting everyone’s opinions.5

We prove that a necessary condition for an SCR to be p–implementable is that it is p–

monotonic. Maskin monotonicity is equivalent to p–monotonicity when p is direct democracy.

More generally, if p is such that every individual has a positive chance of being selected as

a senator, then p–monotonicity is weaker than Maskin monotonicity. This is because the

planner can now implement lotteries over alternatives on off-the-equilibrium paths whenever

p is stochastic, which provides greater flexibility than in Nash implementation where she

is restricted to implement only alternatives.6 On the other hand, if p is such that some

4For necessary and sufficient conditions for Nash implementation see Moore and Repullo (1990), Sjöström
(1991), Danilov (1992) and Yamato (1992).

5We do not explicitly model such costs of collecting messages. One possibility is to assume that there is a
fixed cost of collecting each message equal to c. In Section 8, we briefly discuss the implication of our results
under this assumption. We must also point out that we do not consider the issue of communication and
processing burdens imposed on, respectively, the individuals and planner due to large size of the message space
(see, for e.g., Saijo (1988) and McKelvey (1989), who tackle this issue in the context of Nash implementation).

6Benôıt and Ok (2008, Remark 3) provide an example to show that Maskin monotonicity is not necessary
for Nash implementation if the planner can implement lotteries and use her knowledge about individuals’
preferences over lotteries.
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individuals have no chance of being selected as senators, then p–monotonicity is stronger

than Maskin monotonicity.

Restricting attention to those p that always select at least three senators and have a pos-

itive chance of referendum, we prove that in economic environments, p–monotonicity is also

sufficient for p–implementation. Since p–monotonicity is weaker than Maskin monotonicity

for such p, we obtain the result that in economic environments, any Maskin monotonic SCR

can be implemented by any political process that always selects at least three senators and

has a positive – no matter how small – chance of referendum.

We then study three specific political processes: oligarchy, oligarchic democracy and

random sampling. In oligarchy, the senate comprises of a particular strict subset of the

individuals (the oligarchs) with probability 1. Thus, only the messages of the oligarchs de-

termine the implemented alternative. Oligarchic democracy is a perturbation of the oligarchy

in which the senate “almost always” comprises of the oligarchs but there is a small positive

chance of referendum. That is, in an oligarchic democracy, the messages of only the oli-

garchs determine the implemented alternative with probability “arbitrarily” close to 1 while

with the rest of the probability, the messages of all individuals determine the implemented

alternative. Finally, in random sampling, a fixed number of individuals, which is strictly less

than n, are selected at random to form the senate and only the messages of these randomly

selected individuals determine the implemented alternative.

We show that any SCR that is implementable by oligarchy is also Nash implementable by

making the outcome function under the direct democracy unresponsive to the messages of

the commoners (individuals who are not in the oligarchy). However, the converse is not true:

we present an SCR that is Nash implementable but not implementable by any oligarchy. The

reason is that p–monotonicity when p is oligarchy is stronger than Maskin monotonicity since

messages of the commoners are ignored in the oligarchy.

The perturbed process of oligarchic democracy, on the other hand, generates dramati-

cally opposite conclusions. Our sufficiency result for political processes that always select at

least three senators and have a positive chance of referendum gives us the following corol-

lary: in economic environments, any Nash implementable – and sometimes even non-Maskin

monotonic – SCR is implementable by oligarchic democracy that has at least three oligarchs.

The identities of the oligarchs do not matter for this result; any three individuals can be

designated as the oligarchs. This success of oligarchic democracy, however, does not carry

over to noneconomic environments. We give an example of a noneconomic environment and

an SCR that is Nash implementable but not implementable by oligarchic democracy with

any subset of the individuals designated as the oligarchs. The reason for this failure of oli-

garchic democracy is the lack of “sufficient” diversity in the most-preferred alternatives of

4



the oligarchs. As we show, any SCR satisfying Maskin monotonicity and no-veto power can

be implemented by oligarchic democracy that has at least three oligarchs who never have a

common most-preferred alternative.

In random sampling, every individual has a positive chance of being a senator. Hence,

p–monotonicity when p is random sampling, or equivalently, the necessary condition for

implementation by random sampling is weaker than Maskin monotonicity. However, there

is no chance of referendum under random sampling. Still, we show that in those economic

environments in which each individual has at most a single most-preferred alternative, the

necessary p–monotonicity condition for implementation by random sampling is also sufficient

if the sample size is at least 4. In arbitrary economic – and some noneconomic – environments,

we show that any Maskin monotonic SCR is implementable by random sampling if the

sample size is at least 4. Thus, in economic environments, instead of collecting everyone’s

messages, the planner can collect messages of only 4 randomly selected individuals in order

to implement any Nash implementable SCR. Four is the minimal sample size that guarantees

this result. We present an SCR that is Nash implementable in an economic environment but

not implementable by random sampling when the sample size is smaller than 4.

Second, consider the scenario when the planner has the flexibility to use any political

process. Our results for the first scenario immediately imply that an SCR is implementable

by a political process only if it is p–monotonic for some political process p. The set of SCRs

that are p–monotonic for some p of course includes the set of all Maskin monotonic SCRs.

However, there are SCRs that are not p–monotonic for any p and hence, not implementable

by a political process. Under a stronger assumption on preferences over lotteries, we show

that in economic environments, any SCR that is p–monotonic for some p that always selects

at least three senators is implementable by a political process.

Under mild domain restrictions, Bochet (2007) and Benôıt and Ok (2008) show that

Maskin monotonicity is both necessary and sufficient for implementation using lottery mech-

anisms. In a lottery mechanism, off-the-equilibrium outcomes can be lotteries over alterna-

tives but equilibrium outcomes are deterministic. Maskin monotonicity remains necessary

because the planner has limited information about individuals’ preferences over lotteries; she

only knows that these are “monotonic”. Hence, she must design a mechanism that works for

all possible “monotonic” preferences over lotteries that agree on the ordering of alternatives.

We instead assume that the planner knows individuals’ preferences over lotteries and uses

this information in designing the mechanism. Therefore, for some political processes, we

obtain weaker necessary conditions than Maskin monotonicity. Another difference between

theirs and our setup is that in lottery mechanisms, arbitrary lotteries can be used off the

equilibrium whereas the “structure” of off-the-equilibrium lotteries in our model is defined
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by the specific stochastic selection of senates.7

The rest of the paper is organized as follows. We outline the model and provide main

definitions in Section 2. In Section 3, we study the scenario when the planner is restricted

use a specific political process. In Sections 4, 5 and 6, we present the results for, respectively,

implementation by oligarchy, oligarchic democracy and random sampling. In Section 7, we

study the scenario when the planner has the flexibility to use any political process. We

provide a brief conclusion in Section 8. Longer proofs are collected in Appendix.

2 Preliminaries

There is a finite set of players N = {1, . . . , n} with n ≥ 3. The set of social alternatives is A,

which can be infinite but not singleton. A lottery l is a probability distribution with a finite

support in A. For any lottery l, let l(a) denote the probability assigned by l to a ∈ A and

A(l) denote the support of l. We write a for both the alternative a ∈ A and the degenerate

lottery that puts probability 1 on a. Let ∆A denotes the set of lotteries.

Let Θ be set of states with at least two elements. A typical state is denoted by θ. We

assume that the players have complete information about the realized state.

Each player has a state dependent preference ordering (i.e., complete and transitive

relation) �θi over ∆A.8 Let �θi and ∼θi denote, respectively, the strict and indifference

relations derived from �θi .
For any i and θ, let A∗i (θ) = {a ∈ A : a �θi a′, ∀a′ ∈ A} be the set of most-preferred

alternatives for i in state θ. Since A could be infinite, without additional assumptions, A∗i (θ)

could be empty.

For any i, θ, finite A′ ⊆ A, and for all natural numbers k ≥ 1, recursively define:

P1(i, θ, A′) = {a ∈ A′ : a �θi a′,∀a′ ∈ A′}

Pk+1(i, θ, A′) = {a ∈ A′ \ Pk(i, θ, A′) : a �θi a′, ∀a′ ∈ A′ \ Pk(i, θ, A′)}.

Thus, P1(i, θ, A′) is the set of most-preferred alternatives in A′ for player i in state θ,

P2(i, θ, A′) is the set of second preferred alternatives in A′ for player i in state θ etc.

7Nevertheless, in their proofs, Bochet (2007) and Benôıt and Ok (2008) use simple lotteries with at
most two alternatives in their respective supports. This is similar to the lottery generated under oligarchic
democracy (because the senate is either the oligarchs or all individuals). In contrast to Bochet (2007) and
Benôıt and Ok (2008), however, commoners cannot induce a lottery in oligarchic democracy since their
messages are considered only in one senate.

8We take these state-dependent preference orderings over ∆A as primitives of the model instead of the
state-dependent preference orderings over the set of probability measures on A (set of probability measures
on A is in general a superset of ∆A). This is because every outcome in the mechanisms that we study lies
in ∆A.
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Unless stated otherwise, we maintain the following assumption on preferences:

Assumption 2.1. Preferences over Lotteries are Monotone: For all i ∈ N , θ ∈ Θ, and

l, l′ ∈ ∆A, we have

K∑
k=1

∑
a∈Pk(i,θ,A(l)∪A(l′))

l(a) ≥
K∑
k=1

∑
a∈Pk(i,θ,A(l)∪A(l′))

l′(a),∀K ≥ 1 =⇒ l �θi l′

and whenever at least one inequality is strict, then l �θi l′.

This assumption means that shifting probability weights from alternatives lower in the

preference ordering to alternatives higher in the preference ordering generates a preferred

lottery. It is weaker than imposing the independence axiom (Definition 7.4) on players’

preferences.

2.1 Environment

The environment is E =
〈
N,A,

(
(�θi )i∈N

)
θ∈Θ

〉
. We consider various classes of environments,

the most important being economic environment as defined by Bergemann and Morris (2008).

Definition 2.2. An environment E is economic in state θ if for any a ∈ A, there exist i 6= j

and alternatives ai and aj such that

ai �θi a and aj �θj a.

An environment E is economic if it is economic in every state θ ∈ Θ.

Observe that E is an economic environment if and only if in any state θ, an alternative

is most-preferred by at most n − 2 players, i.e.,
⋂
i∈S A

∗
i (θ) = ∅ for all S ⊆ N such that

|S| ≥ n− 1.

Benôıt and Ok (2008) define the following class of environments:

Definition 2.3. The environment E satisfies top-coincidence condition if for any θ ∈ Θ and

S ⊂ N such that |S| = n− 1,
⋂
i∈S A

∗
i (θ) is at most a singleton.

Thus, an environment that satisfies top-coincidence condition is such that in any state,

any subset of n−1 players have at most one unanimously most-preferred alternative. Clearly,

the class of environments identified by top-coincidence condition is weaker than the class of

economic environments.

We define two other classes of environments.
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Definition 2.4. The environment E satisfies unique-top condition if for all i ∈ N and θ ∈ Θ,

A∗i (θ) 6= ∅ =⇒ A∗i (θ) is singleton.

Thus, unique-top condition requires that whenever a player has a most-preferred alter-

native in some state, then that alternative is unique. An example of such an environment

is when all players have strict preferences. Another example is when all players have single-

peaked preferences over A. Clearly, any environment that satisfies unique-top condition must

also satisfy top-coincidence condition. However, there is no logical relation between the class

of economic environments and the class of environments satisfying the unique-top condition,

i.e., there can exist both economic environments that do not satisfy the unique-top condition

and noneconomic environments that satisfy the unique top condition.

Definition 2.5. Let S ⊆ N . The environment E satisfies diversity of top alternatives for

S (DTA-S) if for all θ ∈ Θ,
⋂
i∈S A

∗
i (θ) = ∅, i.e., there does not exist an alternative that is

unanimously most-preferred by every player in S.

Given S ⊆ N , there can exist both economic and noneconomic environments that sat-

isfy DTA-S. Moreover, if |S| ≥ n − 1, then every economic environment satisfies DTA-S.

However, if |S| ≤ n − 2, then there can exist economic environments that do not satisfy

DTA-S.

2.2 Social Choice Rules

Social goals are embodied in a social choice rule (SCR), which is a nonempty-valued corre-

spondence F : Θ � A.

The following two properties of SCRs are prominent in the literature on Nash implemen-

tation.

Definition 2.6. F is Maskin monotonic if whenever an alternative a ∈ F (θ) and a /∈ F (θ′)

for some θ and θ′, there exist player i ∈ N and a′ ∈ A such that

a �θi a′ and a′ �θ′i a.

Definition 2.7. F satisfies no-veto power if for any θ ∈ Θ and S ⊆ N such that |S| ≥ n−1,

we have ⋂
i∈S

A∗i (θ) ⊆ F (θ).

We will later introduce other notions of monotonicity and no-veto power among a subset

of the players.
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2.3 Mechanism

A social planner, who does not know the realized state, designs a mechanism in order to

“implement” an SCR. The standard definition of a mechanism has a message space for

each player and an outcome function that maps the messages of all players into the set of

alternatives. We augment this definition with a political process that selects a senate, i.e.,

a subset of the players. Ultimately, the outcome is a function of only the messages of the

selected senators.

Formally, let N = 2N \ ∅ be the set of all possible senates. By referendum we mean the

event in which N is selected as the senate.

Definition 2.8. A political process p is a lottery on N , i.e., p = (p(S))S∈N such that

p(S) ≥ 0,∀S ∈ N and
∑
S∈N

p(S) = 1.

Let P be the set of all political processes on N .

A mechanism is a triplet Γ = ((Mi)i∈N , p, (g
S)S∈N ), where

• Mi is the set of opinions or messages that player i can announce.

• p ∈ P is the political process for selecting a senate. If S ⊆ N is the selected senate,

then the messages of the players in S, (mi)i∈S, are transmitted to the planner and the

messages of all players j /∈ S are ignored.

• gS :
∏

i∈SMi → A is the outcome function conditional on the selection of the senate

S ⊆ N . Note that the outcome function gS is deterministic.

Let m denote a typical element of
∏

i∈N Mi. For any m ∈
∏

i∈N Mi and S ⊆ N , let mS

be the projection of m into
∏

i∈SMi (note that if S = N , then mN = m). That is, given any

profile m of messages of all players, mS is the profile of messages of only the players in S.

For any mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N ) and message profile m, let l[Γ,m] denote

the lottery that assigns to each a ∈ {gS(mS) : S ∈ N}, the probability
∑

S:gS(mS)=a p(S).

For any realization θ, a mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N ) defines a strategic-form

game 〈Γ, θ〉. In this game, each player i ∈ N announces a message mi ∈ Mi. Let m is

be generated message profile. Then a senate S ∈ N is selected according to the political

process p. The messages of the selected senators mS are transmitted to the planner who

then implements the alternative gS(mS).9 Thus, the outcome of message profile m is lottery

9Thus, players cannot change their messages after their selection as senators. This constraint is important
for our results. If after their selection, the senators are informed about each others identities and allowed
to change their messages, then the necessary condition for implementation by any political process will be
stronger than the necessary condition for implementation by oligarchy. Also see Remark 2.10.
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l[Γ,m]. The players’ preferences are given by the profile (�θi )i∈N . Let NE(Γ, θ) denote the

set of Nash equilibria of 〈Γ, θ〉.10

Definition 2.9. F is p–implementable if there exists a mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N )

such that {
l[Γ,m] : m ∈ NE(Γ, θ)

}
= F (θ),∀θ ∈ Θ.

F is implementable by a political process if it is p–implementable for some p ∈ P .

Thus, if mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N ) p–implements F , then (i) for any m ∈

NE(Γ, θ), we must have l[Γ,m] ∈ F (θ), i.e., l[Γ,m] is deterministic with gS(mS) = a ∈
F (θ) for all S with p(S) > 0 and (ii) for any a ∈ F (θ), there exists m ∈ NE(Γ, θ) such

that l[Γ,m] = a. Hence, although lottery p is used in the selection of the senators, p–

implementation requires exact implementation of the SCR.

Remark 2.10. In the strategic-form game defined by a mechanism, every player announces

a message even though a player’s message is ignored when she is not selected in the senate.

A more reasonable assumption is that a player announces a message if and only if she knows

that she is a senator. This alternative assumption can be easily incorporated into the model.

Suppose mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N ) p–implements F . Consider the following

extensive-form game: first, a senate S ∈ N is chosen using the political process p but the

selected senators in S are not informed about each other’s identities, i.e., each senator only

knows that she is selected. Then the senators in S announce their messages (mi)i∈S ∈∏
i∈SMi and alternative gS((mi)i∈S) is implemented. In this extensive-form game, every

player moves at exactly one information set and thus, it has the same strategic form as 〈Γ, θ〉
in each state θ. Hence, the extensive-form game also implements F in Nash equilibrium.11

This alternative game form resembles an “opinion poll” (e.g. a telephone survey) since

participants in such polls usually do not know each others’ identities.

Our definition of a political process is broad enough to include several procedures like

direct democracy, oligarchy, oligarchic democracy and random sampling that are used in

practice. We define these political processes next.

10Like most literature on implementation, we restrict ourselves to pure strategies.
11Under the stronger assumption that players’ preferences over lotteries satisfy the independence axiom,

we can argue that in each state θ, the set of Perfect Bayesian equilibria of the extensive-form game coincides
with the set of Nash equilibria of 〈Γ, θ〉. When a player is asked to play, she finds out that she is in the senate
but she does not know who else is in the senate. Due to the independence axiom, the player’s incentives in
the extensive-form game are the same as in 〈Γ, θ〉.
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2.4 Direct Democracy

We define direct democracy, denoted by pD, as the political process in which the proba-

bility of referendum is 1, i.e., pD ∈ P such that pD(N) = 1. Hence, in direct democ-

racy, every player’s message is transmitted to the planner. A direct-democratic mechanism,

ΓD = ((Mi)i∈N , pD, (g
S)S∈N ), is a mechanism that uses pD to select the senate.12 Note that

for any m ∈
∏

i∈N Mi, we have l[ΓD,m] = gN(m).

The literature has exclusively focused on direct-democratic mechanisms. The correspond-

ing notion of implementation is called Nash implementation.

Definition 2.11. F is Nash implementable if it is pD–implementable, i.e., there exists a

direct-democratic mechanism ΓD = ((Mi)i∈N , pD, (g
S)S∈N ) such that{

gN(m) : m ∈ NE(ΓD, θ)
}

= F (θ),∀θ ∈ Θ.

Maskin (1999) proves that Maskin monotonicity is necessary for Nash implementation.

Theorem 2.12 (Maskin (1999)). If F is Nash implementable, then F is Maskin mono-

tonic.

In general environments with at least three players, Maskin (1999) shows that Maskin

monotonicity and no-veto power are sufficient for Nash implementation.

Theorem 2.13 (Maskin (1999)). If n ≥ 3, then any Maskin monotonic SCR that satisfies

no-veto power is Nash implementable.

Since no-veto power is vacuously satisfied in economic environments, we have the follow-

ing corollary:

Corollary 2.14. F is Nash implementable in an economic environment with n ≥ 3 if and

only if it is Maskin monotonic.

2.5 Oligarchy

Let S be any proper subset of N . We define S oligarchy, denoted by pS, as the political

process that selects S as the senate with probability 1, i.e., pS ∈ P such that pS(S) = 1.

Hence, in S oligarchy, the messages of all players in S – the oligarchs – are transmitted to

12Since messages of all players are transmitted to the planner, we only need to specify the outcome function
gN as none of the other outcome functions are ever used in a direct democracy. However, we continue to list
these functions in the definition of direct-democratic mechanisms just to make it consistent with the general
definition of mechanisms given earlier. Similar remarks apply to other political processes.
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the planner whereas the messages of all players in N \ S – the commoners – are ignored.

An S-oligarchic mechanism, ΓS = ((Mi)i∈N , pS, (g
S′

)S′∈N ), is a mechanism that uses pS to

select the senate. Note that for any m ∈
∏

i∈N Mi, we have l[ΓS,m] = gS(mS).

Definition 2.15. Let S ⊂ N . F is implementable by S oligarchy if it is pS–implementable,

i.e., there exists an S-oligarchic mechanism ΓS = ((Mi)i∈N , pS, (g
S′

)S′∈N ) such that{
gS(mS) : m ∈ NE(ΓS, θ)

}
= F (θ), ∀θ ∈ Θ.

2.6 Oligarchic Democracy

Let S ⊂ N . By S-oligarchic democracy, we mean the political process in which either the

senate is S or there is a referendum but the probability of referendum is arbitrarily close to

0. To capture the idea of “arbitrarily close to 0”, we define a sequence of political processes

in which the probability of referendum is converging to 0.

Formally, for any S ⊂ N and ε ∈ (0, 1), let (S, ε)-oligarchic democracy, denoted by p(S,ε),

be the political process that selects S as the senate with probability 1 − ε and N as the

senate with probability ε. Hence, in (S, ε)-oligarchic democracy, either the messages of only

the players in S – the oligarchs – are transmitted to the planner with probability 1 − ε or

the messages of all players in N are transmitted to the planner with probability ε. An (S, ε)-

oligarchic-democratic mechanism, Γ(S,ε) = ((Mi)i∈N , p(S,ε), (g
S′

)S′∈N ), is a mechanism that

uses p(S,ε) to select the senate. Note that for any m ∈
∏

i∈N Mi, lottery l[Γ(S,ε),m] assigns

probability 1− ε to alternative gS(mS) and probability ε to alternative gN(m).

Definition 2.16. Let S ⊂ N . F is implementable by S-oligarchic democracy if there exists

a sequence of (S, εk)-oligarchic democracies
(
p(S,εk)

)∞
k=1

such that

(i) limk→∞ εk = 0 and

(ii) for all k, F is p(S,εk)–implementable, i.e., there exists an (S, εk)-oligarchic-democratic

mechanism Γ(S,εk) = ((Mi)i∈N , p(S,εk), (g
S′

)S′∈N ) such that{
l[Γ(S,εk),m] : m ∈ NE(Γ(S,εk), θ)

}
= F (θ),∀θ ∈ Θ.

Condition (i) in the above definition formalizes the idea that the probability of referendum

is “arbitrarily close to 0”. Condition (ii) requires exact implementation by every political

process p(S,εk). In particular, if m ∈ NE(Γ(S,εk), θ), then l[Γ(S,εk),m] is deterministic with

gS(mS) = gN(m) ∈ F (θ).
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2.7 Random Sampling

The final political process that we consider is n̄-random sampling. In this process, denoted

by pn̄, a senate of fixed positive size n̄ < n is randomly selected from the set of all play-

ers. Let Nn̄ denote the set of all senates S ∈ N such that |S| = n̄. Thus, in random

sampling, the senate is equally likely to be any S ∈ Nn̄ and the messages of such a ran-

domly chosen sample of players are transmitted to the planner. The n̄-sampling mechanism,

Γn̄ = ((Mi)i∈N , pn̄, (g
S′

)S′∈N ), is a mechanism that uses pn̄ to select the senate. Note that for

any m ∈
∏

i∈N Mi, lottery l[Γn̄,m] is such that for all S ∈ Nn̄, it assigns probability 1/|Nn̄|
to the alternative gS(mS).

Definition 2.17. F is implementable by n̄-random sampling if it is pn̄–implementable, i.e.,

there exists an n̄-sampling mechanism Γn̄ = ((Mi)i∈N , pn̄, (g
S)S∈N ) such that{

l[Γn̄,m] : m ∈ NE(Γn̄, θ)
}

= F (θ),∀θ ∈ Θ.

Thus, implementation by n̄-random sampling requires exact implementation of the SCR

even though a lottery is used in the sampling of the messages.

3 p–Implementation

In this section, we consider the situation when the planner is restricted to use a given political

process p. Thus, the relevant notion of implementation is p–implementation. We now provide

the necessary and sufficient conditions for p–implementation.

3.1 Necessary Condition

For any p ∈ P and function h : N → A, define the lottery induced by [p, h], denoted by l[p, h],

as the lottery that assigns to each a ∈ {h(S) : S ∈ N}, the probability
∑

S∈N :h(S)=a p(S).

Also, let N (i) = {S ∈ N : i ∈ S} be the set of those senates in which player i is a senator.

Definition 3.1. F is p–monotonic for a given p ∈ P if whenever a ∈ F (θ) and a /∈ F (θ) for

some a, θ and θ′, then there exist player i ∈ N and function hi : N → A such that

hi(S) = a,∀S ∈ N \ N (i) with p(S) > 0, a �θi l[p, hi] and l[p, hi] �θ
′

i a.

Thus, p–monotonicity requires that whenever an alternative a drops out of the SCR

in going from θ to θ′, then there must exist a player i for whom there is reversal of her

preferences over lotteries around a (i.e., there is a lottery that she weakly prefers to a in θ

13



but this is not true in θ′), where we consider only those lotteries that are induced by [p, hi]

for any hi : N → A with the property that hi(S) = a for all S ∈ N \ N (i) with p(S) > 0.

The following theorem shows that p–monotonicity is necessary for p–implementation.

Theorem 3.2. If F is p–implementable, then F is p–monotonic.

Proof. Let Γ = ((Mi)i∈N , p, (g
S)S∈N ) be the mechanism that p–implements F . Suppose there

exist a, θ and θ′ such that a ∈ F (θ) but a /∈ F (θ′). Then there must exist m ∈ NE(Γ, θ)

with l[Γ,m] = a, i.e., gS(mS) = a for all S ∈ N such that p(S) > 0. Since a /∈ F (θ′), it must

be that m /∈ NE(Γ, θ′). Hence, there must exist i ∈ N and m′i ∈Mi such that

a �θi l[Γ, (m′i,m−i)] and l[Γ, (m′i,m−i)] �θ
′

i a.

Define function hi : N → A such that hi(S) = gS((m′i,m−i)
S) for all S ∈ N . Then hi(S) = a

for all S ∈ N \ N (i) such that p(S) > 0. Moreover, lottery l[p, hi] = l[Γ, (m′i,m−i)]. Hence,

player i and function hi satisfy the required condition in p–monotonicity.

The proof clarifies why p–monotonicity requires the particular reversal of preferences over

lotteries. Under the political process p, the message of player i is considered only if she is

selected as the senator. Hence, by changing her message, player i can in principle change

only those alternatives that are implemented under senates S ∈ N (i). As a result, player i

is only able to generate a lottery that is induced by [p, hi], where hi : N → A is constant

over all S ∈ N \ N (i) that can be selected with positive probability.

If the political process is pD, then for any hi : N → A, the lottery l[pD, hi] assigns

probability 1 to the alternative hi(N). Hence, if player i has a reversal of her preferences

over lottery l[pD, hi] around a (i.e., a �θi l[pD, hi] and l[pD, hi] �θ
′
i a), then it is equivalent to

player i having a reversal of her preferences over alternative hi(N) around a (i.e., a �θi hi(N)

and hi(N) �θ′i a). This observation implies that Maskin monotonicity is equivalent to pD–

monotonicity. We note this result below (proof is omitted):

Proposition 3.3. F is Maskin monotonic if and only if it is pD–monotonic.

On the other hand, there are political processes p such that p–monotonicity is weaker than

Maskin monotonicity. In particular, if p is such that every player has a positive probability

of being selected in some senate, then any Maskin monotonic SCR is also p–monotonic.

Intuitively, whenever a drops out of the SCR, Maskin monotonicity requires that some

player has a reversal of her preferences over alternatives around a, which is stronger than

that player having a reversal of her preferences over lotteries around a. Formally, we have:
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Lemma 3.4. If F is Maskin monotonic, then F is p–monotonic for any p ∈ P such that

for all i ∈ N , there exists an S ∈ N (i) with p(S) > 0.

Proof. Suppose a ∈ F (θ) but a /∈ F (θ′). By Maskin monotonicity, there exist player i and

alternative a′ such that a �θi a′ and a′ �θ′i a.

Define the mapping hi : N → A such that hi(S) = a′,∀S ∈ N (i), and hi(S) = a,∀S ∈
N \ N (i). By assumption, there exists an S ∈ N (i) such that p(S) > 0. Therefore, lottery

l[p, hi] puts a positive probability on a′. Moreover, a is the only other alternative that could

be in the support of l[p, hi]. Since preferences over lotteries are monotone,

a �θi a′ =⇒ a �θi l[p, hi] while a′ �θ′i a =⇒ l[p, hi] �θ
′

i a.

Hence, F is p–monotonic.

In fact, there are p–implementable – and hence, p–monotonic – SCRs that are not Maskin

monotonic. Consider the following example:

Example 3.5 (King Solomon’s Dilemma). Two women, Ann (1) and Beth (2), approach

King Solomon both claiming to be the mother of a baby. There are two states, {θ, θ′}, with

Ann (Beth) being the true mother in state θ (θ′). There are four alternatives, {a, b, c, d}
where a is to give the baby to Ann, b is to give the baby to Beth, c is to cut the baby in

half, and d is to kill both women and child. The women’s preferences over alternatives are:

θ θ′

a �θ1 b �θ1 c �θ1 d a �θ′1 c �θ′1 b �θ′1 d

b �θ2 c �θ2 a �θ2 d b �θ′2 a �θ′2 c �θ′2 d

King Solomon’s SCR is to give the baby to the true mother, i.e., F (θ) = a and F (θ′) = b.

However, this SCR is not Maskin monotonic and hence, not Nash implementable.

Now, suppose there exists a lottery l ∈ ∆A such that:

• l(c) = 0 and

• for Ann, l �θ1 b but b �θ′1 l, and symmetrically for Beth, l �θ′2 a but a �θ2 l.

Since preferences over lotteries are monotone and l �θ1 b, we have l(a) > 0; similarly,

since l �θ′2 a, we have l(b) > 0; and finally, since b �θ′1 l and a �θ2 l, it must be that

l(d) > 0. Intuitively, when a woman is the true mother, she is willing to risk death for all

to obtain the baby for herself rather than give the baby to the other woman but when she

is not the true mother, she is not willing to take the same risk. As an example, suppose
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both Ann and Beth have expected-utility preferences with the following Bernoulli utilities:

uθ1(a) = uθ
′

2 (b) = 3000, uθ1(b) = uθ
′

2 (a) = 50, uθ1(c) = uθ
′

2 (c) = 1, uθ1(d) = uθ
′

2 (d) = 0,

uθ
′

1 (a) = uθ2(b) = 50, uθ
′

1 (c) = uθ2(c) = 2, uθ
′

1 (b) = uθ2(a) = 1 and uθ
′

1 (d) = uθ2(d) = 0. Then the

lottery l such that l(a) = l(b) = 1
52

, l(c) = 0 and l(d) = 50
52

satisfies the above requirement.

Now, consider the following mechanism Γ:

• Mi = {θ, θ′} for all i ∈ {1, 2}.

• p ∈ P is such that p({1}) = l(a), p({2}) = l(b) and p({1, 2}) = l(d).

• g{1}(θ) = a and g{1}(θ′) = b; g{2}(θ) = a and g{2}(θ′) = b; and g{1,2}(θ, θ) = a,

g{1,2}(θ′, θ′) = b and g{1,2}(θ, θ′) = g{1,2}(θ′, θ) = d.

In this mechanism, each woman announces whether the state is θ or θ′. According to p,

King Solomon collects only Ann’s message with probability l(a), only Beth’s message with

probability l(b) and both women’s messages with probability l(d). If only one woman’s

message is collected, then King Solomon gives the baby to that woman who is the true

mother in the announced state. If both women’s messages are collected, then King Solomon

faces two possibilities: if both women agree on the state, then he gives the baby to that

woman who is true mother in agreed state whereas if they disagree, then he kills everyone.

We show that (θ, θ) is the only Nash equilibrium of Γ in state θ. Fix state θ and consider

the message profile (θ, θ). In this profile, a is implemented in every senate. Ann would not

deviate to θ′ because then she does not obtain her baby with a positive probability. On the

other hand, if Beth deviates to θ′, then the outcome is lottery l. But a �θ2 l. Hence, (θ, θ)

is an equilibrium in state θ and l[Γ, (θ, θ)] = a. Now, let us show that any other message

profile is not an equilibrium in state θ. First, (θ′, θ′) with outcome b in every senate is not

an equilibrium because if Ann deviates to θ, then the outcome will be lottery l and l �θ1 b.
Second, (θ, θ′) with outcome l is not an equilibrium because if Beth deviates to θ, then a

is implemented in every senate and a �θ2 l. Finally, (θ′, θ) is not an equilibrium because

Ann does not obtain her baby with a positive probability but by deviating to θ, Ann would

obtain her baby for sure. Similarly, (θ′, θ′) is the only Nash equilibrium in state θ′ and

l[Γ, (θ′, θ′)] = b. Hence, F is p–implementable. �

Here we note that for certain other preferences of the women, King Solomon’s SCR is

not implementable by any political process p.

Finally, there are also political processes p such that p–monotonicity is stronger than

Maskin monotonicity. This is the case for S oligarchy pS (see Example 4.7) since some

players are never selected as senators.
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3.2 Sufficient Conditions

Theorem 3.6. Let n ≥ 3 and E be an economic environment. If F is p–monotonic for

p ∈ P such that p(N) > 0 and p(S) > 0 only if |S| ≥ 3, then F is p–implementable.

Sketch of the proof : Consider mechanism Γ = ((Mi)i∈N , p, (g
S)S∈N ) in which for all i ∈ N ,

Mi = Θ× A× · · · × A︸ ︷︷ ︸
|N (i)|+1

×Z+,

where Z+ is the set of nonnegative integers. Note that since |N (i)| = |N (j)| for all i, j, the

numbers of components in the players’ messages are equal. Let a typical message mi be of

the form (θi, a
1
i , (a

S′
i )S′∈N (i), zi).

13 For each S ∈ N , the outcome function gS is as follows:

(i) If for every player i ∈ S, mi = (θ, a1
i , a, . . . , a, 0) and a ∈ F (θ), then gS

(
(mi)i∈S

)
= a.

(ii) If for |S| − 1 players i 6= j in S, mi = (θ, a1
i , a, . . . , a, 0) and a ∈ F (θ), but mj =

(θj, a
1
j , (a

S′
j )S′∈N (j), zj) 6= (θ, a1

j , a, . . . , a, 0), then

gS
(
(mi)i∈S

)
=

{
a if l[p, hj] �θj a
aSj if a �θj l[p, hj],

where hj : N → A is such that

hj(S
′) =

{
aS

′
j if S ′ ∈ N (j)

a if S ′ ∈ N \ N (j).

(iii) In all other cases, gS
(
(mi)i∈S

)
= a1

j where j ∈ S is the player with the lowest index

among those who announce the highest integer in (mi)i∈S.14

13The size of the message space for each player can be reduced by replacing (aS
′

i )S′∈N (i), i.e., one alternative

for each senate in N (i), with (aS
′

i )S′∈N (i):p(S′)>0, i.e., one alternative for only those senates S′ ∈ N (i) with
p(S′) > 0. However, this will make the exposition cumbersome.

14The advantage of the integer game in our framework is that by announcing a high enough integer, a
player can win the integer game in every senate. Notice that this cannot be achieved by using the modulo
game in which each player announces a single integer. A particular integer might make the player win the
modulo game in one senate but at the same time she could lose the modulo game in some other senate.
Hence, in order to replace the integer game with the modulo game, we need each player to announce as
many integers between 1 and n as the number of senates she can be a member of, |N (i)|. All proofs, except
that of Theorem 6.5, can be altered in this fashion without changing the results. In contrast, the proof of
Theorem 6.5 relies heavily on the existence of one player who has the lowest index among those who announce
the highest integer in the whole population. Thus, replacing the integer game with the modulo game seems
difficult in that proof. However, the use of both these games in implementation has been criticized; see
Jackson (1992).
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Interpret aS
′

i as the alternative player i wants to implement under senate S ′ ∈ N (i).

Thus, each player announces a state θi, an alternative a1
i , alternatives aS

′
i that she wants to

implement under each senate S ′ ∈ N (i) and an integer zi. For any senate S, the outcome

function gS is defined like in the canonical mechanism of Maskin (1999) with three rules.

The first rule is used when all the messages received by the planner agree on the state, want

a unique socially desirable alternative to be implemented under each senate and announce

integer 0 (notice that the planner ignores the second component a1
i in this rule). In this case,

the planner implements the commonly agreed alternative. Thus, if each player announces

the true state θ, a fixed a ∈ F (θ) for each senate and integer 0, then the first rule ensures that

a is implemented under each senate. The second rule guarantees that such a message profile

is an equilibrium. If player j unilaterally deviates in this situation (unilateral deviations can

be identified since p(S) > 0 only if |S| ≥ 3), then in each S ′ ∈ N (j), the planner implements

the alternative aS
′

j wanted by player j under senate S ′ if and only if by doing so in every

such senate (which generates lottery l[p, hj]) would not make player j better-off.

The second rule also allows the planner to use p–monotonicity of the SCR to eliminate

the possibility that when the true state is θ, players agree in their messages but on a “bad”

alternative, i.e., all the players announce that the state is θ′, alternative a ∈ F (θ′) for each

senate and integer 0 but a /∈ F (θ). In such a situation, the second rule gives any player j

the opportunity to unilaterally deviate and implement a strictly preferred lottery l[p, hj] by

using the reversal of her preferences over such lotteries around the “bad” alternative a. This

is done by implementing whatever player j wants under each senate S ′ ∈ N (j).

Finally, the third rule eliminates the possibility of any equilibria other than those in

which all players agree in their messages. In these situations, at least n− 1 players are such

that each of them can implement her most-preferred alternative (proof takes care of the case

when this does not exist) under senate N by announcing such an alternative in the second

component of her message and a high enough integer. However, such a deviation will be

improving if it does not cause a worse alternative to be implemented under other senates

S 6= N . This is obviously the case if the senate does not include the deviating player. On

the other hand, if the senate includes the deviating player and the third rule is used in that

senate, then the deviating player still gets her most-preferred alternative. Finally, even in

those senates that include the deviating player but in which the second rule is used, the

deviating player ensures that a worse alternative is not implemented since the second rule

does not depend on the altered components (i.e., the second and last) of her message. Thus,

in such equilibria, the alternative implemented under senate N must be most-preferred by at

least n− 1 players, which contradicts with the assumption of economic environment. These

arguments are formalized in the proof presented in the Appendix. �
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It is worth emphasizing the role of each assumption in the above result. Firstly, p–

monotonicity ensures that any agreement on a “bad” alternative is avoided by giving each

player the option to announce one alternative for each senate in which she could be a senator.

Secondly, p(S) > 0 only if |S| ≥ 3 ensures that the planner can identify unilateral deviations

in each senate. Finally, a positive chance of referendum, i.e., p(N) > 0, in conjunction with

economic environment ensure that any disagreement is avoided.

Since any Maskin monotonic SCR is also p–monotonic for any p with p(N) > 0 (see

Lemma 3.4), we obtain the following corollary:

Corollary 3.7. Let n ≥ 3 and E be an economic environment. If F is Maskin monotonic,

then F is p–implementable for any p such that p(N) > 0 and p(S) > 0 only if |S| ≥ 3.

Hence, in economic environments, any Nash implementable SCR can be implemented

using any political process that always selects at least three senators and has a positive

chance – no matter how small – of referendum. However, as we will show later in Example

5.8, this result is not true in noneconomic environments.

4 Implementation by Oligarchy

Consider any set of oligarchs S ⊂ N . Since pS puts probability 1 on the senate S, for any

hi : N → A, the lottery l[pS, hi] assigns probability 1 to the alternative hi(S). Hence, if

player i has a reversal of her preferences over lottery l[pS, hi] around a, then it is equivalent

to player i having a reversal of her preferences over alternative hi(S) around a. Furthermore,

since messages of the commoners are ignored, only the preference reversals of the oligarchs

matter. These observations imply the following result (proof is omitted):

Proposition 4.1. Let S ⊂ N . F is pS–monotonic if and only if whenever a ∈ F (θ) and

a /∈ F (θ′) for some a, θ and θ′, there exist player i ∈ S and a′ ∈ A such that

a �θi a′ and a′ �θ′i a.

Theorem 3.2 implies the following necessary condition for implementation by S oligarchy:

Corollary 4.2. If F is implementable by S oligarchy, then F is pS–monotonic.

Clearly, pS–monotonicity is stronger than Maskin monotonicity.

Definition 4.3. Let S ⊂ N . F satisfies S-no-veto power if for any θ ∈ Θ and S ′ ⊆ S such

that |S ′| ≥ |S| − 1, we have ⋂
i∈S′

A∗i (θ) ⊆ F (θ).
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Notice that an S oligarchy in environment E =
〈
N,A,

(
(�θi )i∈N

)
θ∈Θ

〉
is equivalent to

a direct democracy in the restricted environment E(S) =
〈
S,A,

(
(�θi )i∈S

)
θ∈Θ

〉
. Hence, the

sufficient conditions for implementation by S oligarchy in environment E will be equivalent

to the corresponding conditions for Nash implementation in environment E(S). We thus

obtain the following corollary from Theorem 2.13:

Corollary 4.4. If 3 ≤ |S| < n, then any SCR that satisfies pS–monotonicity and S-no-veto

power is implementable by S oligarchy.

Since S-no-veto power is vacuously true if E(S) is an economic environment, we also have

the following result:

Corollary 4.5. Suppose 3 ≤ |S| < n and E(S) is an economic environment. F is imple-

mentable by S oligarchy if and only if it is pS–monotonic.

4.1 Comparison with Nash Implementation

Proposition 4.6. If F is implementable by S oligarchy for some S ⊂ N , then F is Nash

implementable.

Proof. Let ΓS = ((Mi)i∈N , pS, (g
S′

)S′∈N ) be the S-oligarchic mechanism that pS–implements

F . Define the direct democracy ΓD = ((Mi)i∈N , pD, (ĝ
S′

)S′∈N ) with ĝN(m) = gS(mS),∀m ∈
M , and ĝS

′
= gS

′
,∀S ′ 6= N . It is easy to show that for all θ, we have m ∈ NE(ΓS, θ) ⇐⇒

m ∈ NE(ΓD, θ), and hence, the result follows.

Thus, in any environment, any SCR that is implementable by an oligarchy is also im-

plementable by direct democracy (i.e., Nash implementable). However, the converse is not

true. That is, there are SCRs that are Nash implementable but not implementable by S

oligarchy for any S ⊂ N . Consider the following example:

Example 4.7. Let N = {1, 2, 3, 4}, A = {a, b, c, d} and Θ = {θ, θ′}. The players’ preferences

over alternatives are:
θ θ′

a �θ1 b �θ1 c �θ1 d b �θ′1 a �θ′1 c �θ′1 d

b �θ2 c �θ2 d �θ2 a c �θ′2 b �θ′2 d �θ′2 a

c ∼θ3 d �θ3 a �θ3 b d �θ′3 c �θ′3 a �θ′3 b

a �θ4 d �θ4 b �θ4 c d ∼θ′4 a �θ′4 b �θ′4 c

Let F be such that F (θ) = {a, b, c} and F (θ′) = {d}. Player 1 is the only player i for whom

there exists an alternative â such that a �θi â and â �θ′i a. Player 2 is the only player i for
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whom there exists an alternative â such that b �θi â and â �θ′i b. Player 3 is the only player

i for whom there exists an alternative â such that c �θi â and â �θ′i c. Finally, player 4 is the

only player i for whom there exists an alternative â such that d �θ′i â and â �θi d. Hence, F is

Maskin monotonic but not pS–monotonic for any S ⊂ N . Since the environment is economic,

it follows that F is Nash implementable but not implementable by any S oligarchy. �

5 Implementation by Oligarchic Democracy

5.1 Necessary Condition

Definition 5.1. Let S ⊂ N . F is weak pS–monotonic if there exists a sequence of (S, εk)-

oligarchic democracies
(
p(S,εk)

)∞
k=1

such that

(i) limk→∞ εk = 0 and

(ii) for all k, F is p(S,εk)–monotonic.

Weak pS–monotonicity can alternatively be characterized as follows:

Proposition 5.2. Let S ⊂ N . F is weak pS–monotonic if and only if there exists a sequence

(εk)
∞
k=1 with εk ∈ (0, 1), for all k, and limk→∞ εk = 0 such that whenever a ∈ F (θ) and

a /∈ F (θ′) for some a, θ and θ′ then for all k either:

(i) there exist player ik /∈ S and alternative a′k such that a �θik a
′
k and a′k �θ

′
ik
a or

(ii) there exist player ik ∈ S, lottery lk, and alternatives âk and ãk such that

lk(âk) = εk, lk(ãk) = 1− εk, a �θik lk and lk �θ
′

ik
a.

Thus, weak pS–monotonicity requires that there exists a sequence of positive probabilities

εk converging to 0 such that whenever an alternative a drops out of the SCR in going from

state θ to θ′, then for all k there must exist either a commoner with a reversal of preferences

over alternatives around a or an oligarch with a reversal of preferences over lotteries around a,

where we consider only those lotteries that have at most two alternatives in their supports and

assign probability of εk to one of those alternatives. This difference between the commoners

and oligarchs is because in any (S, ε)-oligarchic democracy, the senate can be either S with

probability 1− ε or N with probability ε, and the messages of the commoners are considered

only under senate N whereas the messages of the oligarchs are considered under both senates.

As a corollary of Theorem 3.2, we obtain that weak pS–monotonicity is a necessary

condition for implementation by S-oligarchic democracy.
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Corollary 5.3. If F is implementable by S-oligarchic democracy, then F is weak pS–

monotonic.

Proof. If F is implementable by S-oligarchic democracy, then there exists a sequence of

(S, εk)-oligarchic democracies
(
p(S,εk)

)∞
k=1

such that (i) limk→∞ εk = 0 and (ii) for all k, F is

p(S,εk)–implementable. Theorem 3.2 implies that for all k, F is p(S,εk)–monotonic.

Consider any (S, ε)-oligarchic democracy p(S,ε). Since p(S,ε)(N) > 0, any Maskin mono-

tonic SCR is also p(S,ε)–monotonic (Lemma 3.4). Hence, we obtain the following corollary:

Corollary 5.4. If F is Maskin monotonic, then F is weak pS-monotonic for all S ⊂ N .

5.2 Economic Environments

5.2.1 Sufficient Condition

It turns out, if there are at least three oligarchs in S, then weak pS–monotonicity of an SCR

is also a sufficient condition for its implementation by S-oligarchic democracy in economic

environments. This follows as a corollary of Theorem 3.6.

Corollary 5.5. Suppose 3 ≤ |S| < n and E is an economic environment. If F is weak

pS–monotonic, then F is implementable by S-oligarchic democracy.

Proof. Let
(
p(S,εk)

)∞
k=1

be the sequence of (S, εk)-oligarchic democracies that make F weak

pS–monotonic. By definition of (S, εk)-oligarchic democracy, εk ∈ (0, 1),∀k. We also know

that limk→∞ εk = 0 and for each k, F is p(S,εk)–monotonic. Now, p(S,εk)(S) = 1 − εk and

p(S,εk)(N) = εk. But |S| ≥ 3 and E is an economic environment. So Theorem 3.6 implies that

F is p(S,εk)–implementable for all k. Thus, F is implementable by S-oligarchic democracy.

5.2.2 Comparison with Nash Implementation

Any Nash implementable SCR is Maskin monotonic (Theorem 2.12) and hence, weak pS–

monotonic for all S ⊂ N (Corollary 5.4). Therefore, we obtain the following result from

Corollary 5.5:

Corollary 5.6. Suppose 3 ≤ |S| < n and E is an economic environment. If F is Nash

implementable, then F is implementable by S-oligarchic democracy.

Thus, in economic environments, any SCR that is implementable by direct democracy

(i.e., Nash implementable) is also implementable by oligarchic democracy that has three – or

more – oligarchs. Notice that the identities of these oligarchs do not matter for this result.
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The next example shows that there are SCRs that are implementable by oligarchic democ-

racies but not Nash implementable. The SCR in this example is weak pS–monotonic for some

S ⊂ N but not Maskin monotonic.

Example 5.7 (Strong Pareto Correspondence). Let N = {1, 2, 3, 4}, A = {a, b, c, d}
and Θ = {θ, θ′}. The players’ preferences over alternatives are:

θ θ′

a �θ1 b �θ1 c �θ1 d a �θ′1 b ∼θ′1 c �θ′1 d

b �θ2 c �θ2 d �θ2 a b ∼θ′2 c ∼θ′2 d ∼θ′2 a

c �θ3 d �θ3 a �θ3 b d �θ′3 c �θ′3 a �θ′3 b

a �θ4 c ∼θ4 d �θ4 b c �θ′4 a ∼θ′4 d �θ′4 b

We also assume that players’ preferences over lotteries are represented by expected utility.

Let F be the strong Pareto correspondence, i.e., for all θ′′ ∈ Θ,

F (θ′′) = {â ∈ A : @ a′ ∈ A s.t. ∀i ∈ N, a′ �θ′′i â and ∃j ∈ N with a′ �θ′′j â}

It is easy to see that F (θ) = {a, b, c} and F (θ′) = {a, c, d}. F is not Maskin monotonic since

b ∈ F (θ), b /∈ F (θ′) but there does not exist any player i and alternative â such that b �θi â
and â �θ′i b. Therefore, F is not Nash implementable.

We argue that F is weak pS–monotonic for all S ⊂ N such that 1 ∈ S. Since player 1 has

expected-utility preferences, a �θ1 b �θ1 c and a �θ′1 b ∼θ′1 c imply that there exists a small

enough ε′ ∈ (0, 1) such that for all ε ∈ (0, ε′], we have

b �θ1 lε and lε �θ
′

1 b,

where lε is the lottery with lε(a) = ε and lε(c) = 1− ε. Moreover, for alternative d, which is

such that d ∈ F (θ′) but d /∈ F (θ), we have player 3 with d �θ′3 c and c �θ3 d. Therefore, if

1 ∈ S, then for any sequence (εk)
∞
k=1 such that εk ∈ (0, ε′] and limk→∞ εk = 0, F satisfies the

conditions for weak pS–monotonicity in Proposition 5.2.

It is easy to see that the environment is economic. Hence, Corollary 5.5 implies that F

is implementable by S-oligarchic democracy for any S with 1 ∈ S and |S| = 3. �

Here we note that the strong Pareto correspondence is not necessarily weak pS–monotonic

in every economic environment. Still, as the above example illustrates, compared to Nash

implementation, we can implement the strong Pareto correspondence by S-oligarchic democ-

racy in a larger set of economic environments.
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5.3 Noneconomic Environments

Interestingly, as illustrated below, in noneconomic environments, there can exist SCRs that

are Nash implementable but not implementable by any S-oligarchic democracy.

Example 5.8. Let N = {1, 2, 3, 4}, A = {a, b} and Θ = {θ, θ′, θ′′, θ̂, θ̂′, θ̂′′}. The players’

preferences over alternatives are:

θ θ′ θ′′ θ̂ θ̂′ θ̂′′

a �θ1 b a �θ′1 b b ∼θ′′1 a b ∼θ̂1 a a �θ̂′1 b a �θ̂′′1 b

a ∼θ2 b b �θ′2 a b �θ′′2 a b �θ̂2 a b �θ̂′2 a a ∼θ̂′′2 b

a ∼θ3 b b �θ′3 a b �θ′′3 a b �θ̂3 a a ∼θ̂′3 b b �θ̂′′3 a

a �θ4 b b ∼θ′4 a a �θ′′4 b b ∼θ̂4 a a �θ̂′4 b a �θ̂′′4 b

This environment is not economic. For instance, in state θ, a �θi b for all i ∈ N .

Let F be such that F (θ) = F (θ̂′) = F (θ̂′′) = {a} and F (θ′) = F (θ′′) = F (θ̂) = {b}.
F is Maskin monotonic and hence, weak pS–monotonic for any S ⊂ N (Corollary 5.4).

Furthermore, F satisfies no-veto power. Hence, F is Nash implementable.

Suppose F is p(S,ε)–implementable for some S ⊂ N and ε ∈ (0, 1). Consider m ∈
NE(Γ(S,ε), θ

′). It must be that gS(mS) = gN(m) = b. Moreover, for any m′1 ∈ M1, we must

have gS((m′1,m−1)S) = gN(m′1,m−1) = b because otherwise, player 1 has an incentive to

deviate to m′1 in state θ′. This further implies that there must exist m′4 ∈ M4 such that

either gS((m′4,m−4)S) = a or gN(m′4,m−4) = a because otherwise, m ∈ NE(Γ(S,ε), θ).

If 4 /∈ S, then gS((m′4,m−4)S) = gS(mS) = b. Hence, it must be that gN(m′4,m−4) = a.

We claim that (m′4,m−4) ∈ NE(Γ(S,ε), θ). Clearly, players 2, 3 and 4 do not have any

improving unilateral deviations. On the other hand, if player 1 were to deviate to any m′1,

then gS((m′1,m
′
4,m−{1,4})

S) = gS((m′1,m−1)S) = b. Hence, player 1 also does not have

an improving unilateral deviation. So (m′4,m−4) ∈ NE(Γ(S,ε), θ). But then we have a

contradiction since gS((m′4,m−4)S) = b. Therefore, 4 ∈ S.

The above argument involved θ′ and θ. Similarly, using θ′′ and θ we can argue that 1 ∈ S;

using θ̂′ and θ̂ we can argue that 3 ∈ S, and finally, using θ̂′′ and θ̂ we can argue that 2 ∈ S.

Hence, we obtain a contradiction to the fact that S ⊂ N .

Thus, F is not p(S,ε)–implementable for any S ⊂ N and ε ∈ (0, 1). As a result, F is not

implementable by S-oligarchic democracy for any S ⊂ N . �

5.3.1 Sufficient Conditions

The environment in the previous example does not satisfy DTA-S for all S ⊂ N . The problem

for implementation by S-oligarchic democracy in noneconomic environments that do not
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satisfy DTA-S can be intuitively explained as follows. Suppose the players have expected-

utility preferences. Let a be in the SCR in state θ and consider the equilibrium m of an (S, ε)-

oligarchic-democratic mechanism that p(S,ε)–implements a. It must be that by unilaterally

changing her message, no oligarch can implement an alternative under senate S that she

strictly prefers to a in state θ. If this were not true, and if ε is small enough, then the oligarch

will prefer to deviate. Now, consider another state θ′ such that in going from state θ to θ′,

alternative a drops out of the SCR but none of the oligarchs have a reversal of their respective

preferences over alternatives around a (i.e., for all i ∈ S, a �θi a′ =⇒ a �θ′i a′,∀a′). Pick

any message profile m′ = ((mi)i∈S, (m
′
j)j /∈S), i.e., the messages of the oligarchs in m′ are

the same as in m. Since m′S = mS, alternative a is still implemented under senate S.

But a is not in the SCR in state θ′ and hence, m′ must not be an equilibrium in state θ′.

Since none of the oligarchs have a reversal of their preferences over alternatives around a,

it follows from the previous argument that no oligarch can implement a strictly preferred

alternative under senate S. Thus, an oligarch will deviate from m′ only if she can implement

a strictly preferred alternative under senate N . However, now suppose that m′ is such that

the alternative implemented under senate N is unanimously most-preferred by all the players,

which is possible since the environment it not economic. Then clearly, no player will have

an incentive to deviate from m′ and hence, we will not be able to implement the SCR.

As the next result shows, this problem can be avoided if we restrict attention to environ-

ments satisfying DTA-S.

Theorem 5.9. Suppose 3 ≤ |S| < n and E satisfies DTA-S. Any Maskin monotonic F that

satisfies no-veto power is implementable by S-oligarchic democracy.

Remark 5.10. Stronger results can be established in environments satisfying unique-top

condition and DTA-S (note that this class of environments is not a subset of economic

environments). In particular, we can show the following (proofs upon request):

1. Suppose 3 ≤ |S| < n and E satisfies DTA-S and unique-top condition. Any Maskin

monotonic F is implementable by S-oligarchic democracy.

As an application of this result, consider an environment with single-peaked preferences.

For instance, suppose a large society faces the problem of implementing a tax rate. A state

describes the “ideological” biases of each individual. The “left-wing” individuals have the

peaks of their preferences at higher tax rates whereas “right-wing” individuals have the peaks

of their preferences at lower tax rates. Furthermore, suppose that there are two individuals,

say il and ir, whose “ideological” biases never coincide, i.e., the peaks of their preferences are

different in every state. Then this result says that we can implement any Maskin monotonic

SCR by oligarchic democracy if we designate individuals il, ir and any other third individual

25



j as oligarchs.

2. Suppose 3 ≤ |S| < n and E satisfies DTA-S and unique-top condition. Any weak pS–

monotonic F that satisfies no-veto power is implementable by S-oligarchic democracy. �

6 Implementation by Random Sampling

6.1 Necessary Condition

Recall the definition of Nn̄ and let Nn̄(i) be the set of all senates S ∈ Nn̄ such that i ∈ S.

Under pn̄, a senate S is selected with a positive probability if and only if S ∈ Nn̄. Thus,

pn̄–monotonicity can alternatively be characterized as follows (proof is omitted):

Proposition 6.1. F is pn̄–monotonic if and only if whenever a ∈ F (θ) and a /∈ F (θ) for

some a, θ and θ′, then there exist player i ∈ N and function hi : N → A such that

hi(S) = a,∀S ∈ Nn̄ \ Nn̄(i), a �θi l[pn̄, hi] and l[pn̄, hi] �θ
′

i a.

The following corollary of Theorem 3.2 says that pn̄–monotonicity is necessary for imple-

mentation by n̄-random sampling.

Corollary 6.2. If F is implementable by n̄-random sampling, then F is pn̄–monotonic.

Under random sampling, there is a positive probability of selecting each player as a

senator. Hence, we have the following corollary of Lemma 3.4:

Corollary 6.3. If F is Maskin monotonic, then F is pn̄–monotonic for all positive n̄ < n.

6.2 Sufficient Conditions

We cannot apply Theorem 3.6 to n̄-random sampling since pn̄(N) = 0. However, suppose

we were to use the same mechanism as defined in the proof of Theorem 3.6 except that

we replace the political process p by pn̄. The sole purpose of assumption p(N) > 0 in

Theorem 3.6 is to ensure that whenever there is disagreement in the messages in equilibrium,

the alternative implemented under senate N is most-preferred by at least n − 1 players,

contradicting economic environment. Is there a way to obtain such a contradiction under

random sampling?

Although pn̄(N) = 0, if the sample size n̄ ≥ 4, then each triple of players meets every other

player in some senate. Suppose there exist three players {i1, i2, i3} whose messages disagree in

equilibrium. There are two possible cases. First, assume that all three disagree amongst each
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other. Then for any other player j, consider any senate S(j) ⊇ {j, i1, i2, i3}. In S(j), every

player can implement her most-preferred alternative (proofs take care of the case when this

does not exist) by inducing the integer game. Thus, the alternative implemented under S(j),

say aj, must be most-preferred for all players in {j, i1, i2, i3}. Similarly, if we replace player j

with player j′ to obtain senate S(j′), then the alternative implemented under S(j′), say aj′ ,

must be most-preferred for all players in {j′, i1, i2, i3}. Now, if any of the players in {i1, i2, i3}
has a unique most-preferred alternative, say a, then aj = aj′ = a,∀j, j′ /∈ {i1, i2, i3}. Then

a is most-preferred by all n players, contradicting economic environment. Second, assume

that there is a unique disagreeing player in {i1, i2, i3}, say i2. Again, for any other player j,

consider any senate S(j) ⊇ {j, i1, i2, i3}. In S(j), players i1, i3 and j can implement their

most-preferred alternatives by inducing the integer game. Thus, the alternative implemented

under S(j), say aj, must be most-preferred for all players in {j, i1, i3}. If we replace player

j with player j′ to obtain senate S(j′), then player i2 will still disagree with players i1 and

i3.15 Hence, the alternative implemented under S(j′), say aj′ , must be most-preferred for

all players in {j′, i1, i3}. Now, if any of the players in {i1, i3} has a unique most-preferred

alternative, say a, then aj = aj′ = a,∀j, j′ /∈ {i1, i2, i3}. Then a is most-preferred by at least

n − 1 players – everyone except i2 –, contradicting economic environment. Furthermore,

since n̄ ≥ 4, pn̄ satisfies the second requirement (p(S) > 0 only if |S| ≥ 3) in Theorem 3.6.

Therefore, other arguments used to prove Theorem 3.6 apply in this case as well, giving us

the following result:

Theorem 6.4. Let 4 ≤ n̄ < n and E be an economic environment satisfying unique-top

condition. If F is pn̄–monotonic, then F is implementable by n̄-random sampling.

Without the unique-top condition, it becomes difficult to find an alternative that is most-

preferred by at least n− 1 players in case of disagreement in equilibrium. This is especially

a problem when there is a single player, say i1, who disagrees and in every senate S ′ that

includes i1, the alternative wanted by i1, aS
′

i1
, is implemented. Of course, every other player

in S ′ can implement her most-preferred alternative under S ′ by inducing the integer game.

Thus, aS
′

i1
must be most-preferred by all players in S ′ \ {i1}. The same argument holds

for any S ′′ ∈ N (i1) \ S ′. But if aS
′

i1
6= aS

′′
i1

, then it is not possible to argue that there

exists an alternative that is most-preferred by every player other than i1. Nevertheless,

15This is where the problem comes with sample size of 3. If i1 and i2 disagree, then it could be that i2
is the unique disagreeing player in {j, i1, i2} while i1 is the unique disagreeing player in {j′, i1, i2}. In the
former senate, players i1 and j can implement their most-preferred alternatives while in the latter senate
players i2 and j′ can implement their most-preferred alternatives. Unless both players i1 and i2 have the
same unique most-preferred alternative, the implemented alternatives under {j, i1, i2} and {j′, i1, i2} can be
different. Hence, we will be unable to find an alternative that is most-preferred by at least n− 1 players. As
a result, we will not contradict economic environment. This problem is illustrated in Example 6.7.
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this suggests a solution to the problem: let each player ask for only one alternative instead

of one alternative for each senate (aS
′

i )S′∈N (i). However, recall that the purpose of letting

each player ask for one alternative for each senate in the proof of Theorem 3.6 was to avoid

agreements on “bad” alternatives using p–monotonicity. Thus, if we restrict each player to

ask only one alternative, then we need to replace pn̄–monotonicity with a stronger condition.

As the next result shows, replacing pn̄–monotonicity with Maskin monotonicity is sufficient

for implementation by n̄-random sampling in a class of environments that is weaker than

the class of economic environments.

Theorem 6.5. Let 4 ≤ n̄ < n and E satisfy DTA-N and top-coincidence condition. If F is

Maskin monotonic, then F is implementable by n̄-random sampling.

6.3 Comparison with Nash Implementation

Since every economic environment satisfies both DTA-N and top-coincidence condition, the

following result easily follows from Theorems 2.12 and 6.5:

Corollary 6.6. Suppose 4 ≤ n̄ < n and E is an economic environment. If F is Nash

implementable, then F is implementable by n̄-random sampling.

Thus, in economic environments, any SCR that is implementable by direct democracy

(i.e., Nash implementable) is also implementable by randomly sampling only 4 – or more –

messages of the players.

The next example proves that 4 is the minimal sample size that guarantees the imple-

mentation of Maskin monotonic SCRs by random sampling.

Example 6.7. Let N = {1, 2, 3, 4, 5}, A = {a, b} and Θ = {θ, θ′}. The players’ preferences

over alternatives are:
θ θ′

a �θ1 b a �θ′1 b

a �θ2 b a �θ′2 b

a �θ3 b b �θ′3 a

b �θ4 a b �θ′4 a

b �θ5 a b �θ′5 a

Let F be such that F (θ) = {a, b} and F (θ′) = {b}. The environment is economic and F

is Maskin monotonic. Hence, F is Nash implementable.

We argue that F is not implementable by n̄-random sampling for any n̄ ≤ 3. Suppose

there exists a n̄-sampling mechanism Γn̄ such that
{
l[pn̄,m] : m ∈ NE(Γn̄, θ̃)

}
= F (θ̃) for

all θ̃ ∈ Θ.
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Consider m ∈ NE(Γn̄, θ) such that l[pn̄,m] = a. It must be that gS(mS) = a,∀S ∈ Nn̄.

Moreover, for i ∈ {4, 5}, there must not exist any m′i such that for some S ∈ Nn̄(i), we

have gS
(
(m′i,m−i)

S
)

= b; otherwise, player i has an incentive to deviate to m′i in state θ.

Consider m̂ ∈ NE(Γn̄, θ) such that l[pn̄, m̂] = b. It must be that gS(m̂S) = b,∀S ∈ Nn̄.

Moreover, for i ∈ {1, 2, 3}, there must not exist any m′i such that for some S ∈ Nn̄(i), we

have gS
(
(m′i, m̂−i)

S
)

= a; otherwise, player i has an incentive to deviate to m′i in state θ.

Consider the message profile m̃ = (m1,m2,m3, m̂4, m̂5).

• Suppose n̄ = 3. If S ∈ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}, then gS(m̃S) = b whereas if

S ∈ Nn̄ \ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}, then gS(m̃S) = a. Then m̃ ∈ NE(Γn̄, θ) since

players 1, 2 and 3 cannot unilaterally change the alternative implemented for any

S ∈ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5} whereas players 4 and 5 cannot unilaterally change

the alternative implemented for any S ∈ Nn̄ \ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}. But both

a and b are in the support of lottery l[pn̄, m̃], a contradiction.

• Suppose n̄ = 2. Then for S = {3, 4}, we have gS(m̃S) = gS(m3, m̂4). We have already

argued that for S = {3, 4}, there does not exist any m′4 such that gS(m3,m
′
4) = b.

Hence, gS(m3, m̂4) = a. For S = {3, 4}, we have also argued that there does not exist

any m′3 such that gS(m′3, m̂4) = a. Hence, gS(m3, m̂4) = b, a contradiction.

• Suppose n̄ = 1. We have already argued that for S = {4}, there does not exist

any m′4 such that gS
(
(m′4,m−4)S

)
= gS(m′4) = b. But that contradicts the fact that

gS(m̂4) = b. �

The next two examples show that the sufficiency result of Theorem 6.5 need not hold

outside the class of environments satisfying DTA-N and top-coincidence condition.

Example 6.8. Let N = {1, 2, 3, 4, 5}, A = {a, b} and Θ = {θ, θ′}. The players’ preferences

over alternatives are:
θ θ′

a ∼θ1 b b �θ′1 a

a ∼θ2 b b �θ′2 a

a ∼θ3 b b �θ′3 a

a �θ4 b a �θ′4 b

a �θ5 b b �θ′5 a

Let F be such that F (θ) = {a} and F (θ′) = {b}. Since F is Maskin monotonic and

satisfies no-veto power, F is Nash implementable.
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The environment satisfies top-coincidence condition but not DTA-N since a ∈
⋂
i∈N A

∗
i (θ).

We argue that F is not implementable by n̄-random sampling for n̄ = 4. Suppose there exists

a n̄-sampling mechanism Γn̄ such that
{
l[pn̄,m] : m ∈ NE(Γn̄, θ̃)

}
= F (θ̃) for all θ̃ ∈ Θ.

Consider m ∈ NE(Γn̄, θ
′) such that l[pn̄,m] = b. Thus, gS(mS) = b,∀S ∈ Nn̄. Moreover,

there must not exist any m′4 such that gS
(
(m′4,m−4)S

)
= a for some S ∈ Nn̄(4); otherwise,

player 4 has an incentive to deviate to m′4 in state θ′. Hence, in particular, b will be

implemented under senate {1, 2, 3, 4} as long as players 1, 2 and 3 announce messages m1,

m2 and m3, respectively.

Since b /∈ F (θ), it must be that m /∈ NE(Γn̄, θ). Now, b ∈ A∗i (θ) for all i ∈ {1, 2, 3}.
Moreover, given m−4, player 4 cannot change the alternative implemented under any senate

by changing her message. Hence, it must be player 5 for whom there exists m′5 such that

gS
(
(m′5,m−5)S

)
= a for some S ∈ Nn̄(5). Without loss of generality, let m′5 be the best

response to m−5 in state θ. The message profile m′ = (m1,m2,m3,m4,m
′
5) /∈ NE(Γn̄, θ)

because b is implemented under senate {1, 2, 3, 4}. Since m′5 is a best response to m−5 = m′−5,

and players 1, 2, and 3 are indifferent between a and b, it must be that player 4 has an

improving unilateral deviation. Let m̂4 be the best response to m′−4. Since m′ is such that

gS(m′S) = a for at least one S ∈ Nn̄, the new message profile m̂ = (m1,m2,m3, m̂4,m
′
5) must

be such that gS(m̂S) = a for at least two S ∈ Nn̄; otherwise, player 4 will not strictly improve

with her deviation to m̂4. The message profile m̂ /∈ NE(Γn̄, θ) because b is implemented

under senate {1, 2, 3, 4}. Since m̂4 is a best response to m′−4 = m̂−4, and players 1, 2, and

3 are indifferent between a and b, it must be that player 5 has an improving unilateral

deviation. Let m̃5 be the best response to m̂−5. Since m̂ was such that gS(m̂S) = a for

at least two S ∈ Nn̄, the new message profile m̃ = (m1,m2,m3, m̂4, m̃5) must be such that

gS(m̃S) = a for at least three S ∈ Nn̄; otherwise, player 5 will not strictly improve with her

deviation to m̃5. The message profile m̃ /∈ NE(Γn̄, θ) because b is implemented under senate

{1, 2, 3, 4}. By repeating the above argument, player 4 will switch to her best response m̂′4 to

m̃−4, and the new message profile m̂′ = (m1,m2,m3, m̂
′
4, m̃5) will be such that gS(m̂′S) = a

for at least four S ∈ Nn̄. In message profile m̂′, b is implemented under senate {1, 2, 3, 4}.
Hence, it must be that gS(m̂′S) = a for all S ∈ Nn̄(5). Then m̂′ ∈ NE(Γn̄, θ) because players

1, 2, and 3 are indifferent between a and b, player 4 is already playing a best response to

m̃−4 = m̂′−4 and player 5 cannot change the alternative implemented under S = {1, 2, 3, 4}.
However, since b is implemented under senate {1, 2, 3, 4}, we have a contradiction. �

Example 6.9. Let N = {1, 2, 3, 4, 5}, A = {a, b, c} and Θ = {θ, θ′}. The players’ preferences
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over alternatives are:
θ θ′

c �θ1 a ∼θ1 b c �θ′1 a �θ′1 b

a ∼θ2 b �θ2 c a ∼θ′2 b �θ′2 c

a ∼θ3 b �θ3 c a ∼θ′3 b �θ′3 c

a ∼θ4 b �θ4 c a ∼θ′4 b �θ′4 c

a ∼θ5 b �θ5 c a ∼θ′5 b �θ′5 c

Let F be such that F (θ) = {a, b} and F (θ′) = {a}. F is Maskin monotonic. However,

F does not satisfy no-veto power since in θ′, b is most-preferred alternative for four players

but b /∈ F (θ′). Still, F is Nash implementable. To show this, first we argue that F is

implementable by S oligarchy, where S = {1}. Define an S-oligarchic mechanism such that

M1 = {a, b} and gS(m1) = m1 for all m1 ∈ M1. Since only the message of player 1 is

transmitted to the planner, in state θ, player 1 is indifferent between announcing messages a

and b whereas in state θ′, player 1 will announce a. Thus, {gS(mS) : m ∈ NE(ΓS, θ)} = {a, b}
and {gS(mS) : m ∈ NE(ΓS, θ

′)} = {a}. Hence, F is implementable by S = {1} oligarchy.

It follows from Proposition 4.6 that F is Nash implementable.

The environment satisfies DTA-N but not top-coincidence condition since both a and b

are most-preferred alternatives for four players in state θ. We argue that F is not imple-

mentable by n̄-random sampling for n̄ = 4. Suppose there exists a n̄-sampling mechanism

Γn̄ such that
{
l[pn̄,m] : m ∈ NE(Γn̄, θ̃)

}
= F (θ̃) for all θ̃ ∈ Θ.

Consider m ∈ NE(Γn̄, θ) such that l[pn̄,m] = b. It must be that gS(mS) = b,∀S ∈ Nn̄.

Observe that for any m′′1 and S ∈ Nn̄, gS
(
(m′′1,m−1)S

)
6= c; otherwise, player 1 would

unilaterally deviate to m′′1 from m in state θ. Moreover, because b /∈ F (θ′), it must be

that b /∈ NE(Γn̄, θ
′). Hence, there must exist player i, m′i ∈ Mi and S ∈ Nn̄ such that

gS
(
(m′i,m−i)

S
)
�θ′i b. Because b ∈ A∗i (θ′) for all i ∈ {2, 3, 4, 5}, it must be that i = 1. We

already know gS
(
(m′1,m−1)S

)
6= c. Consequently, gS

(
(m′1,m−1)S

)
= a.

Consider
(
m′1,m−1

)
. As argued, a is implemented under some S ∈ Nn̄. However, b is

implemented when S = {2, 3, 4, 5} since gS
(
(m′1,m−1)S

)
= gS(mS) = b as (m′1,m−1)S = mS.

Hence, to reach the desired contradiction, it suffices to show
(
m′1,m−1

)
∈ NE(Γn̄, θ).

If 1 /∈ S ∈ Nn̄, then gS
(
(m′1,m−1)S

)
= b because (m′1,m−1)S = mS. In addition, if

1 ∈ S ∈ Nn̄, then gS
(
(m′1,m−1)S

)
is either a or b. Since {a, b} = A∗i (θ) for all i ∈ {2, 3, 4, 5},

none of these players has an incentive to deviate from (m′1,m−1). We already know that for

any m′′1 and S ∈ Nn̄, gS
(
(m′′1,m−1)S

)
6= c. Therefore, for any unilateral deviation by player

1 from (m′1,m−1), either a or b is implemented. But player 1 is indifferent between a and b

in state θ. Hence, player 1 also has no incentive to deviate from (m′1,m−1) in state θ. Thus,(
m′1,m−1

)
∈ NE(Γn̄, θ). �
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7 Implementation by a Political Process

In this section, we consider the situation when the social planner has the flexibility to use

any political process. Thus, the relevant notion is implementation by a political process.

7.1 Necessary Condition

The following result follows as a corollary of Theorem 3.2:

Corollary 7.1. If F is implementable by a political process, then F is p–monotonic for some

p ∈ P.

In any environment, the set of all Maskin monotonic SCRs is a subset of the set of SCRs

that are p–monotonic for some p ∈ P (using Proposition 3.3). The former can also be a

strict subset of the latter (Examples 3.5 and 5.7).

Palfrey and Srivastava (1991) have shown that propertyQ is necessary for implementation

in undominated Nash equilibrium.16 The set of SCRs that satisfy property Q and the set

of SCRs that are p–monotonic for some p ∈ P are two distinct sets, i.e., there are SCRs

that satisfy property Q but are not p–monotonic for any p ∈ P (Example 7.2) and there are

SCRs that are p–monotonic for some p ∈ P but do not satisfy property Q (Example 7.3).

Example 7.2. Let A = {a, b, c, d} and Θ = {θ, θ′}. Suppose only player i’s preference

changes between the two states. Moreover, player i has expected-utility preference with

following Bernoulli utilities: uθi (a) = uθ
′
i (a) = 5, uθi (b) = uθ

′
i (b) = 3, uθi (c) = 1, uθ

′
i (c) = −1,

and uθi (d) = uθ
′
i (d) = 0. Let F (θ) = {a, b} and F (θ′) = {a}. F satisfies property Q but is

not p–monotonic for any p ∈ P since for any l ∈ ∆A, b �θi l =⇒ b �θ′i l.

Example 7.3. Reconsider the previous example except that player i’s Bernoulli utilities

are as follows: uθi (a) = uθ
′
i (a) = 5, uθi (b) = uθ

′
i (b) = 3, uθi (c) = 1, uθ

′
i (c) = 2, and uθi (d) =

uθ
′
i (d) = 0. Now, F does not satisfy property Q but is p–monotonic for some p ∈ P .17

7.2 Sufficient Condition

For any ε ∈ (0, 1) and two lotteries l, l′ ∈ ∆A, let (1− ε)l+ εl′ be the lottery obtained by the

convex combination l and l′. Until now we have assumed that preferences over lotteries are

monotone, which is weaker than imposing the independence axiom on players’ preferences.

16F satisfies property Q if whenever a ∈ F (θ) and a /∈ F (θ′), then there exist player i and two alternatives
a′, a′′ such that (i) player i’s preference ordering over {a′, a′′} is different in the two states θ and θ′, and (ii)
player i is not indifferent between all alternatives in state θ′.

17Consider p such that p(S) = p(S′) = 0.5 for any two senates S, S′ ∈ N (i). Let hi : N → A be such that
hi(S) = a and hi(S

′) = c. Then b �θi l[p, hi] and l[p, hi] �θ
′

i b.
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Definition 7.4. Independence Axiom: Player i’s preference satisfies the independence axiom

if for all θ ∈ Θ, lotteries l, l′, l′′ ∈ ∆A, and ε ∈ (0, 1), we have

l �θi l′ ⇐⇒ (1− ε)l + εl′′ �θi (1− ε)l′ + εl′′.

Recall pD, the political process that selects N as the senate with probability 1. For any

ε ∈ (0, 1) and political process p ∈ P , let (1 − ε)p + εpD denote the political process that

selects each senate S ∈ N with probability (1− ε)p(S) + εpD(S).

Lemma 7.5. Suppose E is such that every player’s preference satisfies the independence

axiom. If F is p–monotonic for some p ∈ P such that p(N) = 0, then F is (1− ε)p+ εpD–

monotonic for all ε ∈ (0, 1).

Proof. Suppose a ∈ F (θ) but a /∈ F (θ′). Since F is p–monotonic for some p ∈ P such that

p(N) = 0, there exist i ∈ N and function hi : N → A such that

hi(S) = a,∀S ∈ N \ N (i) with p(S) > 0, a �θi l[p, hi] and l[p, hi] �θ
′

i a.

Since players’ preferences satisfy the independence axiom, for any ε ∈ (0, 1), we have a �θi
(1− ε)l[p, hi] + εa and (1− ε)l[p, hi] + εa �θ′i a.18

Let ĥi : N → A be such that ĥi(N) = a and ĥi(S) = hi(S),∀S 6= N . Since p(N) = 0,

lottery l[(1 − ε)p + εpD, ĥi] = (1 − ε)l[p, hi] + εa. Clearly, ĥi(S) = a,∀S ∈ N \ N (i) with

(1− ε)p(S) + εpD(S) > 0. Hence, F is (1− ε)p+ εpD–monotonic.

Lemma 7.5 and Theorem 3.6 give us the following corollary:

Corollary 7.6. Let n ≥ 3 and E be an economic environment such that every player’s

preference satisfies the independence axiom. If F is p–monotonic for some p ∈ P such that

p(S) > 0 only if |S| ≥ 3, then F is implementable by a political process.

Proof. Suppose F is p–monotonic for some p ∈ P such that p(S) > 0 only if |S| ≥ 3. If

p(N) > 0, then F is p–implementable (Theorem 3.6). On the other hand, if p(N) = 0, then

for any ε ∈ (0, 1), F is (1 − ε)p + εpD–monotonic (Lemma 7.5) and hence, (1 − ε)p + εpD–

implementable (Theorem 3.6).

Thus, in economic environments satisfying the independence axiom, any F that is p–

monotonic for a political process p that always selects at least three senators is implementable

by a political process. Moreover, if p is such that there is a positive chance of referendum,

18This implication cannot be obtained under the weaker assumption that preferences over lotteries are
monotone unless the support of l[p, hi] is singleton or contains two elements with one of them being a.
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i.e., p(N) > 0, then F can be implemented using p itself. On the other hand, if there is

no chance of referendum under p, then F can be implemented using a perturbed process

(1− ε)p+ εpD in which there is a small but positive chance of referendum.

8 Conclusion

Within the large class of economic environments, our results suggest that costs and time

involved in collecting opinions of individuals in a community in order implement Maskin

monotonic SCRs can be substantially reduced by using alternative political processes. For

simplicity, let’s assume that there is a fixed cost c of collecting each individual’s message.

Then the cost incurred in direct democracy is nc. On the other hand, our result on oligarchic

democracy implies that the expected cost of collecting individuals’ messages can be reduced

to arbitrarily close to 3c in economic environments. However, there is a positive though

very small chance of referendum in oligarchic democracy, in which case the realized cost will

be nc. If we are concerned with the ex-post cost of collecting individuals’ messages, then

random sampling with sample size of 4 can be used in economic environments, guaranteeing

an ex-post cost of only 4c.

Our positive results, however, need not carry over to incomplete information environ-

ments. For instance, if players have private values, then the state of the world cannot be

known even if n − 1 individuals truthfully report their types. Thus, SCRs that are not

“measurable” with respect to the information of the selected subset of individuals cannot

be implemented in such an environment. Nevertheless, we expect that similar positive re-

sults can be obtained for incomplete information environments in which some subsets of the

individuals are “better” informed than others. We leave these issues for future research.

9 Appendix

Proof of Theorem 3.6: Consider the mechanism Γ defined in the sketch of the proof.

Step 1. For any θ ∈ Θ, F (θ) ⊆
{
l[Γ,m] : m ∈ NE(Γ, θ)

}
.

Pick any a ∈ F (θ) and consider m ∈ M such that mi = (θ, a, a, . . . , a, 0) for all i ∈ N .

Then l[Γ,m] = a. Suppose player i deviates from mi to m′i = (θi, a
1
i , (a

S′
i )S′∈N (i), zi). Pick

any S ∈ N with p(S) > 0. First, suppose S ∈ N \ N (i). Then rule (i) will be used under

senate S and hence, a will be implemented. Second, suppose S ∈ N (i). Because p(S) > 0

implies |S| ≥ 3, rule (ii) will be used under senate S. In that case, a is implemented if

l[p, hi] �θi a and hi(S) = aSi is implemented if a �θi l[p, hi]. Therefore, if l[p, hi] �θi a, then
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l[Γ, (m′i,m−i)] = a. On the other hand, if a �θi l[p, hi], then l[Γ, (m′i,m−i)] = l[p, hi]. Hence,

in either case, player i does not improve by her deviation. So, m ∈ NE(Γ, θ).

Step 2. For any θ ∈ Θ,
{
l[Γ,m] : m ∈ NE(Γ, θ)

}
⊆ F (θ).

Consider any m̂ ∈ NE(Γ, θ). For any i, let m̂i = (θ̂i, â
1
i , (â

S′
i )S′∈N (i), ẑi).

First, suppose m̂ is such that gN(m̂) follows rule (iii). We argue that gN(m̂) ∈ A∗i (θ),∀i ∈
N . Suppose this is not true for some player i. Define a1

i as follows: if A∗i (θ) 6= ∅, then let a1
i

be any alternative in A∗i (θ); whereas if A∗i (θ) = ∅, then let a1
i be any alternative such that

a1
i �θi a,∀a ∈ A(l[Γ, m̂]). Now, consider player i’s deviation to mi that differs from m̂i only

in the second and last components with these being, respectively, a1
i and zi > maxj 6=i ẑj. If

the selected senate is some S ∈ N (i), then one of the following will hold:

• gS((mi, m̂−i)
S) follows rule (iii). Then gS((mi, m̂−i)

S) = a1
i . Moreover, this will be the

case under senate N .

• gS((mi, m̂−i)
S) follows rule (ii). There are two possibilities: gS(m̂S) followed either

rule (i) or (ii). However, in either case gS((mi, m̂−i)
S) = gS(m̂S) since player i has

only changed the second and last components of her message and the outcome under

rule (ii) does not depend on these components.

On the other hand, if the selected senate is S ∈ N \ N (i), then gS((mi, m̂−i)
S) = gS(m̂S).

Since preferences over lotteries are monotone, player i will be better-off after the deviation to

mi, a contradiction. Hence, gN(m̂) ∈ A∗i (θ), ∀i ∈ N , which contradicts E being an economic

environment.

Second, suppose gN(m̂) follows rule (ii). It must be that for n − 1 players i 6= j, m̂i =

(θ̂, â1
i , â, . . . , â, 0) and â ∈ F (θ̂), but m̂j = (θ̂j, â

1
j , (â

S′
j )S′∈N (j), ẑj) 6= (θ̂, â1

j , â, . . . , â, 0). Using

a similar argument as in the previous case, gN(m̂) ∈ A∗i (θ) for all i 6= j, which again

contradicts E being an economic environment.

Therefore, gN(m̂) follows rule (i). Hence, each player i′s message m̂i = (θ̂, â1
i , â, . . . , â, 0),

where â ∈ F (θ̂). If â ∈ F (θ), then we are done. If â /∈ F (θ) then, by p–monotonicity, there

must exist player i and function hi : N → A such that

hi(S) = â,∀S ∈ N \ N (i) with p(S) > 0, â �θ̂i l[p, hi] and l[p, hi] �θi â.

Thanks to rule (ii), player i has an incentive to deviate to (θ̂, â1
i , (hi(S))S∈N (i), 0).

Proof of Proposition 5.2: Suppose F is weak pS–monotonic. Let
(
p(S,εk)

)∞
k=1

be the

sequence of (S, εk)-oligarchic democracies which make F weak pS–monotonic. We argue that

(εk)
∞
k=1 is the sequence that satisfies the condition in the lemma. By definition of (S, εk)-

oligarchic democracy, εk ∈ (0, 1),∀k. We also know that limk→∞ εk = 0. Suppose a ∈ F (θ)
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but a /∈ F (θ′). F is p(S,εk)–monotonic for all k. Hence, for all k, there exist player ik ∈ N
and function hik : N → A such that

hik(S ′) = a,∀S ′ ∈ N \N (ik) with p(S,εk)(S
′) > 0, a �θik l[p(S,εk), hik ] and l[p(S,εk), hik ] �θ′ik a.

Now, p(S,εk) puts probability 1− εk on S and εk on N . Hence, if ik /∈ S, then hik(S) = a. In

this case, l[p(S,εk), hik ] is a lottery that puts probability 1 − εk on a and εk on hik(N) ≡ a′k.

Since preferences over lotteries are monotone,

a �θik l[p(S,εk), hik ] =⇒ a �θik a
′
k while l[p(S,εk), hik ] �θ′ik a =⇒ a′k �θ

′

ik
a.

On the other hand, if ik ∈ S, then l[p(S,εk), hik ] is a lottery that puts probability 1 − εk on

hik(S) ≡ ãk and εk on hik(N) ≡ âk. Hence, l[p(S,εk), hik ] is the required lottery lk.

To argue the opposite implication, suppose F satisfies the condition in the lemma with

respect to the sequence (εk)
∞
k=1. Since εk ∈ (0, 1), we can define (S, εk)-oligarchic democracy

p(S,εk). Now, consider the sequence
(
p(S,εk)

)∞
k=1

. Clearly, limk→∞ εk = 0. Suppose a ∈ F (θ)

but a /∈ F (θ′). Fix k and consider the player ik. If ik /∈ S, then pick any hik : N → A such

that hik(S) = a and hik(N) = a′k. Since preferences over lotteries are monotone,

a �θik a
′
k =⇒ a �θik l[p(S,εk), hik ] while a′k �θ

′

ik
a =⇒ l[p(S,εk), hik ] �θ′ik a.

On the other hand, if ik ∈ S, then pick any hik : N → A such that hik(S) = ãk and

hik(N) = âk. Then lottery l[p(S,εk), hik ] is the equal to lottery lk and hence a �θik l[p(S,εk), hik ]

and l[p(S,εk), hik ] �θ′ik a. Thus, F is p(S,εk)–monotonic for all k.

Proof of Theorem 5.9: For any ε ∈ (0, 1), define Γ(S,ε) = ((Mi)i∈N , p(S,ε), (g
S′

)S′∈N ) such

that for all i ∈ N ,

Mi = Θ× A× A× Z+.

Let a typical message mi be of the form (θi, a
1
i , a

2
i , zi). For all S ′ ∈ {N,S}, the outcome

function gS
′

is as follows:

(i) If for every player i ∈ S ′, mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gS

′(
(mi)i∈S′

)
= a.

(ii) If for |S ′| − 1 players i 6= j in S ′, mi = (θ, a1
i , a, 0) and a ∈ F (θ), but mj =

(θj, a
1
j , a

2
j , zj) 6= (θ, a1

j , a, 0), then

gS
′(

(mi)i∈S′
)

=

{
a if a2

j �θj a.

a2
j if a �θj a2

j .
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(iii) In all other cases, gS
′(

(mi)i∈S′
)

= a1
j where j ∈ S ′ is the player with the lowest index

among those players in S ′ who announce the highest integer in the profile (mi)i∈S′ .

Finally, for all S ′ ∈ N \ {N,S}, the outcome function gS
′

can be arbitrary.

Step 1. For all ε ∈ (0, 1) and θ ∈ Θ, F (θ) ⊆
{
l[Γ(S,ε),m] : m ∈ NE(Γ(S,ε), θ)

}
.

Fix ε ∈ (0, 1) and θ. Pick any a ∈ F (θ). Consider m ∈ M such that mi = (θ, a, a, 0) for

all i ∈ N . Then l[Γ(S,ε),m] = a. Suppose player i deviates from mi to m′i = (θi, a
1
i , a

2
i , zi).

First, suppose i ∈ S. Then rule (ii) will be used under both senates S and N . In either

case, a2
i is implemented if a �θi a2

i whereas a is implemented if a2
i �θi a. Thus, player i does

not improve by her deviation.

Second, suppose i /∈ S. Then rule (ii) will be used under senate N . In that case, a2
i

is implemented if a �θi a2
i whereas a is implemented if a2

i �θi a. On the other hand, a is

implemented under senate S. Since the preferences over lotteries are monotone, player i does

not improve by her deviation. Therefore, m ∈ NE(Γ(S,ε), θ).

Step 2. For all ε ∈ (0, 1) and θ ∈ Θ,
{
l[Γ(S,ε),m] : m ∈ NE(Γ(S,ε), θ)

}
⊆ F (θ).

Fix ε ∈ (0, 1) and θ. Pick any m̂ ∈ NE(Γ(S,ε), θ). For any i, let m̂i = (θ̂i, â
1
i , â

2
i , ẑi).

First, suppose m̂ is such that gN(m̂) follows rule (iii). We argue that gN(m̂) ∈ A∗i (θ),∀i ∈
N . Suppose this is not true for some player i. Define a1

i as follows: if A∗i (θ) 6= ∅, then let a1
i

be any alternative in A∗i (θ); whereas if A∗i (θ) = ∅, then let a1
i be any alternative such that

a1
i �θi a,∀a ∈ A(l[Γ(S,ε), m̂]). Now, consider player i’s deviation to mi that differs from m̂i

only in the second and last components with these being, respectively, a1
i and zi > maxj 6=i ẑj.

After this deviation, gN(mi, m̂−i) follows rule (iii) and hence, gN(mi, m̂−i) = a1
i . On the other

hand, one of the following in true under senate S:

• i /∈ S and gS((mi, m̂−i)
S) = gS(m̂S).

• i ∈ S and gS((mi, m̂−i)
S) follows rule (iii). Then gS((mi, m̂−i)

S) = a1
i .

• i ∈ S and gS((mi, m̂−i)
S) follows rule (ii). Then gS((mi, m̂−i)

S) = gS(m̂S).

Since preferences over lotteries are monotone, player i will be better-off after the deviation

to mi, a contradiction. Hence, gN(m̂) ∈ A∗i (θ), ∀i ∈ N , which contradicts DTA-S.

Second, suppose m̂ is such that gN(m̂) follows rule (ii). It must be that for n− 1 players

i 6= j, m̂i = (θ̂, â1
i , â, 0) and â ∈ F (θ̂), but m̂j = (θ̂j, â

1
j , â

2
j , ẑj) 6= (θ̂, â1

j , â, 0). Using a similar

argument as in the previous case, gN(m̂) ∈ A∗i (θ) for all i 6= j. Since F satisfies no-veto

power, we have gN(m̂) ∈ F (θ). If j /∈ S, then that contradicts DTA-S. Hence, j ∈ S. It

follows from rule (ii) that gS(m̂S) = gN(m̂) ∈ F (θ).

Finally, suppose gN(m̂) follows rule (i). Hence, for all i, m̂i = (θ̂, â1
i , â, 0), where â ∈ F (θ̂).

If â ∈ F (θ), then we are done. If â /∈ F (θ), then since F is Maskin monotonic, there exist
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player i and alternative a′ such that â �θ̂i a′ and a′ �θi â. Then, because of rule (ii) and

preferences over lotteries being monotone, player i has an incentive to deviate to (θ̂, â1
i , a
′, 0).

Since the above argument was made for all ε ∈ (0, 1), it follows that F is implementable

by S-oligarchic democracy.

Proof of Theorem 6.4: Consider the n̄-sampling mechanism Γn̄ = ((Mi)i∈N , pn̄, (g
S)S∈N )

in which for all i ∈ N , the message space Mi and for all S ∈ N , the outcome function gS

are the same as in the proof of Theorem 3.6.

Step 1. For any θ ∈ Θ, F (θ) ⊆
{
l[Γn̄,m] : m ∈ NE(Γn̄, θ)

}
. This can be argued like Step

1 in the proof of Theorem 3.6.

Step 2. For any θ ∈ Θ,
{
l[Γn̄,m] : m ∈ NE(Γn̄, θ)

}
⊆ F (θ).

Let m̂ ∈ NE(Γn̄, θ) be such that for any i, m̂i = (θ̂i, â
1
i , (â

S′
i )S′∈N (i), ẑi). We show that

l[Γn̄, m̂] ∈ F (θ).

First, suppose m̂ is such that there exist at least three players, i1, i2 and i3 such that

either

1. (θ̂i1 , (â
S′
i1

)S′∈N (i1), ẑi1) 6= (θ̂i2 , (â
S′
i2

)S′∈N (i2), ẑi2) 6= (θ̂i3 , (â
S′
i3

)S′∈N (i3), ẑi3) or

2. (θ̂i1 , (â
S′
i1

)S′∈N (i1), ẑi1) = (θ̂i2 , (â
S′
i2

)S′∈N (i2), ẑi2) = (θ̂i3 , (â
S′
i3

)S′∈N (i3), ẑi3) and any one of

the following holds: (a) ẑi1 > 0, (b) âS
′

i1
/∈ F (θ̂i1) for some S ′ ∈ N (i1), or (c) âSi1 6= âS

′
i1

for some S 6= S ′.

Notice that the second components of these players’ messages are not being considered.

Consider any j ∈ N \ {i1, i2, i3} and pick any S(j) ∈ Nn̄(j) such that {j, i1, i2, i3} ⊆ S(j)

(this is possible since n̄ ≥ 4). If S(j) is selected as the senate, rule (iii) will be used. Let aj

be the alternative implemented under S(j). We claim that aj ∈ A∗i (θ) for all i ∈ {j, i1, i2, i3}.
Suppose this is not the case for some i ∈ {j, i1, i2, i3}. Define a1

i as follows: if A∗i (θ) 6= ∅, then

let a1
i be any alternative in A∗i (θ); whereas if A∗i (θ) = ∅, then let a1

i be any alternative such

that a1
i �θi a,∀a ∈ A(l[Γn̄, m̂]). Now, consider player i’s deviation to mi that differs from m̂i

only in the second and last components with these being, respectively, a1
i and zi > maxi′ 6=i ẑi′ .

If the selected senate is some S ∈ Nn̄(i), then one of the following will hold:

• gS((mi, m̂−i)
S) follows rule (iii). Then gS((mi, m̂−i)

S) = a1
i . Moreover, this will be the

case when S = S(j).

• gS((mi, m̂−i)
S) follows rule (ii). There are two possibilities: gS(m̂S) followed either

rule (i) or (ii). However, in either case gS((mi, m̂−i)
S) = gS(m̂S) since player i has

only changed the second and last components of her message and the outcome under

rule (ii) does not depend on these components.
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On the other hand, if the selected senate is S ∈ Nn̄ \ Nn̄(i), then gS((mi, m̂−i)
S) = gS(m̂S).

Since preferences over lotteries are monotone, player i will be better-off after the deviation

to mi, a contradiction.

Now, consider the set of alternatives {aj : j ∈ N \{i1, i2, i3}}. Every alternative in this set

is most-preferred in state θ by all players i1, i2 and i3. Hence, unique-top condition implies

that this set of alternatives is singleton, i.e., there is an a such that aj = a,∀j ∈ N\{i1, i2, i3}.
Then a ∈

⋂
i∈N A

∗
i (θ), which contradicts E being an economic environment.

Second, suppose m̂ is such that there exist at least two players, i1 and i2 such that

(θ̂i1 , (â
S′
i1

)S′∈N (i1), ẑi1) 6= (θ̂i2 , (â
S′
i2

)S′∈N (i2), ẑi2) – again, the second components of these play-

ers’ messages are not being considered. If there exists a j such that (θ̂j, (â
S′
j )S′∈N (j), ẑj) 6=

(θ̂i1 , (â
S′
i1

)S′∈N (i1), ẑi1) 6= (θ̂i2 , (â
S′
i2

)S′∈N (i2), ẑi2), then we are back in the first case. Hence, for

every player j there exists a player in {i1, i2}, denoted by i(j), such that (θ̂j, (â
S′
j )S′∈N (j), ẑj) =

(θ̂i(j), (â
S′

i(j))S′∈N (i(j)), ẑi(j)). Let J1 = {j ∈ N : i(j) = i1} and J2 = {j ∈ N : i(j) = i2}. With-

out loss of generality, suppose |J1| ≥ 2. Let i3 ∈ J1 such that i3 6= i1.

For any j ∈ N \ {i1, i2, i3}, let S(j) ∈ Nn̄(j) be any senate such that {j, i1, i2, i3} ⊆ S(j).

Let aj be the alternative implemented under S(j). If j ∈ J2, then rule (iii) will be used

in senate S(j). Like above, we can argue that aj ∈ A∗i (θ) for all i ∈ {j, i1, i2, i3}. On the

other hand, if j ∈ J1, then either rule (ii) or (iii) will be used in senate S(j). We argue

that aj ∈ A∗i (θ) for all i ∈ {j, i1, i3}. Suppose this is not the case for some i ∈ {j, i1, i3}.
Let player i deviate to mi that differs from m̂i only in the second and last components with

these being, respectively, a1
i (as defined in the first case) and zi > maxi′ 6=i ẑi′ . If the selected

senate is S ∈ Nn̄(i), then one of the following will hold:

• gS((mi, m̂−i)
S) follows rule (iii). Then gS((mi, m̂−i)

S) = a1
i . Moreover, this will be the

case when S = S(j).

• gS((mi, m̂−i)
S) follows rule (ii). There are two possibilities: gS(m̂S) followed either

rule (i) or (ii). However, in either case gS((mi, m̂−i)
S) = gS(m̂S) since player i has

only changed the second and last components of her message and the outcome under

rule (ii) does not depend on these components.

On the other hand, if the selected senate is S ∈ Nn̄ \ Nn̄(i), then gS((mi, m̂−i)
S) = gS(m̂S).

Since preferences over lotteries are monotone, player i will be better-off after the deviation

to mi, a contradiction.

Now, consider the set of alternatives {aj : j ∈ N \ {i1, i2, i3}}. Every alternative in this

set is most-preferred in state θ by players i1 and i3. Hence, unique-top condition implies that

this set of alternatives is singleton, i.e., there is an a such that aj = a,∀j ∈ N \ {i1, i2, i3}.
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Then a is most-preferred alternative in state θ for at least n−1 players (all except i2), which

contradicts E being an economic environment.

Therefore, m̂ is such that for all i ∈ N , (θ̂i, (â
S′
i )S′∈N (i), ẑi) = (θ̂, â, . . . , â, 0) with â ∈ F (θ̂).

Then because of rule (i), â is implemented under any senate S ∈ Nn̄. If â ∈ F (θ), then we

are done. If â /∈ F (θ), then due to pn̄–monotonicity, there exist player i ∈ N and function

hi : N → A such that

hi(S) = â,∀S ∈ Nn̄ \ Nn̄(i), â �θ̂i l[pn̄, hi] and l[pn̄, hi] �θi â.

Thanks to rule (ii), player i has an incentive to deviate to (θ̂, â1
i , (hi(S))S∈N (i), 0).

Proof of Theorem 6.5: For each player j ∈ N , let

S(j) =

{
{S ∈ Nn̄(j) : {1, 2} ⊂ S}, if j > 2.

{S ∈ Nn̄(j) : {3, 4} ⊂ S}, if j ∈ {1, 2}.

Define the n̄-sampling mechanism Γn̄ = ((Mi)i∈N , pn̄, (g
S)S∈N ) in which for all i ∈ N ,

Mi = Θ× A× A× Z+.

Let a typical message mi be of the form (θi, a
1
i , a

2
i , zi).

For each S ∈ Nn̄, the outcome function gS is as follows:

(i) If for every player i ∈ S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gS

(
(mi)i∈S

)
= a.

(ii) If for |S|−1 players i 6= j in S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), butmj = (θj, a

1
j , a

2
j , zj) 6=

(θ, a1
j , a, 0), then

gS
(
(mi)i∈S

)
=

{
a if a2

j �θj a or S /∈ S(j)

a2
j if a �θj a2

j and S ∈ S(j).

(iii) In all other cases, gS
(
(mi)i∈S

)
= a1

j where j ∈ S is the player with the lowest index

among those players in S who announce the highest integer in the profile (mi)i∈S.

Finally, for all S ∈ N \ Nn̄, the outcome function gS can be arbitrary.

Step 1. For any θ ∈ Θ, F (θ) ⊆
{
l[Γn̄,m] : m ∈ NE(Γn̄, θ)

}
.

Pick any a ∈ F (θ) and consider m ∈ M such that mi = (θ, a, a, 0) for all i ∈ N . Then

l[pn̄,m] = a. Suppose player i deviates from mi to m′i = (θi, a
1
i , a

2
i , zi). Pick any S ∈ Nn̄.

First, suppose S ∈ Nn̄ \ Nn̄(i). Then rule (i) will be used under senate S and hence, a

will be implemented. Second, suppose S ∈ Nn̄(i). Since |S| = n̄ ≥ 4, rule (ii) will be used
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under senate S. In that case, a is implemented if a2
i �θi a or S /∈ S(i) and a2

i is implemented

if a �θi a2
i and S ∈ S(i). Since preferences over lotteries are monotone, player i does not

improve by her deviation. So, m ∈ NE(Γn̄, θ).

Step 2. For any θ ∈ Θ,
{
l[pn̄,m] : m ∈ NE(Γn̄, θ)

}
⊆ F (θ).

Let m̂ ∈ NE(Γn̄, θ) be such that for any i, m̂i = (θ̂i, â
1
i , â

2
i , ẑi). Define i1 as the player

with the lowest index amongst the players who announce the highest integer in m̂.

First, suppose m̂ is such that there exist at least three players, i2, i3 and i4 such that

(θ̂i2 , â
2
i2
, ẑi2) 6= (θ̂i3 , â

2
i3
, ẑi3) 6= (θ̂i4 , â

2
i4
, ẑi4) – the second components of these players’ messages

are not being considered. Let I =
{
i ∈ {i2, i3, i4} : (θ̂i, â

2
i , ẑi) = (θ̂i1 , â

2
i1
, ẑi1)

}
. Clearly, either

I is empty or singleton. Consider any j ∈ N and pick any S(j) ∈ Nn̄(j) such that (a) if

i1 ∈ I, then {i2, i3, i4} ⊂ S(j), (b) if i1 /∈ I but I 6= ∅, then {i1, i2, i3, i4}\I ⊂ S(j), and (c) if

I = ∅, then {i1, i2, i3} ⊂ S(j) (this is possible since n̄ ≥ 4). Now, rule (iii) will be used under

senate S(j). Moreover, since player i1 ∈ S(j), the alternative â1
i1

will be implemented under

S(j). We claim that â1
i1
∈
⋂
j∈N A

∗
j(θ) for all j ∈ N . Suppose not and let j ∈ N be such

that â1
i1
/∈ A∗j(θ). Define a1

j as follows: if A∗j(θ) 6= ∅, then let a1
j be any alternative in A∗j(θ);

whereas if A∗j(θ) = ∅, then let a1
j be any alternative such that a1

j �θj a,∀a ∈ A(l[Γn̄, m̂]).

Now, consider player j’s deviation to mj that differs from m̂j only in the second and last

components with these being, respectively, a1
j and zj > ẑi1 . If the selected senate is some

S ∈ Nn̄(j), then one of the following will hold:

• gS((mj, m̂−j)
S) follows rule (iii). Then gS((mj, m̂−j)

S) = a1
j . Moreover, this will be

the case when S = S(j).

• gS((mj, m̂−j)
S) follows rule (ii). There are two possibilities: gS(m̂S) followed either

rule (i) or (ii). However, in either case gS((mj, m̂−j)
S) = gS(m̂S) since player j has

only changed the second and last components of her message and the outcome under

rule (ii) does not depend on these components.

On the other hand, if the selected senate is S ∈ Nn̄ \Nn̄(j), then gS((mj, m̂−j)
S) = gS(m̂S).

Since preferences over lotteries are monotone, player j will be better-off after the deviation

to mj, a contradiction. But â1
i1
∈
⋂
j∈N A

∗
j(θ) for all j ∈ N contradicts DTA-N .

Second, suppose m̂ is such that there exist at least two players, i2 and i3 such that

(θ̂i2 , â
2
i2
, ẑi2) 6= (θ̂i3 , â

2
i3
, ẑi3) – again, the second components of these players’ messages are not

being considered. If there exists a player j such that (θ̂j, â
2
j , ẑj) 6= (θ̂i2 , â

2
i2
, ẑi2) 6= (θ̂i3 , â

2
i3
, ẑi3),

then we are back in the first case. Hence, for every player j there exists a player in {i2, i3},
denoted by i(j), such that (θ̂j, â

2
j , ẑj) = (θ̂i(j), â

2
i(j), ẑi(j)). Let J2 = {j ∈ N : i(j) = i2} and

J3 = {j ∈ N : i(j) = i3}. As before, i1 is the player with the lowest index amongst the

players who announce the highest integer in m̂. Without loss of generality, suppose i1 ∈ J2.
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• Suppose there exist j2 6= i1 and j3 6= i3 such that j2 ∈ J2 and j3 ∈ J3. Consider any

j ∈ N and define S(j) as follows. If j ∈ {i1, j2, i3, j3}, then let S(j) be any set in Nn̄(j)

such that {i1, j2, i3, j3} ⊆ S(j). If j ∈ J2 \ {i1, j2}, then let S(j) be any set in Nn̄(j)

such that {i1, j, i3, j3} ⊆ S(j). Finally, if j ∈ J3 \ {i3, j3}, then let S(j) be any set in

Nn̄(j) such that {i1, j2, i3, j} ⊆ S(j). In defining S(j), we have ensured that i1 ∈ S(j)

and it contains at least two players each from J2 and J3, which is possible since n̄ ≥ 4.

Hence, rule (iii) will be used and alternative â1
i1

will be implemented under S(j). As

before, we can show that â1
i1
∈
⋂
j∈N A

∗
j(θ) for all j ∈ N , which contradicts DTA-N .

• Suppose there exists j2 6= i1 such that j2 ∈ J2 but J3 = {i3}. If ẑi1 6= 0 or â2
i1
/∈ F (θ̂i1),

then for any j ∈ N , let S(j) be any set in Nn̄(j) such that {i1, j2, i3} ⊂ S(j). This is

possible since n̄ ≥ 4. Rule (iii) is used and hence, â1
i1

is implemented under S(j). As

before, we can show that â1
i1
∈
⋂
j∈N A

∗
j(θ) for all j ∈ N , which contradicts DTA-N .

On the other hand, if ẑi1 = 0 and â2
i1
∈ F (θ̂i1), then rule (ii) is used under any

S ∈ Nn̄(i3) (since i3 is the only player in S who “disagrees”) whereas rule (i) is

used under any S ∈ Nn̄ \ Nn̄(i3) (since all players in S “agree”). Therefore, â2
i1

is

implemented under all S ∈ Nn̄ \ S(i3).

– Suppose â2
i3
�θ̂i1i3 â2

i1
. Then â2

i1
is also implemented under all S ∈ S(i3). If

â2
i1
∈ F (θ), then we are done. If â2

i1
/∈ F (θ), then by Maskin monotonicity, there

exist player i and a′ such that â2
i1
�θ̂i1i a′ but a′ �θi â2

i1
. Let player i deviate

to m′i = (θ̂i, a
′, a′, z′), where z′ > 0 = ẑi1 ≥ ẑi3 . If the selected senate is some

S ∈ Nn̄(i), then one of the following will hold:

∗ gS((m′i, m̂−i)
S) follows rule (iii), which happens if i 6= i3 and i3 ∈ S. Then

gS((m′i, m̂−i)
S) = a′.

∗ gS((m′i, m̂−i)
S) follows rule (ii), which happens if i 6= i3 and i3 /∈ S or i = i3.

Then gS((m′i, m̂−i)
S) = a′ if S ∈ S(i) and gS((m′i, m̂−i)

S) = gS(m̂S) = â2
i1

if

S /∈ S(i).

Since preference over lotteries are monotone, player i has an incentive to deviate,

which is a contradiction.

– Suppose â2
i1
�θ̂i1i3 â2

i3
. Then â2

i3
is implemented under all S ∈ S(i3). If â2

i1
= â2

i3
∈

F (θ), then we are done. If â2
i1

= â2
i3
/∈ F (θ), then we can obtain a contradiction

using Maskin monotonicity as in the previous case. So suppose â2
i1
6= â2

i3
. We

argue that {â2
i1
, â2

i3
} ∈ A∗j(θ) for all j 6= i3. If not, then let player j deviate to

mj that differs from m̂j only in the second and last components with these being,
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respectively, a1
j (as defined in the first case) and zj > 0 = ẑi1 ≥ ẑi3 . If the selected

senate is some S ∈ Nn̄(j), then one of the following will hold:

∗ gS((mj, m̂−j)
S) follows rule (iii). Then gS((mj, m̂−j)

S) = a1
j . This will be the

case for all S ∈ Nn̄(j) such that i3 ∈ S. Furthermore, there exist S1 ∈ S(i3)

and S2 ∈ Nn̄ \ S(i3) such that {i3, j} ⊂ S1 and {i3, j} ⊂ S2. This is because

n > n̄ ≥ 4. Before the deviation, gS1(m̂S1) = â2
i3

while gS2(m̂S2) = â2
i1

with

at least one alternative out of these two being strictly worse for j than a1
j .

On the other hand, after the deviation, player j will be able to implement a1
j

under both senates S1 and S2.

∗ gS((mj, m̂−j)
S) follows rule (ii). This will be the case for all S ∈ Nn̄(j) such

that i3 /∈ S. Hence, gS(m̂S) followed rule (i). However, gS((mj, m̂−j)
S) =

gS(m̂S) since player j has only changed the second and last components of

her message.

On the other hand, if the selected senate is S ∈ Nn̄\Nn̄(j), then gS((mj, m̂−j)
S) =

gS(m̂S). Since preferences over lotteries are monotone, player j will be better-off

after the deviation to mj, a contradiction. But {â2
i1
, â2

i3
} ∈ A∗j(θ) for all j 6= i3

such that â2
i1
6= â2

i3
contradicts top-coincidence condition.

• Suppose there exists j3 6= i3 such that j3 ∈ J3 but J2 = {i1}. This case can be argued

like the previous case.

Therefore, m̂ is such that (θ̂i, â
2
i , ẑi) = (θ̂, â, ẑ) for all i ∈ N . Then i1 = 1.

• Suppose either ẑ > 0 or â /∈ F (θ̂). Consider any j ∈ N and let S(j) be any set in Nn̄(j)

such that 1 ∈ S(j). Rule (iii) is used and hence, â1
1 is implemented under S(j). As

before, we can show that â1
i1
∈
⋂
j∈N A

∗
j(θ) for all j ∈ N , which contradicts DTA-N .

• Suppose ẑ = 0 and â ∈ F (θ̂). Then because of rule (i), alternative â is implemented

under any S ∈ Nn̄. If â ∈ F (θ), then we are done. If â /∈ F (θ), then there exist player

i and a′ such that â �θ̂i a′ but a′ �θi â. Thanks to rule (ii), player i has an incentive to

deviate to (θ̂, â1
i , a
′, 0).
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