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Abstract. Longevity has been increasing in the developed countries for almost two

centuries and further increases are expected in the future. In the neoclassical growth

models the case of population growth driven by fertility is well-known, whereas the

properties of population growth caused by persistently declining mortality rates have

received little attention. Furthermore, the economic literature on the consequences of

changing longevity has relied almost entirely on analysis applying a once and for all

change in the survival probability. This paper raises concern about such an approach of

comparison of steady state equilibrium when considering the empirically observed trend

in longevity. We extend a standard continuous time overlapping generations model

by a longevity trend and are thereby able to study the properties of mortality-driven

population growth. This turns out to be exceedingly complicated to handle, and it is

shown that in general no steady state equilibrium exists. Consequently analytical results

and long run implications cannot be obtained in a setting with a realistic demographic

setup.
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1. Introduction

Demographics are changing signi�cantly in most developed countries, and the large

number of elderly people relative to the labor force challenges the sustainability of public

pension schemes and tax �nanced welfare services. The development is neither new nor

transitory; longevity (life expectancy at birth) has been rising for a long period and is

expected to continue to do so (cf. Section 2). At the same time fertility rates have

generally fallen and thereby mitigated an increase in the population growth rate (which

by de�nition is the fertility rate minus the death rate). In the neoclassical growth model

fertility is usually the source of population growth which is easy to handle and the results

are well-known.1 The alternative case of persistently increasing longevity as the driver

of population growth has so far received little attention. This paper contributes to the

scarce literature by studying the properties of a neoclassical growth model with longevity

driven population growth. We show that compared to the fertility case this is much more

complicated to handle, and in general no steady state equilibrium (de�ned by constant

growth rates for per capita variables) exists.

Many parts of the economy have been and will continue to be in�uenced by the demo-

graphic changes, and a large economic literature on the consequences now exists.2 It spans

from the impact on public �nances, in particular social security, to international capital

�ows, human capital accumulation and growth in general. However, it is rather striking

that most of the literature (cf. Section 3) disregards the trend in longevity and model

longevity as stationary over time. To address the consequences of increasing longevity

in such a set-up, one has to rely on steady state equilibrium comparisons, i.e., study the

e¤ects of once and for all positive shocks to longevity. This is a convenient model simpli�-

cation, but it is in sharp contrast to what we observe empirically. Old age mortality rates

have been declining for many years, and life expectancy at birth has shown an almost

linear trend for more than a century (cf. Section 2). The magnitude of future lifetime

improvements is of course uncertain, but in the past the projections have been revised

upwards several times. Thus, there should be little doubt that expected lifetime is going

to be higher for future generations. Since the time horizon is important for many eco-

nomic decisions, we would expect people to incorporate future longevity improvements in

their information set. Therefore, it is problematic to draw conclusions from models with

constant longevity across time and cohorts. This is already pointed out by Hamermesh

1See e.g. the treatment in standard textbooks such as Barro and Sala-i-Martin (2004) or Romer (2006).
2See e.g. Ehrlich and Lui (1991), Adema, Meijdam and Verbon (2008), Andersen (2008), and Heijdra

and Romp (2009).
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(1985). In a questionnaire survey he �nds that people are well aware of changes in life

expectancy. They extrapolate past improvements in longevity and are able to predict

their own lifetime fairly well.3

Besides looking into the case of population growth via longevity, we accommodate this

critique by specifying a realistic demographic setup in the sense that life expectancy at

birth exhibits a positive time trend. We do this by setting up an overlapping generations

model in the spirit of Blanchard (1985) but extended with an exogenous demographic

process such that newborn cohorts face mortality rates equal to or lower than those ap-

plying for previous cohorts. Since nothing indicates that the longevity trend is lowering

o¤ (cf. Section 2), and to address the extreme case of population growth caused by persis-

tently decreasing mortality rates, we allow the longevity trend to continue forever. Thus,

no maximum attainable age is assumed. Apart from the demographic setup the model is

very simple; agents face a standard maximization problem of choosing consumption over

their life cycle, and the supply side is given by a standard neoclassical production func-

tion. The paper thus addresses the fundamental question of whether population growth

caused by declining mortality rates can be a source of balanced growth. The answer turns

out to be negative, and a non-existence result of steady state equilibrium is provided.

Intuitively, existence fails because individual consumption becomes cohort dependent and

the age distribution changes over time. Consequently, the dynamics of aggregate con-

sumption becomes too complicated and uncontrollable to ensure balanced growth. The

result is discouraging and it questions the reliability of results derived from the models

with simpler demographic frameworks implying that steady state equilibrium exists.

The paper is organized as follows. In Section 2 we give some empirical facts to illustrate

the upward trend in longevity. A brief review of the literature on longevity and growth is

given in Section 3. Section 4 presents the model and outlines the demographic structure

of both age and cohort speci�c mortality rates. The key non-existence result of steady

state equilibrium is provided in Section 5. Section 6 discusses possible extensions and

Section 7 concludes.

2. The upward trend in longevity

Longevity has been increasing for more than 150 years in most developed countries. It

can be described by a positive and almost linear trend (at least from around 1960). The

case for the USA from 1933 and with projections until 2050 is plotted in Figure 1. The

case for Sweden from 1751 until 2050 is plotted in Figure 2. Clearly, there is an upward

3Later studies have con�rmed the results, see e.g. Smith, Taylor and Sloan (2001).



4 MIKKEL NØRLEM HERMANSEN

trend in longevity, and nothing indicates that it is leveling o¤.4 The idea that there is some

upper limit on human longevity has not yet been proven (Oeppen and Vaupel, 2002), and

further increases should be expected in the future (United Nations, 2008) as seen from

the �gures.
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Figure 1: Life expectancy at birth, USA, 1933�2050.

Source: Human Mortality Database (2011) and

United Nations (2008)
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Figure 2: Life expectancy at birth, Sweden, 1751�2050.

Source: Human Mortality Database (2011) and

United Nations (2008)
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Figure 3: log GDP per capita, USA, 1870�2001.

Source: Maddison (2003)
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Figure 4: log GDP per capita, Sweden, 1820-2001.

Source: Maddison (2003)

Simultaneously with the improvements in longevity the developed countries have ex-

perienced sustained economic growth. This can be seen in the development of log GDP

per capita, which is plotted for the USA and Sweden in Figure 3 and 4. Both series �t

a straight line quite well, implying that the growth rate of GDP per capita seems to be

fairly constant in the long run.

The drivers behind the mortality improvements in Figure 1 and 2 have changed a lot

over time. Initially, reductions in childhood mortality were the main reason for higher

life expectancy, whereas the improvements since 1970 are almost entirely due to declining

4Similar patterns hold for other developed countries, cf. the Human Mortality Database (2011).
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mortality at old ages (cf. table 2 in Christensen, Doblhammer, Rau and Vaupel (2009)).

Therefore, the lower life expectancy growth relative to the early years in the USA (Figure

1) is not due to a slowing down of mortality improvements at old ages. In fact, the decline

of mortality at old ages has accelerated since around 1970 (Wilmoth, 2000; Vaupel, 1998),

and current population growth is almost entirely due to mortality decline at old ages

(Johnson, 2000). This can also be seen from the period survival curves plotted in Figure

5 and 6 �changes from 1960 to 1980 and 2007 take place almost entirely at old ages.
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Figure 5: Period survival curves, USA.

Source: Human Mortality Database (2011)
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Figure 6: Period survival curves, Sweden.

Source: Human Mortality Database (2011)

When studying the consequences for the labor force of rising longevity and the derived

in�uence on growth, it is crucial to know whether people are mostly gaining healthy years

of life. Christensen et al. (2009) survey various studies of this and �nd that people below

the age of 85 now live longer and generally with better health than previous generations.

Above the age of 85 the conditions are less clear, and there is some evidence that ex-

ceptionally old people have on average worse health than previous cohorts. This could

be a result of medical improvements that make it possible to help frail and ill people

into advanced old age. Overall, Christensen et al. (2009) conclude that people are living

longer and with less disability and fewer functional limitations than previous generations.

Hence, we can in principle expect the demographic changes to continuously extend the

labor force.5

The stylized economic facts of longevity and GDP per capita are thus that they increase

together in the long run, the latter at a fairly constant rate and the former by an almost

5This has so far not been the case since retirement ages have been fairly constant or even declining,

cf. Andersen and Hermansen (2010).
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linear trend in life expectancy at birth (at least the recent development due to lower old

age mortality rates).6

3. Literature review

The economic consequences of demographic changes have been analyzed mainly by

applying the Blanchard model (Blanchard, 1985) in continuous time and by applying the

Diamond model (Diamond, 1965) extended by an exogenous probability of survival into

old-age in discrete time. In both models extended longevity is analyzed using comparative

statics by varying the survival parameter. Although the models are analytically attractive,

the simpli�ed demographic setup limits the generality and level of detail of the results.

One faces the classical trade-o¤ of analytical tractability versus descriptive accuracy.

Several attempts to build models with a more realistic demographic speci�cation have

been made. We brie�y review this literature to outline the current state of replicating the

longevity trend in theoretical work.7,8

The main drawback (and advantage) of the Blanchard model is the age invariant sur-

vival rate. Relaxing this complicates the expressions for aggregate variables considerably.

Boucekkine, de la Croix and Licandro (2002) improve the realism of the demographic

structure considerably by assuming that the survival rate is a decreasing function of age.

By applying a speci�c functional form for the survival rate, assuming a maximum at-

tainable age and linear utility, their model of human capital can be solved analytically.

Di¤erent demographic shocks can then be analyzed by varying the two parameters in the

survival rate function. Azomahou, Boucekkine and Diene (2009) apply the same survival

rate function in a model combining Blanchard (1985) with a learning-by-doing external-

ity (Romer, 1986). They investigate the impact of higher life expectancy on economic

growth and �nd with age-dependent survival probabilities a positive convex (concave)

relationship for low (high) values of life expectancy.

6For empirical studies on the relationship between longevity and growth see e.g. Kelley and Schmidt

(1995), Boucekkine, de la Croix and Licandro (2003), and Acemoglu and Johnson (2007).
7Here we restrict attention to exogenous longevity. There is also a small but growing literature on

endogenous longevity (see e.g. Aísa and Pueyo (2004), Chakraborty (2004), Bhattacharya and Qiao

(2007), and Schneider and Winkler (2010)). However, we are not aware of any models that generate an

upward trend in equilibrium. Instead the steady state equilibrium is typically characterized by constant

longevity, and changes in mortality rates can only be explained as a transition towards a new steady

state. Recalling the century-long trend in longevity seen in Section 2, this is not a very satisfying answer.
8In discrete time a more realistic demographic speci�cation amounts to dividing length of life into

more time periods. However, analytical tractability is typically already lost by three or four periods.

Therefore, the focus in this paper is on continuous time models.
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Faruqee (2003) takes a similar approach. First he generalizes the mortality rate of

the Blanchard model to be time and cohort dependent. He then makes a functional

form assumption (age-dependent mortality rate) to achieve analytical results. The model

can, however, only be solved analytically for exogenous factor prices and no results for

transitional dynamics can be obtained.

d�Albis (2007) applies a general hazard rate of death (the framework introduced by Yaari

(1965)), and uses Lotka�s (1998) stable population assumption9 to be able to aggregate

and show existence of steady state equilibrium. The focus of the paper is the relationship

between the population growth rate and capital per capita, and not explicitly increasing

longevity. Although the general mortality rate is very attractive in the attempt to replicate

demographic observations, the stable population assumption is obviously not empirically

supported (cf. Section 2).

Another way to simplify aggregation is to consider a small open economy in which factor

prices are exogenously given. Making this assumption enables Heijdra and Romp (2008)

to solve the Blanchard model with a general age-dependent mortality rate (in a numerical

analysis they use a Gompertz-Makeham process). Contrary to Boucekkine et al. (2002)

and d�Albis (2007) no maximum attainable age is assumed in this paper, instead the

probability of survival tends toward zero when the age tends toward in�nity.
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Figure 7: Survival law functions.

The survival rate functions applied in Blanchard (1985), Boucekkine et al. (2002),

and Heijdra and Romp (2008) are plotted in Figure 7. Comparing this to the empirical

counterpart in Figure 5 and 6, we see that the latter two make large progress relative to

9De�ned by a constant population growth rate and a �xed age distribution over time. See also Section

5.
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the Blanchard case and are able to track the empirical survival curve in a given year quite

well. It is tempting to compare two steady states for two given survival curves that �t

the empirical curves well and argue that such an analysis displays a realistic demographic

setup. But this is not the case since a steady state equilibrium obviously requires that all

adjustments have taken place, which �rst of all happens very slowly when we deal with

demographic changes and secondly requires that the change is a one time shock. Figure

5 and 6 highlight that a realistic demographic setup requires the survival curve to move

outwards persistently.

Attempts to make the survival probabilities time or cohort dependent are seen in

Boucekkine et al. (2003), Faruqee (2003), and Azomahou et al. (2009). However, to

show existence of steady state equilibrium, they all consider time-invariant parameters

and end up analyzing extended longevity by comparative statics. Andersen and Gestsson

(2010) assume that survival rates are cohort speci�c and are thus able to capture the

empirically observed longevity trend. However, they use a partial equilibrium model (or

small open economy framework) since the focus of the paper is intergenerational equity

and determination of optimal policy. Hence, existence of steady state equilibrium is not

addressed.

4. Overlapping generations model

with cohort and age dependent mortality

Even though attempts have been made to make mortality rates time or cohort speci�c,

no steady state equilibrium with a longevity trend has been shown to exist. To clarify

the reasons for this and study the case of population growth via longevity, we take a

standard neoclassical growth model in continuous time and extend it with a very general

demographic structure.10 The key requirement is that life expectancy at birth should

be increasing over time, or alternatively that decreasing mortality rates should be the

source for population growth. A simple way to achieve this is by letting mortality rates

be cohort speci�c, which implies that individuals become heterogeneous. Therefore, it is

most attractive to work in continuous time to ease aggregation.

Since this is a �rst step in handling the longevity trend, we keep the model simple and

use standard assumptions in order to maximize the possibilities for existence of steady

state equilibrium. Thus, labor supply is exogenous, �rms are perfectly competitive, and

markets for life insurance and annuities exist. There is no endogenous growth in the

10The model in this paper is closest to the one in Azomahou et al. (2009) (Section 5). However, in

this paper we generalize demography even further by working with a general survival function.
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model � the only source of growth is exogenous population growth due to decreasing

mortality rates. More speci�cally, the links between longevity and growth in this model

are an exogenous positive e¤ect on the size of the labor force and a potential reaction in

the (endogenous) savings rate. If a steady state equilibrium can be shown not to exist

under these admittedly strong assumptions, we see no way to achieve a balanced growth

path with longevity driven population growth and thus no purpose in relaxing the model

assumptions. After specifying the structure of the demography, we set up the household�s

maximization problem before aggregating and studying the conditions for existence of

steady state equilibrium.

4.1. Demography: Cohort and age dependent mortality. The aim of the demo-

graphic speci�cation is to make it as general and realistic as possible while keeping it

analytically tractable.11,12 The instantaneous probability of death (the hazard rate) de-

pends on time of birth (s) and age (a)

� (s; a) � 0; �s � 0; �a > 0: (4.1)

The probability for an agent born at time s to survive until age a is thus

m (s; a) = m0e
�
R a
0 �(s;x)dx:
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Figure 8: Projected cohort survival curves, USA.

Source: Berkeley Mortality Database (2011)

11Instead of cohort speci�c mortality rates, one could also consider time speci�c rates. If longevity

improvements are mainly driven by new discoveries in medicine and health care, this would be a better

approximation. Unfortunately, the hazard rate will turn up in the steady state condition, and if the rate

is time dependent, no steady state equilibrium can exist in such a setting.
12The demographic setup builds on Faruqee (2003).
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The empirical counterpart to this is shown in Figure 8 for �ve di¤erent US cohorts.13 To

track this we impose the boundary conditions of a �xed probability of death at birth and

that no one lives forever14

m (s; 0) = m0 2 (0; 1] 8s

lim
a!1

m (s; a) = 0 8s:

We can calculate the life expectancy at birth as15

LE (s) =

Z 1

s

(t� s)m (s; t� s) dt =
Z 1

s

(t� s) e�
R t�s
0 �(s;x)dxdt: (4.2)

Due to the assumptions (cohort speci�c mortality, �s � 0), life expectancy increases over
cohorts and thereby tracks the longevity trend (cf. Figure 1 and 2) as requested16

dLE (s)

ds
= �

Z 1

s

(t� s)
�Z t�s

0

�s (s; x) dx

�
e�

R t�s
0 �(s;x)dxdt � 0:

As is standard in this type of model, we assume that lifetime is uncertain at the in-

dividual level, but that the cohorts are so large that at the aggregate level everything is

deterministic (the law of large numbers). We denote the total population size at time t

by N (t) and the size of the cohort born at time s at time t by n (s; t). The crude fertility

rate is denoted b (s) and allowed to change over time. The size of the newborn generation

at time s is then

n (s; s) = b (s)N (s) ; (4.3)

13Whereas the period survival curves in Figure 5 and 6 show the probability of survival at a

given point in time as a function of age, Figure 8 shows the survival curve for the cohorts born in

s 2 f1900; 1925; 1950; 1975; 2000g.
14The assumptions made for � (:; :) ensure that the function m (:; :) is decreasing in age and increasing

in the cohort index. The second derivative w.r.t. age is

@2m (s; a)

@a2
=
h
� (s; a)

2 � �a (s; a)
i
m0e

�
R a
0
�(s;x)dx Q 0:

To replicate the empirical survival function we can assume

� (s; a)
2 � �a (s; a) Q 0 for a Q a�

where a� is the in�ection point, where the function shifts from being concave to being convex.
15As is standard in this type of model, childhood is neglected and individuals are assumed to enter at

the age of 20. For notational convenience we let m0 = 1 in the rest of the paper.
16This can be shown by noting that the assumption limt!1m (s; t� s) = 0 implies

limt!1 e
R t�s
0

�(s;x)dx =1, so L�Hôpital�s rule can be applied.
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and the following relations apply

n (s; t) = n (s; s)m (s; t� s) = b (s)N (s) e�
R t�s
0 �(s;x)dx (4.4)

_n (s; t) = �� (s; t� s)n (s; t) (4.5)

N (t) =

Z t

�1
n (s; t) ds: (4.6)

We can work out the population growth rate (v (t)) as the di¤erence between the fertility

rate and the instantaneous probability of death averaged over the present cohorts (the

crude death rate)17

v (t) =
_N (t)

N (t)
=
n (t; t)

N (t)
�
Z t

�1
� (s; t� s) n (s; t)

N (t)
ds = b (t)� � (t) : (4.7)

Furthermore, using (4:4) and (4:7) in (4:6) yields the relation

Z t

�1
b (s) e�

R t
s [v(x)+�(s;x�s)]dxds = 1; (4.8)

between the three rates. (4:8) implicitly de�nes v (:) for given choices of b (:) and � (:; :).

4.2. Households. The household�s maximization problem is standard. Agents inelasti-

cally supply one unit of labor at each instant of time, and we assume that individuals

work for their entire lifetime. Any disutility of work is therefore normalized to zero to

simplify. Expected utility at birth time for an agent belonging to cohort s is

E [U (s)] =

Z 1

s

e��(��s)m (s; � � s)u (c (s; �)) d� =
Z 1

s

e�
R ��s
0 [�+�(s;x)]dxu (c (s; �)) d� ;

where � is the subjective discount rate, c (s; �) is consumption at time � for a cohort s

agent, and u () is a standard increasing and concave utility function.18 Complete markets

for annuities and life insurance are assumed to exist, and it will thus be optimal for the

agent to fully annuitize to insure against longevity risk (Yaari, 1965). For simplicity

agents are assumed to be equally productive across age and cohorts such that the wage

rate is the same for all and it only depends on time. Hence, the �ow budget constraint is

given by

_z (s; �) = [r (�) + � (s; � � s)] z (s; �) + w (�)� c (s; �) 8� � s; (4.9)

17The crude death rate is likely to increase over time even though mortality rates at old age fall. The

reason is that old individuals compose a proportionately larger fraction of the population. Therefore, it

is not in itself a very informative measure.
18Note that the utility function is assumed to be invariant across time and cohorts. Since this is

standard in the literature we will not attempt to relax it here.
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where z (s; �) is the wealth for cohort s at time � , r (�) the interest rate, and w (�) the

wage rate. By investing wealth in life annuities individuals receive a premium equal to

the instantaneous probability of death, � (s; � � s). In return wealth is transferred to an
insurance company if the individual dies. We assume that individuals are born without

wealth, z (s; s) = 0 8s, and a no-Ponzi-game condition applies. Maximization yields the
following Euler equation

_c (s; �)

c (s; �)
= � u0 (c (s; �))

u00 (c (s; �)) c (s; �)
[r (�)� �] � � (s; �) [r (�)� �] ; (4.10)

where � (s; �) is the inverse measure of relative risk aversion. By applying (4:9), (4:10),

and the no-Ponzi-game condition consumption can be expressed as a function of human

and non-human wealth

c (s; t) = � (s; t) [z (s; t) + h (s; t)] ; (4.11)

where human wealth or the present value of future labor income is de�ned by

h (s; t) �
Z 1

t

e�
R �
t [r(x)+�(s;x�s)]dxw (�) d� ; (4.12)

and it evolves according to

_h (s; t) = [r (t) + � (s; t� s)]h (s; t)� w (t) : (4.13)

The marginal propensity to consume is de�ned by

� (s; t) �
�Z 1

t

e�
R �
t [[1��(s;x)]r(x)+�(s;x�s)+�(s;x)�]dxd�

��1
:

Note that an increase in the instantaneous probability of death, � (:; :), increases � (:; :)

since the expected lifespan to consume falls.

4.3. Firms. We follow a standard formulation of the production side to keep focus on

the e¤ects of introducing a longevity trend. Firms produce according to a standard

neoclassical production function with capital and labor as the only input factors. Firms

are perfectly competitive and the production factors are thus paid their marginal product

r (t) = f 0 (k (t))� � (4.14)

w (t) = f (k (t))� k (t) f 0 (k (t)) ; (4.15)

where k (t) is the capital-labor ratio and � is the depreciation rate.
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4.4. Aggregation. As mentioned above the size of cohort s at time t is given by n (s; t).

Therefore, aggregate consumption, human wealth, and non-human wealth are given by

Q (t) =

Z t

�1
n (s; t) q (s; t) ds; (4.16)

where (Q; q) 2 f(C; c) ; (H; h) ; (Z; z)g.
The dynamic evolvement for consumption follows from di¤erentiation of (4:16) and by

use of (4:10)

_C (t) = c (t; t)n (t; t)�
Z t

�1
� (s; t� s)n (s; t) c (s; t) ds

+ [r (t)� �]
Z t

�1
� (s; t)n (s; t) c (s; t) ds: (4.17)

The �rst term is consumption by the newborn cohort at time t, the second is the fall in

aggregate consumption caused by individuals dying at time t, and the last term is the

change due to intertemporal substitution (the Keynes-Ramsey rule).

For aggregate human wealth we can apply (4:13) and obtain

_H (t) = h (t; t)n (t; t)� w (t)N (t) + r (t)H (t) : (4.18)

The �rst term is the increase in human wealth due to the newborn cohort, the second is

the fall caused by wage being actually paid out, and the last term is the return on human

wealth (the di¤erence between rate of return and the mortality rate).

Finally, aggregate non-human wealth evolves according to

_Z (t) = r (t)Z (t) + w (t)N (t)� C (t) : (4.19)

The term � (s; t� s)Z (t) does not enter since this re�ects transfers (between insurance
companies and survivors), and does not a¤ect aggregate wealth. Note that the simplicity

of (4:18) and (4:19) is due to the assumption of complete markets for annuities and life

insurance. Relaxing this would complicate the model considerably.

5. Steady state equilibrium

To look for a steady state equilibrium, we consider per capita variables19 denoted by

q (t) = Q(t)
N(t)

, with (Q; q) de�ned as above. Recall that the population growth rate is

19We have also tried to scale by other measures than total population size. However, it turns out that

the scaling variable has to be proportional to N (t) for a steady state to exist. To see this let X (t) be

some unspeci�ed scaling variable. Then the dynamic law for scaled non-human wealth
�ez (t) = Z(t)

X(t)

�
becomes

�ez (t) = w (t) N (t)
X (t)

+ [r (t)� x (t)] ez (t)� ec (t)
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denoted by v (t). By applying (4:17) and (4:7) the dynamic law for per capita consumption

is obtained

_c (t) =
_C (t)

N (t)
� C (t)

_N (t)

N (t)2

= [r (t)� �]
Z t

�1
� (s; t) c (s; t)

n (s; t)

N (t)
ds

+c (t; t) b (t)�
Z t

�1
� (s; t� s) c (s; t) n (s; t)

N (t)
ds� v (t) c (t) : (5.1)

The �rst term is the e¤ect of all agents adjusting consumption optimally according to the

Euler equation (4:10). If we (as is often done) assume a utility function of the constant

relative risk aversion (CRRA) form, the �rst integral will reduce to a constant times

consumption per capita. The second term is the increase due to addition of newborn

agents who start to consume out of human wealth. The third term is the decrease due

to consumption given up by dying agents from all existing cohorts. Finally, since we

are working with consumption in per capita terms, a correction for population growth

is needed. Clearly, the presence of cohort speci�c mortality complicates matters, and

without further restrictions no simple expressions for the change in per capita consumption

due to generational turnover (the second and third term) can be obtained.20

Per capita human and non-human wealth evolve according to

_h (t) = h (t; t) b (t)� w (t) + [r (t)� v (t)]h (t) (5.2)

_z (t) = [r (t)� v (t)] z (t) + w (t)� c (t) : (5.3)

We consider a closed economy, therefore the only form of non-human wealth is capital,

implying Z (t) = K (t) and z (t) = k (t). Using this and the factor prices (4:14) and (4:15),

(5:3) can be written as

_k (t) = f (k (t))� c (t)� [� + v (t)] k (t) : (5.4)

where x (t) =
_X(t)
X(t) is the growth rate of the scaling variable. From the term w (t) N(t)X(t) it is clear that a

necessary condition for existence of a steady state (with a constant wage) is that the scaling variable is

proportional to the population size.
20Note that in the Blanchard case (� (s; t� s) = �, b (t) = b and � = 1), the dynamic law reduces to

_c (t) = [r (t)� �] c (t) + bc (t; t)� [�+ v] c (t) ;

and after some simpli�cation, one obtains the familiar expression

_c (t) = [r (t)� �] c (t)� b (�+ �) z (t) :
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A steady state equilibrium is characterized by constant per capita variables c and k

(i.e. zero growth rates).21 Therefore, necessary and su¢ cient conditions for existence of

steady state equilibrium are that the two equations _k (t) = 0 and _c (t) = 0 have a solution

c� and k� for all t. Unfortunately, this is generally not the case as outlined in Proposition

1.

Proposition 1. In general, the model has no steady state equilibrium.

Proof. The proof requires that the inequality �s � 0 in (4:1) is strict, i.e., we assume that
a newborn cohort can expect to live strictly longer than existing cohorts.

From (5:4) the condition _k (t) = 0 yields

0 = f (k)� c� [� + v (t)] k:

Clearly constant population growth, v (t) = v 8t, is a necessary condition for existence
of a solution. Thus, for a given mortality schedule � (s; t� s) we need to put strong
assumptions on the birth rate for this to be satis�ed.

From (5:1) the condition _c (t) = 0 yields

0 = [f 0 (k)� � � �]
Z t

�1
� (s; t)

n (s; t)

N (t)
c (s; t) ds

+c (t; t) b (t)�
Z t

�1
� (s; t� s) c (s; t) n (s; t)

N (t)
ds� v (t) c:

For a given choice of � (s; t� s) and b (t) nothing ensures that we can �nd a c and k which
satisfy this for all t. Hence, we conclude that, in general, no steady state equilibrium

exists. �

Proposition 1 is driven by the heterogeneity arising across generations due to cohort

speci�c mortality rates. We can obtain expressions for aggregate variables, but we are

unable to simplify or control aggregate consumption in a way that ensures existence of

steady state equilibrium. As Blanchard (1985) notes, simple aggregation is, in general,

impossible when agents are �nitely lived. The reason can be seen from the consumption

function (4:11); individuals of di¤erent age and cohort have di¤erent levels of wealth and

di¤erent propensities to consume. Simple expressions for aggregate variables are not a

necessary condition for existence of steady state equilibrium (cf. Proposition 2 below),

21In principle we should also look for steady state equilibrium with constant positive growth rates.

However, from standard growth theory (see e.g. Barro and Sala-i-Martin (2004)) we know that with

a neoclassical production function such balanced growth paths can be ruled out by the transversality

condition. Endogenous growth requires some externality which is not present in this model.
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but in combination with a changing age distribution existence generally fails in our case.

Next, we turn to a very special case where a steady state equilibrium can be shown to

exist.

Proposition 2. Under the following restrictions the model has a steady state equilibrium.

I. CRRA utility (� (s; t) = � 8t; s)
II. For a given mortality schedule, � (s; t� s), the birth rate (b) is determined en-
dogenously by (4:8) such that the population growth rate is constant (v (t) = v 8t)

III. The mortality rate � (s; t� s) evolve such that the generational turnover term is

a function of per capita consumption and capital only, i.e.,Z t

�1
� (s; t� s) c (s; t) n (s; t)

N (t)
ds� c (t; t) b (t) � � (k; c) 8t:

Proof. Applying restriction (I) and (II) the equilibrium conditions reduce to

_k (t) = 0 : c = f (k)� [� + v] k (5.5)

_c (t) = 0 : c =

R t
�1 � (s; t� s) c (s; t)

n(s;t)
N(t)

ds� c (t; t) b (t)
� [f 0 (k)� � � �]� v : (5.6)

It remains to be show that an appropriate choice of � (s; t� s) can make � a function
of k and c only. Using (4:4), � can be written as

� (k; c) =

Z t

�1
� (s; t� s) c (s; t) b (s) e�

R t�s
0 [v+�(s;x)]dxds� c (t; t) b (t) : (5.7)

Recall that

c (t; t) = � (t; t)h (t; t)

=

R1
t
[f (k (�))� k (�) f 0 (k (�))] e�

R �
t [f

0(k(x))��+�(t;x�t)]dxd�R1
t
e�

R �
t [(1��)[f 0(k(x))��]+�(t;x�t)+��]dxd�

;

and

c (s; t) = � (s; s)h (s; s) e
R t
s �[f

0(k(x))����]dx:

Hence, b (t) and � (s; t� s) are implicitly de�ned by (4:8) and (5:7).
The restrictions (I)-(III) ensure that the equilibrium conditions reduce to two equations

in k and c. To be complete we should also show that a solution (k�; c�) exists. This follows

from the properties of the neoclassical production function f (k). In a (k; c) diagram (5:5)

gives the usual hump-shaped graph, and provided that the numerator in (5:6) is positive

and bounded, the _c (t) = 0 locus is increasing and has a vertical asymptote at the k

satisfying � [f 0 (k)� � � �]� v = 0. That the numerator is positive follows from the fact

that individual consumption is increasing when f 0 (k) � � � � > 0 (cf. 4:10) which is
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the case to the left of the asymptote. Therefore, per capita consumption will tend to

increase. So, to counteract this and obtain _c (t) = 0, consumption of the newly deceased

must be greater than consumption of newborn cohorts, which is exactly what we have in

the numerator. Hence, the two lines _k (t) = 0 and _c (t) = 0 must cross at least once and

de�ne a steady state equilibrium. �

The idea behind Proposition 2 is to consider each term in the equilibrium conditions

and impose a restriction such that the term becomes constant or a function of k and c

only. CRRA utility is often assumed and not that critical. The demographic structure

imposed in point (II) links the fertility rate to people�s lifetime. Such a causality is

hard to defend although the assumption of a constant population growth rate might be

reasonable.22 Point (III) is obviously the strongest assumption. Not only does it again

link the behavior of the newborns and the newly deceased, it also strongly restricts the

choice of the functional form for the hazard rate � (s; t� s). Thus, the restrictions in
Proposition 2 are so strong and the complexity of the equilibrium so high that this special

case is of little interest.

Returning to the case in Proposition 1, the main problem is the dynamics of aggregate

consumption. Blanchard (1985) simpli�ed this by assuming constant probability of death

across age and cohorts. A less restrictive solution is to assume a stable population, i.e.,

a constant population growth rate and a �xed age distribution over time (Lotka, 1998).

Existence can then be shown by rewriting the consumption function into a function of age

only. Then given the stable population, consumption per capita will be constant under

mild conditions. This is formally shown in Proposition 3.

Proposition 3. In the special case of age-speci�c mortality only, a constant birth rate,

and CRRA utility (� (s; t� s) = � (t� s), b (t) = b, and � (s; t) = �) a steady state

equilibrium exists.

Proof. Without the cohort speci�c mortality rate, and given a constant birth rate, the

population growth rate becomes constant. This can be seen by rewriting the population

22For the USA the population growth rate has been in the range of 0.5 to 2.5% per annum in the

period 1870�2003 (Maddison, 2003).



18 MIKKEL NØRLEM HERMANSEN

growth rate (4:7)

v = b�
Z t

�1
� (t� s) bN (s) e

�
R t�s
0 �(x)dx

N (t)
ds

= b�
Z t

�1
� (t� s) be�

R t�s
0 [v(x)+�(x)]dxds

= b�
Z 1

0

� (a) be�
R a
0 [v(x)+�(x)]dxda:

The equilibrium conditions are then

_k (t) = 0 : c = f (k)� [� + v] k (5.8)

_c (t) = 0 : c =

R t
�1 � (t� s) c (s; t)

n(s;t)
N(t)

ds� c (t; t) b
� [f 0 (k)� � � �]� v : (5.9)

To show existence we rewrite the consumption function such that it is a function of age,

the interest rate, and the wage rate only.

The marginal propensity to consume

� (s; t) =

�Z 1

t

e�
R �
t [r(x)+�(x�s)��[r(x)��]]dxd�

��1
=

�Z 1

a

e�
R �
a [r(x+s)+�(x)��[r(x+s)��]]dxd�

��1
:

Human wealth

h (s; t) =

Z 1

t

e�
R �
t [r(x)+�(x�s)]dxw (�) d� =

Z 1

a

e�
R �
a [r(x+s)+�(x)]dxw (� + s) d� ;

and �nally consumption

c (s; t) = � (s; s)h (s; s) e�
R t
s [r(x)��]dx = � (s; s)h (s; s) e�

R a
0 [r(x+s)��]dx:

Recall that the interest rate and the wage rate are functions of k. Thus, we have

reduced individual consumption to depend on time only through k ().

The �rst equation (5:8) is a function of k and c only. In the second equation (5:9) the

term, c (t; t) b, is as just shown a function of k () only. The integral can be rewritten as

follows Z t

�1
� (t� s) c (s; t) n (s; t)

N (t)
ds =

Z t

�1
� (t� s) c (s; t) be�

R t�s
0 [v+�(x)]dxds:

Except for c (s; t) time enters through age a = t� s only. Hence, since the population
is assumed to be stable (constant growth rate and age distribution), and the equilibrium

conditions (5:8) and (5:9) have been shown to depend on c and k only, a steady state

equilibrium exists if the two equations have a solution (k�; c�). That this is the case

follows from an argument analogous to the one in the proof of Proposition 2. �
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The assumption of a stable population (or a demographic steady state) has been ex-

plored in a number of recent papers, see e.g. d�Albis (2007) and Heijdra and Romp (2008).

The advantage is a realistic description of di¤erences in mortality rates across age. Yet,

as outlined in Section 2, a fully realistic demographic description also includes di¤erences

across cohorts. This paper shows that generally this is incompatible with steady state

equilibrium. Intuitively, existence of steady state equilibrium generally fails because the

age distribution cannot be made constant over time when a longevity trend is present.

The model becomes non-stationary. Technically, the impossibility of a longevity trend

and a �xed age distribution at the same time creates the non-existence result.

6. Extensions

In the current setting individuals work for as long as they live. This is not very realistic,

and it might be more relevant to consider growth in a setting with retirement. A �rst step

would be to introduce a mandatory retirement age which is exogenous to the individual

and allowed to vary across cohorts, i.e., the retirement age is a function of birth time,

R (s). The relevant question is then: can we specify a retirement age function to ensure

that the economy has a balanced growth path? The answer is no (see Appendix A). We

get a policy instrument (the retirement age) which can be used to control the growth rate

of the labor force or to let the labor force be proportional to the population. But the

change in aggregate consumption due to exit and entry of new cohorts is still as complex

as above. So besides controlling the labor force we need more restrictions on individual

consumption to generate steady state equilibrium. For now consumption depends on

age and cohort. The dependence generates a complicated expression for the dynamics of

aggregate consumption. Recall that the model, except for the longevity trend, already

contains strong simplifying assumptions (wage rate independent of age, perfect annuity

market etc.). Therefore, further simplifying assumptions would spoil the ability to track

what we observe in reality, and left would be a model that can �t the demographic

development (by assumption!) and not much more.

Why should we care whether a steady state equilibrium exists or not? The purpose of

studying steady state equilibrium derives from the idea that there exist forces ensuring

relatively stable economic growth. Moreover, if the economy moves towards the steady

state equilibrium, analytical results and long run implications for the economy can be

derived. In this model the economy does not converge to a steady state equilibrium,

and unfortunately it is not possible analytically to determine what direction the economy



20 MIKKEL NØRLEM HERMANSEN

moves in then. This will, among other things, depend on initial values and the functional

form for � (s; t� s).

7. Concluding remarks

It is an empirical fact that longevity follows an upward trend with no indication of an

upper limit approaching. We show that extending a standard continuous time overlapping

generations model to include a longevity trend by assuming cohort speci�c mortality rates

implies that no steady state equilibrium exists. Intuitively, existence fails since individual

consumption becomes heterogeneous and the age distribution changes over time, which

makes aggregate consumption too complex to maintain on a balanced growth path. We

have made a number of strong simplifying assumptions with the purpose of creating the

best conditions for a steady state equilibrium to exist. Since this could be rejected, we see

no way to achieve a balanced growth path with longevity driven population growth and

thus no purpose in relaxing the model assumptions. Therefore, we must conclude that

population growth caused by declining mortality rates cannot be consistent with balanced

growth. Consequently, we cannot analytically make long run predictions for an economy

with a longevity trend, or at least we cannot do that in the type of model studied here.

Furthermore, this paper raises questions about the standard method of steady state

equilibrium comparison applied in the literature on the consequences of longevity improve-

ments. The underlying assumption in these models seems to be that longevity improves

but eventually approaches some constant level after which the economy moves to steady

state equilibrium again. However, there is no indication of longevity approaching an up-

per limit, and the magnitude of today�s longevity improvements (further stressed by the

systematic underestimation of future gains) suggests that the quantitative e¤ects of exit

and entry of new cohorts with di¤erent mortality rates (as seen in (4:17)) are non-trivial.

The disappointing result of this paper raises the question of how to proceed. Is it

impossible to obtain useful analytical results on the consequences of raising longevity?

More work on how to handle the longevity trend is needed. An active area of research

is endogenous longevity models, but so far researchers have only been able to generate

stationary equilibrium (i.e. constant longevity in equilibrium). Extending this to the

non-stationary case (i.e. an endogenous longevity trend) is an important future area of

research.
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Appendix A. Extended model with retirement

In this appendix we introduce a mandatory retirement age which is exogenous to the

individual and allowed to vary across cohorts, i.e., the retirement age is a function of birth

time, R (s). We start by de�ning an indicator variable for being part of the labor force

as a function of cohort (s) and time (t)

IR (s; t) =

(
1 if t < s+R (s)

0 if t � s+R (s) :

The labor force is given by

L (t) =

Z t

�1
IR (s; t)n (s; t) ds;

and since the population and the labor force now di¤er, we have to modify the factor

prices found above. Total production is now

Y (t) = F (K (t) ; L (t)) = L (t)F

�
K (t)

N (t)

N (t)

L (t)
; 1

�
= L (t) f

�
k (t)

N (t)

L (t)

�
;

and the factor prices

r (t) = f 0
�
k (t)

N (t)

L (t)

�
� �

w (t) = f

�
k (t)

N (t)

L (t)

�
� f 0

�
k (t)

N (t)

L (t)

�
k (t)

N (t)

L (t)
:

The household�s maximization problem with the exogenous retirement age, R (s), now

become

max
fc(s;�)g1�=s

Z 1

s

e�
R ��s
0 [�+�(s;x)]dxu (c (s; �)) d�

s:t: : _z (s; �) = [r (�) + � (s; � � s)] z (s; �) + IR (s; �)w (�)� c (s; �)

lim
�!1

z (s; �) e�
R �
t [r(x)+�(s;x�s)]dx = 0 8t � s:

From here we can derive an Euler equation identical to the one in Section 4.2. Human

wealth now becomes a function of the retirement age

hR (s; t) =

Z s+R(s)

t

w (�) e�
R �
t [r(x)+�(s;x�s)]dxd� ;

and optimal consumption is similar to (4:11) except for the new human wealth function

c (s; t) = � (s; t) [z (s; t) + hR (s; t)] : (A.1)
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The expression for marginal propensity to consume (� (s; t)) is unchanged.23 The reason

is that the retirement age is exogenous to the agent and only in�uences the �ow of wage

income. The level of consumption and non-human wealth is of course di¤erent from the

case without retirement age.

The dynamics of aggregate non-human wealth is now

_Z (t) = r (t)Z (t) + w (t)L (t)� C (t) :

Since the population and the labor force now di¤er, we can consider both per capita

and per worker variables in the search for steady state equilibrium. Normalizing by the

total population as in Section 5, the steady state equilibrium conditions in terms of per

capita variables are

_k (t) = 0 : f

�
k (t)

N (t)

L (t)

�
L (t)

N (t)
� [� + v (t)] k (t)� c (t) = 0 (A.2)

_c (t) = 0 : [f 0 (k (t))� � � �]
Z t

�1
� (s; t)

n (s; t)

N (t)
c (s; t) ds+ c (t; t) b (t)

�
Z t

�1
� (s; t� s) c (s; t) n (s; t)

N (t)
ds� v (t) c (t) = 0: (A.3)

The ratio between the labor force and the population is now present, and since the retire-

ment age for each cohort is adjustable, it is possible to make this ratio constant. However,

the population growth rate (v (t)) is still present in (A.2), and as shown in Section 5, strong

assumptions on the demography are needed to make this constant. Furthermore, the equi-

librium condition for per capita consumption possesses the same problems as above, and

therefore we reach the same conclusion.

Moving on to per worker variables, we de�ne qR (t) =
Q(t)
L(t)

and g (t) =
_L(t)
L(t)
, then the

equilibrium conditions are

_kR (t) = 0 : f (kR (t))� [� + g (t)] kR (t)� cR (t) = 0 (A.4)

_cR (t) = 0 : [f
0 (k (t))� � � �]

Z t

�1
� (s; t)

n (s; t)

L (t)
c (s; t) ds+ c (t; t)

n (t; t)

L (t)

�
Z t

�1
� (s; t� s) c (s; t) n (s; t)

L (t)
ds� g (t) cR (t) = 0: (A.5)

The dynamic equation for capital per worker (A.4) now features the growth rate of the

labor force (g (t)). Since the retirement age for each cohort is fully adjustable, it is possible

to make this growth rate constant, which would imply that the equilibrium condition (A.4)

23� (s; t) depends on the equilibrium interest rate, and since this is likely to di¤er from the case without

retirement, the value of the marginal propensity to consume will di¤er in the two cases.
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would be a function of kR and cR only as desired. The dynamic equation for consumption

per worker (A.5) can, however, not be made a function of kR and cR only, and therefore

we do not �nd a steady state equilibrium in terms of per worker variables either.

In conclusion, introducing a mandatory and cohort speci�c retirement age is not su¢ -

cient to ensure the existence of steady state equilibrium when a longevity trend is present.
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