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Challenges raised by ageing (increasing longevity) have prompted policy de-
bates featuring policy proposals justified by reference to some notion of inter-
generational equity. However, very different policies ranging from pre-savings
to indexation of retirement ages have been justified in this way. We develop an
overlapping generations model in continuous time which encompasses different
generations with different mortality rates and thus longevity. Allowing for both
trend increases in longevity and productivity, we address the issue of intergener-
ational equity under a utilitarian criterion when future generations are better off
in terms of both material and non-material well being. Increases in productivity
and longevity are shown to have very different implications for intergenerational
distribution.
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1 Introduction

A trend increase in longevity is a major driver underlying demographic shifts in all
OECD countries. According to Wilmoth (2000), longevity (life expectancy at birth)
increased from 67 to 72 years for men and 75 to 79 years for women over the period
1970 to 1995. Further, according to recent UN forecasts (see United Nations, 2008)
the growth rate of longevity is expected to be 0.2 % per year. Hence the effects are
non-trivial and a main cause behind projected increases in demographic dependency
ratios. The policy debate thus centers around the paradox that increases in longevity
on the one hand constitute a major welfare improvement1 and on the other hand
threathens the financial viability of various welfare arrangements. To reap the benefits
of increased longevity, policy adjustments are needed, and in policy debates it is often
stressed that the adjustments made should ensure intergenerational equity. But what
is the precise meaning which can be attached to the notion of intergenerational equity
when different cohorts have different longevity? An issue which becomes even more
complicated when taking into account that future generations may also be richer due
to productivity growth.
In policy formulations specific proposals are often justified with reference to in-

tergenerational equity, although this seems to lead to very different implications. To
illustrate, the UK pension committee interpreted this to imply that retirement ages
should be proportional to longevity:

Over the long run, fairness between generations suggests that average
pension ages should tend to rise proportionately in line with life expectancy,
with each generation facing the same proportion of life contributing to and
receiving state pensions (UK Pensions Commission, 2005, p. 4).

In contrast the Swedish fiscal policy framework has taken pre-saving or consolida-
tion of public finances prior to changing demographics to be called for by intergener-
ational equity 2

A current high level of public saving is basically motivated by the need
to ensure a more equal distribution of consumption possibilities across gen-
erations" (Swedish Government, 2008, p 170).

The aim of this paper is to clarify the notion of intergenerational equity when
overlapping generations have different mortality and thus longevity. We approach this
from a utilitarian perspective (further discussed in section 6) and consider the socially
optimal allocation across generations. More precisely, the aim of the paper is to analyse
how consumption of produced goods and leisure should be allocated to individuals
belonging to different generations. This paper can thus be seen as reverting to the
classical paper by Samuelson (1958) considering the social optimal allocation across

1The human development index (HDI) published by the UNDP has longevity to weight by 1/3
(See United Nations Development Programme, 2008).

2Balasonne et al. (2009) also argue that intergenerational equity calls for pre-savings. The now
common metric of fiscal sustainability S2 (see e.g. European Commission (2006, 2009)) giving the
needed permanent change in the primary budget balance implies pre-savings if the underlying demo-
graphic changes cause a trend deterioration in the primary budget balance.
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generations. The novel aspect in this paper is to allow for overlapping generations with
different mortality and thus longevity. Rather than appealing to money as a social
contriviance, we assume a small open economy facing a given (and time invariant)
interest rate at which consumption possibility can be intertemporally substituted (see
Section 6). This also allows us to avoid the complications arising when endogenizing
the capital stock (see Diamond, 1965).
In a seminal paper, Calvo and Obstfeld (1988) consider the role of mortality for

the social optimal allocation (utilitarian) in a continuous time setting with an age
dependent survival rate.3 Basic consumption smoothing arguments imply that the
social optimum has consumption to be invariant to age. The models presented in
Sheshinski (2006, 2008) allow comparison between allocation of two individuals with
different survival rates which gives that consumption smoothing entails redistribution
from individuals with high mortality (low longevity) to individuals with low mortal-
ity (high longevity). However, the issue of retirement (and thus leisure on par with
consumption) is not considered.
This paper makes two important extensions to the abovementioned papers. First,

we consider different mortality rates across generations capturing the empirically ob-
served trend increase in longevity. This implies that demographics are in transition
over time/generations precluding a steady state analysis. The overlap and redistribu-
tion across generations with different mortality (longevity) raise particular modelling
issues which cannot be handled in standard models or by comparing steady state
equilibrium under various assumptions concerning longevity. We present a model in
continuous time in which there is overlap of cohorts with different mortality paths
and thus longevity.4 Second, allowing for changes in longevity makes the usual OLG
simplification of dividing life length in periods of exogenous length denoted "young"
and "old" dubious. We allow for an endogenous determination of these phases of life
by including the retirement age as an endogenous variable under rather general speci-
fications of the utility functions allowing us to capture various age and health effects.
The endogeneity of the retirement age implies that the economic environment may dis-
play certain stationarity properties, although the underlying demographics does not
necessarily do so. To focus on the issue of longevity, we assume fertility to be constant
implying that all demographic shifts are generated by changes in mortality rates.
We link changes in longevity explicitly to changes in mortality rates which are

cohort specific. Hence, we allow for a trend increase and an overlap of generations
with different survival rates (and thus longevity). The specific modeling of mortality
rates is inspired by the approach in Boucekkine et al. (2002) featuring age/cohort
specific mortality rates.5 This appproach can be seen as a generalization of the Yaari-
Blanchard approach assuming stochastic survival with age independent survival rates

3They also allow the social planner to weight the utility of future generations differently than
implied by the subjective discount rate of the individuals. In the egalitarian or pure utilitarian case
where the two are the same, the flat consumption profile follows.

4These issues have also been addressed in standard two-period overlapping generations models
where longevity changes are interpreted as extending the length of the second period by Auerbach
and Hasset (2007) and Andersen (2008).

5Heijdra and Romp (2008) adopt a similar approach. Both modelling approaches give a fairly
good approximation to observed mortality rates. The main difference is that here there is a given
maximum age, while in the Heijdra and Romp (2008) model survival approaches zero in the limit for
a high age.
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(see Blanchard, 1985). The latter is obviously in contradiction to the empirical evi-
dence6 and the formulation adopted here captures that mortality rates are (almost)
constant (and low) up to a certain age after which they are increasing in age.7 We
take mortality rates to be exogenous to focus on the basic issues on intergenerational
equity when different cohorts have different longevity.
This paper is organized as follows: The modeling of demographics including trend

changes in mortality rates is laid out in section 2 together with the specification of
individual utility functions. The social planner allocation problem under a utilitarian
social welfare function is formulated and analysed in section 3, and the optimal allo-
cation is interpreted in section 4. Decentralization of this allocation is discussed in
section 5. Finally, a few concluding remarks are given in section 6.

2 An Overlapping Generations Model with Cohort
Dependent Longevity

Consider a setting in continuous time where a given (and constant) number of indi-
viduals are born at each instant. Individual life time is stochastic, but the fraction of
a given cohort surviving is deterministic. The survival rates and thus longevity (life
expectancy at birth) are allowed to change over time and thus to differ across cohorts.
Hence, overlapping generations alive at a given point in time differ not only in age but
also longevity. Life has two phases "young" and "old", where young refers to the phase
in life when individuals are working, and old refers to the phased when they are not
working (retired). The length of these two phases is endogenous since the retirement
age is a choice variable. The social planner (utilitarian) decides on consumption and
work (retirement) profiles, that is, allocations across "young" and "old" at a given
point in time and across time under the intertemporal resource/budget constraint.
The economy is small and open in global capital markets implying that the interest
rate r is exogenous, and for simplicity, assumed time-invariant.8

2.1 Demographics

2.1.1 Survival functions

The number of individuals born at each point in time is assumed to be constant
and normalized to 1. Following Boucekkine et. al. (2002), it is assumed that the
unconditional probability for an individual born in time t of reaching age a (the survival

6This holds when mortality rates apply to individuals, as is the case in this paper. When these
apply to families, the assumption of constant mortality rates is more acceptable as is discussed in
Blanchard (1985).

7This is in accordance with empirical evidence, see e.g. Wilmoth (2000).
8This is a simplifying assumption since increases in longevity is a globel phenomenum and it is

likely that increased longevity results in changes in the world interest rates. Whether it results in
higher or lower rates is, however, generally uncertain. Some empirical studies do show evidence of
positive relationship between longevity and aggregate savings (see discussion in Sheshinski, 2008) .
This implies that interest rates decrease as longevity increases.
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rate) is given by the following function:9

m̂ (a, β (t)) =
e−aβ(t) − α

1− α
(2.1)

where α > 1, β (t) < 0 and a ∈ [0, A (t)], where A (t) is the highest age any member
of the cohort born at t can reach., i.e., the age at which m̂ (A(t), β (t)) = 0:

A (t) = − lnα
β (t)

(2.2)

To incorporate demographic shifts in the model, the parameter, β (t) is assumed to be
time dependent. Hence, the maximum age A (t) is also time dependent.
Using (2.2) in (2.1) gives the survival rate as

m (a,A (t)) =
α

a
A(t) − α

1− α
(2.3)

Note that m (0, A (t)) = 1, i.e., there is no infant mortality, and m (A (t) , A (t)) = 0,
implying that A (t) is the highest age any member of the cohort born at t can reach,
as is discussed above.
In the following we term this maximum age for a given cohort the longevity for the

cohort. This can be justified by noting that life expectancy at birth:

v (t) =

A(t)Z
a=0

a

∙
−∂m (a,A (t))

∂a

¸
da =

∙
α lnα− [α− 1]
lnα [α− 1]

¸
A (t) (2.4)

is strictly increasing in the maximum age, i.e., ∂v(t)
∂A(t)

=
h
α lnα−[α−1]
lnα[α−1]

i
> 010.11.

It is easily established that

∂m(a,A(t))
∂a

= −
lnα
A(t)

α
a

A(t)

α−1 < 0 ∂2m(a,A(t))
∂a2

= −(
lnα
A(t))

2
α

a
A(t)

α−1 < 0

∂m(a,A(t))
∂A(t)

=
a lnα

A(t)2
α

a
A(t)

α−1 > 0 ∂2m(a,A(t))
∂A(t)∂a

=
lnα

A(t)2
(1+a lnαA(t))α

a
A(t)

α−1 > 0

The survival rate is strictly decreasing and concave in age. Combining this with
the results above implies that m (a,A (t)) ∈ [0, 1], i.e., the survival rates are between
zero and one. Moreover, it is strictly increasing in longevity and the effect of higher
longevity on the survival rate is increasing in age. Hence, an increase in longevity
of a cohort results in higher survival propabilities at every age but the increase is
greater the older an individual is. These properties are independent of the value of
the parameter α (as long as α > 1). The survival rate function is illustrated in figure
1. The figure also shows that greater longevity A (τ) > A (s) for a generation born
at τ than a generation born at s implies an outward shift in the survival curve from
the full line (corresponding to A (s)) to the dotted line (corresponding to A (τ)), and
hence the survival to any age is non-decreasing in longevity.

9This function captures the "rectangular" shape of the data based survival curve shown in Wilmoth
(2000).
10This holds since lim

α→1+
[α lnα− [α− 1]] = 0, ∂[α lnα−[α−1]]

∂α = lnα > 0 and, hence, α lnα −
[α− 1] > 0 ∀ α > 1.
11Note that −∂m(a,A(t))

∂a is the unconditional probability of passing away at the age of a for an
individual born at time t.
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Figure 1: Survival rates for different cohorts with different longevity

In accordance with empirical evidence (see introduction) we assume that there is
a trend increase in longevity.12 Hence, we make the following assumption:
Assumption 1. Longevity of the generation born at time t, i.e., A (t), follows the

process:
dA (t) = μA (t) dt ; μA (t) ≥ 0 (2.5)

Hence, longevity of the generation born at some time t relates to longevity for the
generation born at s < t as

A (t) = A (s) +

tZ
j=s

μA (j) dj for t ≥ s

Equation (2.5) implies that each new generation has a longevity that is no less than
that of the previous generation. Further, it is assumed that ∂μA(t)

∂t
≤ 0, i.e., growth

in longevity is non-increasing over time.13 Note that since we can have μA (t) = 0 for
some t and ∂μA(t)

∂t
≤ 0 for all t, it follows that a special case of this setup is one where

there is an upper bound to longevity.
As is discussed above, longevity of an individual born at time t is denoted by A(t).

Hence, longevity of an individual aged a in time t is denoted by A(t−a) since he is born
at time t− a. At any point in time the last person from some generation passes away,

12Historically there has been a trend increase in longevity (see Oeppen and Vaubel, 2002)) and
demographic evidence does not show signs that human life spans are approaching fixed limits imposed
by biology or other factors, see also Wilmoth (2000) and Christensen et al. (2009).
13The idea is that the growth in longevity is non-increasing in longevity. Since there is one-to-

one relationship between longevity and time in the model, this is identical to having the growth in
longevity non-increasing in time. In appendix E we show how the results of the paper generalize to
the case where there is a constant upward trend in longevity to some upper bound:

dA (t) = μAdt for A (t) < A

dA(t) = 0 for A(t) = A

All qualitative results in the paper hold under this assumption.
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i.e., the generation becomes extinct. At time t this happens for the generation born
at time t− Ã (t) with longevity Ã (t), i.e. Ã (t) denotes the longevity of the generation
that becomes extinct at time t. Using this and (2.5), longevity of the generation aged
a at time t relates to longevity of the generation that becomes extinct at time t as

A (t− a) = Ã (t) +

t−aZ
j=t−Ã(t)

μA (j) dj for Ã (t) ≥ a ≥ 0 (2.6)

This relation allows us conveniently to restate the survival probability function
(2.3) in terms of the longevity of the generation that becomes extinct today (at time
t), i.e.

m̃
³
a, Ã (t)

´
≡ m (a,A (t− a)) (2.7)

where A (t− a) is given in (2.6). From (2.3) and (2.6), it is obvious that m̃
³
0, Ã (t)

´
=

1 and m̃
³
Ã (t) , Ã (t)

´
= 0. Moreover14

∂m̃(a,Ã(t))
∂a

< 0
∂2m̃(a,Ã(t))

∂a2
< 0

∂m̃(a,Ã(t))
∂A(t−A) > 0

∂2m̃(a,Ã(t))
∂A(t−A)∂a > 0

Hence, the m̃-function has similar properties as the m-function, 0 ≤ m̃
³
a, Ã (t)

´
≤ 1,

and it is bounded on a ∈
h
0, Ã (t)

i
and, hence, its integral exists. These properties are

important since they ensure that the population size, the number of young and the
number of old individuals are well defined in the model.

2.1.2 Population composition

While the birth rate is constant, the population size is not, since survival rates and
longevity changes. Since, by assumption, 1 individual is born at each point in time,
the number of individuals aged a in time t is m̃

³
a, Ã (t)

´
. Hence, the total population

at time t is given as

N (t) =

Ã(t)Z
a=0

m̃
³
a, Ã (t)

´
da (2.8)

The retirement age of an individual born at time t is denoted by R(t). It follows
that we may classify individuals born at time t as young when their age is between 0
and R (t), i.e., a ∈ [0, R (t)], and old when their age is between R (t) and the maximum
age A(t), i.e., a ∈ (R (t) , A (t)]. Further, the retirement age of an individual aged a
in time t is denoted by R(t− a) since he is born at time t− a. At any point in time
individuals from some generation retire. At time t this happens for the generation
born at time t− R̃(t) with retirement age R̃(t), i.e. R̃(t) denotes the retirement age of
the generation that retires at time t. It follows that individuals aged between 0 and
R̃(t), i.e., a ∈

h
0, R̃(t)

i
, are young at time t and individuals aged between R̃(t) and

14The derivatives are shown in appendix A.
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Ã (t), i.e., a ∈
³
R̃(t), Ã (t)

i
, are old at time t. Note that the retirement age is allowed

to depend on time and thus to be cohort specific.
The number of young (working) and old (retired) individuals, respectively, at time

t is therefore

Nw (t) =

R̃(t)Z
a=0

m̃
³
a, Ã (t)

´
da = Nw

³
R̃(t), Ã (t)

´
> 0 (2.9)

No (t) =

Ã(t)Z
a=R̃(t)

m̃
³
a, Ã (t)

´
da = No

³
R̃(t), Ã (t)

´
> 0 (2.10)

Hence, both the number of young and the number of old individuals at time t can be
expressed as functions of longevity of the generation that becomes extinct at time t,
i.e., Ã (t), and the retirement age of the generation that retires at time t, i.e., R̃(t).
Obviously, total population size is given as N (t) = Nw (t) +No (t) as can be verified
from (2.8), (2.9) and (2.10).
The dependency ratio15 is defined as the ratio between the number of old and young

individuals:

K (t) =
No (t)

Nw (t)
=

No

³
R̃(t), Ã (t)

´
Nw

³
R̃(t), Ã (t)

´ ≡ K
³
R̃(t), Ã (t)

´
(2.11)

Note that even though demographic stock variables need not be stationary due to a
trend increase in longevity, it follows that compositional variables like the dependency
ratio may be stationary since they depend crucial on how the retirement age responds
to demographic changes. This turns out to be crucial below.
We can now work out how the upward trend in longevity (2.5) affects the key

demographic variables N (t), Nw (t), No (t) and K (t). We have (see appendix B) that
both the number of young and the number of old increases (for a given retirement
age R̃(t)). The latter is straightforward and the former arises because an increase in
longevity implies a decrease in mortality rates at all ages (see figure 1). However the
number of old individuals increases by more than the number of young individuals,
and hence we have that the dependency ratio unambiguously increases. In summary,
we have:

dN (t) > 0

dNw (t) > 0

dNo (t) > 0

dK (t) > 0

Note that R̃(t) is endogenous in the social planners maximization problem and, hence,
so are Nw (t), No (t) and K (t). This prevents the dependency ratio K (t) becoming
infinitely large over time.

15This may be termed the economic dependency ratio since it depends on the retirement age which
is endogenous, and not some exogenously given age.
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2.2 Individual utility

Individuals consume as young and old, but work as young only. Utility is in the
standard way specified over consumption and leisure. However, allowing for changes
in mortality rates and thus implicitly in health status across different generations
implies that one has to consider carefully the specification of the utility function to
capture essential age and health effects on the disutility from work and the value of
leisure time. The standard approach features age independent and constant disutility
from work (exogenous working hours) or utility from leisure, and hence retirement in-
volves a trade-off between consumption and leisure along the extensive margin (see e.g.
Sheshinski (1978), Crawford and Lilien (1981) and Kalemli-Ozcan and Weil (2002)).
While this trade-off is fundamental, it is problematic to assume disutility from work
and utility from leisure to be age invariant, in particular when analysing changes in
mortality and longevity which are clearly related to health. We propose a more gen-
eral formulation allowing for both age and health effects on the disutility from work
as well as utility from other forms of time uses. This is summarized in the utility
generated from time uses taking into account various possible time consuming activ-
ities like work, leisure activities, rest etc. We make the assumption that the value of
time (disutility from work and value of time spent on leisure activities) for working
and retired persons depends negatively on age a and positively on health captured by
longevity A (t− a).
The utility function for a young (working) individual aged a at time t is given as

a separable function specified over consumption16 cw (t) and time, i.e.,

Ww(t, a) = U(cw (t)) + L (a,A (t− a)) ∀ a ∈
h
0, R̃(t)

i
(2.12)

where U is strictly increasing and concave. The function L captures the value of
time17 taking into account both leisure and working time for the young individual.18

The value of time is assumed to be decreasing in age and increasing in longevity

16Assuming that the marginal utility of consumption is dependent on age would create a question
of optimal distribution of taxes (consumption) among young individuals, on one hand, and among
old individuals, on the other. Hence, we assume that it is independent of age as is implied by the
separable formulation adopted here.
17Think of time being spent on three main types of activities: (i) work (hw), (ii) leisure activities

such as travel, sports, hobbies, home production (ht) and (iii) rest (hr), where hw + ht + hr = 1,
i.e. the available time is normalized to one and the various time uses are exogenous. Using the time
constraint, the utility from time use measured relative to time spent on the fall back option "rest"
can be written gives

L(a,A) = κw(a,A) [hw − hr] + κt(a,A) [ht − hr]

where κw and κt give the respective marginal values of time spent on work and leisure actvities.
Assuming that ∂κw

∂a < 0 and ∂κt
∂a < 0 corresponds to less utitlity from work (more disutility from

work) and leisure activities with age, while ∂κw
∂A > 0 and ∂κt

∂A > 0 implies that the utility from work
(disutility decreases) and utility from leisure activities increases at any age a when longevity increases.
Note that the formulation allows for κw(a,A) being positive for some values of (a,A) implying that
people up to some limit like to work e.g. to use skills and qualification acquired in education.
18Bloom et al. (2006) use similiar specification to capture the disutility from work: v (z, t), where

z is life expectancy, or longevity, and t is age. They propose that the v function is homogeneous of
degree zero, which can be interpreted as reflecting healthy ageing (see section 4).
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(capturing health). Hence, we have that

∂L (a,A (t− a))

∂a
< 0 (2.13)

∂L (a,A (t− a))

∂A (t− a)
> 0 (2.14)

The idea behind this is that health and the ability to enjoy time (working or spent on
leisure activites etc.) worsens with age while it increases with longevity. Hence, the
value of time for a young individual aged a is greater when longevity of his generation
is A1(t − a) years than if it is A2(t − a) < A1(t − a) years.19 This can be justified
using figure 1 which shows that increased longevity results in increased survival rates
at all ages implying better health while survival rates decrease with age implying worse
health.
The utility of an old (retired) invididual aged a at time t is given as

Wo(t, a) = Q(co (t)) +H (a,A (t− a)) ∀ a ∈
³
R̃(t), Ã (t)

i
(2.15)

where Q is strictly increasing and concave in consumption co (t) and the function H
captures the value of time to old individuals (similar to the L function for the young).
Using the same justification as for young, it is assumed that the value of time to old
individuals is decreasing in age but increasing in longevity:

∂H (a,A (t− a))

∂a
< 0 (2.16)

∂H (a,A (t− a))

∂A (t− a)
> 0 (2.17)

The specification here allows for different utility functions defined over consumption
and time for young and old. While the latter follows straightforwardly given disutility
from work, the former is open for discussion.20 In what follows, it is assumed that

∂L (a,A (t− a))

∂a
<

∂H (a,A (t− a))

∂a
(2.18)

∂L (a,A (t− a))

∂A (t− a)
>

∂H (a,A (t− a))

∂A (t− a)
(2.19)

Note that retirement in general involves a trade-off between consumption (life-time
income increases with the retirement age) and utility from time uses (disutility from
work). Consider the latter which involves the utility from time uses as young and old
(L and H), respectively, where both an age and a longevity effect are involved. The
age effect (2.18) says that the value of time as working decreases more than the value
of time as retired, that is, the gain in the value of time as retired relative to working

19In the case the function being homogenous of degree zero, as is proposed in Bloom et al. (2006),
the value of time for a 40 year old individual with longevity 80 years for his generation is the same
as the value of time for a 50 year old with longevity 100 years for his generation.
20As a special case, we also present results for the case where the utility defined over consumption

is the same for young and old below.
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increases with age21. The longevity effect (2.19) says that increased longevity tends
to increase the value of time more as working than retired, that is, the gain in value
of time of retiring at a given age decreases with longevity22. The latter captures a
health effect in the sense that higher longevity is associted with better health reducing
the disutility from work at a given age, ceteris paribus. Note that assuming that the
utility from time when young is greater than when old (L > H ) implies that (2.18)
ensures that, at some age level a∗, the value of time as old becomes greater the value of
time as young (working), i.e., L < H for all a > a∗ which provides a "leisure" motive
to retirement.
In the following it turns out to be more convenient to analyse the model when

the value of leisure is expressed in terms of the longevity of the generation becoming
extinct at time t, i.e., Ã (t). By use of (2.5) we have that

L̃
³
a, Ã (t)

´
≡ L (a,A (t− a))

H̃
³
a, Ã (t)

´
≡ H (a,A (t− a))

where A (t− a) is given in (2.6), and hence utilities for young and old are given as

W̃w (t, a) = U(cw (t)) + L̃
³
a, Ã (t)

´
W̃o (t, a) = Q(co (t)) + H̃

³
a, Ã (t)

´
where we, by use of (2.6) and the properties of the L and H functions, have

∂L̃

∂a
=

∂L

∂a
− μA (t− a)

∂L

∂A (t− a)
< 0

∂L̃

∂Ã (t)
=

h
1 + μA

³
t− Ã

´i ∂L

∂A (t− a)
> 0

∂H̃

∂a
=

∂H

∂a
− μA (t− a)

∂H

∂A (t− a)
< 0

∂H̃

∂Ã (t)
=

h
1 + μA

³
t− Ã

´i ∂H

∂A (t− a)
> 0

It is easily verified that this changes none of the qualitative insights from above. Note
that (2.18) and (2.19) are readily shown to hold for the modified values of time for
young and old (eL, eH), i.e., ∂L̃

∂a
< ∂H̃

∂a
and ∂L̃

∂Ã(t)
> ∂H̃

∂Ã(t)
hold.

2.3 Productivity

The earnings capability is assumed exogenous but to be affected by productivity
growth. Hence, we set forth the following assumption:

21This can, for example, be because working becomes more physically challenging when individuals
become older and their health worsens.
22This is consistent with empirical evidence found by Haliday and Podor (2009) showing that

improvements in health status has large and positive effects on time allocated to home and market
production and large negative effects on time spent on watching TV, sleeping, and consumption of
other types of leisure activities.
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Assumption 2. Output of a young individual at time t, i.e., y (t), follows the
process

dy (t) = μyy (t) dt ; μy > 0 (2.20)

Total output in the economy Nw (t) y (t) is endogenous since Nw (t) is endogenous.
Note that productivity is only included for comparative purposes allowing a compar-
ison of intergenerational distribution arising due to different longevity or economic
possibilities across cohorts.

2.4 Planner allocation

The social planner decides on consumption and work (retirement age). It is easiest to
characterize and interpret the social planner allocation if it is cast in terms of taxes
and transfers relative to the reference outcome where individuals consume their labour
income. Hence, consumption of a young and an old individual, respectively, at time t
is:

cw (t) = y (t)− Tw (t) (2.21)

co (t) = To (t) (2.22)

where Tw (t) are net taxes paid by a young individual and To (t) are net transfers
to an old individual at time t. We cast the model in this way both because it is
analytically more tractable and because it gives a simple relation to the analysis of
social security schemes in standard two-period OLG models. Further, since y (t) is
exogenous, choosing Tw (t) and To (t) is tantamount to choosing cw (t) and co (t) in the
model.
We have made the informational restriction that the social planner can not make

taxes and transfers age dependent, but only dependent on labour market status (work-
ing or not working). This can be motivated in terms of information- and transactions
costs, which apparently are large in reality since actual schemes in general satify the
condition imposed here. Hence, at a given point in time, the social planner has to
collect the same amount of tax from each young (working) individual and give the
same amount of transfer to each old (retired)23. Since output of each young individual
is only time dependent, it follows from (2.21) and (2.22) that, at a given point in
time, consumption of each young and each old individual is independent of age. This
fits with the specification of the utility functions from above, i.e., that the marginal
utility from consumption is independent of age (see U(·) and Q(·) in (2.12) and (2.15),
respectively).
The policy package thus includes three elements, namely, the tax levied on the

young (working), the transfer to the old (retired) and the retirement age. The policy

problem is thus to choose
n
Tw (i) , To (i) , R̃ (i)

o∞
i=t
at each point in time t.

The primary budget balance of this scheme in any period t reads

B (t) = Nw (t)Tw (t)−No (t)To (t) (2.23)

23Hence, the social planner is not able to choose a consumption profile for each generation at the
birth of the generation as in Calvo and Obstfeld (1988).
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while the intertemporal budget constraint at time t can be written as24

D (t) =

∞Z
i=t

e−r(i−t)B (i) di (2.24)

where r is the interest rate.From (2.24), debt dynamics can be written

dD (t) ≡ D (t+ dt)−D (t)

= rdtD (t)−B (t) dt

= [rD (t)−B (t)] dt (2.25)

where it is used that er ≈ 1 + r.

3 Social Optimum

We consider the social optimum under a utilitarian criterion25. While this criterion is
neither unproblematic nor uncontroversial, it is useful to illustrate some basic trade-offs
arising, and we consider it as a useful benchmark case for studying intergenerational
distribution, cf. discussion in section 6.
The objective of the social planner at time t is to maximize the sum of the present

values of lifetime utilities of generations born at time t or later and the present value of
utilities for the remaining lives of generations alive at time t. Hence, the social welfare
functions is26

W (t) =

∞Z
i=t

e−θ(i−t)Q (i) di+

tZ
i=t−Ã(t)

e−θ(i−t)Q (i) di (3.1)

where

Q (i) =

R(i)Z
a=0

e−θam (a,A (i))Ww(i+ a)da

+

A(i)Z
a=R(i)

e−θam (a,A (i))Wo(i+ a)da

24This constraint makes the economy wide resource constraint hold.
25Note that it is more accurate to call this a constrained social optimum since the social planner

is constrained by having to collect the same amount of tax from each young individual and give the
same amount of transfer to each old one.
26The time separability and exponential discounting following Yaari (1965) implies that problems

of time inconsistency do not arise, and that agents display risk neutrality with respect to the length
of life (see Bommier (2006) and Bommier et al. (2009)).
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for all i ≥ t,

Q (i) =

R(i)Z
a=t−i

e−θam (a,A (i))Ww(i+ a)da

+

A(i)Z
a=R(i)

e−θam (a,A (i))Wo(i+ a)da

for all t > i ≥ t− R̃ (t) and

Q (i) =

A(i)Z
a=t−i

e−θam (a,A (i))Wo(i+ a)da

for all t− R̃ (t) > i ≥ t− Ã (t), where Ww(i+ a) and Wo(i+ a) are given in (2.12) and
(2.15). As is shown in appendix C, (3.1) is well defined.
We assume that the social planner discounts at the same subjective rate as individ-

uals (θ) which may be considered the "pure" utilitarian case where utility achieved at
any point in time gets the same weight irrespective of who obtains the utility. Under
the utilitarion criterion, (3.1) gives the same welfare measure as is obtained by calcu-
lating the present value of instantaneous utility generated to all living individuals (see
Calvo and Obstfeld, 1988)). The social welfare function can therefore be written as

W (t) =

∞Z
i=t

e−θ(i−t)Z (i) di (3.2)

where

Z (i) =

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
W̃w(i, a)da

+

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
W̃o(t, a)da

where (2.6) and (2.7) are used.
The problem facing the policy maker is

Max
{Tw(i),To(i),R̃(i)}∞

i=t

W (t) (3.3)

subject to the budget constraint from (2.24) (and (2.23)) and given (2.5) and (2.20).
The problem is solved by setting up the Hamilton-Jacobi-Bellman (HJB) equation

which in short hand writing (suppressing time indexes) determines the value function
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V (·) as

θV
³
D, y, Ã

´
= Max

Tw,To,R̃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃Z
a=0

m̃
³
a, Ã

´ h
U (y − Tw) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃

m̃
³
a, Ã

´h
Q (To) + H̃

³
a, Ã

´i
da

+ 1
dt
dV
³
D, y, Ã

´

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
s.t.

dD =
h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii

dt

dÃ = μ̂Adt

dy = μyydt (3.4)

with Nw and No given from (2.9) and (2.10), respectively, and μ̂A ≡ μA
1+μA

27. Assuming
an interior solution, this gives the following first-order conditions for the optimal Tw,
To and R̃, respectively:28

VD(·) = −U 0 (y − Tw) (3.5)

VD(·) = −Q0 (To) (3.6)

[Tw + To]VD(·) = U (y − Tw) + L̃
³
R̃, Ã

´
−Q (To)− H̃

³
R̃, Ã

´
(3.7)

Further, this gives the following law of motion for the marginal value function:

dVD(·) = (θ − r)VDdt (3.8)

3.1 Neutral generational weighting

The relation between the subjective (θ) and the objective (r) discount rates determines
whether the marginal value function is decreasing or increasing over time, cf. (3.8).
Alike models of intertemporal consumption choices, a subjective discount rate higher
(lower) than the objective discount rate implies a profile for consumption that is de-
creasing (increasing) over time, see e.g. Blanchard and Fischer (1989). This source of
reallocation across time and thus generations is standard. In the following we there-
fore only consider the case where the subjective and objective (world market) discount
rates are identical θ = r. This may also be interpreted as a case of neutral genera-
tional weighting in the sense that the subjective and objective discount rates are equal.

27Setting a = 0 in (2.6) gives the relationship between longevity of the generation born today and
the generation that passes away today. Taking total difference of this, using (2.5) and rearranging

gives dÃ (i) =
μA(i−Ã)
1+μA(i−Ã)

di.
28The first-order conditions and the law of motion for the marginal value function are derived in

appendix D. Further, it is shown there that (i) the first-order conditions are necessary and sufficient for
solving the maximization problem in (3.4) and (ii) that the HJB equation and the budget constraint
in (2.24) (and (2.23)) are necessary for solving (3.3).
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Hence, discounting per se does not imply any profile benefitting current or future gen-
erations in a particular way. In short we refer to this case as neutral generational
weighting. Under this assumption we have (relaxing the short hand writing)

dVD
³
D (i) , y (i) , Ã (i)

´
= 0 (3.9)

for all i ≥ t, i.e., the optimal policy package is such that the marginal value function
VD(·) is the same for all i ≥ t.
Applying this to (3.5)-(3.7) gives

VD (t) = −U 0 (y (i)− Tw (i)) (3.10)

VD (t) = −Q0 (To (i)) (3.11)

and

[Tw (i) + To (i)]VD (t)

= U (y (i)− Tw (i)) + L̃
³
R̃ (i) , Ã (i)

´
−Q (To (i))− H̃

³
R̃ (i) , Ã (i)

´
(3.12)

for all i ≥ t, where VD (t) is written as a function of t to indicate that it is the same
for all i ≥ t.

3.2 Optimal policy package

An optimal policy package
n
Tw (i) , To (i) , R̃ (i)

o∞
i=t
must satisfy (3.10)-(3.12) as well

as the intertemporal budget constraint

D (t) =

∞Z
i=t

e−r(i−t)

⎡⎣ Nw

³
R̃ (i) , Ã (i)

´
Tw (i)

−No

³
R̃ (i) , Ã (i)

´
To (i)

⎤⎦ di (3.13)

where Nw

³
R̃ (i) , Ã (i)

´
and No

³
R̃ (i) , Ã (i)

´
are given in (2.9) and (2.10). Hence, the

optimal policy package satisfy conditions for fiscal sustainability (see e.g. European
Commission, 2006).
Proposition 1. The social optimum implies that the following holds for any growth

rates of longevity μA (i) and output μy from assumptions 1 and 2, respectively:
(i) Taxes and transfers:

Tw (i) = Tw (t) + y (t)
£
eμy[i−t] − 1

¤
To (i) = To (t) (3.14)

for all i ≥ t.
(ii) Consumption:

cw (i) = cw (t)

co (i) = co (t) (3.15)
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for all i ≥ t.
(iii) Retirement:

dR̃ (i) = ηy (i) dy (i) + ηA (i) dÃ (i)

where

ηy (i) , ηA (i) > 0 (3.16)

for all i ≥ t.
Proof. See appendix F.
According to proposition 1, the tax payment of young individuals is given as some

time invariant component plus the income growth since time t, i.e., all income growth
is fully taxed. Old individuals receive a time invariant transfer. This implies that the
consumption level of both the young and the old is constant over time. Income growth
is thus smoothed across generations, that is, it affects the overall level of consumption
but not the profile (note the assumption θ = r). To put it differently current and
future generations all share the gains from future productivity increases in terms of a
higher consumption level.
According to (3.10) and (3.11), the optimal policy implies that marginal utility of

consumption is equal for young and old, i.e.,

U 0 (y (i)− Tw (i)) = Q0 (To (i))

or
U 0 (cw (i)) = Q0 (co (i))

from (2.21) and (2.22), capturing the well-known finding that a utilitarian policy maker
redistributes to ensure equal marginal utilities of consumption (income). If utility
functions over consumption are the same for young and old U(·) = Q(·), it is an
immediate implication that they will have the same consumption level. This generalizes
the Calvo and Obstfeld (1988) result to a setting with time varying mortality rates
and thus different longevity across generations (and income growth). If the marginal
utility of consumption is higher when working (for young individuals), the solution
implies that the consumption level for young individuals is greater than that of old
ones.
The results above on consumption are neither surprising nor new since they follow

straightforwardly from standard consumption smoothing arguments under separable
utility. More interesting and novel are the implications for the retirement age. Two
issues are important here, namely, the level of the retirement age and its profile over
time (due to growth in productivity and longevity). The former is discussed in section
5 where allocation under social optimum is compared to allocation under individual
decision making, while results for the latter are stated in proposition 1 and discussed
below.
Consider the two drivers, productivity growth and increasing longevity. First, we

have that productivity growth unambiguously implies that the retirement age should
be increasing over time since∂R̃(i)

∂y(i)
> 0 from (3.16) and since output is increasing over

time from (2.20). The intuition is that the generations with the higher productivity
should work more than generations with lower productivity. Hence, while productivity
growth implies a front-loading of consumption in the sense that both current and future
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generations benefit from producitivity growth in terms of a higher consumption level,
it implies a rising profile for the retirement age and thus a shift of the work load onto
future generations.
Second, the effect of increasing longevity on the retirement age implies that the

retirement age should increase over time since ∂R̃(i)

∂Ã(i)
> 0 from (3.16). Using (2.6), this

implies that
∂R̃ (i)

∂A
³
i− R̃

´ > 0 (3.17)

that is, generations with greater longevity should retire later. This reflects that higher
longevity (better health) decreases the direct utility gain from retirement (from (2.19)),
and therefore retirement is delayed. The retirement age increases basically due to
better health measured in terms of the value of time. Hence, although longevity does
not influence the consumption profiles for working and retired persons, it does influence
retirement ages.
To conclude, longevity and productivity do not affect the socially optimal con-

sumption profiles (development of over time) while they do affect the retirement age
profile.

4 Implications

As discussed in the introduction, policies are often motivated by reference to some
notion on intergenerational equity, although this has been interpreted in quite different
ways. This section interprets the properties of the social optimum in relation to some
of these policy views.

4.1 Retirement and healthy ageing

Consider first the perception that intergenerational equity implies that the retirement
age should evolve proportionally to longevity. We consider under which assumptions
this is implied by the socially optimal policy derived above and how these are related to
the notion of healthy ageing. This argument involves only longevity, and we therefore
disregard productivity growth, i.e., dy (i) = 0.
The first result is given in the following lemma:
Lemma 1. Given homogeneity of the L̃ and H̃ functions, the social optimum

implies that
R̃ (i) = κÃ (i) (4.1)

for all i ≥ t where κ is some constant (> 0), iff the L̃ and H̃ functions are homogenous
of degree zero.
Proof. See appendix G.
Hence, for the class of homogenous L̃ and H̃ functions, only those that are ho-

mogenous of degree zero imply a retirement age proportional to longevity in the social
optimum.
Lemma 1 gives the conditions that need to be fulfilled for the social optimum to

imply that the retirement age should be proportional to longevity of the generation that
becomes extinct today. Intuitively the retirement age should be related to the longevity
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of the generation retiring rather than the longevity of the generation becoming extinct.
The following lemma shows an equivalence:
Lemma 2. Given constant growth in longevity, there exist κ and ψ (< κ) such

that
R̃ (i) = κÃ (i) iff R̃ (i) = ψA

³
i− R̃

´
for all i ≥ t.
Proof. See appendix G.
Hence, given constant growth in longevity, a retirement age proportional to longevity

of the generation that becomes extinct today (Ã (i)) is equivalent to the retirement age

being proportional to the longevity of the generation that retires today (A
³
i− R̃

´
).

Therefore lemma 1 also gives the necessary conditions that need to be fulfilled for
the social optimum to imply the retirement age being proportional to longevity of the
generation that retires today.
Consider healthy ageing in the sense that the health conditions at a given age

improve proportionally with longevity. That is, the direct utility consequences of
retirement at age a0 for a person belonging to a generation with longevity A(0) are
the same as the consequences of retiring at an age a1 = a0

A(1)
A(0)

for a person from a
generation with longevity A(1) (6= A(0)).29 This is implied in the present setup if
the L and H functions are homogenous of degree zero,30 which is implied by zero
homogeneity of the L̃ and H̃ functions when there is constant growth in longevity, as
the following lemma shows:
Lemma 3. Given constant growth in longevity, the L̃ and H̃ functions are ho-

mogenous of degree λ iff the L and H functions are homogenous of degree λ.
Proof. See appendix G.
This leads us to the following proposition:
Proposition 2. Given constant growth in longevity and homogeneity of the L and

H functions, social optimum implies

R̃ (i) = κÃ (i)

R̃ (i) = ψA
³
i− R̃

´
for all i ≥ t where κ and ψ are positive constants (ψ < κ), iff the L and H functions
are homogenous of degree zero (healthy ageing).
Proof. See appendix G.
Hence, for the class of homogenous L and H functions, only those that are ho-

mogenous of degree zero imply a social optimal retirement age that is proportional
to longevity. This is driven by the fact that the direct utility consequences (disutility
from work, utility from leisure) at retirement are constant under the above notion of
healthy ageing, when the retirement age is proportional to longevity. To phrase it
differently, a future generation with longer longevity can retire proportionally later at
the same utility consequences as current generations with shorter longevity retiring

29In e.g. OECD (2006) healthy ageing is interpreted in the sense that the need for health care and
thus age dependent health expenditures shift proportionally with longevity to higher ages.
30The homogeneity assumption is made in e.g. Bloom et al. (2006) and Andersen (2009).
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earlier. Hence, the view that a retirement age proportional to longevity is in accor-
dance with intergenerational equity holds under this notion of healthy ageing, but not
generally.

4.2 Dependency ratio

Policy debates center around the dependency ratio for the obvious reason that it gives
the balance between contributing and receiving persons in a Pay-As-You-Go type
scheme. The basic problem is that ageing for unchanged policies implies an increasing
dependency ratio and worsening budget balance, cf. section 2 and (2.23). When the
retirement age is a policy instrument, the choice of the retirement age may ensure that
a balance between the share of population working and non-working is maintained.
Hence, even if demographic stock variables may display non-stationarity it does not
necessarily follow that the key economic variable - the dependency ratio - does so. We
therefore consider the implications of the socially optimal policy for the dependency
ratio.
The change in the dependency ratio is given as (from (2.11))

dK (i) =
∂K(i)

∂R̃ (i)
dR̃ (i) +

∂K(i)

∂Ã (i)
dÃ (i) (4.2)

for all i ≥ t. We have already shown in section 2 that ∂K
∂Ã(i)

> 0, and obviously a higher
retirement age reduces the dependency ratio, i.e.,

∂K

∂R̃ (i)
=

∂No

∂R̃(i)
Nw (i)−No (i)

∂Nw

∂R̃(i)

Nw (i)
2

=
− ∂Nw

∂R̃(i)
[Nw (i) +No (i)]

Nw (i)
2 < 0 (4.3)

since ∂Nw

∂R̃(i)
= − ∂No

∂R̃(i)
> 0.

The case of productivity growth is trivial. In this case Ã (i) is constant and the
retirement age is increasing, cf. from (3.16). Hence, the dependency ratio is declining.
The following proceeds under the assumption that productivity growth is zero, i.e.,
dy (i) = 0, to focus on the effects of longevity. It follows from (4.2) that

∂K (i)

∂Ã (i)
T 0 iff

∂R̃ (i)

∂Ã (i)
S −

∂K
∂Ã(i)

∂K
∂R̃(i)

> 0 (4.4)

for all i ≥ t. This underlines that the dependency ratio increases unless the optimal
policy implies a sufficiently strong increase in the retirement age. The question is thus
whether this is implied by the socially optimal policy and which conditions need to be
met for it to hold.
To address this issue, we consider the case where growth in longevity is constant.

Under the assumption of zero growth in productivity we have from (3.14) that To (i) =
To (t) and Tw (i) = Tw (t) for all i ≥ t. Using this in (3.12) implies that the development
of retirement age over time under the social optimal policy can be written as a function
of longevity only

R̃ (i) = R
³
Ã (i)

´
(4.5)
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for all i ≥ t and where we, by use of (3.16), have R0 > 0. This implies that there exists
a function for the development of relative retirement age over time, i.e., retirement age
relative to longevity, under social optimal policy as

φ (i) =
R̃ (i)

Ã (i)
≡ φ

³
Ã (i)

´
(4.6)

for all i ≥ t. Note that we have φ0 = 0 and R̃0 = φ (i) = κ (a constant from before) in
the case of a retirement age proportional to longevity. In general, we have the following
relationship between the relative retirement age and the dependency ratio:
Lemma 4. Given constant growth in longevity,

∂K

∂Ã (i)
T 0 iff φ0 S 0

for all i ≥ t.
Proof. See appendix H.
Hence, if social optimal policy is such that the relative retirement age increases

following an increase in longevity, then the dependency ratio decreases. It follows
directly that if the retirement age is proportional to longevity, φ0 = 0, we have ∂K

∂Ã(i)
= 0.

In this case the social optimal policy implies that the dependency ratio is constant over
time. Combining this with the results from last section gives:
Corollary 1. Given constant growth in longevity and healthy ageing, the social

optimum implies that the dependency ratio is constant over time.
The so-called retirement-consumption puzzle states that consumption when young

is greater than when old. This is ensured if U(cw (i)) ≥ Q(co (i)) holds in the social
optimal solution. Assuming this gives the following:
Lemma 5. Given (i) constant growth in longevity, (ii) that utility from consump-

tion when young is no less than when old and (iii) that the L and H functions are
homogenous of degree λ, where λ is sufficiently close to zero, it holds that

φ0 S 0 iff λ T 0

for all i ≥ t.
Proof. See appendix H.
Hence, if homogeneity is less than zero, the socially optimal policy is such that

the relative retirement age increases over time. This leads to the following proposition
which has corollary 1 as a special case:31

Propostion 3. Given (i) constant growth in longevity, (ii) that utility from con-
sumption when young is no less than when old and (iii) that the L and H functions
are homogenous of degree λ, where λ is sufficiently close to zero, the social optimum
implies that

∂K

∂Ã (i)
T 0 iff λ T 0

for all i ≥ t.
Proof. See appendix H.

31Note that corollary 1 does not require an assumption concerning the utilities from consumption.
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Hence, the dependency ratio is increasing (decreasing, constant) over time under
socially optimal policy if the homogeneity of the L and H functions is greater than
(less than, equal to) zero. Hence, only in the case of healthy ageing do we have that
the socially optimal policy implies a constant dependency ratio.

4.3 Pre-saving

The idea of pre-savings is very predominant in debates on how to cope with the
financial problems arising from increasing dependency ratios. The argument is that
consolidation of the government’s budget is needed in advance of expenditure increases
driven by the demographic transitions. This is sometimes phrased in the way that
"unpaid bills should not be left in the nursing room". While such consolidation may
seem common sense, it is less obvious from a normative perspective taking into account
that future generations may enjoy both higher productivity and longevity. The present
framework makes it possible to address this issue.
Having formulated the problem in terms of taxes and transfers makes it possible to

assess the extent of intergenerational redistribution by considering the budget profile.
From (2.9), (2.10) and (2.23) we have that the primary budget balance at time i reads

B (i) = Nw

³
R̃ (i) , Ã (i)

´
Tw (i)−No

³
R̃ (i) , Ã (i)

´
To (i) (4.7)

for all i ≥ t. Taking total difference and using (3.14), (2.9) and (2.10) give

dB (i) =
h
[Tw (i) + To (t)] m̃

³
R̃ (i) , Ã (i)

´i
dR̃ (i)

+

⎡⎣ Tw (i)
∂Nw(R̃(i),Ã(i))

∂Ã(i)

−To (t)
∂No(R̃(i),Ã(i))

∂Ã(i)

⎤⎦ dÃ (i)
+
h
Nw

³
R̃ (i) , Ã (i)

´i
dy (i) (4.8)

for all i ≥ t, where Tw (i) is given by (3.14) and it has been used that dTo (i) = 0 and

m̃
³
Ã (i) , Ã (i)

´
= 0.

Considering (4.8), we have three channels affecting the evolution of the budget
balance, namely (i) a higher retirement age improves the budget balance since more
individuals work and pay taxes and fewer individuals are retired and receive transfers,
(ii) the direct effect of ageing (increasing longevity) is in general ambiguous since it
both implies more young (working) individuals and thus higher tax revenue, and more
old (retired) individuals and thus expenditures on transfers, and (iii) productivity
growth improves the budget via improved tax revenue.
Consider first the case with producitivity growth only, i.e., dÃ (i) = 0. Point (iii)

above implies positive effects of productivity growth on the budget balance. In addition
to this, productivity growth has positive effects on the retirement age and, hence,
on the budget balance under optimal policy from (3.16). It can thus be concluded
that productivity growth unambiguously implies an "upward" profile for the primary
budget balance, that is, the budget balance improves over time. Hence, productivity
growth tends to imply current borrowing to be matched by future savings (i.e. no
pre-savings). The intuition for this derives directly from the consumption smoothing
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implied by the optimal policy since if all generations are to share the fruits of future
productivity growth then intertemporal substitution calls for current borrowing.
We now turn to the role of increasing longevity in the absense of productivity

growth, i.e., dy (i) = 0. To simplify, assume moreover that the initial debt level is
zero, i.e., D (t) = 0. This enables us to determine whether pre-saving is an optimal
policy by looking at the primary budget balance at time t, i.e., B (t).
Consider the expression for the budget balance (4.7) rewritten in terms of the

dependency ratio from (2.11)

B(i) =
h
Tw (i)−K

³
R̃ (i) , Ã (i)

´
To (i)

i
Nw

³
R̃ (i) , Ã (i)

´
for all i ≥ t. Note that in the absence of productivity growth we have Tw (i) = Tw (t)
and To (i) = To (t) ∀ i ≥ t from (3.14). Hence,

dB(i) = −To (t)Nw

³
R̃ (i) , Ã (i)

´
dK (·)

+
h
Tw (t)−K

³
R̃ (i) , Ã (i)

´
To (t)

i
dNw (·)

for all i ≥ t and where (from (2.9))

dNw (·) =
∂Nw

∂R̃ (i)
dR̃ (i) +

∂Nw

∂Ã (i)
dÃ (i) > 0

since ∂Nw

∂Ã(i)
> 0, ∂Nw

∂R̃(i)
> 0 and dR̃ (i) > 0 from (3.16).

Observe first, that if the optimal policy implies that the dependency ratio is con-
stant, i.e., ∂K

∂Ã(i)
= 0, as is the case when there constant growth in longevity and healty

ageing (from corollary 1), then it follows that the primary budget must balance in all
periods to satisfy the intertemporal budget constraint in (3.13), i.e.,

Tw (t)−K
³
R̃ (i) , Ã (i)

´
To (t) = 0

Hence, the initial primary budget balance is zero B (t) = 0 and remains so, and pre-
saving is not implied by social optimal policy.
More generally, if the optimal policy implies that ∂K

∂Ã(i)
> 0, we must have that the

primary budget balance at t is positive, i.e.,

Tw (t)−K
³
R̃ (t) , Ã (t)

´
To (t) > 0

since dNw(·) > 0 and that (3.13) must hold. Hence, pre-saving is an optimal policy if
the dependency ratio is increasing over time. However, if the social optimal policy is
such that ∂K

∂Ã(i)
< 0, we must have the converse

Tw (t)−K
³
R̃ (t) , Ã (t)

´
To (t) < 0

since dNw(·) > 0 and (3.13) must hold.
Hence, for pre-saving to be implied by social optimal policy, the dependency ra-

tio must increase with longevity (after adjustment of the retirement age) over time.
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Connecting this to the results obtained above, this indicates that it is necessary that
the value of time functions for the young and old are homogeonous of degree greater
than zero for pre-saving to be an optimal policy. These results are sumarized in the
following:
Summary 1. Given (i) constant growth in longevity, (ii) that utility from con-

sumption when young is greater than when old and (iii) that the L and H functions are
homogenous of degree λ, where λ is sufficiently close to zero, social optimum implies
that

Homogeneity Dependency ratio Pre-saving
λ < 0 ∂K

∂Ã(i)
< 0 No

λ = 0 ∂K
∂Ã(i)

= 0 No

λ > 0 ∂K
∂Ã(i)

> 0 Yes

As this discussion indicates, it is not generally the case that pre-saving is implied
by the social optimal policy. In the benchmark case of healthy ageing the dependency
ratio is constant and provided an initial budget balance, there are no intergenerational
transfers.32 Further, relaxing the assumption of zero growth in productivity, it becomes
less likely that pre-saving can be a social optimal policy since productivity growth
implies current borrowing financed by future savings to smooth consumption.

5 Decentralized Equilibrium

Finally, consider the question whether the socially optimal allocation can be decen-
tralized. Two aspects arise here. First, the social optimum involves transfers across
generations and hence it is crucial whether these can be made in the decentralized
equilibrium. Secondly, in the decentralized case individuals choose not only consump-
tion but also the retirement age given the transfers and taxes determined by the policy
maker.
Consider first the issue of intergenerational transfers. Calvo and Obstfeld (1988)

showed in an OLG setting with age heterogeneity wrt. mortality risk and perfect
annuities markets to insure individuals against uncertain lifetimes, that the social
optimal allocation can be decentralized provided there is a sufficiently rich set of age
and time dependent instruments. In that setting, longevity and output are constant
over time and the population is stationary. Similarly, Sheshinski (2008) shows that a
first best solution is obtained in decentralized equilibrium when annuities markets are
available to insure individuals against uncertain lifetime. In that setup, there are no
intergenerational differences, i.e., output and longevity are constant over time.
An interesting question here concernes the retirement decision. Are individual

incentives underlying retirement the same as for the social planner? They are not when
consumption levels are different since marginal utilities are different. If consumption
levels are the same there is a difference if taxes and transfer are distortionary. In the
model presented here, the socially optimal allocation implies that intergenerational
transfers are needed. Therefore, even though there exist perfect annuities markets,
taxes and transfers are needed when trying to restore the socially optimal allocation.

32The case of healty ageing implies the optimality of a balanced budget and, hence, implies the
optimality of a Pay-As-You-Go type scheme.
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In the following we briefly analyse whether the socially optimal allocation from sec-
tion 3 can be achieved as a decentralized equilibrium when perfect annuities markets
are available, generations are heterogenous wrt. longevity and the government can use
taxes levied on young individuals and transfers to old individuals to make intergenera-
tional transfers. To solve for the decentralized equilibrium, we follow Sheshinski (2008)
in how the individual´s problem is set up. An individual chooses consumption and
retirement conditional on taxes and transfers levied on individuals. The government
then chooses taxes and transfers now and in the future. Desription of the model and
derivation of the decentralized equilibrium are shown in appendixes I, J and K.
Note the difference to previous sections. Before the social planner was choosingn

Tw (i) , To (i) , R̃ (i)
o∞
i=t
, but now the government’s policy package is {Tw (i) , To (i)}∞i=t

and individuals from different cohorts choose
n
R̃ (i)

o∞
i=t

(as well as consumption).

Hence, the government has a smaller set of instruments in the decentralized equilib-
rium.

5.1 Retirement age

Compare first the socially optimal retirement decisions and retirement in the decen-
tralized equilibrium. Consider an arbitrary generation born at time t0. According to
the decentralized equilibrium, this generation retires at time i > t0 at the age of Rd

while, according to the social planner’s allocation, the generation retires at time j > t0
at the age Rs.33

If we assume that the same consumption levels are arising in the social planner’s
and decentralized equilibrium allocation (partial equilibrium, direct effects), we have
that the retirement age differs since34

Rs R Rd for Tw (i) + To (i) R 0 (5.1)

The intuition is that the tax-transfer scheme introduces a distortion of the retirement
decision in the decentralized equilibrium. The composite marginal tax effect of retir-
ing is Tw (i) + To (i) in the decentralized equilibrium, and hence retirement decisions
differ between the social optimum and the decentralized allocation. The direction of
these effects depends on the sum of taxes and transfers at every point in time in the
decentralized equilibrium. Both of these are likely to be positive.
This is, however, only a part of the story since consumption in the decentralized

equilibrium is dependent on (i) taxes and transfers and (ii) the retirement age (con-
sumption effects), as is shown in appendix I. Hence, one needs to derive the general
equilibrium effects to give the full story. Let us therefore relax the assumption of
identical consumption levels in the social planner’s and decentralized equilibrium allo-
cations. Instead, think of the following question: How does the retirement age change
when the economy moves away from the social planner’s solution? It can be shown (see
appendix L) that the retirement age tends to decline when Tw (i) + To (i) is positive.
This underscores the role of the distortion of individual retirement decisions arising in
decentralized equilibrium.

33Hence, t0 = i−Rd = j −Rs.
34This is shown in appendix L.
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5.2 Can the social planner allocation be attained in decen-
tralized equilibrium?

The results above imply that even though consumption is equal under the two schemes,
the retirement age in the decentralized equilibrium will differ from the social planner’s
solution as long as the sum of taxes and transfers is non-zero. This is a strong indication
that the social planner’s allocation can not be attained in the decentralized equilibrium.
More formally, we have the following proposition35:
Proposition 4. Even given annuities markets, the socially optimal allocation can

not in general be decentralized.
Proof. See appendix L.
Note that this holds despite the presence of annuities markets, which eliminate the

distortion caused by uncertain lifetime. Relaxing the assumption of annuities markets
would make it even less likely that the social planner’s allocation could be attained in
the decentralized equilibrium.

6 Concluding Remarks

The notion of intergenerational equity has been considered under a utilitarian crite-
rion in an overlapping generations model allowing for both productivity growth and
increasing longevity. The latter is the more interesting aspect both because of its
relevance in relation to current debates on demographics and because it requires a
modelling approach allowing for overlapping generations with different mortality rates
and thus longevity. As in Calvo and Obstfeld (1988) the social optimal allocation is
found under generational neutral weighting to imply consumption smoothing across
generations and time, i.e., young and old have the same consumption flows at all times.
This is a straightforward implication of intertemporal substitution under the utilitar-
ian criterion and with separable utility functions. However, in addition the retirement
age differs across generations, and both productivity growth and increasing longevity
tend to call for increasing retirement ages over time. The former holds generally and
derives from increasing labour input when its marginal productivity is high, while the
latter follows under mild conditions amounting to increasing longevity being reflected
in better health at given ages.
In policy debates strong assertions are often made on the implications of intergener-

ational equity such as retirement ages to follow longevity proportionally or pre-savings.
We show that the former holds under so-called healthy ageing, while the latter arises if
the retirement age does not increase sufficiently to avoid an increasing (economic) de-
pendency ratio. Note that even if the socially optimal policy implies some pre-savings,
the needed savings are affected by the fact that retirement ages increase across gener-
ations due to increasing longevity.
Intergenerational distribution and equity have been considered from a utilitarian

perspective. Utilitarianism is the dominating approach in welfare analyses, and for
comparative purposes it is thus a natural starting point for addressing the issue of

35Necessary conditions for allocation in the decentralized equilibrium being the same as the so-
cial planners’s only hold when the number of young individuals is very close to the number of old
individuals, which gives the above proposition.
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changing mortality rates (and productivity). Working out the implications of utili-
tarianism makes it easier to discuss its pros and cons. It should be noted that the
analysis assumes the same underlying utility function across generations weighted in
a way that does not imply any generational preference or bias. The criticism of util-
itarianism (see e.g. Konow (2003) for a survey and references) includes aspect such
as inter-personal (generational) comparability of utility (cardinal measurement) and
consequentialism assessing only outcomes measured in terms of utility disregarding the
underlying process or elements affecting well-being. Utilitarianism implies redistribu-
tion based on the ability to generate utility at the margin (marginal utilities) rather
than the level of utility per se. This is reflected in the present analysis, and it may be
questioned whether future generations should work more (retire later) because they
have higher longevity and are more productive.
This paper has taken mortality rates to be exogenous. While this it is a natural

starting point to clarify the basic issues involved, it is also clear that changes in mor-
tality rates and thus longevity are driven by both individual (life style, eating habits,
housing etc) and public decisions (health care). A small but growing literature is ex-
ploring the consquences of endogenizing longevity via these channels (see Philipson
and Becker (1998), Leroux et al. (2008)). It is an obvious agenda for future research
to endogenize mortality rates
Finally, a small-open economy assumption has been adopted with respect to fi-

nancial market. This is a reasonable assumption to make for most countries given
financial globalization. Consequences of changes in the interest rate profile can readily
be analysed within the model. Since ageing is a global phenomenon there is however
an issue in respect to how ageing itself and the induced policy changes will affect
global interest rates. While countries acting non-cooperatively takes interest rates as
exogenous, there is likely to be important interdependencies. It is an interesting topic
for future research to analyse these issues.
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Appendix

A. Derivatives of the m̃ function
The derivatives are the following:
∂m̃(a,Ã(t))

∂a
= − 1

A(t−a)

h
1 + a

A(t−a)μA (t− a)
i
lnαα

a
A(t−a)

α−1 < 0

∂2m̃(a,Ã(t))
∂a2

= − 1
A(t−a)2

⎡⎢⎢⎢⎢⎣
h
1 + a

A(t−a)μA (t− a)
i

×
" h
1 + a

A(t−a)μA (t− a)
i
lnα

+2μA (t− a)

#
−aμ0AμA (t− a)

⎤⎥⎥⎥⎥⎦ lnαα
a

A(t−a)

α−1 < 0

∂m̃(a,Ã(t))
∂Ã(t)

=
[1+μA(t−Ã)]a

A(t−a)2
lnαα

a
A(t−a)

α−1 > 0

∂2m̃(a,Ã(t))
∂Ã(t)∂a

=
[1+μA(t−Ã)]

A(t−a)2

"
1 + 2aμA(t−a)

A(t−a)

+ a lnα
A(t−a)

h
1 + a

A(t−a)μA (t− a)
i # lnαα

a
A(t−a)

α−1 > 0

where A (t− a) is given in (2.6).

B. Calculations for population composition

dN (t) > 0, dNw (t) > 0 and dNw (t) > 0. Applying Taylor approximation to
(2.8), (2.9) and (2.10), and erasing terms that contain "dt" raised to a higher power
than 1 (since time is continuous (dt→ 0)) gives the following:

dN (t) = ∂N
∂Ã(t)

dÃ (t) =

⎡⎢⎣ Ã(t)Z
a=0

∂m̃(a,Ã(t))
∂Ã(t)

da

⎤⎥⎦ dÃ (t) > 0
dNw (t) =

∂Nw

∂Ã(t)
dÃ (t) =

⎡⎢⎣ R̃(t)Z
a=0

∂m̃(a,Ã(t))
∂Ã(t)

da

⎤⎥⎦ dÃ (t) > 0
dNo (t) =

∂No

∂Ã(t)
dÃ (t) =

⎡⎢⎣ Ã(t)Z
a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da

⎤⎥⎦ dÃ (t) > 0
where (2.5) and properties of the m̃ function (from appendix A) are used. Hence,

dN (t) > 0, dNw (t) > 0 and dNo (t) > 0 all hold.
Proof of dK (t) > 0
Applying Taylor approximation to (2.11) and erasing terms that contain "dt" raised

to a higher power than 1 (since time is continuous (dt→ 0)) gives the following:

dK (t) =
∂No
∂Ã(t)

Nw(t)−No(t)
∂Nw
∂Ã(t)

Nw(t)
2 dÃ (t)

= No(t)
Nw(t)

∙
∂No
∂Ã(t)

No(t)
−

∂Nw
∂Ã(t)

Nw(t)

¸
dÃ (t)

Hence, using (2.5), dK (t) > 0 iff
∂No
∂Ã(t)

No(t)
>

∂Nw
∂Ã(t)

Nw(t)

or, by using (2.9) and (2.10)
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Ã(t)Z
a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da

Ã(t)Z
a=R̃(t)

m̃(a,Ã(t))da

>

R̃(t)Z
a=0

∂m̃(a,Ã(t))
∂Ã(t)

da

R̃(t)Z
a=0

m̃(a,Ã(t))da

(B.1)

Since
∂m̃(a,Ã(t))

∂a
< 0 and

∂2m̃(a,Ã(t))
∂Ã(t)∂a

> 0 we have that
R̃(t)Z

a=0

m̃
³
a, Ã (t)

´
da > R̃ (t) m̃

³
R̃ (t) , Ã (t)

´
R̃(t)Z

a=0

∂m̃(a,Ã(t))
∂Ã(t)

da < R̃ (t)
∂m̃(a,Ã(t))

∂Ã(t) a=R̃(t)

Ã(t)Z
a=R̃(t)

m̃
³
a, Ã (t)

´
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h
Ã (t)− R̃ (t)
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³
R̃ (t) , Ã (t)

´
Ã(t)Z

a=R̃(t)

∂m̃(a,Ã(t))
∂Ã(t)

da >
h
Ã (t)− R̃ (t)

i
∂m̃(a,Ã(t))

∂Ã(t) a=R̃(t)

Hence
R̃(t)Z

a=0

∂m̃(a,Ã(t))
∂Ã(t)

da

R̃(t)Z
a=0

m̃(a,Ã(t))da

<
R̃(t)

∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)

R̃(t)m̃(R̃(t),Ã(t))

Ã(t)Z
a=R̃(t)

∂m̃(a,Ã(t))
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da

Ã(t)Z
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>
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[Ã(t)−R̃(t)]m̃(R̃(t),Ã(t))
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=

∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)

m̃(R̃(t),Ã(t))

=
R̃(t)

∂m̃(a,Ã(t))
∂Ã(t) a=R̃(t)

R̃(t)m̃(R̃(t),Ã(t))

>

R̃(t)Z
a=0

∂m̃(a,Ã(t))
∂Ã(t)

da

R̃(t)Z
a=0

m̃(a,Ã(t))da

Hence, (B.1) holds as well as dK (t) > 0. This completes the proof.

C. The social welfare function
The second term in (3.1) is obviously finite and, hence, well defined. This is,

however, not obvious for the first term.
There are three cases for longevity development discussed in the paper: (i) upper

bound to longevity, (ii) decreasing growth in longevity and (iii) constant growth in
longevity. The first term in (3.1) is obviously finite and well defined if there is an
upper bound to longevity, as is assumed in appendix E below.
The first term in (3.1) can be written as
∞Z

i=t

e−θ(i−t)v (i) Q(i)
v(i)

di (C.1)

where Q (i) is expected discounted lifetime utility at birth for an individual belong-
ing to generation i and v (i) life expectance at birth of the individual from (2.4). The
ratio Q(i)

v(i)
can be interpreted as the expected discounted utility each year alive at birth

for an individual belonging to generation i, which can be assumed to be stationary.
From (2.4), we have that

v (i) =
h
α lnα−[α−1]
lnα[α−1]

i
A (i)

where
h
α lnα−[α−1]
lnα[α−1]

i
> 0.

We therefore have that v (i) is linear in longevity.
Hence, v (i) converges to a constant if the growth in longevity is decreasing over

time. In that case, e−θ(i−t) determines whether (C.1) is well defined. Performing a
ratio test (see, e.g., Rudin (1976)) on e−θ(i−t) gives

lim
i→∞

¯̄̄
e−θ(i+di−t)

e−θ(i−t)

¯̄̄
= e−θdi < 1

and, hence, e−θ(i−t) converges to zero and (C.1) is finite and well defined.
In the case of constant growth in longevity, v (i) is linear in time

v (i) =
h
α lnα−[α−1]
lnα[α−1]

i
[A (t) + μA [i− t]]

where (2.5) has been used. In this case, e−θ(i−t)v (i) determines whether (C.1) is
well defined. Performing a ratio test on e−θ(i−t)v (i) gives

lim
i→∞

¯̄̄
e−θ(i+di−t)v(i+di)

e−θ(i−t)v(i)

¯̄̄
= e−θdi < 1

since

lim
i→∞

¯̄̄
v(i+di)
v(i)

¯̄̄
= lim

i→∞

¯̄̄̄
[α lnα−[α−1]lnα[α−1] ][A(t)+μA[i+di−t]]

[α lnα−[α−1]lnα[α−1] ][A(t)+μA[i−t]]

¯̄̄̄
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= lim
i→∞

¯̄̄
A(t)+μA[i+di−t]
A(t)+μA[i−t]

¯̄̄
= 1

Hence, e−θ(i−t)v (i) converges to zero and (C.1) is finite and well defined.
The conclusion is that (C.1) and, hence, (3.1) are finite and well defined.

D. Social optimum derived
Applying Taylor approximation to the value function V

³
D, y, Ã

´
, and considering

the limit for dt→ 0 gives the following:
dV
³
D, y, Ã

´
=
h
VD

h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To

ii
+ Vyμyy + VAμ̂A

i
dt

Inserting this into (3.4) gives

θV
³
D, y, Ã

´
= Max

Tw,To,R̃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃Z
a=0

m̃
³
a, Ã

´h
U (y − Tw) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃

m̃
³
a, Ã

´ h
Q (To) + H̃

³
a, Ã

´i
da

+VD
h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii
+ Vyμyy + VÃμ̂A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D.1)
We can now find the first-order conditions determining Tw, To and R̃. For the tax

payment by the young Tw we have

VD = − 1

Nw(R̃,Ã)

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (y − Tw) da

or using Nw

³
R̃, Ã

´
from (2.9), we get (3.5) as

VD = −U 0 (y − Tw)
For the transfer to the old To we have

VD = − 1

No(R̃,Ã)

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (To) da

or using No

³
R̃, Ã

´
from (2.10), we get (3.6) as

VD = −Q0 (To)
For the retirement age R̃ we have
VDTw

∂Nw

∂R̃
−VDTo ∂No

∂R̃
= m̃

³
R̃, Ã

´h
U (y − Tw) + L̃

³
R̃, Ã

´i
−m̃

³
R̃, Ã

´h
Q (To) + H̃

³
R̃, Ã

´i
or using Nw

³
R̃, Ã

´
and No

³
R̃, Ã

´
from (2.9) and (2.10), we get (3.7) as

[Tw + To]VD = U (y − Tw)+ L̃
³
R̃, Ã

´
−Q (To)− H̃

³
R̃, Ã

´
where it has been used

that ∂Nw

∂R̃
= −∂No

∂R̃
= m̃

³
R̃, Ã

´
.

Replacing Tw, To and R̃ in (D.1) with their optimal values from (3.5)-(3.7) gives
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θV
³
D, y, Ã

´
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃∗Z
a=0

m̃
³
a, Ã

´h
U (y − T ∗w) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃∗

m̃
³
a, Ã

´h
Q (T ∗o ) + H̃

³
a, Ã

´i
da

+VD
h
rD −

h
Nw

³
R̃∗, Ã

´
T ∗w −No

³
R̃∗, Ã

´
T ∗o

ii
+ Vyμyy + VÃμ̂A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the envelope theorem gives
(θ − r)VD = VDD

h
rD −

h
Nw

³
R̃∗, Ã

´
T ∗w −No

³
R̃∗, Ã

´
T ∗o

ii
+ VyDμyy + VÃDμ̂A

Applying a Taylor approximation to VD, and using the law of motion for D, y and
Ã and considering the limit for dt→ 0 gives

dVD = VDD

h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii

dt+ VDyμyydt+ VDÃμ̂Adt

Evaluating this at T ∗w, T
∗
o and R̃∗, plugging into it and using that VDy = VyD and

VDÃ = VÃD (Young’s theorem) gives (3.8) as
dVD = (θ − r)VDdt
Above we have shown that (3.5)-(3.7) are necessary conditions for solving the max-

imization problem in (3.4). Now we show that these are also sufficient. Denote by F
the function inside the right hand side bracket in (D.1). Then the necessary conditions
in (3.5)-(3.7) are also sufficient for maximum if the Hessian matrix corresponding to
the F function is negative definite. From the F function we have (evaluated at the
optimal solution in (3.5)-(3.7))

∂2F
∂T 2w

=

R̃Z
a=0

m̃
³
a, Ã

´
U 00 (y − Tw) da < 0

∂2F
∂T 2o

=

ÃZ
a=R̃

m̃
³
a, Ã

´
Q00 (To) da < 0

∂2F
∂R̃2

= m̃
³
R̃, Ã

´ ∙
∂L̃(R̃,Ã)

∂R̃
− ∂H̃(R̃,Ã)

∂R̃

¸
< 0

∂2F
∂Tw∂To

= ∂2F
∂Tw∂R̃

= ∂2F
∂To∂R̃

= 0
which give a negative definite Hessian matrix.
We now show that the HJB equation in (3.4) along with (2.24) (and (2.23)) are

necessary for solving (3.3). First, (2.24) (and (2.23)) is a part of the problem in (3.3)
and is therefore a necessary and sufficient condition for its solution. To show that the
HJB equation is necessary, we roughly apply the method used in Björk (1998), where
necessary conditions for the HJB equation in the stochastic case is proved. Although
the proof in Björk (1998) can be applied here, we show it below since it gives insights
into how the HJB equation is obtained in our case.
Proof of the HJB equation being a necessary condition
The objective funcion in (3.3) can be written in the following way:

Max
{Tw(i),To(i),R̃(i)}∞

i=t

W (t) =

∞Z
i=t

e−θ(i−t)Z (i) di (D.2)

where
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Z (i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´h
U (y (i)− Tw (i)) + L̃

³
a, Ã (i)

´i
da

+

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´h
Q (To (i)) + H̃

³
a, Ã (i)

´i
da

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Z

³
y (i) , Ã (i) , Tw (i) , To (i) , R̃ (i)

´
Optimal Tw (i), To (i) and R̃ (i) are

T ∗w (i) = Tw
³
D (i) , y (i) , Ã (i)

´
T ∗o (i) = To

³
D (i) , y (i) , Ã (i)

´
R̃∗ (i) = R̃

³
D (i) , y (i) , Ã (i)

´
for all i ≥ t. Now consider Tw (i), To (i) and R̃ (i) that are not necessarily optimal
Tw (i) = Tw (i) for t+ h ≥ i ≥ t

= T ∗w (i) ∀ i ≥ t+ h
To (i) = To (i) for t+ h ≥ i ≥ t

= T ∗o (i) ∀ i ≥ t+ h
R̃ (i) = R̃ (i) for t+ h ≥ i ≥ t

= R̃∗ (i) ∀ i ≥ t+ h
where h > 0.
The value function at time t is defined as

V
³
D (t) , y (t) , Ã (t)

´
=

∞Z
i=t

e−θ(i−t)Z
³
y (i) , Ã (i) , T ∗w (i) , T

∗
o (i) , R̃

∗ (i)
´
di

and is assumed to be differentiable.36 Hence, the value function at time t+ h is

V
³
D (t+ h) , y (t+ h) , Ã (t+ h)

´
=

∞Z
i=t+h

e−θ(i−t−h)Z
³
y (i) , Ã (i) , T ∗w (i) , T

∗
o (i) , R̃

∗ (i)
´
di

If the optimal Tw (i), To (i) and R̃ (i) are chosen, then the value of W (t) in (D.2)

is V
³
D (t) , y (t) , Ã (t)

´
while it is the following if Tw (i), To (i) and R̃ (i) that are not

necessarily optimal are chosen:
t+hZ
i=t

e−θ(i−t)Z
³
y (i) , Ã (i) , Tw (i) , To (i) , R̃ (i)

´
di+e−θhV

³
D (t+ h) , y (t+ h) , Ã (t+ h)

´
Comparing these two, we have that the following must hold:

V
³
D (t) , y (t) , Ã (t)

´
≥

t+hZ
i=t

e−θ(i−t)Z
³
y (i) , Ã (i) , Tw (i) , To (i) , R̃ (i)

´
di

+e−θhV
³
D (t+ h) , y (t+ h) , Ã (t+ h)

´
Rewriting this inequality and dividing by h gives

36Benveniste and Scheinkman (1979) set forth sufficient conditions for the derivatives of the value
function to exist. These are assumed to hold here.
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¡
eθh − 1

¢
h−1V

³
D (t) , y (t) , Ã (t)

´
≥ eθhh−1

t+hZ
i=t

e−θ(i−t)Z
³
y (i) , Ã (i) , Tw (i) , To (i) , R̃ (i)

´
di

+h−1
h
V
³
D (t+ h) , y (t+ h) , Ã (t+ h)

´
− V

³
D (t) , y (t) , Ã (t)

´i
Taking the limit when h→ 0 on both sides of the inequility sign gives
θV
³
D (t) , y (t) , Ã (t)

´
≥ Z

³
y (t) , Ã (t) , Tw (t) , To (t) , R̃ (t)

´
+ 1

dt
dV
³
D (t) , y (t) , Ã (t)

´
where L’Hospital’s rule has been used.
This inequality holds for all Tw (t), To (t) and R̃ (t). Further, it holds with the

equality sign if the optimal ones are chosen. This implies

θV
³
D (t) , y (t) , Ã (t)

´
= Max

Tw(t),To(t),R̃(t)

⎧⎨⎩ Z
³
y (t) , Ã (t) , Tw (t) , To (t) , R̃ (t)

´
+ 1

dt
dV
³
D (t) , y (t) , Ã (t)

´ ⎫⎬⎭
which, after using short and notation along with (2.24) (and (2.23)), (2.5) and

(2.20), gives the HJB equation in (3.4), which completes the proof.
We have therefore shown that if there exist optimal Tw (i), To (i) and R̃ (i) and the

value function V
³
D (t) , y (t) , Ã (t)

´
is differentiable, then the HJB equation in (3.4)

is a necessary condition for solving (3.3). Hence, we can conclude that if the the value

function V
³
D (t) , y (t) , Ã (t)

´
is differentiable then the HJB equation is necessary for

solving (3.3).

E. Upper bound on longevity
We now have that
dA (t) = μAdt for A (t) < A

= 0 for A(t) = A (E.1)
or
μA > 0 for t < t∗

μA = 0 for t ≥ t∗

where A(t∗) = A and it is used that there is a one-to-one relationship between A
and t. This changes (2.6) and the L̃, H̃ and m̃ functions such that

A (i− a) = Ã (i)− μA

h
a− Ã (i)

i
∀ i− a ≤ t∗

= A (t∗) ∀ i− a > t∗ (E.2)

L̃
³
a, Ã (i)

´
= L

³
a, Ã (i)− μA

h
a− Ã (i)

i´
∀ i− a ≤ t∗

= L (a,A (t∗)) ∀ i− a > t∗ (E.3)

H̃
³
a, Ã (i)

´
= H

³
a, Ã (i)− μA

h
a− Ã (i)

i´
∀ i− a ≤ t∗

= H (a,A (t∗)) ∀ i− a > t∗ (E.4)

m̃
³
a, Ã (i)

´
= m

³
a, Ã (i)− μA

h
a− Ã (i)

i´
∀ i− a ≤ t∗

= m (a,A (t∗)) ∀ i− a > t∗ (E.5)
Hence, (3.3) becomes

Max
{Tw(i),To(i),R̃(i)}∞

i=t

W (t) =

t∗Z
i=t

e−θ(i−t)Z1 (i) di+

t∗+A(t∗)Z
i=t∗

e−θ(i−t)Z2 (i) di+

∞Z
i=t∗+A(t∗)

e−θ(i−t)Z3 (i) di

(E.6)
subject to the budget constraint from (2.24) (and (2.23)) and given (E.1) and (2.20)

and where
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Zj (i) =

R̃(i)Z
a=0

m̃j

³
a, Ã (i)

´
W̃w,j (i, a) da+

Ã(i)Z
a=R̃(i)

m̃j

³
a, Ã (i)

´
W̃o,j (i, a) da, j = 1, 2, 3

For Z1 (i) we have i ≤ t∗ and, hence, i − a ≤ t∗. Together with (E.3)-(E.5) this
gives

W̃w,1 (i, a) = U (y (i)− Tw (i)) + L
³
a, Ã (i)− μA

h
a− Ã (i)

i´
W̃o,1 (i, a) = Q (To (i)) +H

³
a, Ã (i)− μA

h
a− Ã (i)

i´
m̃1

³
a, Ã (i)

´
= m

³
a, Ã (i)− μA

h
a− Ã (i)

i´
For Z2 (i) we have t∗ ≤ i ≤ t∗ +A (t∗) and, hence, t∗ − a ≤ i− a ≤ t∗ − a+A (t∗).

Since A (t∗) ≥ a, this implies that there exists an ā (i) for which a S ā (i) and we have

that t∗ S i− a. Hence, we have from (E.5)

m̃2

³
a, Ã (i)

´
= m (a,A (t∗)) for a ≤ ā (i)

= m
³
a, Ã (i)− μA

h
a− Ã (i)

i´
for ā (i) < a

and if ā (i) ≤ R̃ (i) we have from (E.3)-(E.4)
W̃w,2 (i, a) = U (y (i)− Tw (i)) + L (a,A (t∗)) for a ≤ ā (i)

= U (y (i)− Tw (i)) + L
³
a, Ã (i)− μA

h
a− Ã (i)

i´
for ā (i) < a

W̃o,2 (i, a) = Q (To (i)) +H
³
a, Ã (i)− μA

h
a− Ã (i)

i´
and if ā (i) > R̃ (i) we have from (E.3)-(E.4)
W̃w,2 (i, a) = U (y (i)− Tw (i)) + L (a,A (t∗))
W̃o,2 (i, a) = Q (To (i)) +H (a,A (t∗)) ∀ a ≤ ā (i)

= Q (To (i)) +H
³
a, Ã (i)− μA

h
a− Ã (i)

i´
∀ ā (i) < a

For Z3 (i) we have i ≥ t∗+A (t∗) and, hence, i− a ≥ t∗. Together with (E.3)-(E.5)
this gives

W̃w,3 (i, a) = U (y (i)− Tw (i)) + L (a,A (t∗))
W̃o,3 (i, a) = Q (To (i)) +H (a,A (t∗))

m̃3

³
a, Ã (i)

´
= m (a,A (t∗))

The Lagrangian for (E.6) is

Γ (t) =

t∗Z
i=t

e−θ(i−t)Z1 (i) di+

t∗+A(t∗)Z
i=t∗

e−θ(i−t)Z2 (i) di+

∞Z
i=t∗+A(t∗)

e−θ(i−t)Z3 (i) di

+

∞Z
i=t

λD (i)

⎡⎣Ḋ (i)−
⎡⎣rD (i)−

⎡⎣ Nw

³
R̃ (i) , Ã (i)

´
Tw (i)

−No

³
R̃ (i) , Ã (i)

´
To (i)

⎤⎦⎤⎦⎤⎦ di
+

∞Z
i=t

λy (i)
£
ẏ (i)− μyy (i)

¤
di

+

t∗+A(t∗)Z
i=t

λA (i)

∙ ·
Ã (i)− μ̂A

¸
di (E.7)
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where ẋ (i) ≡ lim
di→0

dx(i)
di
for x (i) = D (i), y (i), Ã (i) and where Nw and No are given

in (2.9) and (2.10) using the m̃ function from (E.5). Hence, we have

Nw

³
R̃ (i) , Ã (i)

´
=

R̃(i)Z
a=0

m̃j

³
a, Ã (i)

´
da

No

³
R̃ (i) , Ã (i)

´
=

Ã(i)Z
a=R̃(i)

m̃j

³
a, Ã (i)

´
da

where j = 1 when i ≤ t∗, j = 2 when t∗ ≤ i ≤ t∗+A (t∗) and j = 3 for i ≥ t∗+A (t∗).
Using integration by parts in (E.7) gives

Γ (t) =

t∗Z
i=t

e−θ(i−t)Z1 (i) di+

t∗+A(t∗)Z
i=t∗

e−θ(i−t)Z2 (i) di+

∞Z
i=t∗+A(t∗)

e−θ(i−t)Z3 (i) di

−
∞Z

i=t

λD (i)

⎡⎣rD (i)−
⎡⎣ Nw

³
R̃ (i) , Ã (i)

´
Tw (i)

−No

³
R̃ (i) , Ã (i)

´
To (i)

⎤⎦⎤⎦ di
−

∞Z
i=t

λy (i)μyy (i) di−
t∗+A(t∗)Z
i=t

λA (i) μ̂Adi

+lim
t̄→∞

[λD (t̄)D (t̄)]− λD (t)D (t)−
∞Z

i=t

λ̇D (i)D (i) di

+lim
t̄→∞

[λy (t̄) y (t̄)]− λy (t) y (t)−
∞Z

i=t

λ̇y (i) y (i) di

+λA (t
∗ +A (t∗))A (t∗)− λA (t) Ã (t)−

t∗+A(t∗)Z
i=t

λ̇ (i) Ã (i) di (E.8)

The first-order conditions are (for all i ≥ t)
−e−θ(i−t)U 0 (y (i)− Tw (i)) + λD (i) = 0 (E.9)
e−θ(i−t)Q0 (To (i))− λD (i) = 0 (E.10)

e−θ(i−t)

⎡⎣ hU (y (i)− Tw (i)) + L̃
³
R̃ (i) , Ã (i)

´i
−
h
Q (To (i)) + H̃

³
R̃ (i) , Ã (i)

´i ⎤⎦+λD (i) [Tw (i) + To (i)] = 0 (E.11)

where it has been used that ∂Nw

∂R̃(i)
= − ∂No

∂R̃(i)
= m̃j

³
R̃ (i) , Ã (i)

´
for j = 1, 2, 3.

Further, maximizing (E.8) with respect toD (i) gives the following first-order condition
(for all i ≥ t):
−λ̇D (i)− λD (i) r = 0 (E.12)
Using (E.10) in (E.12) gives
Ṫo (i) =

Q0(To(i))
Q00(To(i))

[θ − r]

Assuming neutral generational weighting (θ = r) gives Ṫo (i) = 0 and, hence,
To (i) = To (t) (E.13)
for all i ≥ t. Using this, (2.20), (E.9) and (E.10) gives
Tw (i) = Tw (t) + y (t)

£
eμy[i−t] − 1

¤
(E.14)

39



for all i ≥ t. Plugging (E.10) into (E.11) gives

Q0 (To (i)) [Tw (i) + To (i)] =
h
Q (To (i)) + H̃

³
R̃ (i) , Ã (i)

´i
−
h
U (y (i)− Tw (i)) + L̃

³
R̃ (i) , Ã (i)

´i
for all i ≥ t and, by using (E.13) and (E.14),

dR̃ (i) = − Q0k
∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

dy (i)−
k

∂L̃
∂Ã(i)

− ∂H̃
∂Ã(i)

l
a=R̃(i)k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

dÃ (i)

for t∗ +A (t∗) > i ≥ t
dR̃ (i) = − Q0k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

dy (i)

for i ≥ t∗ +A (t∗)
Comparing these results to the ones with no upper bound on A (t) from (3.14) and

(3.16), we see that the dynamics in Tw and To are identical, while the dynamics in
R̃ differ due to the upper bound. Further, the intertemporal budget constraint from
(3.13) differs between the two case since Nw

³
R̃ (i) , Ã (i)

´
and No

³
R̃ (i) , Ã (i)

´
differ

due to different development of Ã (i). Hence, the levels for Tw, To and R̃ differ.

F. A proof for optimal policy package
Proof of proposition 1
(3.10) and (3.11) imply
dTw (i) = dy (i)
dTo (i) = 0
for all i ≥ t. Using (2.20) in these gives (3.14). Using (2.21) and (2.22) along with

(2.20) in (3.14) gives (3.15).
(3.12) and (3.14) imply

VD (t) dTw (i) =
h
∂L̃
∂a
− ∂H̃

∂a

i
a=R̃(i)

dR̃ (i)

+
h

∂L̃
∂Ã(i)

− ∂H̃
∂Ã(i)

i
a=R̃(i)

dÃ (i)

for all i ≥ t, implying that the retirement age evolves according to

dR̃ (i) = VD(t)k
∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

dy (i)−
k

∂L̃
∂Ã(i)

− ∂H̃
∂Ã(i)

l
a=R̃(i)k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

dÃ (i)

for all i ≥ t, where VD (t) < 0 from (3.10),
h
∂L̃
∂a
− ∂H̃

∂a

i
a=R̃(i)

< 0 from (2.18) andh
∂L̃

∂Ã(i)
− ∂H̃

∂Ã(i)

i
a=R̃(i)

> 0 from (2.19). Hence, this gives (3.16) where

ηy (i) =
VD(t)k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

> 0

ηA (i) = −
k

∂L̃
∂Ã(i)

− ∂H̃
∂Ã(i)

l
a=R̃(i)k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

> 0

for all i ≥ t. This completes the proof.

G. Proofs for retirement and healthy ageing
Proof of lemma 1
"only if"
(4.1) holds only if
dR̃(i)

R̃(i)
= dÃ(i)

Ã(i)
(G.1)
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for all i ≥ t. The expression for the evolution of the optimal retirement age from
(3.16) implies that this holds only if

−
k

∂L̃
∂Ã(i)

− ∂H̃
∂Ã(i)

l
a=R̃(i)k

∂L̃
∂a
−∂H̃

∂a

l
a=R̃(i)

= R̃(i)

Ã(i)
(G.2)

for all i ≥ t. Assume that the L̃ (a, Ã (i)) and H̃(a, Ã (i)) functions are ho-

mogeneous of degree λ, i.e., L̃
³
a, Ã (i)

´
= Ã (i)λ L̃

³
a

Ã(i)
, 1
´
and H̃

³
a, Ã (i)

´
=

Ã (i)λ H̃
³

a
Ã(i)

, 1
´
. Using this in (G.2), (G.1) holds only if

−λ
h
L̃
³
R̃(i)

Ã(i)
, 1
´
− H̃

³
R̃(i)

Ã(i)
, 1
´i
= 0

for all i ≥ t. Hence, as long as L̃
³
R̃(i)

Ã(i)
, 1
´
6= H̃

³
R̃(i)

Ã(i)
, 1
´
and therefore L̃

³
R̃ (i) , Ã (i)

´
6=

H̃
³
R̃ (i) , Ã (i)

´
due to the homogeneity assumption, which is likely to hold from

(3.10)-(3.12), we have that (G.2) holds only if λ = 0. That is, (G.2) holds only if the
L̃ and H̃ functions are both homogenous of degree 0. This completes the first half of
the proof.
"if"
From (3.12), (3.14) and (2.20) assuming constant output per young individual

(dy (i) = 0) gives
[Tw (t) + To (t)]VD (t) = U (y (t)− Tw (t))

+L̃
³
R̃ (i) , Ã (i)

´
−Q (To (t))− H̃

³
R̃ (i) , Ã (i)

´
(G.3)

for all i ≥ t. Assuming that the L̃ (a, Ã (i)) and H̃(a, Ã (i)) are homogeneous of
degree 0 implies from (G.3)

H̃
³
R̃(i)

Ã(i)
, 1
´
− L̃

³
R̃(i)

Ã(i)
, 1
´
= cons tan t

This can only hold if R̃(i)

Ã(i)
is constant since ∂L̃

∂a
< ∂H̃

∂a
from (2.18) and (2.19). Hence,

we have that (4.1) must hold. This completes the proof.
Proof of lemma 2
Assuming constant growth in longevity in (2.6) gives the following relationsship

between longevity of the generation that retires today and longevity (of the generation
that becomes extinct today):

A
³
i− R̃

´
= Ã (i)− μA

h
R̃ (i)− Ã (i)

i
(G.4)

"only if"
Assuming that
R̃ (i) = κÃ (i)
holds and plugging into (G.4) gives

R̃ (i) = κ
1+μA[1−κ]

A
³
i− R̃

´
Choosing ψ = κ

1+μA[1−κ]
completes the first half of the proof.

"if"
Assuming that
R̃ (i) = ψA

³
i− R̃

´
holds and plugging into (G.4) gives
R̃ (i) = ψ[1+μA]

1+ψμA
Ã (i)

Choosing κ = ψ[1+μA]
1+ψμA

completes the second half of the proof. This completes the
proof.
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Proof of lemma 3
"only if"
Using the definition of the L̃ function, (2.6) under constant growth in longevity

and assuming that the L̃ function is homogenous of degree λ gives
kλL̃

³
a, Ã (i)

´
= L̃

³
ka, kÃ (i)

´
= L

³
ka, kÃ (i)− μA

h
ka− kÃ (i)

i´
= L

³
ka, k

h
Ã (i)− μA

h
a− Ã (i)

ii´
= L (ka, kA (i− a))
= kλL (a,A (i− a))

where k is some constant (> 0) and the sixth line uses that L̃
³
a, Ã (i)

´
= L (a,A (i− a))

by definition. Hence, the L̃ function is homogenous of degree λ only if the L function
is also homogenous of degree λ. Obviously, a similiar proof goes for the H function.
This completes the first half of the proof.
"if"
Using the definition of the L̃ function, (2.6) under constant growth in longevity

and assuming that the L function is homogenous of degree λ gives
kλL (a,A (i− a))
= L (ka, kA (i− a))

= L
³
ka, k

h
Ã (i)− μA

h
a− Ã (i)

ii´
= L

³
ka,
h
kÃ (i)− μA

h
ka− kÃ (i)

ii´
= L̃

³
ka, kÃ (i)

´
= kλL̃

³
a, Ã (i)

´
where k is some constant (> 0) and the sixth line uses that L̃

³
a, Ã (i)

´
= L (a,A (i− a))

by definition. Hence, the L̃ function is homogenous of degree λ if the L function is also
homogenous of degree λ. Obviously, a similiar proof goes for the H function. This
completes the proof.
Proof of propositon 2
This follows directly from lemmas 1 - 3. This completes the proof.

H. Proofs for dependency ratio
Proof of lemma 4
Plugging (4.6) into (2.9), (2.10) and (2.6) assuming constant growth in longevity,

and the resulting equations into (2.11) gives

K (i) =

Ã(i)

1Z
ã=φ(i)

α

ã
1+μA[1−ã]−α

1−α dã

Ã(i)

φ(i)Z
ã=0

α

ã
1+μA[1−ã]−α

1−α dã

=

1Z
ã=φ(i)

α

ã
1+μA[1−ã]−α

1−α dã

φ(i)Z
ã=0

α

ã
1+μA[1−ã] −α

1−α dã

where ã ≡ a
Ã(i)

and
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∂K
∂Ã(i)

= −φ0

⎡⎣α

φ(i)
1+μA[1−φ(i)]−α

1−α

⎤⎦
⎡⎢⎢⎢⎢⎣
φ(i)Z

ã=0

α

ã
1+μA[1−ã] −α

1−α dã

⎤⎥⎥⎥⎥⎦
[1 +K (i)]

It is clear from this that ∂K
∂Ã(i)

T 0 iff φ0 S 0. This completes the proof.
Proof of lemma 5
Assuming that the L and H functions, and, hence, the L̃ and H̃ functions from

lemma 3, are homogeneous of degree λ, we have from (3.16) that

R0 = −

⎡⎣λkL̃� R̃(i)Ã(i)
,1
�
−H̃

�
R̃(i)

Ã(i)
,1
�l

k
∂L̃
∂a
−∂H̃

∂a

l
a=

R̃(i)

Ã(i)
,Ã(i)=1

− R̃(i)

Ã(i)

⎤⎦
From (4.6) we have that φ0 T 0 iff R0 T φ (i) = R̃(i)

Ã(i)
. This implies that φ0 T 0 iff

−λ

h
L̃
³
R̃(i)

Ã(i)
, 1
´
− H̃

³
R̃(i)

Ã(i)
, 1
´i

h
∂L̃
∂a
− ∂H̃

∂a

i
a= R̃(i)

Ã(i)
,Ã(i)=1| {z }

LHS

T 0

Assume that the social optimal solution is such that consumption and utility when
young is no less than when old (cw (i) ≥ co (i) and U(cw (i)) ≥ Q(co (i))), which implies

from (3.12) that H̃
³
R̃ (i) , Ã (i)

´
> L̃

³
R̃ (i) , Ã (i)

´
and, hence, that H̃

³
R̃(i)

Ã(i)
, 1
´
>

L̃
³
R̃(i)

Ã(i)
, 1
´
due to the homogeneity assumption. We therefore have that φ0 = 0 iff

λ = 0 since
h
∂L̃
∂a
− ∂H̃

∂a

i
a= R̃(i)

Ã(i)
,Ã(i)=1

< 0 from (2.18) and (2.19). Further, we have that

∂LHS
∂λ λ=0

< 0 and, hence, φ0 > 0 (< 0) when (and only when) λ is slightly less (greater)

than zero. The general result is φ0 S 0 iff λ T 0. This completes the proof.
Proof of proposition 3
This follows directly from lemmas 4 - 5. This completes the proof.

I. Decentralized equilibrium
Individual problem
Let us consider an individual born at time j, i.e., he belongs to generation j. His

welfare criterion is given by his expected discounted sum of lifetime utility

WI (j) =

R(j)Z
a=0

e−θam (a,A (j))Ww(j + a, a)da+

A(j)Z
a=R(j)

e−θam (a,A (j))Wo(j + a, a)da

(I.1)
where output y (j) is assumed to be constant (= y),Ww (j + a, a) andWo (j + a, a)

are given in (2.12) and (2.15), respectively, and m (a,A (j)) is from (2.3). His problem
is one of choosing consumption over his life and retirement age, conditional on profiles
for taxes collected from young Tw (j + a) and transfers to old To (j + a) during the
maximum length of life of individuals from his generation a ∈ [0, A (j)] such that his
welfare criterion is maximized

Max
{cw(j+a),cw(j+a),R(j)}A(j)a=0

WI (j) (I.2)
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Assuming that he has no initial assets, his budget constraint reads
R(j)Z
a=0

e−ram (a,A (j)) [y − Tw (j + a)] da+

A(j)Z
a=R(j)

e−ram (a,A (j))To (j + a) da

=

R(j)Z
a=0

e−ram (a,A (j)) cw (j + a) da+

A(j)Z
a=R(j)

e−ram (a,A (j)) co (j + a) da (I.3)

Since we want to focus on the market failure caused by missing market for lending
from future generations to present, we assume that there exits an annuities market (as
in Yaari, 1965) to eliminate the market failure caused by uncertain lifetime (see, for
example, Blanchard (1985) and Sheshinski, (2008)). This implies that an individual
born at any time j buys or sells annuities at any age a. The amount of annuities held
by the individual is n (j + a, a) and the amount purchased (sold) is ṅ (j + a, a) > 0

(ṅ (j + a, a) < 0), where ṅ (j + a, a) ≡ lim
da→0

dn(j+a,a)
da

. The price of a unit of annuities

is 1 and its instantaneous return is r + ϕ (j + a, a) to an individual aged a and born
in time j, where it is assumed that the interest rate facing individuals r is the same
as for the government. Annuities owned by an individual expire when he dies.
Applying the results in Sheshinski (2008) here, a sufficient condition for (I.3) to

hold is that the following holds:
ṅ (j + a, a) = [r + ϕ (j + a, a)]n (j + a, a)

+y − Tw (j + a)− cw (j + a) (I.4)
for 0 ≤ a ≤ R (j),
ṅ (j + a, a) = [r + ϕ (j + a, a)]n (j + a, a)

+To (j + a)− co (j + a) (I.5)
for R (j) < a ≤ A (j) and
n (j +A (j) , A (j)) = 0 (I.6)

ϕ (j + a, a) =
−∂m(a,A(j))

∂a

m(a,A(j))
> 0 (I.7)

The right hand side of the last equation is the hazard rate for an individual aged
a born at time j, i.e, the probability that an individual dies at age a conditional on
being alive at age a. This implies that ϕ (j + a, a) > 0 and that the interest rate on
annuities is higher than the interest rate r.37 The first equality states that if alive at
maximum age A (j) the individual will not hold any annuities since he knows that he
will die with certainty.
Using (I.4)-(I.7) and (I.1) in (I.2)-(I.3) gives

Max
{cw(j+a),cw(j+a),R(j)}A(j)a=0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R(j)Z
a=0

e−Φ(j+a,a)Ww(j + a, a)da

+

A(j)Z
a=R(j)

e−Φ(j+a,a)Wo(j + a, a)da

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(I.8)

37This condition ensures that expected profits of insurance firms are zero. Insurance firms are
willing to pay higher interest rate on annuities than r since a fraction ϕ of annuities holders will die
and, hence, the insurance firms will not have to pay back the amount of their holding of annuities.
In equilibrium, this has to equal the hazard rate to eliminate all profit in the market for annuities.
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subject to (I.4)-(I.6), where Φ (j + a, a) ≡ θa+

aZ
z=0

ϕ (j + z, z) dz.

Assuming interior solution, this gives the following first-order conditions for the
optimal cw, co and R, respectively:38

e−Φ(j+a,a)U 0 (cw (j + a)) + λn (j + a, a) = 0 (I.9)
for 0 ≤ a ≤ R (j),
e−Φ(j+a,a)Q0 (co (j + a)) + λn (j + a, a) = 0 (I.10)
for R (j) < a ≤ A (j) and
e−Φ(j+R,R) [U (cw (j +R)) + L (R (j) , A (j))]−e−Φ(j+R,R) [Q (co (j +R)) +H (R (j) , A (j))]
= λn (j +R,R) [y − Tw (j +R)− cw (j +R)]−λn (j +R,R) [To (j +R)− co (j +R)]

(I.11)
where λn (j + a, a) (a ∈ [0, A (j)]) is a Lagrange multiplier (costate variable). Fur-

ther, this gives the following law of motion for the multiplier:
−λ̇n (j + a, a)− λn (j + a, a) [r + ϕ (j + a, a)] = 0 (I.12)
for all a ∈ [0, A (j)].
From (I.9)-(I.10) and (I.12) we have
ċw (j + a) = − U 0(·)

U 00(·) [r − θ]

ċo (j + a) = − Q0(·)
Q00(·) [r − θ]

for all a ∈ [0, R (j)] and a ∈ (R (j) , A (j)], respectively. Using the assump-
tion of neutral generational weighting from above (θ = r) implies that ċw (j + a) =
ċo (j + a) = 0 and consumption is constant over age when an individual is young
and when he is old. Using these results in (I.9)-(I.11) gives e−Φ(j+a,a)U 0 (cw (j)) +
λn (j + a, a) = 0 (I.13)
for 0 ≤ a ≤ R (j),
e−Φ(j+a,a)Q0 (co (j)) + λn (j + a, a) = 0 (I.14)
for R (j) < a ≤ A (j) and
e−Φ(j+R,R) [U (cw (j)) + L (R (j) , A (j))]− e−Φ(j+R,R) [Q (co (j)) +H (R (j) , A (j))]
= λn (j +R,R) [y − Tw (j +R)− cw (j)]− λn (j +R,R) [To (j +R)− co (j)] (I.15)
The solution to the individual problem is characterized by cw (j), co (j) and R (j)

conditional on profiles for taxes collected from young individuals (Tw (j + a)) and
transfers to old ones (To (j + a)) during the maximum length of life of individuals
from his generation (a ∈ [0, A (j)]) that satisfy (I.13)-(I.15) as well as the intertemporal
budget constraint in (I.3). This has to hold for individuals born at any time j, i.e., it
has to hold for any generation j.
From (I.13)-(I.15) and (I.3), the optimal consumption when young and old and

the retirement age can be written as implicit functions of taxes, transfers and the
maximum length of life of individuals from the generation in question

cw (j) = Cw
³
{Tw (j + a) , To (j + a)}A(j)a=0 , A (j)

´
(I.16)

co (j) = Co
³
{Tw (j + a) , To (j + a)}A(j)a=0 , A (j)

´
(I.17)

R (j) = R
³
{Tw (j + a) , To (j + a)}A(j)a=0 , A (j)

´
(I.18)

As is shown in appendix J below by use of the implicit function theorem, these
functions exist. Further, as is shown in appendix J, comparative static analysis reveals

38The first-order conditions and the law of motion for the shadow price of annuities are derived in
appendix J below.
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that the signs of the first derivatives are generally indeterminate and depend on the
levels of the variables in equilibrium.
Government
At every point in time t the government decides on the tax levied on the young/working

and the transfer to the old/non-working now and in the future {Tw (i) , To (i)}∞i=t (the
policy package) such that its welfare objective from (3.2) (see discussion in the next
paragraph) is maximized. In doing so, it is constrained by its budget constraint from
(2.24) (and (2.23)), the path for longevity from (2.5) and individual behavior from
(I.16)-(I.18).
Consumption differs between generations in the decentralized equilibrium since gen-

erations are heterogenous. This is reflected in (I.16)-(I.18) for a given policy package
since A (j) differs between generations. Hence at a given point in time, consumption is
not only time but also age dependent since a given age a represents a given generation
t− a at a given point in time t. (2.12) and (2.15) therefore become

Ww(t, a) = U(cw (t− a)) + L (a,A (t− a)) ∀ a ∈
h
0, R̃ (t)

i
(I.19)

Wo(t, a) = Q(co (t− a)) +H (a,A (t− a)) ∀ a ∈
³
R̃ (t) , Ã (t)

i
(I.20)

Hence, the welfare objective differs slightly from the one in (3.2).
Optimal policy package
As in the social planner problem, the optimal policy problem here is solved by

setting up the Hamilton-Jacobi-Bellman (HJB) equation which in short hand writing
(suppressing time indexes) determines the value function V (·) as

θV
³
D, Ã

´
=Max

Tw,To

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃Z
a=0

m̃
³
a, Ã

´h
U (cw (−a)) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃

m̃
³
a, Ã

´h
Q (co (−a)) + H̃

³
a, Ã

´i
da

+ 1
dt
dV
³
D, Ã

´

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
s.t.
dD =

h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii

dt

dÃ = μ̂Adt

cw (−a) = Cw
³
{Tw (−l) , To (−l)}A(−a)l=a , A (−a)

´
co (−a) = Co

³
{Tw (−l) , To (−l)}A(−a)l=a , A (−a)

´
R (−a) = R

³
{Tw (−l) , To (−l)}A(−a)l=a , A (−a)

´
(I.21)

with Nw and No given from (2.9) and (2.10), respectively, and μ̂A ≡ μA
1+μA

as
before. Assuming interior solution, this gives the following first-order conditions for
the optimal Tw and To, respectively:39

VD =
m̃(R̃,Ã)
Nw(R̃,Ã)

⎡⎣ U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´
− VD [Tw + To]

⎤⎦ ∂R̃
∂Tw

39The first-order conditions and the law of motion for the marginal value function are derived in
appendix K below.
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+ 1

Nw(R̃,Ã)

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂Tw

da

+ 1

Nw(R̃,Ã)

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (co (−a)) ∂co(−a)∂Tw

da (I.22)

VD = −
m̃(R̃,Ã)
No(R̃,Ã)

⎡⎣ U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´
− VD [Tw + To]

⎤⎦ ∂R̃
∂To

− 1

No(R̃,Ã)

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂To

da

− 1

No(R̃,Ã)

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (co (−a)) ∂co(−a)∂To

da (I.23)

Further, this gives the following law of motion for the marginal value function
(relaxing the short hand writing):

dVD(·) = (θ − r)VDdt (I.24)
Using the assumption of neutral generational weighting from above (θ = r) implies

that
dVD

³
D (i) , y (i) , Ã (i)

´
= 0 (I.25)

for all i ≥ t, i.e., the optimal policy package is such that the marginal value function
VD(·) is the same for all i ≥ t. Applying this to (I.22) and (I.23) gives

VD (t) =
m̃(R̃(i),Ã(i))
Nw(R̃(i),Ã(i))

×

⎡⎣ U
³
cw
³
i− R̃

´´
+ L̃

³
R̃ (i) , Ã (i)

´
−Q

³
co
³
i− R̃

´´
− H̃

³
R̃ (i) , Ã (i)

´
− VD (t) [Tw (i) + To (i)]

⎤⎦ ∂R̃(i)
∂Tw(i)

+ 1

Nw(R̃(i),Ã(i))

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
U 0 (cw (i− a)) ∂cw(i−a)

∂Tw(i)
da

+ 1

Nw(R̃(i),Ã(i))

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
Q0 (co (i− a)) ∂co(i−a)

∂Tw(i)
da (I.26)

VD (t) = −
m̃(R̃(i),Ã(i))
No(R̃(i),Ã(i))

×

⎡⎣ U
³
cw
³
i− R̃

´´
+ L̃

³
R̃ (i) , Ã (i)

´
−Q

³
co
³
i− R̃

´´
− H̃

³
R̃ (i) , Ã (i)

´
− VD (t) [Tw (i) + To (i)]

⎤⎦ ∂R̃(i)
∂To(i)

− 1

No(R̃(i),Ã(i))

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
U 0 (cw (i− a)) ∂cw(i−a)

∂To(i)
da

− 1

No(R̃(i),Ã(i))

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
Q0 (co (i− a)) ∂co(i−a)

∂To(i)
da (I.27)

for all i ≥ t, where VD (t) is written as a function of t to indicate that it is the same
for all i ≥ t.
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An optimal policy package {Tw (i) , To (i)}∞i=t must satisfy (I.26) and (I.27) as well
as the intertemporal budget constraint from the social planner problem in (3.13).

J. Decentralized equilibrium derived
The Lagrangian for (I.2) is

Γ (j) =

R(j)Z
a=0

e−Φ(j+a,a)Ww(j + a, a)da+

A(j)Z
a=R(j)

e−Φ(j+a,a)Wo(j + a, a)da

+

R(j)Z
a=0

λn (j + a, a)

⎡⎣ ṅ (j + a, a)

−
∙
[r + ϕ (j + a, a)]n (j + a, a)
+y − Tw (j + a)− cw (j + a)

¸ ⎤⎦ da
+

A(j)Z
a=R(j)

λn (j + a, a)

⎡⎣ ṅ (j + a, a)

−
∙
[r + ϕ (j + a, a)]n (j + a, a)
+To (j + a)− co (j + a)

¸ ⎤⎦ da
where Ww (j + a, a) and Wo (j + a, a) are given in (2.12) and (2.15), respectively.

Using integration by parts gives

Γ (j) =

R(j)Z
a=0

e−Φ(j+a,a)Ww(j + a, a)da+

A(j)Z
a=R(j)

e−Φ(j+a,a)Wo(j + a, a)da

−
R(j)Z
a=0

λn (j + a, a)

∙
[r + ϕ (j + a, a)]n (j + a, a)

+y (j + a)− Tw (j + a)− cw (j + a)

¸
da

−
A(j)Z

a=R(j)

λn (j + a, a)

∙
[r + ϕ (j + a, a)]n (j + a, a)
+To (j + a)− co (j + a)

¸
da

+λn (j +R,R)n (j +R,R)− λn (j, 0)n (j, 0)

−
R(j)Z
a=0

λ̇n (j + a, a)n (j + a, a) da

+λn (j +A,A)n (j +A,A)− λn (j +R,R)n (j +R,R)

−
A(j)Z

a=R(j)

λ̇n (j + a, a)n (j + a, a) da

The first-order conditions are
e−Φ(i+a,a)U 0 (cw (i+ a)) + λn (i+ a, a) = 0
for 0 ≤ a ≤ R (j),
e−Φ(j+a,a)Q0 (co (j + a)) + λn (j + a, a) = 0
for R (j) < a ≤ A (j) and
e−Φ(j+R,R) [U (cw (j +R)) + L (R (j) , A (j))]−e−Φ(j+R,R) [Q (co (j +R)) +H (R (j) , A (j))]
= λn (j +R,R) [y − Tw (j +R)− cw (j +R)]−λn (j +R,R) [To (j +R)− co (j +R)]
which give (I.9), (I.10) and (I.11), respectively. Further, the first-order condition

with respect to n (j + a, a) is
−λ̇n (j + a, a)− λn (j + a, a) [r + ϕ (j + a, a)] = 0
for 0 ≤ a ≤ A (j), which gives (I.12).
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Eliminating the costate variable from (I.13)-(I.15) and performing comparative
static analysis using the resulting two equations and (I.3) with cw (j), co (j) and R (j)
as endogenous variables gives

∂cw(j)
∂Tw(j+a)

= −
e−ram(a,A(j))[ ∂L∂a−

∂H
∂a ]a=R(j)

den
< 0 for 0 ≤ a < R (j)

∂cw(j)
∂Tw(j+R)

=
e−rR(j)m(R(j),A(j))

�
nom1−[ ∂L∂a−

∂H
∂a ]a=R(j)

�
den

T 0
∂cw(j)

∂To(j+a)
=

e−ram(a,A(j))[∂L∂a−
∂H
∂a ]a=R(j)

den
> 0 for R (j) < a ≤ A (j)

∂cw(j)
∂To(j+R)

=
e−rR(j)m(R(j),A(j))

�
nom1+[∂L∂a−

∂H
∂a ]a=R(j)

�
den

T 0
∂co(j)

∂Tw(j+a)
= U 00 (·)Q00 (·)−1 ∂cw(j)

∂Tw(j+a)
< 0 for 0 ≤ a < R (j)

∂co(j)
∂Tw(j+R)

= U 00 (·)Q00 (·)−1 ∂cw(j)
∂Tw(j+R)

T 0
∂co(j)

∂To(j+a)
= U 00 (·)Q00 (·)−1 ∂cw(j)

∂To(j+a)
> 0 for R (j) < a ≤ A (j)

∂co(j)
∂To(j+R)

= U 00 (·)Q00 (·)−1 ∂cw(j)
∂To(j+R)

T 0
dR(j)

dTw(j+a)
= e−ram(a,A(j))U 00(·)U 0(·)−1nom1

den
T 0 for 0 ≤ a < R (j)

∂R(j)
∂Tw(j+R)

= e−rR(j)m(R(j),A(j))U 00(·)U 0(·)−1nom1+U 0(·)nom2
den

T 0
dR(j)

dTo(j+a)
= −e−ram(a,A(j))U 00(·)U 0(·)−1nom1

den
T 0 for R (j) < a ≤ A (j)

∂R(j)
∂To(j+R)

= −U 00(·)U 0(·)−1e−rR(j)m(R(j),A(j))nom1−U 0(·)nom2
den

T 0
where
den = U 00 (·)U 0 (·)−2 e−rR(j)m (R (j) , A (j))nom12 +

£
∂L
∂a
− ∂H

∂a

¤
a=R(j)

nom2 < 0

nom1 = Q (·)− U (·) + [H (·, ·)− L (·, ·)]a=R(j) T 0

nom2 =

R(j)Z
a=0

e−ram (a,A (j)) da+ U 00 (·)Q00 (·)−1
A(j)Z

a=R(j)

e−ram (a,A (j)) da > 0

and it is used that
£
∂L
∂a
− ∂H

∂a

¤
a=R(j)

< 0 and
£
∂L
∂A
− ∂H

∂A

¤
a=R(j)

> 0 by assumption.

Note that nom1 = Q (·)−U (·)+[H (·, ·)− L (·, ·)]a=R(j) is the increase in instantaneous
utility from retiring. Also note that the denominator (den) in the derivatives is always
non-zero and, hence, the conditions of the implicit function theorem are fulfilled.40

K. Optimal policy package derived
Applying Taylor approximation to the value function V

³
D, Ã

´
, and considering

the limit for dt→ 0 gives the following:
dV
³
D, Ã

´
=
h
VD
h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii
+ VÃμ̂A

i
dt

Inserting this into (I.21) gives

40It is, of course, also assumed that all the derivatives of the equilibrium conditions in (I.13)-(I.15)
and (I.3) are continuous.
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θV
³
D, Ã

´
=Max

Tw,To

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃Z
a=0

m̃
³
a, Ã

´h
U (cw (−a)) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃

m̃
³
a, Ã

´h
Q (co (−a)) + H̃

³
a, Ã

´i
da

+VD
h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii
+ VÃμ̂A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(K.1)

We can now find the first-order conditions determining Tw and To. For the tax
payment by the young Tw we have

m̃
³
R̃, Ã

´ h
U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´i
∂R̃
∂Tw

+

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂Tw

da

+

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (co (−a)) ∂co(−a)∂Tw

da

−VDNw

³
R̃, Ã

´
− VD

h
∂Nw

∂R̃
Tw − ∂No

∂R̃
To

i
∂R̃
∂Tw

= 0

or using Nw

³
R̃, Ã

´
from (2.9), No

³
R̃, Ã

´
from (2.10) and that ∂Nw

∂R̃
= −∂No

∂R̃
=

m̃
³
R̃, Ã

´
, we get (I.22) as

VD =
m̃(R̃,Ã)
Nw(R̃,Ã)

⎡⎣ U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´
− VD [Tw + To]

⎤⎦ ∂R̃
∂Tw

+ 1

Nw(R̃,Ã)

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂Tw

da

+ 1

Nw(R̃,Ã)

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (co (−a)) ∂co(−a)∂Tw

da

For the transfer to the old To we have
m̃
³
R̃, Ã

´ h
U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´i
∂R̃
∂To

+

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂To

da

+

ÃZ
a=R̃

m̃
³
a, Ã

´
Q0 (co (−a)) ∂co(−a)∂To

da

+VDNo

³
R̃, Ã

´
− VD

h
∂Nw

∂R̃
Tw − ∂No

∂R̃
To
i

∂R̃
∂To

= 0

or using Nw

³
R̃, Ã

´
from (2.9), No

³
R̃, Ã

´
from (2.10) and that ∂Nw

∂R̃
= −∂No

∂R̃
=

m̃
³
R̃, Ã

´
, we get (I.23) as
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VD = −
m̃(R̃,Ã)
No(R̃,Ã)

⎡⎣ U
³
cw
³
−R̃

´´
+ L̃

³
R̃, Ã

´
−Q

³
co
³
−R̃

´´
− H̃

³
R̃, Ã

´
− VD [Tw + To]

⎤⎦ ∂R̃
∂To

− 1

No(R̃,Ã)

R̃Z
a=0

m̃
³
a, Ã

´
U 0 (cw (−a)) ∂cw(−a)∂To

da

− 1

No(R̃,Ã)

ÃZ
a=R̃

m̃
³
a, Ã

´
Q (co (−a)) ∂co(−a)∂To

da

Replacing Tw and To with their optimal values from (I.22) and (I.23) gives the
optimal values for the endogenous variables R̃, cw (−a) and cw (−a): R̃∗, c∗w (−a) and
c∗o (a). Plugging these into (K.1) gives

θV
³
D, Ã

´
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃∗Z
a=0

m̃
³
a, Ã

´h
U (c∗w (−a)) + L̃

³
a, Ã

´i
da

+

ÃZ
a=R̃∗

m̃
³
a, Ã

´h
Q (c∗o (−a)) + H̃

³
a, Ã

´i
da

+VD
h
rD −

h
Nw

³
R̃∗, Ã

´
T ∗w −No

³
R̃∗, Ã

´
T ∗o

ii
+ VÃμ̂A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Using the envelope theorem gives
(θ − r)VD = VDD

h
rD −

h
Nw

³
R̃∗, Ã

´
T ∗w −No

³
R̃∗, Ã

´
T ∗o

ii
+ VÃDμ̂A

Applying a Taylor approximation to VD, and using the law of motion for D and Ã
and considering the limit for dt→ 0 gives

dVD = VDD

h
rD −

h
Nw

³
R̃, Ã

´
Tw −No

³
R̃, Ã

´
To
ii

dt+ VDÃμ̂Adt

Evaluating this at R̃∗, c∗w (−a) and c∗o (−a), plugging into it and using that VDy =
VyD and VDÃ = VÃD (Young’s theorem) gives (I.24) as

dVD = (θ − r)VDdt

L. Retirement age comparison
Partial equilibrium effects
According to the decentralized equilibrium, a generation born at time i−Rd retires

at the age Rd at time i such that the following holds from appendix I:
Q
³
co
³
i− R̃d

´´
+H

³
R̃d (i) , A

³
i− R̃d

´´
−U

³
cw
³
i− R̃d

´´
−L

³
R̃d (i) , A

³
i− R̃d

´´
=
U 0
³
cw
³
i− R̃d

´´h
y − Tw (i)− To (i)− cw

³
i− R̃d

´
+ co

³
i− R̃d

´i
(L.1)

Using (2.21), (2.22), (3.10)-(3.12) and the definiton of the L̃ and H̃ functions gives
that, according to the social planner’s solution, the generation born at l − Rs retires
at age Rs at time l such that following holds:

Q (co (t)) +H
³
R̃s (l) , A

³
l − R̃s

´´
− U (cw (t))− L

³
R̃s (l) , A

³
l − R̃s

´´
=
U 0 (cw (t)) [y − cw (t) + co (t)] (L.2)
In both the decentralized equilibrium and the social planner’s solution, consump-

tion when young, and consumption when old, are constant over time for a given gen-
eration, and the difference in consumption and utility depends only on the utility
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functions, i.e., U (·) and Q (·), respectively. Hence, we can use that
co (t) = ωccw (t)
Q (co (t)) = ωuU (cw (t))
for the social planner’s solution and
co
³
i− R̃d

´
= ωccw

³
i− R̃d

´
Q
³
co
³
i− R̃d

´´
= ωuU

³
cw
³
i− R̃d

´´
for the decentralized equilibrium, where ωc, ωu ≤ 1 since it is assumed as before

that consumption and utility of young individuals is no less than of old individuals.
Using these in (L.1) and (L.2) gives

H
³
R̃d (i) , A

³
i− R̃d

´´
− L

³
R̃d (i) , A

³
i− R̃d

´´
=
U 0
³
cw
³
i− R̃d

´´
[y − Tw (i)− To (i)]

−U 0
³
cw
³
i− R̃d

´´
[1− ωc] cw

³
i− R̃d

´
+ [1− ωu]U

³
cw
³
i− R̃d

´´
(L.3)

H
³
R̃s (l) , A

³
l − R̃s

´´
− L

³
R̃s (l) , A

³
l − R̃s

´´
=
U 0 (cw (t)) y − U 0 (cw (t)) [1− ωc] cw (t) + [1− ωu]U (cw (t)) (L.4)
Let us consider a given generation such that l − Rs = i − Rd and compare its

retirement age under the two schemes. When comparing (L.3) and (L.4), the left hand
sides only vary with the retirement ages R̃d (i) and R̃s (l) since we are looking at a

given generation and, hence, A
³
i− R̃d

´
= A

³
l − R̃s

´
. Further, we have from (2.18)

that ∂[H(·,·)−L(·,·)]
∂a

> 0. Hence, it follows that R̃d R R̃s iff

U 0
³
cw
³
i− R̃d

´´
[y − Tw (i)− To (i)]

−U 0
³
cw
³
i− R̃d

´´
[1− ωc] cw

³
i− R̃d

´
+ [1− ωu]U

³
cw
³
i− R̃d

´´
T
U 0 (c (t)) y − U 0 (cw (t)) [1− ωc] cw (t) + [1− ωu]U (cw (t))
Assuming that the same consumption levels arise in the social planner’s and de-

centralized equilibrium allocation, we have that the retirement age differs since
Rs R Rd for Tw (i) + To (i) R 0
which gives (5.1).
General equilibrium effects
How does the retirement age change if the economy starts where (L.4) holds such

that cw
³
i− R̃d

´
= cw (t) and R̃d (i) = R̃s (l) and moves to where (L.3) holds where

Tw (i) → 0 and To (i)→ 0 (and, hence, dTw (i)→ 0 and dTo (i)→ 0)? Let us assume
for simplicity that consumption and utility functions are identical when individuals
are young and old ωc = ωu = 1. Using (L.3), the general equilibrium effects are

∂R̃d(i)
∂Tw(i)

+ ∂R̃d(i)
∂To(i)

=
yU 00 (·)

∂[H(·,·)−L(·,·)]
∂R̃d(i)| {z }
<0

∙
∂cw(i−R̃d)

∂Tw(i)
+

∂cw(i−R̃d)
∂To(i)

¸
− 2U 0 (·)

∂[H(·,·)−L(·,·)]
∂R̃d(i)| {z }
>0

(L.5)

where
∂cw(i−R̃d)
∂Tw(i)

+
∂cw(i−R̃d)

∂To(i)
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=
2e−rR̃s(l)yU 0(·)m(·,·)

y2U 00(·)e−rR̃s(l)m(·,·)−∂[H(·,·)−L(·,·)]
∂R̃d(i)

⎡⎢⎢⎢⎢⎢⎣
A(l−R̃s)Z
a=0

e−ram(a,A(l−R̃s))da

⎤⎥⎥⎥⎥⎥⎦

< 0 (L.6)

as can be verified using the results of the the comparative static analysis in appendix
J. All the derivatives are evaluated at the social planner’s solution.
The second term on the right hand side of (L.5) gives the direct effect discussed

above, i.e., the retirement age decreases when the economy moves away from the social
planner’s solution such that Tw (i) + To (i) becomes positive, while the first terms give
the consumption effects. Using (L.6), it is clear that these two effects work in opposite
directions. Combining (L.5) and (L.6) we have

∂R̃d(i)
∂Tw(i)

+ ∂R̃d(i)
∂To(i)

< 0
iff

∂[H(·,·)−L(·,·)]
∂R̃d(i)

⎡⎢⎢⎣
A(l−R̃s)Z
a=0

e−ram
³
a,A

³
l − R̃s

´´
da

⎤⎥⎥⎦ > 0

which always holds. Hence, the direct effects are always stronger than the consump-
tion effects and the retirement age decreases when the economy moves away from the
social planner’s solution such that Tw (i) + To (i) > 0. Note that this analysis is only
meant to give an idea about how the retirement age is in the decentralized equilibrium
compared to in the social planner’s solution since all the derivatives are evaluated at
the social planner’s solution.

M. Proof for decentralizing the social planner’s allocation
Proof of proposition 4.
The proof proceeds by assuming that the optimal policy package gives the socially

optimal allocation and shows that a contradiction emerges.
From the social planner’s solution we have that (3.10)-(3.12) and (3.15) have to

hold. Plugging (3.15) into (3.10)-(3.12) and the resulting equations and (3.15) into
(I.26)-(I.27) gives

1 = − 1

Nw(R̃(i),Ã(i))

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
∂cw(i−a)
∂Tw(i)

da

− 1

Nw(R̃(i),Ã(i))

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
∂co(i−a)
∂Tw(i)

da

and

1 = 1

No(R̃(i),Ã(i))

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
∂cw(i−a)
∂To(i)

da

+ 1

No(R̃(i),Ã(i))

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
∂co(i−a)
∂To(i)

da

or
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1

No(R̃(i),Ã(i))

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´
∂cw(i−a)
∂To(i)

da

+

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´
∂co(i−a)
∂To(i)

da

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

1

Nw(R̃(i),Ã(i))

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

m̃
³
a, Ã (i)

´ h
−∂cw(i−a)

∂Tw(i)

i
da

+

Ã(i)Z
a=R̃(i)

m̃
³
a, Ã (i)

´h
−∂co(i−a)

∂Tw(i)

i
da

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M.1)

Plugging into (M.1) using the results of the comparative static analysis in appendix
J, the defintion of the m̃ function from (2.7) and the assumption that the optimal policy
package gives the same allocation as the social planner’s solution, we have

1

No(R̃(i),Ã(i))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

e−ram̃(a,Ã(i))
2
[∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

+

Ã(i)Z
a=R̃(i)

U 00(·)Q00(·)−1e−ram̃(a,Ã(i))
2
[∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

−

⎡⎢⎢⎢⎣
£
1 + U 00 (·)Q00 (·)−1

¤
e−rR̃(i)m̃

³
R̃ (i) , Ã (i)

´2
×
h
U (·)−Q (·) + [L (·, ·)−H (·, ·)]a=R̃(i)

i
⎤⎥⎥⎥⎦

den(i−R̃)
da

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

Nw(R̃(i),Ã(i))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

e−ram̃(a,Ã(i))
2
[∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

+

Ã(i)Z
a=R̃(i)

U 00(·)Q00(·)−1e−ram̃(a,Ã(i))
2
[∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

+

⎡⎢⎢⎢⎣
£
1 + U 00 (·)Q00 (·)−1

¤
e−rR̃(i)m̃

³
R̃ (i) , Ã (i)

´2
×
h
U (·)−Q (·) + [L (·, ·)−H (·, ·)]a=R̃(i)

i
⎤⎥⎥⎥⎦

den(i−R̃)
da

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M.2)

where den (i− a) < 0 for all 0 ≤ a ≤ Ã (i).
Simplifying (M.2) and using (2.9), (2.10) gives
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[Nw (i)−No (i)]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R̃(i)Z
a=0

e−ram̃(a,Ã(i))
2
[ ∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

+

Ã(i)Z
a=R̃(i)

U 00(·)Q00(·)−1e−ram̃(a,Ã(i))
2
[∂L∂a−

∂H
∂a ]a=R(i−a)

den(i−a) da

⎤⎥⎥⎥⎥⎥⎥⎥⎦
| {z }

LHS
=

N (i)

⎡⎣ £1 + U 00 (·)Q00 (·)−1
¤
e−rR̃(i)m̃

³
R̃ (i) , Ã (i)

´2
×
h
U (·)−Q (·) + [L (·, ·)−H (·, ·)]a=R̃(i)

i ⎤⎦
den

³
i− R̃

´ da

| {z }
RHS

(M.3)

Note that due to the continuous time setup we have that da→ 0 and, hence, that
RHS → 0. Also note that LHS = 0 iff Nw (i) = No (i). Hence, (M.3) holds only if
the number of young individuals is very close to the number of old and a contradiction
emerges. This completes the proof.
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