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Abstract:

The paper studies if the Maddison set of data fDPGer capita follows a statistical regu-
larity, known as Benford’'s Law. It is a simple loglamic relation on the frequency of the
first digit in a data set. These data ought toofelthe law as they are Maddison’s calibration
of data compiled by many independent agencies asdarches. The data set consists of
12,411 observations, permitting a rather strong @s visual inspection the relation appears
to fit rather well, but the law is rejected by arfal test. The explanation of the rejection is
found to be that the range of the data is too small
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1. Introduction

The purpose of this note is to submit an importiatta set to a test. The data is Maddison’s
gdp set, which consists of 12,411 observatfoitsis tested if these data follow a simple
numerical regularity known aBenford’s Law It predicts that thdirst digit of these data

should have the frequency distribution given in[&ab

Table 1. Benford’s distribution

Digit Frequency Digit Frequency Digit Frequency
1 30.10% | 4 9.69 % 7 5.80 %
2 1761% | 5 7.92 % 8 5.12%
3 1249% | 6 6.69 % 9 4.58 %

Three terms are used in a special way: (i) The taasegdp means GDP per capita. The data
are published as an integer in comparable 1990.8)@)$The first digit of the gdp considers
numbers in threg-decadesThe log-decade of the 100s, where the first dgyfbllowed by
two more; the log decade of the 1000s, where tisé diigit is followed by three more; and
finally the log-decade of the 10000s, where thst filigit is followed by four more. (iii) The
range problenoccurs if the sample does not contain enough ida¢ach log-decade for the
distribution to fully appeat.

Section 2 explains the theory of Benford’s Law,ivies the distribution, and gives an
introduction to the literature. Obviously Benford’aw is an “oddball” statistical regularity,
which seems unknown to most economists. Howeveaar@sed by Varian (1972), it points to
a problem if it fails. It may indicate that someitti‘fishy” is going on.

Section 3 explains the calculations from the gdyrix to the first digit distribution
and shows how the resulting distributions lookslalso analyzed how close the distribution
is to Benford's distribution. It fits amazingly webut not perfectly well. The calculations are
also made for different periods and for differeatictry groups. The paper looks at all data,

and at two quartile distributions: Over time ints&t 4 and over gdp-levels in section 5.

2. The data were collected by the late Angus Mamdfer the OECD Millennium Publication (see refares).
Maddison updated the data till February 2010 (asl @& present), shortly before he passed away.

3. The published data has no decimals, but the ihadable worksheets have plenty. When | refer digits, it
is the digits before the decimal point, i.e., te farm of the published data.

4. Imagine, e.g., that we consider a sub-samptgipfobservations that all are in the range from0$1t@ 1800.
Then the fist digit would be 1 for all observatipmmd no Benford distribution would appear. Thissia
condition for the Benford distribution to appeaattthe range of the data is large enough.
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In addition to Benford’'s Law, we have reason tosider the folk theorem in
empirical economicdf you test any theory in economics with enougladgbdu will reject it.
Benford’s Law is not an economic theory — it ieata numerical regularity, but nevertheless
the results turn out to be that the law seems pdyajather well, but it is rejected by a formal

test using all the data.

2. Why should Benford’s Law apply?

Benford’s Law is one of these obvious relationg flea are unlikely to see for yourself — and
the first time it is presented it looks like a aamjg trick. The whole point is obvious once
you look at a logarithmic axis: The distance betwgend 2 is much larger than the distance
between 2 and 3 etc., so in a log-linear world nmnebers start with 1 than with 2!

It is easy to calculate the frequencies of Tableylnoting that log(1) = 0.000 and
log(2) = 0.3010, so the distance between the twt3610, the distance between log(2) and
log(3) is 0.1761, etc. And, lo and behold, the safrall distances between log(1) and log(10)
is 1, as follows from the fact that log(10) = 1.rde by multiplication by 100 we get the
frequencies in % of Benford’s distribution from Tald.

Benford (1938) describes the complicated path lhthim to his law. He believed
that he was dealing with “anomalous numbers”. Als®did find some rather puzzling data
sets that obeyed the law — sets that one wouldmagine would be log-normal. Varian
(1972) proposes to use the law to reveal data méatipn, and Nigrini (1996 and 1999) and
Nye and Mould (2007) study cases where the databéy the law and others where the law
fails under suspicious circumstances. Two relatageps by Gunel and Tédter (2009) and
Todter (2009) study the first (and second) digitegression coefficients in published papers
in economics. They do not deviate much, from thpeeted Benford frequencies; but the
deviation does pass the test for non-randomness.

The newest paper in the field is Michalski andIt3t(2010) dealing with balance of
payment data. For countries with floating exchatihgse data obey Benford’s Law. However,
countries with fixed exchange rates publish data tloes not follow the law. Michalski and
Stoltz interpreted this as a statistical indicatibat countries under pressure manipulate their
data. Not all countries do it, but enough to getgehéghly suspicious data.

The data in the Maddison set should be log-linead, they are put together by many
agencies and individual researchers. Thus, theaitiBenford's Law should fit.



3. Looking at all 12,411 gdp data in the Maddisonet

Section 3.1 shows the coverage of the data. Se8tibshows how the calculations are made
for all observations and discusses the range prolection 3.3 gives the formal tests of the

distributions.

3.1 The coverage of the data

As of now the Maddison gdp data consists of 12 dldervations. They cover — as much as
possible — the period from year 1 to 2008 for L64<ent day) countries. Figure 1 shows the
number of countries covered. The first 1800 yeausd dnly a few observations, but gradually

more countries are included.

Figure 1. The number of observations in the Madugdp data set
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Note: The left-hand part of the figure ends in 1,8&8ere the right-hand part starts. The dots areéhie years
with data and show the number of countries cove@duservations are available for 2008 — 1820 + @4 1
years, and 164 countries; but of the full 20464 matrix, only 12,411/31,816 = 39% of the calis filled.

3.2 The calculations
The calculations are done in a standard workshektsae the histogram function:

The minimum gdp is 207 in the Maddison data s&d,the maximum is 42,196; hence
they extend over three log-decades. Eight are timrog-decade of the hundreds: 200, 300,
400 500, 600, 700, 800 and 900; nine are from digedecade of the thousands 1000, 2000,
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3000, 4000, 5000, 6000, 7000, 8000 and 9000; anddre from the log-decade of the ten
thousands 10000, 20000, 30000, 40000. When théirbits in the histogram are set at the
said numbers, it generates the first-digit-freqiesmtisted in Table 2.The last column to the

right is the sums of the frequencies starting va#ith digit. They are the frequencies that

should follow Benford’s Law.

Table 2. The basic count: Number of observatiorthriee log decades

First All observations between 207 and 42,

digit Hundred Thousand  Ten thousanc All
1 298¢ 94t 393t
2 15 175¢ 271 204
3 66 120t 37 130¢
4 268 781 1 1050
5 449 531 980
6 586 384 970
7 476 300 776
8 450 240 690
9 482 178 660

Sumr 279z 836¢ 125¢ 1241

Note: The full panel has 164 = 31,816 cells, of which 12,411 are filled.

The same procedure can be used for any subset dfath. It is easy to check that all data are
counted once and only once as the sum of all padsy division has to tally with the values
given in Table 2. As mentioned there are no obsemns below 200 and none above 50,000,
and the number of observations become very thinnvthey approach the two ends of the
interval. So measured in log-decades, the rangheoflata seems barely enough. Figure 2
shows the observations from Table 2, and includs distribution of all observations
expected from Benford’s Law.

From just looking at the curves, it is obviousttitie log-decades of the hundreds and
the ten thousands do not follow the Benford distidn — they are too close to the start and
the end of the data. The frequencies for the lazade of the hundreds only look Benford-like
after the fifth digit. And the frequencies for tlog-decade of the ten-thousands quickly fall to
zero. Thus the distribution is likely to sufferfinasome range problems.

However, both the curve for all observations amel éne for the log-decades of the

thousands look much as expected. The impressiongete from the graph is that the

5. To guard against rounding errors, all bins veate0.0001 lower.
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frequencies for the thousands fall too fast as tietyclose to the end. Also, the curve for all

has an extra hump at 6, when the curve for the treaisckicks in.

Figure 2. The frequencies from Table 3 graphed,
with the Benford distribution of 12,411 observasancluded

) — :
3300 -9 Hundreds
3000 | @ Thousands

\ O Ten thousands |
2500 == All observations
2000 Expected for all

1500

1000

Number of observations

300

0 |
10

2.3 The formal tests: Nothing fits perfectly
The formal tests of the two most Benford-lookingguencies from Table 2 above are given
in Table 3. They confirm the observations from Fe@. For all observations there are too
few observations for digits 2 and 3 and too mamydigit 6. For the log-decade of the thou-
sands, the distribution is too steep.

However, as is shown on Figure 3 the observedtameéxpected distributions do look
alike. It is not likely that any other known digtution will have a better fit, and we have a
very simple theory to explain why it should fit. s&l, if we move 300 of the 12,411
observations in the right way, we can get;theest within the 5% limit of significance, and if

we move about 100 more, we can reagh-@st at the 50% level.



Table 3. Two formal tests

All observations The observations of the ten tands
Digit | Observed Expected  Diff.  y*test | Observed Expected  Diff. y*test
1 3,933 3,736.1 196.9 104 2988 2518.1 469.9 87.7
2 2,044 2,185.5 -141.5 9.2 1758 1473.0 285.0 55.1
3 1,308 1,550.6 -242.6 38.0 1205 1045.1 159.9 245
4 1,050 1,202.8 -152.8 19.4 781 810.7 -29.7 1.1
5 980 982.7 -2.7 0.0 531 662.4 -131.4 26.0
6 970 830.9 139.1 23.3 384 560.0 -176.0 55.3
7 776 719.7 56.3 4.4 300 485.1 -185.1 70.6
8 690 634.9 55.1 4.8 240 427.9 -187.9 825
9 660 567.9 92.1 14.9 178 382.8 -204.8 109.5
Sum 12,411 12,411 0 124.3 8365 8365 0 512.4

Note: All y*-test contributions of 8 or higher are bolded.

Figure 3. A scatter of observed over expected #aqies
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Thus we can explain the deviations from Benford&ribution by the range problems, and it

is arguable that the fit is as good as it can lkeuthe circumstances.



4.

Two divisions into quartiles: By time and by inome

In the two division experiments, the 12,411 obskows are divided in quartiles. Each

quartile has to be as close to 12,411/4 = 3,108b&grvations as possible. In section 4.1 the

quartiles are made over time, so that each ydagstogether. In section 4.2 the quatrtiles are

made by income, so that each country is kept tegeth

4.1

It is possible that the problems are concentrateohie end of the data, and on the face of it

one may suspect that the old data are the mostgmnalic. Table 4 shows the division made

Division by time

and the test results for each quatrtile.

Table 4. Four quartiles over time

1° quartile 2° quartile & quartile & quartile
Years From 1 to 1937 From 1938 to 1967 From 1965089 From 1990 to 2008
Digit | N Diff.  y*test| N  Diff. y*test| N Diff y*test| N  Diff. y*test
1 1100 166.5 29.7 | 889 -43.9 2.1 1018 86.3 8.0 926 -12.0 0.2
2 599 529 5.1 500 -46.7 3.8 378 -167.051.2 | 567 18.3 0.6
3 370 -17.4 0.8 337 -52.2 6.5 283 -103.727.8 | 318 -71.3 13.1
4 290 -105 0.4 262 -38.3 4.9 263  -36.9 4.5 235 .067 14.9
5 192 -535 11.7 | 254 8.6 0.3 266 20.9 1.8 268 21.3 1.
6 162 -456 10.0 | 283 745 275 | 278 70.8 242 | 247 384 7.1
7 130 -49.8 138 | 228 50.3 13.0 | 194 14.5 1.2 224 433 104
8 121 -37.6 8.9 161 15 0.0 215 56.7 20.3 | 193 336 7.1
9 137 -4.9 0.2 185 47.2 13.2 | 200 584 241 | 138 -46 0.1
Sum | 3101 -0 80.6| 3099 0 71.3 3095 0 163.0 3116 0 .29

Note: The table is calculated as Table 3, but tlensn for the expected distribution is omitted.

Table 5. Kendall's between the ning?-contributions from Tables 3 and 4

1'quartile 2 quartile  3'quartile 4" quartile All Trend”
15'quartile 1 -0.22 -0.33 -0.17 -0.33 -0.22
2" quartile|  -0.22 1 0.11 -0.06 0.44 0.22
3“quartile -0.33 0.11 1 -0.17 0.44 -0.22
4" quartile -0.17 -0.06 -0.17 1 0.06 0.06
Average® -0.24 -0.06 -0.13 -0.13 0.15 -0.04

Note: a) Average of non diagonal elements. b) €ation to the nine digits. None of ti's
calculated are significant.



Three quartiles have lowgf-tests than the aggregate one, and all rejectttieatiata for the
guartile follow Benford’s Law. The quartile thatuigtes most from the Benford distribution
is the & one that goes from 1968 to 1989.

Once again, the frequencies for each quarter dolauit very different from the
expected distribution as seen on Figure 4. Alsoldhgesty*-contributions are for different
digits. Table 5 shows the correlations betweemthey*-contributions for the four quartiles.
The correlations are calculated by Kendalthosen as thg?-contributions are squared. The
correlations in Table 5 are not very high, andithpression that the largegt-contributions

are fairly randomly distributed is confirmed by &ig 4.

Figure 4. A scatter of observed over expected #aqies for the time-quartiles
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We are thus in the same situation as in sectidrh@.four quartiles look much as they would

if they followed Benford’s Law, but the formal tesjects that the deviations are random.

4.2 Divided by income

The second experiment divides the countries bynmectevel. Everything except the division

is done precisely as in section 4. The divisionofes the present gdp level. Thus the gdp-
matrix is first sorted by the average income fa st decade, which is for the period from

1999 to 2008, and then the countries are dividedgrmoups as explained.



Table 6. Four quartiles over countries by income

T

1% quartile 2¢ quartile & quartile & quartile
Income Lowest Lower middle Higher middle Highest
Digit N Diff. y*test, N  Diff. y*test| N Diff y*test| N  Diff. y*test
1 1149 209.5 46.7 812 -1245 16.6 888 -47.3 2.4 1084 159.2 27.4
2 140 -409.6 305.2 | 752 204.2 76.1 457 -90.1 148 695 154.0 43.9
3 80 -309.9 246.3 | 543 154.3 61.3 320 -68.2 12.0 365 -18.8 0.9
4 169 -133.5 58.9 301 -0.5 0.0 294 -7.1 0.2 286 -11.7 0.
5 337 89.9 32.7 189 -57.3 13.3 277 31.0 3.9 177 -66.2 18.0
6 400 191.1 174.7 | 190 -18.3 1.6 254 46.0 10.2 126 -79.7 30.9
7 299 118.0 76.9 131 -49.4 135 231 50.8 14.3 115 -63.2 224
8 275 1154 83.3 81 -78.1 38.4 216 57.1 20.5 118 -39.1 9.7
9 272 129.2 116.9 | 112 -30.4 6.5 170 27.8 54 106 -34.6 8.
Sum 3121 0 1141.7| 3111 0 227.2 | 3107 0 83.7 | 3072 0 162.2

Note: See Table 4.

Table 7. Kendall's between the ning?-contributions from Tables 3 and 6

1'quartile  2°quartile  3'quartile 4" quartile All Trend”
1Stquartile 1 0.33 0.44 0.11 0.44 0.00
2" quartile 0.33 1 0.44 0.22 -0.11 -0.22
3’dquartile 0.44 0.44 1 0.22 -0.11 0.22
4" quartile 0.11 0.22 0.22 1 -0.22 -0.22
Average® 0.30 0.33 0.37 0.19 0.00 -0.06

Here the deviations from Benford’s distribution &eger, and the largest deviation occurs for

the poorest quarter of the countries, wheret®) = 1141.7. This is a dramatic rejection, and

on Figure 4 it is certainly clear that the curve floe first quartile deviates a lot from the

expected one. However, when we look at all fouvesithe deviations are very different, as

they have to be when the average curve looks asd-R)

The countries in the highest group were once pbot,the countries in the lowest

group were never rich. Thus the range problemdileety to be concentrated in the lowest

group. This is precisely what is shown by Figurevbich is made as Figure 2. The curves are

a bit difficult to read as they overlap. The freqaies are from two incomplete log-decades.

In the 100s the Benford distribution first starts dppear from digit 6 and up, then the

frequencies jump to the 1000s, but here the fregjasrvery quickly taper off. This explains

why the aggregate distribution misses the obsemsatirom 2 to 5. In this case the range

problem is so large that it dominates the data.
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Figure 5. A scatter of observed over expected faqies for the income-quartiles
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6. How worried should we be?

The author of this paper is a frequent user ofMlagldison gdp-data both in his research and
his teaching. Many other economists use these dathhence it appears a worthwhile project
to submit them to a test. Consequently we studlyey follow Benford’s Law. The only eco-
nomics it demands is that the data for gdp (GDPcpeita) have a basic log-linear structure,
and that is certainly the case.

Our analysis has showed three points: (1) Thedigt data has a frequency structure
that looks rather close to Benford's distributi¢®) A formal test shows that the deviations
from the distribution are too large to be rando8).\\When the data are divided in groups it
improves the fit when the division is over timet ihen the division is over income the fit
gets worse especially in the quartile for the laviesome.

As regards (2) the paper contains 10 formal testdetermine if the Maddison gdp-
data follow Benford’'s Law, either for the whole s®tfor various subdivisions. In all ten
cases, the tests reject that the distribution isxarct description of the data. If we follow
Varian (1972), we should conclude that the dataragipulated, but it is not easy to point to
a manipulator with some purpose in mind. These degafor all | know, a careful compila-
tion of almost everything we know about the long-ttends in economic development.

Hence, | propose that the deviations from thedagvdue to range problems. The data
cover only three log-decades, the hundreds, thesdrals and the ten-thousands, and two of
these log-decades are not fully covered. This gbagse minor kinks in the frequency-curve
which causes the test to reject that the law idepdy fulfiled. When the countries are
divided by income, the range problems are conctutria the low income group, where the

law is dramatically rejected.
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