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Abstract: 

Meta-analysis studies a set of estimates of one parameter with three basic tools: The funnel 

diagram is the distribution of the estimates as a function of their precision; the funnel 

asymmetry test, FAT; and the meta average, where PET is an estimate. The FAT-PET MRA 

is a meta regression analysis, on the data of the funnel, which jointly estimates the FAT and 

the PET. Ideal funnels are lean and symmetric. Empirical funnels are wide, and most have 

asymmetries biasing the plain average. Many asymmetries are due to censoring made during 

the research-publication process. The PET is tooled to correct the average for censoring. We 

show that estimation faults and misspecification may cause natural asymmetries, which the 

PET does not correct. If the MRA includes controls for omitted variables, the PET does 

correct for omitted variables bias. Thus, it is important to know the reason for an asymmetry. 
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1. Introduction: The problem and the set-up of the analysis 
 

Meta analysis summarizes a literature on one parameter of interest. The best average may be 

reached by giving more precise estimates a higher weight. Accordingly, the funnel diagram 

shows the distribution of the estimates over their precision. If the estimates are representative 

and properly estimated, the funnel has an ideal symmetric form. The meta average, bM, is on 

the axis of symmetry of the ideal funnel. Many funnels are asymmetric, so the meta average 

has to be estimated by a method correcting for the asymmetry. The PET estimate of the meta 

average corrects the average for asymmetries due to censoring. The purpose of this paper is to 

study other ways in which funnels can be asymmetric, and how this affects the PET estimate. 

 
 

Figure 1. Shape of the ideal funnel 

 

 

 

 

 

 

 

 

1.1 Basic definitions and concepts 

The N estimates of β are bi with standard error si, and precision pi = 1/si. The funnel diagram 

is the scatter of the (bi, pi)-points. The funnel narrows with increasing precision. We distin-

guish between empirical and natural funnels. Empirical funnels take the estimates from the 

literature on β. Natural funnels contain only estimates published with no loops of result-based 

corrections. We can only be sure that a funnel is natural in simulations. 

Conditions are ideal if the N estimates are made with the right estimator on the true 

model. Ideal funnels have the form sketched on Figure 1. It is lean and symmetric around the 

BAS, best axis of symmetry, which intersects the b-axis in the meta average, bM. It is close to 

the plain average, b, and both are good estimates of the true value β. 

The authors do not know of any field of economics where conditions are ideal. Resear-

chers always disagree about models and estimators. This is evident in the excess-variation 

result: Empirical funnels are amazingly wide compared to the ideal. In addition, most 
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empirical funnels are asymmetric. Meta-analysts typically consider asymmetries to be due to 

priors which cause censoring that should be corrected. Increasingly precise methods have 

been developed to estimate the meta-average, when the funnel has been censored. 

This paper is due to a nagging suspicion: Maybe there are natural funnel asymmetries 

due to estimation faults and model misspecification? If so, what happens to the meta-average? 

 

1.2 The simulation set-up of Table 1: The DGP and the model 

Consequently, we simulate the ideal case and a set of cases with known problems. Each 

experiment generates a funnel, a funnel asymmetry test and an estimate of the meta average. 

The simulations run each experiment 10,000 times to make statistics showing how often the 

test picks up the problem, and how often the meta average deviates from the true value. 

Consequently, one experiment consists of N estimates where each is done on M 

observations from the same DGP, i.e. data generating process, simulating model and data 

uncertainty. Two conventions are used: (i) The parameter of interest β = 1. (ii) The estimates 

are OLS which assumes a linear model with residuals 2(0, )t Nε σ= , i.e. they are normal, 

uncorrelated and has a constant variance. 

If the DGP fulfils conditions (ii), the ideal funnel appears. We study what happens 

when the DGP deviates from the model. The field is new, so we chose simple, tractable 

assumptions about the DGP: It has non-normal residuals, it is non-linear, and it contains an 

explanatory variable that is correlated with x, which is omitted in the estimate. 
 
 

Table 1. The simulation set-up for funnels of N estimates b of β 

 The two versions of the data generating process (DGP) 
DGP1 yj = α + βxj + γ1z1j + … + γkzkj + εj Parameter of interest: β 
DGP2 yj = α + β xj

n + εj, where n ≥ 1 If n > 1, the DGP is non-linear  
The controls The z-variables in (1) are k controls The potential number of controls is K: k ≤ K 
Two conventions β = 1 All estimates are OLS with n = 1 
 One experiment is the simulation of one funnel with N = R·NM estimates 
Estimates One estimate: i = 1, …, M observations One set: NM = 25 estimates. M = 10, 20, …, 250 
One funnel Each set is run R = 10, 20 times One experiment: N = R·NM = 250 or 500 estimates
 Data uncertainty, model uncertainty and estimation faults 
Data uncertainty Default: Residuals ε = N(0, σ2) Fault: Residuals in DGP are non-normal 
Model certainty Default: K = 0. DGP2, with n = 1 Fault: DGP is non-linear, n > 1 
Model uncertainty k < K. DGP1, random choices of z’s Omitted variable misspecification 

Note:  All experiments have been replicated 10,000 times, giving N·10,000 regressions for a simulation. 
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1.3 The literature 

The medical literature uses meta-analysis routinely. Since Light and Pillemer (1984) it is 

common to meet brief discussions on the proper way to draw and interpret funnels. A number 

of recent papers discuss interpretations of actual funnels that look puzzling, see e.g., Tang and 

Liu (2000), Terrin, Schmid and Lau (2005) and Lau et al (2006); but they do not really 

discuss if asymmetric funnels could occur naturally.  

Meta studies are increasingly common in economics, and many funnels have been 

published. Stanley and Doucouliagos (2009) is a fine introduction to the use of funnels in 

economics, with illustrative examples, showing that many funnels are asymmetric, see also 

Robers and Stanley (2005) for a collection of studies. The two closest predecessors to the 

present paper are: Koetse et al (2005) which discusses how the meta-average is affected by 

omitted variable biases. Stanley (2008) briefly discusses the effect of misspecification on the 

meta average, but uses a restrictive specification for the bias in his simulation. Where results 

overlap, we confirm their results. 

 

1.4 Content: Data dependency, estimation faults and misspecification 

Section 2 is a brief survey of the standard meta-theory of censoring. From there we push into 

(almost) virgin territory where the analysis is done by means of simulation as described. 

Section 3 deals with data dependency. It is the common case in macroeconomics, 

where researchers have to use the same basic data set. It does expand over time, but it might 

also have important breaks. In this case funnel asymmetries are disturbingly common. 

Section 4 deals with estimation faults: The residuals are non-normal and the true 

functional form is non-linearity. This is analyzed for model certainty, where k = K = 0, and 

the funnel is due to data uncertainty only. The funnel is robust when these faults are moderate. 

Section 5 deals with misspecification in the form of omitted variables. This is the case 

of model uncertainty, where k < K. The funnel is due to both data and model uncertainty. This 

produces a range of funnel asymmetries, which in unlucky cases may look like censoring. 

Both sections 4 and 5 demonstrate that the PET estimate of the meta-average often 

fails on funnels with natural asymmetries. Thus, it is important to distinguish between 

censoring and natural asymmetries. 

Many important issues in meta analysis are disregarded. This applies to other weigh-

ting schemes, such as by the quality of journal, and by the date of the research. We also 

disregard the clustering of estimates by paper or author. 
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2. The standard theory of funnel asymmetry: It is due to censoring 

 

The standard theory assumes that asymmetries are made by the research/publication process, 

which uses result-based loops where the researcher calculates one set of results, studies these 

result, makes correction in model, estimator and data and re-estimate. 

 

2.1 Research as a search process: Three stopping rules 

The very term research implies a search process, and empirical research means that the search 

takes place in a data set. It typically allows the researcher to report a range of results. In most 

cases it is possible to argue that various parts of the range are the proper one. 

This is not only a theoretical observation. Everybody coming to meta-research appears 

to be amazed by the width of most empirical funnels. It is common that results reported in 

perfectly decent journals, for the same β, are statistically different at levels of significance 

such as 0.01%, or e.g. by a factor 5, so b-ranges are often wide. We refer to this observation 

as the excess-variation result. 

When the research process leads to a paper reporting a result, it is consequently gene-

rated by the stopping rule ending the search. The rule surely differs from paper to paper, and 

it is often difficult even for the author to know the decisive stopping rule for a paper; but it 

appears that stopping rules are of three types which all have to be fulfilled: 
 

S1: The result fulfils the priors of the researcher, i.e., she likes it. 

S2: The result is statistically satisfactory, i.e., it satisfies current econometric standards. 

S3: The result is deemed to be marketable on the market for economic papers. 
 

The researcher may think that he has found the truth, but the criteria that lead to the 

conclusion may also be that the result fulfils his priors. Perhaps S2 and S3 are more of the 

nature of constraints, but then S3 may also be the dominating concern. 

 

2.2 Priors lead to censoring: Systematic censoring give biases 

Four types of priors are commonly recognized: 
 

P1 Theoretical priors: Some part of the b-range cannot be true by theory. Hence, in large 

data-samples they ought to be impossible. This leads to censoring in small samples. 

Example: Censoring of positive price elasticities for (non-Giffen) goods. 



6 
 

P2 Political priors: A part of the b-range is politically/morally unpalatable. Hence, it is 

censored. Example: Censoring of negative values for development aid effectiveness. 

P3 Economic priors: Researchers may work in areas where they have interests, and censor 

accordingly. Example: Discrimination by researchers of the Labor Movement against 

results showing that minimum wages generate unemployment. 

P4 Polishing prior: To reach marketable results, unclear results are censored. This follows 

from S3. This prior works in all directions and will not be discussed at present. 
 

A censoring bias is caused by researchers, who, due to prior, prefer results in the right range. 

Think of the example from (P1) where β = −1 is the true price elasticity. Here +0.5 and −2.5 

are the same distance from truth, and equally easy to reach. Maybe one identifying assump-

tion gives +0.5 while another gives −2.5. The researcher knows that +0.5 cannot be true. 

Consequently, the second identifying assumption is better, and −2.5 is the result. Nothing in 

the process of choice is dishonest, or even unreasonable. 

With randomly distributed priors (as in P4), they give variation in the results (i.e. wide 

funnels), but not asymmetries. However, if one prior dominates – as it may in the price 

elasticity example – the β-funnel is censored, and the plain average is biased. The typical 

censoring bias is caused by, e.g., 75% of the writers in the field having the same prior, while 

25% have several other priors, so the funnel is not perfectly censored, but thin in certain parts. 

If the profession wants to know the best estimate from the β-literature, it has to turn to the 

meta-average. 

 

2.3 The meta-average, bM: The FAT-PET MRA of T.D. Stanley 3 

If the literature search is exhaustive, the funnel represents all the work the profession has put 

into estimating β. It may be 100 studies, and consequently it represents more than 50 man-

years of work. Thus, it seems almost unbearable not to take advantage and use the best avera-

ge of the funnel as the best estimate of the value of β available. 

Figure 2 is the same funnel as Figure 1, but it is censored for negative values and it 

looks obviously asymmetric. Censoring makes the funnel leaner and it causes the plain 

average, b, of the funnel to be a bad estimate of β. If a likely prior against negative values 

exists, we are confident that we understand what is going on.  

                                                 
3. Meta-analysis is more than 30 years old in medicine and 20 years in economics, so it makes sense to speak of 
“standard” theory, but the meta average has been developed in the last few years notably by Stanley (2008). 
Equation (1) is termed the MRA in the paper, and we refer to its two terms as the FAT-term and the PET-term. 



7 
 

Figure 2. The funnel of Figure 1 censored for negative values 

 

 

 

 

 

 

 

 

The meta-average, bM, is still the intersection of the same BAS as on Figure 1 with the b-axis. 

But now we have to make an estimate that fills in the censored estimates. Stanley’s idea is an 

expression that starts in the middle of the fat end of the funnel and converges to the BAS. The 

resulting MRA (meta regression analysis) is written in two equivalent ways: 
 

MRA:       (3a)                            (3b)i M i i i M i ib b s u t b p vγ γ= + + ⇔ = + +    

 

Here (3b) is reached from (3a) by dividing with si. The PET estimate of the meta-average is 

,Mb  while γ is the FAT, i.e., the funnel asymmetry test, ui and vi are residuals. As a preview 

of the findings the PET is a good estimate of the meta average, if the asymmetry is due to 

censoring, but not normally in other cases, while the FAT works in all cases examined. 

Formulation (3a) gives an easier intuition, while (3b) is preferable to estimate, as it has 

less heteroskedasticity. The estimate produces a hyperbola converging to the BAS for s falling 

(i.e. p rising); see Figures 3, 6b, 7 and 8b. That is, bM is the point to which b converges for p 

→ ∞, as drawn on Figures 1 and 2. Even if the top part of the funnel or bottom part (as on 

Figure 2) is censored, the MRA still reaches the same result. However, if the highest precision 

part of the funnel is affected by the bias, the MRA fails to find the BAS, and hence bM 

becomes a poor estimate of the true value, see section 5.  

 

2.4 The MRA(k) expanded with n binary specification dummies k1, … kn 

Section 5 analyzes what happens if the estimating equation suffers from an omitted variable, 

giving the estimate an OV bias. We show that if some of the researchers detect the said 

variable(s) and others do not, the funnel will – in most instances – become asymmetric. 

The best practice meta analysis to deal with the problem is to detect the OV, z, and 

including a binary control variable k(z), with a value for all N estimates analyzed in the MRA. 
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If the estimate is controlled for z, k(z) = 1. Otherwise, it is zero. The coefficient to k(z) is an 

estimate on the bias. This demands that some of the N estimates are controlled for x and 

others are not. The recommended approach is to form a set of binary control variables k1 = 

k(z1) to kn = k(zn) for all such possible OVs and run an expanded MRA: 
 

MRA(k): 1 1

1 1

...                           (4a) or after division with 
( / ) ... ( / )          (4b)

i M i n n i i

i M i i n n i i

b b s k k u s
t b p k s k s v

γ λ λ
γ λ λ

= + + + + +

= + + + + +
 

 

The relation between (4a) and (4b) is the same as the one between (3a) and (3b). 

Assume the true process is generated with a set of K controls, while each model is 

estimated with ki ≤ K controls. If i iK k⊂∪ , i.e. the true model is included in the union of all 

the model estimated, it is possible to obtain a correction for the MRA, which makes it 

converge to the true value even when the funnel is plagued by OVB. The complement of ki is 

termed ki
c in the set K. If the MRA is modified with dummies for each element of ki

c the 

control is zero if the estimate is controlled for x and 1 otherwise.  

The MRA(k) allows us to see if each of the n z-variables matters. The paper introdu-

cing a new explanation, z, claims that it is important, and z is surely significant in that paper. 

Once it has been included in a set of papers, it is possible to see if z gives a robust improve-

ment of the estimation model for β or not, by running the MRA(k) for k(z). So in any case it is 

useful to run expanded MRAs.  

The problem arises, if the OV remains undetected in the meta analysis. Hence, the 

MRA is uncontrolled for k(z). Section 4 simulates cases with undetected OVs, to analyze what 

the MRA does. It is shown that it often causes the MRA to pick a wrong bM. It is then 

demonstrated that the relevant MRA(k) does remove the problems. 

As an aside, we may mention that (4) has also been used to study the effects of estima-

tors. Does it matter to use the X-estimator instead of the simple OLS estimator? Such studies 

have shown that it rarely does, see e.g. Doucouliagos and Paldam (2009c). 

The method used in the paper is to simulate funnels from data generated with 

controlled DGPs, and to compare the form of the funnels with the ideal one. Also, we 

compare the true value, β = 1, with the plain averages, b. Finally, we estimate the MRA or the 

MRA(k) to see if the FAT-statistic, γ, detects asymmetry, and if meta-averages, bM, find the 

true value, β, or at least is closer to β than is the pain average, b. 
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3. Data dependency: A problem in empirical macroeconomics 
 

Sections 4 deals with estimation faults and section 5 considers misspecified models. Thus, 

they look at problems caused by mistakes of researchers. The present section considers a 

more innocent problem. In some fields of economics researchers are forced to use the same 

data, as time passes new data are added, but there is a great deal of data dependency. Our set-

up allows us to study how long Type I errors may persist in such cases. Data dependencies 

may also create funnel asymmetries. Furthermore, we show that the likelihood of asymmetries 

increases, when dependent data have structural breaks. 

Figure 3 is the first example of a simulated funnel used to illustrate the argument. The 

figure shows the format of the following funnels. It includes the MRA, as the black curve, 

estimated with equation (3); the plain average b, as the gray dotted line; and the meta average, 

bM , to which the MRA converges. In most cases it is shown as a black dotted line, but on 

Figure 3, it is hidden by the solid black line at β = 1. 

 
 

Figure 3. Two dependent-data paths simulated as described in text, N = 100  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Sequentially revealed data generates path dependency in the funnel  

Consider the sequence of data d1, …, dN, where dj = (x1,…, xmj) and dj+1 = (x1,…, xmj, xmj+1). M 

is the maximum sample size generated. The coefficient of interest is then sequentially 
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estimated on the subsample (x1,..., xt) then on (x1,..., xt+1) until (x1,..,xM). It is well-known how 

such estimates look – with 95% certainty they start at a point within the 95% confidence 

interval around the true value of β, and then they converge to β. 

Figure 3 shows the path of two such sequential estimates, chosen to be reasonably 

representative. We may think of them as the results based on the data from two countries. In 

the case with gray markers, the convergence of the curves to β is quite slow. In the case with 

black markers, it starts low, but then jumps up and down a few times. Here convergence is 

much faster. Thus, we should keep in mind that quirks may create amazing path dependency. 

Table 2 estimates how often it actually does. 

Let us imagine that the points on Figure 3 are the estimates analyzed in the meta study 

– the funnel for these points suggests strong asymmetry. The MRA confirms this impression, 

but fortunately the MRA converges to bM ≈ 1. However, the plain average b will for long 

differ significantly from 1. 

In macroeconomics data-mining leads to Type I errors – acceptance of false models 

reached by polishing a quirk in the data – as witnessed by the excess significance result men-

tioned. The risk of Type I errors makes the usual scientific requirement of independent repli-

cation4 particularly important in macroeconomics. The path dependency of quirks means that 

just to add a few years of observations is not enough for a serious independent replication. 

Table 2 shows the consequence of this. It is quite easy to stay with a wrong model for a time.5 

 

3.2 Structural breaks 

Another frequent problem in time series is changes in the value of the parameter of interest, in 

the form of structural breaks, where β increases to βnew. It is obvious that the estimates of the 

parameter of interest fall in precision immediately after the structural break, compared to 

estimates obtained before the break, once the sample size after the structural break has increa-

sed sufficiently, the fall in precision turns. This has interesting consequences for the funnel 

and the MRA: If the break is located relatively early in the sample, the MRA will converge to 

βnew while if it is located in the end of the sample, the MRA will converge to β because the 

most precise estimates will be those made on the samples before the break. 

                                                 
4. Independent replication means replications of the same model by other researchers on new data. Dependent 
replication of a model is by other authors on the same data. In economics there are even cases of dependents 
replications that fail. The classical horror story is Dewald et al (1986). The ensuing discussion is surveyed in e.g. 
McCullough et al (2008). 
5. Doucouliagos and Paldam (2009a) deal with meta-studies in a field of macroeconomics, which has seen a 
number of Type I errors, where a false model is accepted and dominates the literature for a period of 4-6 years. 
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Table 2. Overlapping sample cases without and with structural breaks 
Section 1 Section 2 Section 3 Section 4 

Dimensions no breaks Break after 75% Break after 25% 
Meta Frequency Meta Frequency Meta Frequency 

N M Nr average of rejection average of rejection average of rejection 
series bM γ ≠ 0 bM ≠ 1 bM γ ≠ 0 bM ≠ 1 bM γ ≠ 0 bM ≠ 1 

20 100 2 0.999 0.204 0.210 1.112 0.351 - 2.119 0.999 - 
100 100 10 0.999 0.206 0.206 1.113 0.350 - 2.120 0.999 - 
50 250 2 1.000 0.371 0.364 1.135 0.849 - 2.147 1.000 - 

250 250 10 1.000 0.373 0.363 1.136 0.853 - 2.148 1.000 - 
200 1000 2 1.000 0.625 0.622 1.147 1.000 - 2.124 1.000 - 
1000 1000 10 1.000 0.627 0.627 1.147 1.000 - 2.124 1.000 - 

Averages 1.000 0.402 0.399 1.132 0.733 - 2.130 1.000 - 
Note:  Each line is repeated 10,000 times so each of the 3 sections contains 16.2 mil regressions. “Nr series” 

are the number of sequences. That is, Figure 3 shows two series. The break is made by increasing β = 1 
to βnew = 2. Remember from section 1.1 that N is the number of points in the funnel, while M is the 
number of observations in each estimate. 

 

 

3.3 The case of data dependency (section 2 of Table 2) 

Table 2 contains a set of simulation experiments, each repeated 10,000 times. The table has 

four sections marked with a change of background color. The first section describes the 

dimensions of each experiment. N is the number of points in each funnel. M is the number of 

observations on which each regression (each point in the funnel) is run. Nr series are the 

number of dependent data sets included, the reader may think of each series as a country. 

Section 2 looks at the case with no structural breaks, only data dependence. In average 

the meta average always converges to 1 as it should. Consequently, there is no systematic bias 

due to overlapping samples. However, funnels generated using the method described above 

are asymmetric much more often than in the independent sample case. Consequently, a biased 

meta average, bM, occurs in an important share of the funnels. Interestingly, this increase with 

sample size, but not to the number of independent series used to generate the funnel. 

Thus in about 40% of the cases data dependencies will generate a funnel where not 

only the plain average, but also the meta average is wrong. Thus the meta analysis will show a 

wrong result due to a quirk in the data which has not disappeared for the number of observa-

tions existing. 

 

3.4 Data dependency and structural breaks (sections 3 and 4 of Table 2) 

Sections 3 and 4 of Table 2 deal with structural breaks. In section 3 they take place late, i.e. 

after 75% of the sequence. In section 3 they occur early, i.e. after only 25% of the sequence. 
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The structural breaks are done by a shift of β from 1 to 2, at the breakpoint. Hence, bM ≠ 1 per 

definition, and it makes no sense to report the frequency of rejection of bM ≠ 1. 

When the break is late, the funnel is asymmetric in most cases, and the MRA con-

verges to a value close to the value of β in the early part of the sample. In fact, it converges to 

something like 1.13. When the break is early, the funnels are asymmetric in virtually all cases, 

and the MRA converges to the latter value of the parameter. However, it is not precisely 2, 

but about 2.13. 

Before we leave the case of dependent data, we should state that it appears to give 

problems which are rather more serious than normally assumed. In some cases it helps to 

calculate the meta average – using the standard MRA – and not stick to the plain average. 
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4. Estimation faults: Analyzed for model certainty  
 

This section deals with model certainty which is defined as k = K in our set-up. It is modeled, 

with no loss of generality, by setting K = 0. Section 4.1 surveys the estimation faults analyzed 

in sections 4.2 to 4.4. In each case we bring illustrations showing typical specimens, so that 

the reader can see how everything looks. The MRA estimates for the funnels used in the 

illustrations are given in Table 3 in section in 4.5, while Table 4 in section 4.6 shows the 

percentage point for 10,000 replications. 

 

4.1 The model faults considered 

With K = k = 0 DGP1 and DGP2 from Table 1 are: 
 

         (1)    and              (2)n
j j j j j jy x y xα β ε α β ε= + + = + +  

where / ,y x β∂ ∂ =  in (1) and 1/ ny x n xβ −∂ ∂ =  in (2) 
 

Thus the funnel is due to the variation generated by the data and: 
 

(4.2) DGP1 and 2(0, )t Nε σ= . The estimating model is right giving an ideal funnel. 

(4.3) DGP1, but εt is non-normal. We use log-normal for the main results. Within reason 

funnels keep the ideal form. 

(4.4) DGP2, with n > 1, so that the estimating model is misspecified. Within reason, funnels 

keep the ideal form, but the estimate of β goes bad, as it depends on the range of x-

values covered by the data. 
 

The words within reason in (4.3) and (4.4) refers to the fact that researchers know they should 

watch out for residual non-normality and model non-linearity, and econometric packages have 

diagnostic tests to help in the watch. If the problem is large, it will surely be detected. Thus, 

we only need to be concerned about moderate non-normality and gentle non-linearity. 

 

4.2 Linear model with normal residuals: Ideal funnels are lean and symmetric 

Here DGP1 is estimated with the right model, N = 250 times for σ2 = 0.2 and σ2 = 0.5. The 

two funnels look as they ideally should, so the plain average and the meta-average both give 

the same (good) estimate of the true value. In spite of the large residual variation both funnels 

are lean compared to the empirical funnels published in the typical meta-study (see Stanley 
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and Doucouliagos, 2009), and to the simulated funnels with estimation faults and model 

uncertainty. This is the precise meaning of the excess-variation result. It is also clearly visible 

if Figure 4 is compared to the later funnels of the paper. 

 
 

Figure 4. Two funnels for model certainty and normally distributed residuals 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Each funnel has N = 250 points. The MRA is indistinguishable from the β =1-line. 

 

 

The ideal case is easy to solve analytically for the shape of the reference funnel. Recall that 

the variance of the estimator of a linear model decreases linearly with the sample size. 
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Where n is the sample size. If the assumptions of the linear regression models are satisfied, it 

is an unbiased estimator. This explains the triangular form of the funnel converging to the true 

value of the parameter of interest. 
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4.3 Estimation Fault 1: The DGP has non-normal residuals. The funnel form is robust 

Within our set-up it is easy to make the ε-term moderately non-normal. Three groups of 

experiments were made: (i) log-normal ε’s, (ii) Weibull ε’s and (iii) t-distributed ε’s. The 

funnels were estimated by OLS, disregarding the problem of the residuals. 

The t-distribution is symmetrical and so is the funnel. All it does is to make the funnel 

narrower in the middle. However, the log-normal and the Weibull distribution are both 

asymmetric. Nevertheless, all three experiments produced ideal-looking funnels with a hori-

zontal BAS (best axis of symmetry) intersecting the b-axis close to 1. Thus, both averages (b 

and bM) are good estimates of the true value, see Table 4 below. 

Figure 5 shows a log-normal ε-distribution that may escape detection. Here the model 

is, y = x + ln ε, with σ2 = 0.5. The funnel is perfectly symmetrical, but the fault in the residuals 

reduces the precision of the estimates, so the funnel is broader and shorter. However, with 

enough estimates both the plain and the meta-average are close to 1. Obviously one can 

generate asymmetric funnels by making the ε-term really skew, but then it will be detected by 

the β-researchers. 

 
 

Figure 5. A funnel with a (disregarded) log-normal disturbance term 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note: Generated for σ2 = 0.5 for N = 500. The MRA is indistinguishable from the β =1-line. 
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4.4 Estimation fault 2: The DGP is non-linear in x. The funnel form is still robust 

We now turn to the case where the DGP is non-linear – using DGP2 for n > 1 – which is 

estimated by OLS as if it was .j j jy xα β ε= + +  Here we use σ2 = 0.5. 

If the true form is so smooth that it can be approximated by a Taylor expansion, we 

only need to study what happens to the funnel if the function is in the power n = 2, 3, 4, … , 

where even n = 2 is high, but to get asymmetry, we continued to n = 3. 

The quadratic DGP is 2 .j j jy xα β ε= + +  Here the funnel looks as shown of Figure 6a. 

The estimation fault makes the funnel much wider. However, it still looks symmetrical. The 

MRA is the (vaguely) hyperbolic line shown. It detects no asymmetry (see Table 3) and con-

verges to something close to the plain average, but even if the plot looks symmetrical, the 

density is much bigger on the higher part of the funnel so the symmetry is misleading. It 

causes the MRA to find almost the same meta-average as the plain average; but the two 

averages are b = 0.027, and bM = −0.055. Even if we multiply by 2, it is still rather far from 

the true value of 1. 

 
 

Figure 6a. The funnel for a quadratic form misspecification (with σ2 = 0.5 and N=500) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cubic DGP is 3 .j j jy xα β ε= + +  Figure 6b shows what happens in a typical experiment: 

the funnel becomes still wider, and finally it looks asymmetric. This is confirmed by the FAT-
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part of the MRA which rejects symmetry – the reader may note that the MRA now looks 

much more hyperbolic, and the two averages are different from the true value β = 1, and, in 

addition, they differ from each other as b = 2.884, and bM = 2.201. These results get worse if 

we multiply by 3. 

The MRA “looks” for censoring. Consequently, it treats the asymmetry as due to 

censoring below ap. 2, which causes the convergence to the meta-average mentioned. If the 

reader looks at the asymmetry of the funnel, it is not surprising that the MRA treats it this 

way, but it is not what is needed to find the true value.6  
 
 

Figure 6b. The funnel for a cubic form misspecification (with σ2 = 0.5 and N = 500) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For now we note that the MRA handles one type of misspecification quite badly. Below we 

shall see that it handles other misspecifications equally badly. This is not surprising as it was 

designed for a different purpose, but it is important to note. 

The two functional form misspecifications are both rather large, and it is assuring that 

the misspecification has to be as bad as on Figure 6b before the funnel becomes asymmetric. 

 

                                                 
6. It is not obvious how censoring and natural asymmetries can be sorted out in the case of unnoticed non-
linearity. The asymmetry on Figure 6b looks as bit, but not fully as a typical censoring. Also, it appears that 
economic theory has few priors against β’s below 2. Also the excessive width of the funnel points to something 
different from censoring which should make the funnel leaner. 
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4.5 Comparing the two averages in the cases of Figures 4 to 6  

Table 3 shows what the MRA does in the 5 experiments. The graphs from 3 to 4 show funnels 

looking like the ideal form. Here both averages catch the true value of β = 1 rather well – the 

plain average being marginally better, as it should.7 In the two cases of model-form estimation 

fault, the MRA works rather badly when it tries to find the true value of β as already 

discussed. 

 
 

Table 3. Comparing the true value, β, the plain average, b, and the meta-average, bM 

 All estimates linear OLS MRA-estimate Plain True 
 Model and funnel Residual Symmetry Meta avr. avr. value 

Figure  σ2 γ bM b β 
4 Normal residuals, stubby 0.5 0.18 (0.9) 0.990 1.009 1 
4 Normal residuals, lean 0.2 -0.10 (-0.5) 1.007 1.003 1 
5 True residuals log-normal 0.5 -0.01 (-0.1) 1.010 1.005 1 
6a True equation quadratic 0.5 0.47 (1.4) -0.055 0.027 1 
6b True equation cubic 0.5 2.82 (7.9) 2.201 2.884 1 

Note: All estimates use Equation 2 for k = K = 0. 

 
 

Finally, another estimation fault should be mentioned: It is the unit root bias. It may escape 

detection, but is easy to correct for once it is detected. Doucouliagos and Paldam (2009b) is a 

meta study of 212 estimates of a coefficient of inertia φ in a relation ht = α + φht-1 + ut, where 

α is a constant and ut are the residuals. Here a univariate study of the data shows that φ is 

close to 1, so the estimate of φ does have a substantial unit root bias. It is demonstrated that 

this bias causes a natural funnel asymmetry. When the MRA is used to correct this bias, the 

result is worse than no correction.8 

 

4.6 A systematic study the four main cases of the linear and non-linar DGPs 

The results in 4.1 to 4.4 are based on one experiment with one funnel showing 500 estimates. 

Table 4 shows the results of adding of experiments and repeating each one 10,000 times. The 

Table has 5 sections where sections 2 to 5 corresponds to Figures 2 to 6b as indicated. 

The ideal case of Figure 3 is considered in the left gray section 2. When the standard 

5% level of significance is used, we want to get a 5% rejections of asymmetry, γ ≠ 0, and the 

                                                 
7. The meta-average uses some degrees of freedom to correct for a problem that is not present, and hence it is 
marginally worse, but it really does not matter. 
8. The case is more complicated as the literature also has a censoring bias, so the funnel is very asymmetric. 
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meta-average should reject that bM = 1 in 5% of the cases. The rejection rates are slightly 

higher in both cases, so the MRA errs a marginally towards Type I error. 
 

 
Table 4. Experiment with ideal funnel, residual non-normality and non-linearity 

Section 1 Section 2 Section 3 Section 4 Section 5 
 The DGP is linear The DGP is non-linear 

Dimensions Ideal Log-normal residuals Squared x-term Cubic x-term 
Each line is  Meta  Frequency of Meta Frequency of Meta Frequency of Meta  Frequency of 

4 experiments avr. rejection avr. rejection avr. rejection avr. rejection 
N M bM γ ≠ 0 bM ≠ 1 bM γ ≠ 0 bM ≠ 1 bM  γ ≠ 0 bM ≠ 1 bM  γ ≠ 0 bM ≠ 1
40 100 0.999 0.062 0.065 1.001 0.062 0.070 -0.000 0.055 0.829 1.656 0.823 0.504 
100 100 1.000 0.056 0.059 1.000 0.049 0.059 -0.001 0.047 0.998 1.618 0.999 0.909 
1000 100 1.000 0.053 0.054 1.000 0.049 0.055 0.000 0.041 1.000 1.600 1.000 1.000 
100 250 1.001 0.061 0.063 1.001 0.060 0.070 0.001 0.053 0.826 1.653 0.833 0.495 
250 250 1.000 0.055 0.055 1.000 0.055 0.063 0.004 0.043 0.998 1.619 0.999 0.916 
2500 250 1.000 0.050 0.051 1.000 0.052 0.060 0.000 0.046 1.000 1.600 1.000 1.000 
400 1000 0.999 0.066 0.067 1.001 0.057 0.067 0.003 0.055 0.826 1.658 0.825 0.496 
1000 1000 0.999 0.056 0.054 1.000 0.057 0.066 -0.001 0.044 0.998 1.621 0.999 0.920 

10000 1000 1.000 0.055 0.055 1.000 0.053 0.061 -0.001 0.042 1.000 1.601 1.000 1.000 
Averages 1.000 0.057 0.058 1.000 0.055 0.063 0.001 0.047 0.942 1.628 0.935 0.780 

Note:  N is the total number of points in each funnel, σ2 = 0.5 in all simulations. The significance level for the 
rejection rates is the standard 0.05. Each experiment is repeated 10,000 times so the total number of 
regressions made to generate the table is about 600 million. 

 
 

Next we look at section 3 reporting the simulations of the estimate with log-normal residuals, 

as illustrated on Figure 4. The rejection rates are virtually the same as for the ideal funnels. As 

the funnel is broader slightly fewer reject that bM = 1, but slightly more find the funnel 

asymmetric. However, the deviations from the results for ideal funnel are amazingly small. In 

both cases the rejection rate falls with N, the number of points in the funnel. 

In the two cases reported in sections 3 and 4 of the table of non-linearity, bM = 1, is 

rejected. This is not surprising, but it is surprising that the FAT rejects symmetry less often 

for the squared form than in the ideal case – though only marginally so. In the cubic case the 

FAT does reject symmetry quite strongly. It is only accepted in 6.5% of the cases. 
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5. Misspecification, i.e. omitted variables: Model uncertainty 
 

All meta-studies we know of show a lot of model-uncertainty. This appears to be the main 

explanation of the excess variability observation. Our set-up generate model uncertainty by 

using a DGP with K variable, and an estimate with n < K control variables, z1, …zn. As all K 

variables have some explanatory power, this generates omitted variable bias, OVB. We 

examine what an undetected OV does to the funnel and the MRA. Section 2.3 reported that 

the standard cure for this problem is to detect the OV, and generate the appropriate binary 

dummy and use the MRA(k), to account for the bias. This procedure is applied in 5.5. 

 

5.1 One undetected OV (omitted variable)  

With one OV model (1) becomes: 
 

(3a) True model  ,j j j jy x zα β δ ε= + + + the data generating process, β is unbiased 

(3b) Biased model ,j z j jy xα β ε= + + where βz has an OV bias 

 

The controls, z, are generated with a correlation coefficient ρ  with respect to x using the 

following process: 
2

2
2,  where  and (0, )

1j j j jz x Nρλ ε λ ε σ
ρ

= + = =
−

 

Model (3a) and (3b) are equivalent in two cases: The expected value E(z) = 0 iff λ = 0  ρ = 

0. Here z and x are independent, and βz = β = 1. In all other cases there is a positive OV bias. 

When βz is estimated (by OLS) in model (3b), the bias is a simple linear relation: 
 

1 1 1 1ˆ ( ) ( ) ( ) ( )zb X X X Y X X X X X X X Z X X Xβ δ ε− − − −′ ′ ′ ′ ′ ′ ′ ′= = + +  

1ˆ ( )zE b X X X Zβ δ β λδ−⎡ ⎤ ′ ′= + = +⎣ ⎦       (7) 

 

5.2 The leanest funnels are the ones with the biggest OV bias  

The funnel for δ = 0 is the true funnel, with average 1 as it should, but for other values of δ 

OVBs occur, and in many cases the biased βz > β, and hence the MRA goes to βz. This is, at a 

first consideration, counterintuitive, for it means that the most precisely estimated β’s are the 

most biased ones. Recall the estimator of the variance of b, the estimated value of β: 
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       (6) 

 

This implies that the more variation in x, the more precisely estimated the coefficient is. Thus 

when no control is included in a model whose DGP contains a control, all the variation in the 

data is contained in x, implying a more precise estimated coefficient than when the model is 

estimated also with the control, where the variation in x becomes smaller. It becomes harder 

to predict the precision of b when several controls are used in the DGP and that they are 

randomly included or omitted as it depends mainly on the level of correlation between the 

control and x (and thus among the controls themselves). 

 

5.3 Two examples of funnels with one OV in half the estimates  

To understand what is going on, we start with the simplest setting. The true DGP is a model 

with the variable of interest and one control. The control is generated with an effect size 

termed δ and a correlation to the variable of interest denoted ρ. These two parameters deter-

mine the omitted variable bias (OVB) (see equation 7), and the variance bias. They enter as a 

product in the formula for the OVB, but their effect on the variance is less straightforward. 

 
 

Figure 7a. Merged funnel for δ = 1, ρ = 0.5 and N =500 (line * in Table 5) 
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Figure 7b. Merged funnel for δ = 1, ρ = 0.9 and N = 500 (line ** in Table 5) 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note: The two funnel both generated for 250 right estimates and 250 estimates with OVB. 
 

 

The two illustrative cases, are shown as Figure 7a, where the z variable has δ = 1 and ρ = 0.5, 

and Figure 7b, where the variable has δ = 1 and ρ = 0.9. In both cases the reader can see that 

the funnel is bimodal,9 with two sub-funnels appearing as peaks in the horizontal direction. 

The sub-funnels at b = 1 are the right one, while the other is the OVB-peak at bz. It is biased 

as the estimate is not controlled for the z-variable. The probability of inclusion of the control 

is 0.5, so the two sub-funnels have the same number of observations. 

In both cases drawn the MRA converges to the OVB-peak and not to the right one, 

and consequently: β < b < bM. Consequently, if the meta analysis does not include a control 

for z in the MRA, the meta average is worse than the plain average. However, Table 5 shows 

that this is not a general result. 

 

5.4 A systematic study of funnels with one undetected OVs occurring in 50% of the cases 

The cases shown are systematically analyzed in Tabel 5. It studies what happens when the 

OV, δ = 0, 0.5, … , 3 and the correlation is ρ = 0.1, 0.5 and 0.9. The two cases of Figure 7a 

                                                 
9. If the two parameters, δ and ρ, are smaller, it may be difficult to see that the funnel is bimodal, and hence it is 
less clear that we are looking at a case where a fraction of the estimates has a missing variable. 
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and b are the lines with * and ** in the table. The reader will see that the two graphs are 

typical of the findings in the two cases. 

The pattern is rather as expected from the graphs and equation 7: when ρ and δ are 

small the bias is small too and it causes small problems as well. However, bM soon starts to 

move away from 1, and the FAT-test detect asymmetries (γ ≠ 0) and then the fraction of bad 

estimates of bM rises too. 

It is interesting to note that in about half the cases b is closer to 1 than is bM so it is 

hard to predict if the meta average is better. Also, a rather strange pattern comes about in the 

rejection rate for funnel symmetry. Figure 7a shows a case where funnel asymmetry may and 

may not be rejected. While bM = 1 is almost always rejected.  
 

 

Table 5. Experiments with OV biases 

Section 1 Section 2 Section 3 
Parameters N = 40 N = 100 

  Averages Fraction rejected Averages Fraction rejected 
δ ρ b bM Best γ ≠ 0 bM ≠ 1 b bM Best γ ≠ 0 bM ≠ 1 
0 0.1 1.000 1.000 Same 0.018 0.065 1.000 1.000 Same 0.009 0.057 

0.5 0.1 1.025 1.020 bM 0.020 0.162 1.025 1.020 bM 0.018 0.519 
1 0.1 1.050 1.014 bM 0.099 0.090 1.050 1.013 bM 0.517 0.164 

1.5 0.1 1.075 0.994 bM 0.444 0.052 1.075 0.995 bM 0.996 0.036 
2 0.1 1.100 0.977 bM 0.767 0.116 1.100 0.979 bM 1.000 0.274 

2.5 0.1 1.126 0.965 bM 0.923 0.225 1.126 0.968 bM 1.000 0.669 
3 0.1 1.151 0.958 bM 0.966 0.324 1.151 0.961 bM 1.000 0.897 
0 0.5 1.000 1.000 Same 0.022 0.077 1.000 1.000 Same 0.016 0.068 

0.5 0.5 1.145 1.249 b 0.268 0.992 1.145 1.248 b 0.811 1.000 
1* 0.5 1.288 1.349 b 0.024 0.908 1.289 1.346 b 0.031 1.000 
1.5 0.5 1.433 1.266 bM 0.072 0.429 1.434 1.261 bM 0.201 0.863 
2 0.5 1.577 1.099 bM 0.543 0.053 1.577 1.099 bM 0.978 0.099 

2.5 0.5 1.723 0.947 bM 0.939 0.017 1.721 0.952 bM 1.000 0.010 
3 0.5 1.868 0.829 bM 0.998 0.082 1.866 0.842 bM 1.000 0.239 
0 0.9 1.000 1.000 Same 0431 0.098 1.000 1.000 Same 0.037 0.092 

0.5 0.9 1.516 2.166 b 1.000 1.000 1.516 2.158 b 1.000 1.000 
1** 0.9 2.034 3.352 b 1.000 1.000 2.032 3.334 b 1.000 1.000 
1.5 0.9 2.547 4.490 b 1.000 1.000 2.547 4.461 b 1.000 1.000 
2 0.9 3.066 5.445 b 0.991 1.000 3.065 5.404 b 1.000 1.000 

2.5 0.9 3.581 6.059 b 0.798 1.000 3.582 6.022 b 0.999 1.000 
3 0.9 4.096 6.256 b 0.346 0.997 4.094 6.212 b 0.828 1.000 

Note:  The selected significance level is 0.05. The results are based on 10,000 replications of each row. The 
line corresponds to Figure 7a has *. The line corresponds to Figure 7b has **. 
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5.5 Comparing undetected and detected cases with one OV: Using the MRA(k)  

Given the pattern in Table 5, we examine a set of the cases to see if it helps if the OV is 

detected and the appropriates control is inserted in the MRA, so that we go from the MRA to 

the MRA(k) estimate. This is done in Table 6. The results are spectacular: 

For the MRA with an undetected OV, the results are as before, but for detected OV, 

where the MRA(k) is used, the results are amazingly good: the average b and bM’s found are 

very close to 1 in all cases, and the number of bM ≠ 1 remains constantly around 6%, as in 

simulations of ideal funnels. If the OV is detected, it is easy to control for it, and the meta 

average works as well as it did before. The MRA does not pick up and correct one OV, but 

the MRA(k) does. 

In both cases, the FAT is working rather well though it depends on the number of 

points in the funnel (N). For large N’s the number of detected asymmetries at the 5% quickly 

falls below 5%. Thus, the FAT works too well in funnels with many observations. 

 
 

Table 6. Experiments with an undetected and a detected OV 

Section 1 Section 2 Section 3 
Dimensions Undetected OV MRA Detected OV MRA(k) 

  OV Averages Frequency of Average Frequency of 
  characteristics plain meta Rejection same rejection 

N M z ρ b bM γ ≠ 0 bM ≠ 1 b = bM γ ≠ 0 bM ≠ 1 
40 100 0.25 0.5 1.072 1.135 0.242 0.981 1.000 0.017 0.086 
40 100 1 0.5 1.288 1.348 0.023 0.905 1.000 0.019 0.078 
40 100 2 0.5 1.578 1.103 0.538 0.054 1.000 0.021 0.085 
100 100 0.25 0.5 1.072 1.137 0.677 1.000 1.000 0.015 0.069 
100 100 1 0.5 1.289 1.351 0.042 0.999 1.000 0.013 0.070 
100 100 2 0.5 1.577 1.084 0.975 0.076 1.000 0.015 0.071 
100 250 0.25 0.5 1.072 1.134 0.878 1.000 1.000 0.009 0.071 
100 250 1 0.5 1.288 1.346 0.032 1.000 1.000 0.012 0.069 
100 250 2 0.5 1.578 1.099 0.977 0.100 1.000 0.011 0.067 
250 250 0.25 0.5 1.072 1.134 1.000 1.000 1.000 0.008 0.065 
250 250 1 0.5 1.289 1.347 0.098 1.000 1.000 0.008 0.064 
250 250 2 0.5 1.577 1.094 1.000 0.255 1.000 0.011 0.065 
400 1000 0.25 0.5 1.072 1.133 1.000 1.000 1.000 0.007 0.065 
400 1000 1 0.5 1.289 1.344 0.159 1.000 1.000 0.005 0.061 
400 1000 2 0.5 1.577 1.101 1.000 0.532 1.000 0.007 0.063 

1000 1000 0.25 0.5 1.072 1.133 1.000 1.000 1.000 0.006 0.066 
1000 1000 1 0.5 1.289 1.345 0.605 1.000 1.000 0.007 0.061 
1000 1000 2 0.5 1.577 1.100 1.000 0.952 1.000 0.007 0.063 
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5.6 More complex cases: many OVs 

We now depart from the case of only one OV to study a more general setting. The DGP is 

composed of K controls where each is included or omitted with a certain probability which is 

set at 0.5 throughout. Each individual control is generated with a given correlation ρi and 

effect size, δi. The analytical form of the expected level and variance is much harder to work 

out in this setting as it depends on the cross correlation between included and omitted controls 

as well as with x. 

Formula (1) yj = α + βxj + γ1z1j + … + γkzkj + εj, can be made to generate as many peaks 

as necessary to make the funnel smooth-looking, by using higher K’s and k’s. The number of 

different biases – and hereby peaks – produced by (1) is: 

 ( , )
K

K k
k

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

        (8) 

which easily produces large numbers, if the two variables are large. For large λ’s and different 

z’s, the dents disappear to make a nice smooth funnel. We may get symmetry or asymmetry: 

Symmetry demands that the set of controls is symmetrical in coefficients and correla-

tion and they are selected with the same probability. The resulting funnel appears like an ideal 

funnel. When some controls are included, and others omitted, it becomes harder to predict the 

precision of the estimated β. 

Asymmetry occurs is all other cases. By playing with the control set, the correlation 

coefficients and the frequency of selection, it is possible to generate a wide range of funnels. 

There does not seem to be any regularity in the shape of funnels subject to omitted variable 

bias to could indicate that we are dealing with a funnel generated with such a bias. 

If there are less negative controls than positive ones, the most precisely estimated 

points will be biased above the true value of the parameters of interest, while the second most 

precise estimates will be those estimated with the full model thus closer to the true value. The 

funnel will thus appear to be censored above. 

 

5.7 Two examples of funnel with 6 OVs: A symmetric and an asymmetric  

To show what can be done, consider Figures 8a and b. Controls are randomly included with 

probability 0.5. They have 2 0.5ρ σ= =  with x. In the symmetric case δ = 2, 1, 0.5, −0.5, −1 

and −2, while in the asymmetric case they are δ = 2, 1, 0.5, −0.5, −1 and −2. 
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Figure 8a. A smooth symmetric funnel made as described in text (N = 500) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Note: The MRA is indistinguishable from the β = 1-line. 
 

Figure 8b. An smooth asymmetric funnel made as described in text (N = 500) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The reader may think of the wide funnel on Figure 8a as a realistic case of model uncertainty. 

It certainly produces the excess variation result, with lots of estimated bs that differ 

significantly. Finally, Figure 8b shows an asymmetric funnel. It is treated by the MRA as a 
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case of downward censoring. We want our story to have a happy end, and Figure 8b is the last 

funnel in the paper. Consequently, the peak is made at 1, so the MRA converges to almost the 

right value, and in addition the bM is a better average than b. 

A set of simulations were also made with the two cases of Figure 8. Also in these 

cases the MRA(k) worked very well. These results are available on demand. 
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6 Summary 
 

A funnel shows the distribution of a set of estimates of the same parameter. All empirical 

funnels we have seen are amazingly wide, and most are asymmetric as well. If the funnel is 

due to noise in the data only, it is symmetric and lean. Consequently, funnel wideness is due 

to model variation and funnel asymmetries are due to biases, which are common in the set of 

estimates. The meta average is the average corrected for the asymmetry. The paper studies a 

range of asymmetries that may occur in funnels. We distinguish between censoring biases 

caused by the research and publication process, and natural biases that occur when resear-

chers overlook a modeling problem. 

The standard tool in meta analysis is the FAT-PET MRA, which works on the data of 

the funnel. It contains two terms: The FAT-term is the funnel asymmetry test. We showed 

that the FAT-term is a general tool of considerable power irrespective of the cause of the 

asymmetry. The PET-term is one estimate of the meta average. The PET estimate is tooled to 

detect and adjust funnel asymmetries for censoring biases. It does so rather well. However, 

the PET-term can be trusted to correct censoring biases only. With natural biases it may even 

increase the distance to the true value compared with the plain average. Three types of 

problems have been analyzed.  

First, the case of dependent – but expanding data – was considered. This is a typical 

case in macroeconomics. Here the results did converge to the true value, but often quite 

slowly, so a surprisingly large number of cases rejected the true value. Also the FAT often 

rejected symmetry. The problems increased with a structural break in the data. 

Second, estimation faults were studied. One fault occurs when it is disregarded that the 

residuals in the regression are non-normal. It appears a fairly harmless problem. Another fault 

occurs if the true model is non-linear. This typically gives a wrong estimate of the parameter, 

but the funnel stays symmetrical till the non-linearity is rather strong. 

Third, omitted variables were analyzed. If everybody fails to include the said variable, 

the funnel becomes symmetric, and the meta average and the plain average both come to 

include the OV-bias. However, if some of the researchers in the field fail to include a certain 

control variable while other researchers do not, it typically causes a funnel asymmetry. Meta 

analysis recommends that the problem is cured by detecting the OV and inserting a binary 

control in the MRA that then becomes the MRA(k). This method is shown to work well. 
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Hence, it is important to know if an observed asymmetry is natural or due to censo-

ring. We consequently recommend the meta analyst to study the funnel, and try to determine 

the reason for the asymmetry is, and then take the appropriate step to adjust for that 

asymmetry. If the adjustment made is the wrong one, the meta average may be worse than the 

plain average. 
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