
SCHOOL OF ECONOMICS AND MANAGEMENT 
 
 
 
 
 
 
 

ECONOMICS WORKING PAPER 2007-12 
 
 
 
 
 
 
 
 

Resurrecting Equilibria Through Cycles 
 

Richard C. Barnett,  Joydeep Bhattacharya and Helle Bunzel 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

UNIVERSITY OF AARHUS 
BUILDING 1322 - 8000 AARHUS C - DENMARK � +45 8942 1133 



Resurrecting Equilibria Through Cycles∗

Richard C. Barnett

Villanova University

Joydeep Bhattacharya

Iowa State University

Helle Bunzel

Iowa State University

July 26, 2007

Abstract

In an overlapping generations model, momentary equilibria are defined as points that lie
on the intergenerational offer curve, i.e., they satisfy agents’ optimality conditions and market
clearing at any date. However, some dynamic sequences commencing from such points may not
be considered valid equilibria because they asymptotically violate some economic restriction of
the model. The literature has always ruled out such paths. This paper studies a pure-exchange
monetary overlapping generations economy in which real balances cycle forever between mo-
mentary equilibrium points. The novelty is to show that segments of the offer curve that have
been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. In-
deed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile
been classified as dynamically invalid.
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The best thing about the future is that it only comes one day at a time.

Abraham Lincoln

1 Introduction

Almost a half century of research has gone into studying stationary and non-stationary equilibria

generated by a standard pure-exchange two-period lived overlapping generations (OG) model.

The textbook version of this model economy is populated by two-period lived agents endowed

with the single consumption good when young and who receive utility from consumption over

their lifetimes, as captured by a strictly concave and time-separable utility function. There may

be an initial old generation endowed with fiat currency, and this asset becomes the sole means by

which agents shift resources over time. As discussed in Azariadis (1993), the law of motion for real

balances (intergenerational offer curve) for the standard “Samuelson case” has two steady states,

one at zero and one at a positive level. The non-monetary (monetary) steady state is locally

stable (unstable). Any sequence of real balances starting to the left of the monetary steady state

eventually converges to the non-monetary steady state; paths to the right are ruled out because

asymptotically, they require agents to hold real balances beyond what their endowment would

allow.1

In this paper, we distinguish between two types of equilibria in the standard OG model with

money described above. Momentary equilibria are points that lie on the intergenerational offer

curve, i.e., they satisfy agents’ optimality conditions and market clearing at any date. However,

some dynamic sequences starting from such points may not be presumed valid because they would

eventually violate some economic restriction of the model (such as, real balances have to stay

bounded above by a young agent’s endowment, and so on). If there exists an asymptotically valid

sequence commencing at a momentary equilibrium point, that point will be called a “dynamically

valid equilibrium” point, and the sequence, a “dynamically valid equilibrium sequence”. Note that

our notion of a momentary equilibrium is distinct from that of a temporary equilibrium (Grand-

mont, 2007). In a temporary equilibrium, markets clear at any date conditional on expectations

of future prices which need not be market clearing ones. 2

1More complicated dynamical patterns in monetary OG models seem to require substantial deviations from the
standard paradigm. Researchers such as Grandmont (1985) have studied non-stationary monetary equilibria in OG
models and established a strong set of conditions (such as backward bending offer curves) needed for two-period
cycles to emerge endogenously. Higher order cycles (which have the potential to replicate realistic time series for
nominal variables in stylized models) require conditions that are even more restrictive than those required to generate
two period cycles. For further discussion, see Bullard and Duffy (1998), Bunzel (2006), and Koskela and Puhakka
(2006).

2Momentary equilibria are the same as perfect foresight temporary equilibria.
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A picture would no doubt illuminate further. Consider a first-order discrete dynamical system

xt+1 = f (xt) where x is an economic variable of interest in some model, t denotes time, and

f (xt) summarizes all points that satisfy agents’ optimality and market clearing conditions at any

date. Assume that economic restrictions require x to stay below x+; also assume that the unique

steady state (x∗) is locally stable. In Figure 1, momentary equilibria are points on the entire curve

IV . The literature has typically ruled out segments such as I+I as being dynamically invalid (see

the discussion surrounding Figure 5.10 in Blanchard and Fischer, 1989) deeming only the solid

segment DV as dynamically valid. 3 After all, starting at any point such as C on the dashed curve

I+I and travelling exclusively along that path towards I will generate a dynamic sequence that

eventually takes xt beyond x+.

However, as shown in the figure, an equilibrium can be constructed in which the economy

cycles forever between points C,A, and B; this renders C dynamically valid because the cycle

CAB always stays in the economically valid range! A major contribution of this paper is to show

that segments of the intergenerational offer curve (such as I+I) that may have been previously

considered invalid, can in fact, be used to produce dynamically valid cyclical paths (such as CAB).4

3Note that at point D, the slope is -1. Since x∗ is locally stable, sequences that start to the left of x∗(but right
of D) and to the right of x∗, eventually converge to x∗. Such points are dynamically valid, because they stay within
the range (0, x+). Points to the left of D get attracted towards I and beyond, taking them outside the range (0, x+).

4Points such as C become dynamically valid if agents believe, correctly, that at some date the economy will

3



We illustrate this fairly general idea using a simple OG model of money. Specifically, the

paper introduces exogenous minimum consumption requirements on young and old agents into

the textbook overlapping generations model with money as the only asset. Agents get utility from

consumption only if it exceeds a certain minimum level (often identified with subsistence). We

characterize the set of perfect-foresight monetary momentary and dynamically valid equilibria in

the model economy. While analytical progress is hindered by the lack of a closed form solution for

the equilibrium law of motion for real balances, it is still possible to show that there is a unique

monetary steady state. We show that three — and higher — period cycles exist. As is well known,

such multi-periodic equilibria may represent time paths for variables which closely resemble their

real world counterparts.5 The model economy generates high order cycles for a wide range of the

parameter space. Also, if the minimum consumption requirement on the consumption of the old is

removed, the economy studied would not produce any cyclical equilibria beyond periodicity two.

In fact, our sole purpose of introducing the minimum consumption requirement is to generate a

non-monotonic time map for real balances and exploit this non-monotonicity to generate cyclical

paths.

The cycles in our model are interesting because they represent periodic behavior of real bal-

ances among momentary equilibrium points, some of which would have been labeled “dynamically

invalid” and ruled out in the aforediscussed literature on cycles in OG models. The novelty here is

to show that such previously-ignored momentary equilibria can get “resurrected” if, for example,

they are part of a cycle. In other words, a cycle can bestow dynamic validity on momentary equi-

librium points (such as C above) that had erstwhile been classified as dynamically invalid. And

while the main premise of the paper is made within the context of an OG model with money, there

is no reason to believe that in principle, a similar argument cannot be made for models without

money.

The plan for the rest of the paper is as follows. Section 2 outlines the model and computes

the law of motion for real balances. Section 3 shows uniqueness of the steady state while Section

4 studies the possibility of periodic behavior. Section 5 concludes.

return to the downward sloped portion of the offer curve, thereby preventing the sequence of money balances from
extending beyond the feasible set. Incidentally, it is strictly not necessary that the path be a cycle. One can imagine
paths that “bounce off” the upward sloping segment onto the segment DV and then converge to the steady state, x∗.
Our thesis, however, is illustrated best with a cyclical path. Parenthetically, also note that it is not necessary that
starting at B, the economy must go to C; it could, for example, go on to a point on the segment DV and eventually
converge to x∗. All we are claiming is that it may be possible to construct an equilibrium cyclical sequence BCA
which would resurrect the dynamic validity of C.

5Our model economy, for example, has the ability to produce time paths for inflation which have the property
that in the short run, moderate inflation is followed by a sharp deflation and then a huge inflation.
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2 The model

The economy consists of an infinite sequence of two-period lived overlapping generations of agents

of unit mass. Let t = 1, 2, ... index time. At each date t, a new generation appears. Each two-

period-lived agent is endowed with w > 0 units of the good when young and nothing when old.

Let ct (xt) denote the consumption of the final good by a representative young (old) agent born

at t. All such agents have preferences representable by the utility function u (ct, xt) where u is

twice-continuously differentiable, strictly increasing, and strictly concave in its arguments and

where

u (ct, xt) ≡
(ct − θt)

1−σ

1− σ
+

β (xt − δt)
1−σ

1− σ
, β, σ > 0. (1)

Here, θt and δt represent the exogenous minimum consumption requirement the agent faces when

young and old respectively. For all that we do below, we will assume θt = θ > 0 and δt = δ > 0

∀t. As will become evident below, θ plays a marginal role in the analysis presented below but is

included here for completeness sake. The parameter β captures the relative importance of old-age

utility relative to young-age utility.

It is important to point out that 1/σ does not have the standard interpretation of the elasticity

of intertemporal substitution. In dynamic models of continuous time, the elasticity is often written

as � = −u0 (ct) /u00 (ct) ct. With a standard period utility with minimum consumption γ, u (c− γ),

� = (c− γ) /σc. This term is increasing in consumption c and lies in the interval (0, 1/σ). For

finite-time horizons, where the time interval between periods is not small — as in the case of

an OG model — the elasticity can be expressed as a weighted average of the first and second

period consumptions, (ζ (ct − θ) /σct + (1− ζ) (c2t+1 − δ) /σc2t+1) . Of course, when θ = δ = 0, �

is constant and equal to 1/σ.6

Agents have access to a competitive market for fiat currency, the sole asset in this economy.

The quantity of money in circulation at the end of period t ≥ 1, per young agent, is fixed and

denotedM . Let 0 < pt <∞ denote the price level at date t and pt+1
pt
≡ πt denote the inflation rate

between period t and t + 1. Then the gross real rate of return on money (Rt+1) between period

t and t + 1 is given by Rt+1 ≡ pt/pt+1 =
1
πt
. Also, let mt ≡ M/pt denote real money balances at

date t. Using the definitions for m and R, it is easily checked that Rt+1 =
mt+1

mt
.

The agent’s problem at date t is simply to choose positive first and second period consumption

that maximize (1) subject to the budget constraints ct = w−mt, xt = Rt+1mt and the constraints

6The intertemporal elasticity of substitution may not be unique in cases with non-homothetic preferences, as
considered here. The problem stems from the fact that there may not be a one-to-one mapping between the ratio
of the marginal utilities and the ratio of consumptions. Typically, the elasticity is simply reported as (c− γ) /σc.
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on minimum consumption, ct ≥ θt and xt ≥ δt, taking Rt+1 as given. The first order condition is

given by

xt − δt
ct − θt

= (βRt+1)
1
σ .

Incorporating the budget constraints, this can be written as

mt+1 − δ

w −mt − θ
= β

1
σ

µ
mt+1

mt

¶ 1
σ

∀t > 1. (2)

The non-negativity constraints on consumption place the restrictions ct ≥ θ and xt ≥ δ for all t.

Using the agent’s first and second period budget constraints, these amount to assuming

δ ≤ mt ≤ w − θ, (A.1)

for all t; (A.1) will be called the “valid range”. 7

3 Steady state equilibria

We restrict ourselves to cases in which mt ∈ <++∀t ≥ 1. All competitive equilibria satisfy (2).

A momentary equilibrium at any date t represents a pair (mt,mt+1) that satisfies the difference

equation (2) and (A.1). Any sequence of momentary equilibrium points {mt}∞t=1 with mt ∈

(δ, w − θ) for all t ≥ 1 will be called a dynamically valid equilibrium sequence; each mt in this

sequence is a dynamically valid equilibrium point.

Setting mt+1 = mt = m∗ > 0 in (2), it is easy to check that the unique positive steady state

is given by

m∗ =
δ + (w − θ)β

1
σ

1 + β
1
σ

> 0. (3)

It will evidently be useful to know if the difference equation implied by (2) is monotonic.

Straightforward differentiation of (2) establishes

dmt+1

dmt
= −

µ
mt+1

mt

¶ 1
σ

β
1
σ

⎡⎢⎢⎣1 +
1
σ

(w −mt − θ)

mt

1− 1
σ

(mt+1 − δ)

(mt+1)

⎤⎥⎥⎦ . (4)

From (4), it follows that the denominator of the term inside the square brackets can be positive

or negative depending on whether

1− 1
σ

(mt+1 − δ)

mt+1
≶ 0⇔ 1 ≶ 1

σ

(mt+1 − δ)

mt+1
.

7The constraint xt ≥ δ imposes that Rt+1mt ≥ δ. Since Rt+1mt = mt+1, the requirement xt ≥ δ translates into
mt+1 ≥ δ. (A.1) follows from the fact that the minimum consumption constraint holds every period and specifically,
that xt−1 ≥ δ.
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Note that if δ = 0, the offer curve is monotonic, the sign of its first derivative depending on σ.

As pointed out, its sign is independent of the minimum consumption constraint on consumption

when young, θ, for all values of mt in the valid range.

Define m̌ as

m̌ ≡ δ

1− σ
> 0 if σ < 1.

The following result is then immediate.

Proposition 1 When σ < 1, for mt+1 > m̌, dmt+1

dmt
> 0 holds, and for mt+1 < m̌, dmt+1

dmt
< 0

holds. At mt+1 = m̌,
¯̄̄
dmt+1

dmt

¯̄̄
=∞. When σ > 1, dmt+1

dmt
< 0 for all mt,mt+1 in the valid range.

In other words, when σ < 1, the possibility arises that the intergenerational offer curve given

by (2) is non-monotonic. As is well known, a necessary (but not sufficient) condition for complex

dynamics (cycles of order higher than two, etc.) is that the slope of the offer curve change sign.

Henceforth, we restrict our attention to σ < 1.8 In this case, the offer curve described implicitly by

(2) is a correspondence in the forward dynamics, in much the same fashion as shown in Figure 1.

In the standard model without minimum consumption requirements, as discussed in Grandmont

(1985) and Boldrin and Woodford (1992), the offer curve bends backwards for very high returns

to money (measured by the ratio mt+1/mt), due to the fact that the income effect of an increase

in the return dominates the substitution effect. In the present case, the situation is reversed; the

offer curve bends backwards for low returns on money.

Heuristically, when the interest rate is low, the agent must hold large cash balances in order

to ensure that his consumption when old will exceed the minimum δ. Further reductions in the

return on money forces him to hold even more cash to satisfy the minimum. However, holding

more cash balances puts him closer to the young-age minimum consumption requirement, θ. The

return can fall only so low — to δ/ (w − θ), to be exact — for at that return the agent holds w − θ

in real balances and he just meets the young and old age minimum consumption requirements (θ

and δ, respectively). This describes, intuitively, the downward sloped portion of the offer curve.

Much the same thing happens initially along the upward sloped part of the curve. For low cash

balances, the return mt+1/mt as measured along this portion of the curve may fall, despite the

fact that mt+1 is rising. Facing falling returns, the agent compensates by holding more balances

mt in order to exceed the consumption minimum δ. At some point, however, further reductions

in young-age consumption must be accompanied by a higher return; the offer curve then reflects

8When σ > 1, it is easily checked that (2) is downward sloping everywhere. In that case, it is possible to check
that two (but no higher) period cycles around m∗ are potentially possible.
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the typical positive relationship between saving and rate of return.9

It will be readily apparent that more information on the various configurations of (2), and on

the position of the steady state relative to the turning point (m̌) will be useful below. To that end,

note that our focus is restricted to mt+1 ≥ δ and mt ≤ w − θ (see (A.1) above). When mt+1 = δ,

(2) yields mt = w − θ in the valid range for mt; similarly, when mt = w − θ, (2) yields mt+1 = δ.

This gives us the endpoints of the offer curve.

If m∗ > m̌ holds, the steady state m∗ is on the upward sloping portion of the offer curve

implying the slope at the steady state is positive and greater than 1. The condition m∗ > m̌ can

be expressed as

δ + (w − θ)β
1
σ

1 + β
1
σ

>
δ

1− σ
⇐⇒ β

1
σ >

δσ

(1− σ) (w − θ)− δ
. (5)

The following lemma is then immediate.

Lemma 1 Define m̃ as mt+1 (m̃) =
δ
1−σ . Then m̃ ≥ δ

1−σ ⇔
σδ

((1−σ)(w−θ)−δ) ≤ β
1
σ or m̃ ≥ δ

1−σ

holds under (5).

Notice that m̃ is the mt-coordinate of the turning point mt+1 =
δ
1−σ ≡ m̌. Also, m̃ ≥ δ

1−σ

holds under exactly the same condition as for the steady state to be on the upward sloping part

of the curve. Note also then, that in this case mt ∈ [m̃, w − θ] and m̃ exceeds m̌ ≡ δ
1−σ . This is

depicted in Figure 2a.

9As noted, as mt approaches the maximum w − θ, the agent must be compensated with increasingly higher
returns in order to compensate for the decrease in young-age utility; this is reflected in the shape of the upper
portion of the offer curve. This, however, does not occur along the downward portion of the curve. Here, the
additional consumption the agent receives when old from holding an extra unit of cash goes a long way. The agent’s
consumption when old is close to the minimum δ, so the marginal gain in utility when old from holding an additional
unit of cash is large and compensates for the large loss in utility when young as mt approaches its upper bound (ct
approaches θ).
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Figure 2a: Eq. (2) with the steady state on the upward sloping portion.

The steady state m∗, shown on the figure by a pink dot, is locally unstable. It follows that it is

not possible to travel exclusively along the path described by the upward (or downward) sloping

portion of the offer curve and stay in the economically valid region forever. Put differently, any of

the momentary equilibrium points on the upward or downward sloping portion of the offer curve

cannot by itself generate a dynamic sequence (along the offer curve) that stays asymptotically in

[δ,w − θ].

In Figure 2b, the steady state m∗ is on the downward sloping portion of (2) and δ < m̃ < m̌.

In other words, the turning point (m̃) occurs to the left of δ/ (1− σ) but still to the right of δ.

This means that for mt ∈ [m̃, w − θ] , the corresponding mt+1 will lie in the valid range of [δ,∞) .

As in Figure 1, it is not possible to travel exclusively along the path described by the upward

sloping portion of the offer curve and stay in the economically valid region forever. Additionally,

if the steady state is locally unstable (see Proposition 2), the same would be true of points on the

downward sloping segment as well.
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Figure 2b: Eq. (2) with the steady state on the downward sloping portion.
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Figure 2c: Eq. (2) with the steady state on the downward sloping portion and m̃ < δ.

Finally, in Figure 2c, the unique steady state is again on the downward sloping segment of the

law of motion; additionally m̃ is now to the left of δ. The implication is that formt ∈ [m̃, w − θ] , the
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corresponding mt+1 will no longer lie in the valid range of [δ,∞) . Hence, there is a discontinuity at

mt = δ (marked on the figure by a dashed curve). This case in particular perhaps best illustrates

our main point — the upper selection of the correspondence describing points that satisfy (2) is

completely disconnected from its more familiar lower half, and, as in the previous cases, iterates

of this mapping will not generate sequences that stay in the economically valid region forever.

Before closing this section, we consider the local stability properties of the steady state. Note

that if the steady state is stable in the forward dynamics, it is unstable in the backward dynamics.

Proposition 2 If

A) δ ≤ β
1
σ (1−σ)(w−θ)

σ+β
1
σ

holds, m∗ is unstable and lies on the upward sloping segment (as in Figure

2a).

B)
σ(w−θ) β

1
σ

2
+(2−σ)(w−θ)β1/σ

σ+(2−σ)β1/σ ≤ δ,holds, m∗ is stable and lies on the downward sloping segment

(as in Figure 2b or 2c).

C) β
1
σ (1−σ)(w−θ)

σ+β
1
σ

≤ δ ≤
σ(w−θ) β

1
σ

2
+(2−σ)(w−θ)β1/σ

σ+(2−σ)β1/σ holds, m∗ is unstable and lies on the downward

sloping segment.

As evident from the three cases A) - C) in Proposition 2, the level of δ (the minimum con-

sumption requirement facing the old) matters crucially. When δ is low enough, the unique steady

state is unstable on the upward sloping part of the offer curve. Beyond that, the steady state is

on the downward sloping portion; in the intermediate range, it is locally unstable, and in the high

range, it is locally stable (unstable in the backward dynamics).

Before proceeding, it is useful to summarize the salient features of our results. Thus far, we

have shown that there is a unique steady state level of real balances. The dynamic law of motion

for real balances is non-monotonic (it is a correspondence in the normal forward dynamics) opening

up the possibility for complex dynamics. Three separate configurations are possible: a) the steady

state is on the upward sloping segment of the law of motion, b) the steady state is on the downward

sloping segment of the law of motion and the turning point is in the valid range of real balances,

c) the steady state is again on the downward sloping segment but there is a discontinuity because

the turning point is outside the aforementioned valid range. In each case it is not possible to travel

exclusively along the path described by the upward sloping portion of the offer curve and stay in

the economically valid region forever. Such momentary equilibrium points (such as those on the

upward sloping portion of the offer curve) have traditionally been ruled out by standard textbook

treatments and in the literature. In the next section, we study the possibility of cycles among

such momentary equilibria and show that they may be indeed be dynamically valid as part of a

periodic sequence.
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4 Periodic equilibria

For most of this section, we focus on 3-period cycle equilibria. These are conveniently summarized

by a triplet (ma,mb,mc), ma 6= mb 6= mc, with elements satisfying (A.1), and together, the system

of equations:

mb − δ

w −ma − θ
= β

1
σ

µ
mb

ma

¶ 1
σ

(6)

mc − δ

w −mb − θ
= β

1
σ

µ
mc

mb

¶ 1
σ

ma − δ

w −mc − θ
= β

1
σ

µ
ma

mc

¶ 1
σ

which represent the respective first-order conditions (2) for each date. Trivially, the steady state

satisfies (6) with ma = mb = mc = m∗.

More generally, when the offer curve is continuous, the existence of a homoclinic orbit around

the steady-state ensures the existence of cycles of all orders.10 To that end, in Figure 3, we

illustrate such an orbit for our system.11 Notice that the steady state is locally unstable in the

backward dynamics. On the homoclinic orbit, a path that is repelled away from the steady state

eventually gets attracted to it.

 

mt

mt+1 

Figure 3: A homoclinic orbit.
10A homoclinic point lies in the neighborhood of a unstable steady state and converges to the steady state after n

iterations. A homoclinic orbit is non-degenerate if its slope is bounded away from zero. Devaney (1989) establishes
that if a map f admits a non-degenerate homoclinic point to the steady state, then in every neighborhood of the
steady state f admits periodic orbits of periodicity 2k, where k = 1, 2, .... In our case, these periodic orbits must
include points located on both the upward and the downward segments of the offer curve.
11For the parameter configuration used in Example 1, a homoclinic orbit is given by 0.141, 0.101, 0.264, and 0.115

(the steady state).
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The following examples illustrate some of the salient features of our model. The first thing

to note is that since the steady state on the upward sloping segment of the offer curve is locally

unstable in Figure 2a, no cycles are possible under that configuration. We now illustrate some

periodic sequences that are possible in the configurations described in Figures 2b and 2c. In each

of these cases, the steady state is locally stable in the forward dynamics.

Example 1 Suppose δ = 0.1, w = 1, θ = 0.1, β = 0.2528, and σ = 0.35. Then, the economy cycles

forever between real balance levels, 0.10012, 0.14863, and 0.45002. The steady state level of real

balances is given by m∗ = 0.11540 and m̌ = 0.15385. The law of motion is continuous (m̃ = .10001)

and is depicted (not to scale) in Figure 4.

.45002 

.14863 

.10007 

     δ/(1-σ) = .15284 

.10007 .45002 .14863 mt

mt+1 

A

B

C

Figure 4: The three-period cycle in Example 1 (not to scale).

In the economy of Example 1, real balances cycle forever between CAB as depicted in Figure

3. The sequence CAB constitutes a dynamically valid equilibrium since points C,A, and B satisfy

13



(A.1). The previous literature would have ruled out point C, since it lies on the dynamically

invalid portion of the offer curve. Consequently, the possibility of CAB being a dynamically valid

equilibrium would similarly have been ignored. Interestingly, it is the very existence of the cycle

that resurrects the dynamic validity of point C. Therein lies the essence of this paper.12

It is fairly easy to generate cycles of periodicity higher than three in this environment.13

Example 2 (5-period cycle) For the parametric specification outlined in Example 1, the economy

cycles forever between real balance levels, 0.1039, 0.1290, 0.3387, 0.1003, and 0.1640.

We close this section with an example of a three-period cycle for the case in which the law of

motion is discontinuous.

Example 3 Suppose δ = 0.15, w = 1, θ = 0, β = 0.42, and σ = 0.2.Then, the economy cycles

between real balance levels, 0.15006, 0.21087, and 0.39847. The steady state level of real balances

is given by m∗ = 0.16096 and m̌ = .18750. The law of motion is discontinuous (as in Figure 2c)

since m̃ = .14710 < δ = 0.15. The example is depicted in Figure 5.14

12We are not claiming the economy must transgress to a point on the upward sloped portion of the curve, such as
point C in our example. Whenmt = .14863, there is a perfectly valid momentary equilibrium value formt+1 < .14863
on the downward sloped part of the offer curve. This sort of equilibrium sequence - one restricted to the downward
sloped part of the curve - converges asymptotically to the steady state m∗ = 0.11540.
13The celebrated Li-Yorke theorem does not apply here since the law of motion does not map a compact interval

onto itself. Hence, establishing topological chaos via the “Li-Yorke route” is not possible.
14 Incidentally, it is possible that an economy can support multiple 3-period cycles. For instance, a cycle with real

balances 0.15040, 0.17125, and 0.28264 is an equilibrium for the economy described in Example 3. This result does
not stem from the discontinuity in the offer curve: the 3-period cycle 0.10007, 0.15817, and 0.50723 obtains for the
Example 2 economy.
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.39847 

       .21087 .39847 
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Figure 5: A three-period cycle for the economy in Example 3

Figure 4 illustrates the major contribution of the paper. It presents two separate segments of

the intergenerational offer curve. On its own, the disjoint upward sloping segment would have

been ruled out in the previous literature. Together with the downward sloping portion, however,

they allow for the possibility of a dynamically valid cyclical sequence, such as BCA. Such a cycle

bestows dynamical validity to points such as A and B.

5 Concluding remarks

A substantial amount of research has sought to understand the role of nonlinearity and periodic

behavior in monetary macroeconomic models. Much of it has focussed on the possibility of gen-

erating periodic equilibria in reasonable-looking environments. To the best of our knowledge, all

existing work in this area has restricted its attention on what Aguiar-Conraria and Shell (2006)

call “long-run perfect foresight” equilibria. These are equilibrium sequences that stay economi-

cally valid asymptotically and expectations of agents on such paths are always fulfilled. A central

point of Aguiar-Conraria and Shell (2006) is that this notion of notion of long-run perfect foresight

equilibrium may be “too rigid” in an OG model where agents currently alive have to “predict the
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market behavior of all future generations”. In their setup, there is a bubble that bursts eventually

in that agents’ expectations are ultimately unmet, but for a long while, expectations are fulfilled.

In our present case, there may be cyclical paths on which the money bubble does not asymptot-

ically burst, paths that would have been ignored by the previous literature. These paths contain

momentary equilibrium points located along the upward sloped selection of the correspondence

described implicitly by (2). Such points become dynamically valid precisely because agents believe

that at some date, the economy will return to the downward sloped portion of the offer curve,

thereby preventing the sequence of money balances from extending beyond the feasible set.

Though we haven’t discussed it in this paper, cycles among momentary equilibria are more

prevalent when a government that finances a deficit by seigniorage is introduced into the model.

Indeed, it is possible to produce examples of economies where cycles obtain only when there is some

positive level of seigniorage-financed government spending. Additionally, it appears a framework

similar to ours should be capable of generating interesting chaotic and sunspot equilibria. Both

seem potential avenues for further study.
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Appendix

A Proof of Proposition 2

A) The proof of Proposition 2 A) follows from Lemma 1 along with the fact that the lim
mt→w−θ

dmt+1

dmt
=

∞. This latter point can be noted by rewriting (2) as

mt+1 − δ

m
1
σ

t+1

= β
1
σ

µ
1

mt

¶ 1
σ

(w −mt − θ)

The left-hand side is approximately m
1− 1

σ
t+1 for large values of mt+1. When mt = w − θ, the

right-hand side equals 0, so it follows that lim
mt→w−θ

mt+1 =∞ when σ < 1.

B) and C) On the downward sloping part of the offer curve,

β
1
σ ≤ σδ

((1− σ) (w − θ)− δ)
⇔ β

1
σ (1− σ) (w − θ)

σ + β
1
σ

≤ δ (7)

holds. The steady state is stable when

dmt+1

dmt
|m∗ > −1,

or

dmt+1

dmt
|m∗ + 1 > 0.

Using (4) and the expression for m∗,

w −m∗ − θ =
w − θ − δ

1 + β
1
σ

the slope condition reduces to

dmt+1

dmt
|m∗ + 1 =

−
∙
1
σβ

1/σ

µ
w−θ−δ
1+β

1
σ

1+β
1
σ

δ+(w−θ)β 1σ

¶
+ 1+β

1
σ

w−θ−δ

µ
δ+(w−θ)β 1σ
1+β

1
σ
− δ

¶¸
1− β1/σ

σ

µ
w−θ−δ
1+β

1
σ

1+β
1
σ

δ+(w−θ)β 1σ

¶ + 1

which reduces further to

dmt+1

dmt
|m∗ + 1 =

1− 2β
1/σ

σ

µ
(w−θ−δ)

δ+(w−θ)β 1σ

¶
− β

1
σ

1− β1/σ

σ

µ
(w−θ−δ)

δ+(w−θ)β 1σ

¶ .

Note that the denominator is positive, since

1− β1/σ

σ

Ã
(w − θ − δ)

δ + (w − θ)β
1
σ

!
> 0⇔ β1/σ <

σδ

((1− σ) (w − θ)− δ)
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which holds on the downward sloping part of the offer curve under (7). What remains, then is to
find conditions under which the numerator is positive. When this holds, the steady state will be
stable. It is easy to check that

1− 2β
1/σ

σ

Ã
(w − θ − δ)

δ + (w − θ)β
1
σ

!
− β

1
σ > 0⇔ δ >

σ (w − θ)
³
β
1
σ

´2
+ (2− σ) (w − θ)β1/σ

σ + (2− σ)β1/σ

and that (7) implies

β
1
σ (1− σ) (w − θ)

σ + β
1
σ

>
σ (w − θ)

³
β
1
σ

´2
+ (2− σ) (w − θ)β1/σ

σ + (2− σ)β1/σ

never obtains.
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