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Abstract

A problem encountered in, for instance, growth empirics is that the number of

explanatory variables is large compared to the number of observations. This makes

it infeasible to condition on all variables in order to determine the importance of a

variable of interest. We prove identifying assumptions under which the problem is

not ill-posed. Under these assumptions, we derive properties of the most commonly

used methods: Extreme bounds analysis, Sala-i-Martin’s method, BACE, general-

to-specific, minimum t-statistics, BIC and AIC. We propose a new method and show

that it has good finite sample properties.
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1 Introduction

The objective in many empirical applications is to determine the importance of a particu-

lar explanatory variable of interest. When only small or undersized samples are available

for the analysis, researchers often have to work with models of relatively low dimension.

For example, many studies of GDP growth try to determine the importance of a variable

while controlling for other variables believed to be important, see e.g. Durlauf, Johnson

and Temple (2005) who list 145 variables that have been claimed to be important. Once

interaction terms are included, there are often more parameters to be estimated than

observations in the data set; that is, the sample is undersized. Faced with this problem,

some researchers choose a low-dimensional model using a model selection criterion. Others

consider a (large) number of low-dimensional models and use sensitivity analysis to assess

the "robustness" of the variable of interest. Either approach is characterized by inferring

the importance of the variable of interest using models or combinations of models with

lower dimension than the model which includes all variables believed to be important. In

this paper, we establish key identification results and investigate the properties of using

such approaches to determine the importance of a variable of interest.

The importance of a variable in a regression is typically measured as its partial effect

on the dependent variable. The partial effect depends on which variables are included in

the regression. In this paper we assume that the importance of a variable is the partial

effect in a particular regression, which is specified before the empirical analysis begins.

In many applications, this would be the regression which includes the variable of interest

and all other variables believed to be important. Whether this particular regression is a

structural form or a reduced form is not the emphasis here. In this paper we focus on

determining the importance of the variable of interest in a particular regression by means

of regressions which include fewer variables.

We begin the analysis by posing a fundamental question: Is it possible to infer the par-

tial effect of a variable when the sample is undersized? In general, inference is impossible

under the assumptions usually imposed in a regression context. This amounts to stat-

ing that the problem is an ill-posed inverse problem (see Carresco, Florens and Renault

(2003) for a recent treatment of ill-posed inverse problems in econometrics). The answer

to the fundamental question is independent of the method applied. Thus, no method

can identify the importance of a variable with an undersized sample unless additional

assumptions are satisfied.

We find three cases of additional assumptions under which inference about the partial

effect may be possible with an undersized sample. The three cases are: 1) The variable of
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interest is conditional mean independent of a subset of the important variables; 2) only

a subset of the variables are important; and 3) an instrument exists for the variable of

interest. These assumptions are similar to the circumstances under which an omitted

variable does not cause a bias. This is not surprising since the various approaches are

all based on models of lower dimension; that is, models which omit some of the variables

believed to be important. Contrary to the archetypical omitted variable bias problem,

the omitted variables are known in the setting considered here. We exploit this fact

to construct a method that makes inference possible with an undersized sample. Since

inference on the partial effect may be possible in these three cases, they are also the basis

for our investigation of the different methods that have been used in the literature.

One set of methods is Bayesian in spirit and builds on Leamer (1983). Essentially he

argues that a variable is important if the partial effects of the variable in all regressions

involving different subsets of important variables are significant and all have the same

sign. He denotes such a variable "robust". The method is known as "extreme bounds

analysis" and was first implemented in a growth context by Levine and Renelt (1992).

Sala-i-Martin (1997) criticizes extreme bounds analysis because a variable is likely to be

insignificant in at least one regression if enough regressions are run. As an alternative,

Sala-i-Martin suggests a method based on the distribution of estimates over different

models. This approach is further developed in Sala-i-Martin, Doppelhoffer and Miller

(2004), who build on the Bayesian model averaging technique. They call their approach

"Bayesian averaging of classical estimates". The robustness of a variable is determined

by the average of the estimates over different models. Hansen (2003) develops another

variant of Leamer’s approach which takes the multiple testing problem into account and

uses the bootstrap method proposed by White (2000). A common characteristic of all

of these methods is that the robustness of a variable is defined for a given sample and

not linked to the importance of the variable in the population; that is, when there is no

sampling uncertainty. These links are clarified later in this paper so that the ability of

the methods to determine importance can be analyzed.

Model selection methods are classical methods used to investigate the importance

of a variable. Criteria such as AIC and BIC can be employed to choose the subset of

variables to be included in the "best" model, and whether a variable is important or not

is determined by whether it is included in the chosen model or not. The refined general-to-

specific procedures suggested by Hoover and Perez (2004), Bleaney and Nishiyama (2002)

and Hendry and Krolzig (2004) can be similarly applied.

We derive the ability of both the classical and Bayesian methods to determine the

importance of a variable with an undersized sample. Our results show that none of the
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above mentioned methods work in cases 1) and 3) of the three cases where the partial

effect of a variable is identifiable. Some of the methods work in case 2) where only a

subset of the variables is important. This case, however, is less interesting in the sense

that the model with all variables believed to be important is low dimensional, that is, the

sample is not undersized. Consistency of model selection methods is usually proved under

this assumption. When the undersized sample manifests itself as more variables being

important than can be included in the regressions, none of the above mentioned methods

work.

Using Monte Carlo simulation, we investigate the finite sample properties of the meth-

ods in a setting, where there are more important variables than variables among the

regressions included in the model search. The estimators of the partial effect are sub-

stantially biased. As a result, tests of the partial effect being different from 0 have poor

power. Some of the methods have a higher probability of accepting the importance of

a variable when it is not important than when it is important. The Monte Carlo study

confirms that none of the methods work when there are more important variables than

observations. As mentioned, we develop a method based on finding a sufficient number of

variables which are conditional mean independent of the variable of interest. The Monte

Carlo study shows that the method has the correct size and good power against the null

of no partial effect of the variable.

The outline of the paper is as follows. In section 2 we prove an impossibility theorem

and provide three conditions under which the importance of a variable is identifiable.

Then in section 3, we derive properties of the existing methods. Section 4 describes the

new method for estimating and testing the partial effect of a variable, and in section 5 the

different methods are compared in a Monte Carlo study. Section 6 concludes the paper.

All proofs are in the appendix.

2 Identifiability of a partial effect

In this section we consider identifiability of the partial effect of the variable of interest.

When an effect is not identifiable it means that the effect cannot be identified with any

method. The partial effect in the linear regression considered here is simply the coefficient

of the variable. We show that in general the partial effect is not identifiable when the

sample is undersized. As a consequence, it is necessary to search for special cases, e.g. by

adding information. We provide three such cases where the partial effect is identifiable.

The problem is to determine the partial effect of, say,X1 on the conditional expectation

of Y . Let N be the number of observations and K the number of variables believed to
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be important. The remaining (K − 1) regressors are X2,..,XK. The regression with all

regressors believed to be important is

E(Y | X1, X2, .., XK) = β1X1 + β2X2 + ..+ βKXK . (1)

We use the terminology of Goldberger (1991) and refer to (1) as the "long" regression

as opposed to a "short" regression with Ks < K regressors. Assume that Ks ≤ N . For

simplicity, assume that E(Xk) = 0, k = 1, ..,K. The population partial effect of X1 is β1.

In some empirical studies, the objective is only to determine whether or not the variable is

important but not the size of the partial effect. This translates into determining whether

β1 = 0 or β1 6= 0.
We first prove that in general the partial effect, β1, of the regressor, X1, is not identi-

fiable in (1) under the assumptions normally imposed in a regression context. The reason

is that both the parameter space and the correlations between the X’s are unrestricted.

This leads to the following impossibility theorem:

Theorem 1 (Impossibility) Assume the regression is (1), E [(X1, ..,XK)
0(X1, ..,XK)]

has full rank, and that the sample is undersized (N < K). Then β1 is not identifiable.

Rao (1973) discusses non-estimable (or confounded) functionals of the parameter vec-

tor in a linear regression. The result stated in the impossibility theorem can be viewed

as a proof that a specific functional is non-estimable. The theorem rules out that com-

binations of regressions with fewer regressors than observations can be used to infer the

value of β1. The theorem also rules out the possibility of finding informative bounds, see

Cross and Manski (2002).

The impossibility theorem implies that inference on β1 is only possible if information

is added to (1). Such information could come from economic theory, which for example

might imply that certain β’s are zero or from exclusion restrictions which would permit

the use of instrumental variables. We will formally show below that such information

can make the partial effect identifiable without assuming the undersized sample away.

Another possibility to add information is to impose priors on the coefficients. Then it

will be possible to estimate β1 using a method of regularization e.g. ridge regression, see

Mittelhammer, Judge and Miller (2000). Another regularization method is conditioning

on a subset of principal components, see e.g. Stock and Watson (2002). These methods

make estimation of β1 possible, but the consistency of such methods depends on the

sample not being undersized. For example, this can be obtained by assuming that the

long regression (1) can be represented by a factor model with relatively few factors.
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We first show that the regressors may be related in such a manner that the partial effect

is identifiable without exclusion restrictions. This is the case when X1 is not correlated

with at least (K −N) of the regressors conditional on the remaining regressors.

Theorem 2 (Identification by conditional mean independence) In addition to the

assumptions in Theorem 1, assume:

(O) There exists a subset, A, of {X2, .., XK} with (K − Ks) members such that the

coefficient of X1 is 0 when any variable in A is linearly regressed on X1 and all variables

not in A.

Then β1 is identifiable.

The theorem shows the similarity between the present problem and the problem of

omitted variable bias in a well-posed setting but there is a difference. In the omitted

variable bias problem, the coefficient of X1 can be identified when E(Xj | X1, A
c) is

known for all Xj ∈ A, provided it differs from a linear index. When the problem is

ill-posed, knowing E(Xj | X1, A
c) only helps if X1 is not important in the long regression.

Another type of additional information is the assumption that (K −Ks) regressors in

(1) are not important. This is equivalent to assuming that (K −Ks) of the β’s equal 0.

Theorem 3 (Identification by true submodel) In addition to the assumptions in The-

orem 1, assume:

(S) At least (K −Ks) of the coefficients (β1, .., βK) equal 0.

Then β1 is identifiable.

Assumption (S) is a minimal assumption in the sense that weakening this assumption

implies that other assumptions must be imposed. The true submodel case implies that it

is possible to perform the correct regression. In the proof of proposition 6 presented later

in the paper it is shown that if C is the set of regressors with non-zero coefficients, then

this model is characterized by having the lowest expected conditional variance, E(V (y |
C)). The expected conditional variance is a measure of model fit. Hence, the expected

conditional variance can be used to identify the correct model and, as we will show in the

next section, many of the model selection methods are in fact based this measure.

The final possibility of identifiability we consider here is based on an instrument; that

is, a variable which is excluded from the long regression (1). The instrument is assumed

to be uncorrelated with all the regressors except X1.

Theorem 4 (Identification by instrument) In addition to the assumptions in Theo-

rem 1, assume:
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(I) (K − Ks) ≥ 2, and there exists a variable, Xk, k 6= 1, such that βk = 0, Xk is

correlated with X1, and Xk is not correlated with the remaining regressors.

Then β1 is identifiable.

To avoid overlaps with assumption (O) and (S), we assume (K−Ks) ≥ 2. Apart from
the undersized sample aspect, assumption (I ) is similar to the usual restrictions imposed

on an instrumental variable. The assumption implies that Xk can be used as instrument

for X1 in a model where the remaining variables are not included. A difference between

the present and the usual instrumental variable case is that the correlation between the

instrument and variables not included in the short regression is observable.

3 Identifying the partial effect with existing methods

In this section we investigate Bayesian and classical methods that are used to dimension

reduction. Based on the general results in section 2, we analyse the properties of these

methods in the three cases, where the partial effect is identifiable. The new understanding

of the properties of these methods helps fill a void, see Durlauf (2001) and Durlauf,

Johnson and Temple (2005). Under each of the three cases, we prove whether or not a

method identifies the partial effect or, at least, whether or not it can identify if a variable

is important.

In practice, the short regressions must be estimated with some degrees of freedom.

Therefore, we assume that at most Ks(< N) variables are included in a short regression.

The problem, however, is still one of an undersized sample since K > N . It is worth

stressing that the results in this section are equally valid if the sample is not undersized.

The defining property of the problem is that Ks < K, that is, the long regression (1) is

not included among the short regressions.

3.1 Extreme bounds analysis

The extreme bounds analysis (EBA) of Leamer (1983) and Levine and Renelt (1992)

defines the variableX1 as robust if the estimates of its coefficient are significantly different

from 0 and have the same sign in all the short regressions with X1. Other authors

have slightly different definitions of robustness, see the next subsections. All authors

agree, however, that the idea of robustness is to determine whether or not the variable is

important, see the discussions in Sala-i-Martin (2001) and Durlauf, Johnson and Temple

(2005). Therefore, we treat robustness as an estimator of the importance of a variable.
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Most of the other methods provide a point estimator of β1, whereas extreme bounds

provides an interval.

In a well-posed setting, extreme bounds have been criticized by various authors.

McAleer, Pagan and Volcker (1985) derive the probability that a variable is robust.

Breusch (1990) calculates the extreme bounds based on the long regression. Their re-

sults are closely related to our results below. Granger and Uhlig (1990) derive the extreme

bounds over the short regressions that have a reasonable fit (in terms of R2) relative to the

best and worst fitting models. McAleer (1994) reiterates the points made in McAleer et al.

(1985) and criticizes Levine and Renelt (1992) for not reporting diagnostic tests. Despite

this criticism, the extreme bounds analysis continues to enjoy wide-spread popularity.

Let γi1 be the (population) coefficient to X1 in a short regression, i, of Y on X1 and

at most (Ks − 1) other regressors, and let the set of all such short regressions be F . The
next proposition concerns the population properties of extreme bounds under the three

identifyability conditions from section 2.

Proposition 5 (Extreme bounds analysis) The extreme bounds analysis selects the

interval
∙
min
i∈F

γi1 , max
i∈F

γi1

¸
for the population partial effect of X1.

Under assumption (O), the extreme bounds analysis selects an interval containing the

partial effect but does not identify importance of the variable X1.

Under assumption (S) or (I), the extreme bounds analysis does not identify an interval

containing the partial effect β1 nor the importance of the variable X1.

The proposition shows that extreme bounds analysis is not a consistent procedure for

determining whther a regressor is important in the long regression. Under the conditional

mean independence assumption (O) the extreme bounds analysis identifies an interval

which contains the partial effect. Importance of the variable, however, cannot be deter-

mined under any of the three assumptions because the coefficient on X1 can change sign

across short regressions. Under the true submodel assumption (S) there is no guaran-

tee that the extreme bounds contains 0 in case the true submodel does not include X1.

Similarly under assumption (I), X1 may be unimportant, but the interval given by the

extreme bounds need not contain 0.

3.2 Sala-i-Martin’s method

Sala-i-Martin (1997) motivates his approach as an alternative to the extreme bounds

analysis which better takes sampling uncertainty into account. He considers a setup

in which all the short regressions have the same number of explanatory variables and
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always include the variable of interest X1. Among the different versions of the method he

presents, we focus on the one from his general setup:

CDF (0) =
mX
i=1

wiCDFi(0),

where wi is the weight of short regression i, CDFi (0) =Max(Φ(bγi1/bσγi1), 1−Φ(bγi1/bσγi1)),bγi1 is the OLS estimator and bσγi1 the standard error. The quantity CDFi(0) can be

interpreted as the largest of the two following p-values: The p-value from the one-sided

tests of the coefficient to X1 being 0 against larger than 0 and the p-value from the one-

sided test against the coefficient being below 0. A variable is important (or "robust"

in Sala-i-Martin’s terminology) if CDF (0) is larger than 0.95. Sala-i-Martin assumes

conditional normality of Y in all the short regressions. The weight of model j is then

defined as:

wj =
SSE

−N/2
j

mX
i=1

SSE
−N/2
i

,

where SSEj is the sum of squared errors in model j. Sala-i-Martin uses γ̂SiM1 =
mX
i=1

wj γ̂
i
1

as an estimator of β1 in another of his setups. We also use it for the general setup.

The next proposition shows that Sala-i-Martin’s method cannot determine the impor-

tance of X1 because it does not identify β1.

Proposition 6 (Sala-i-Martin’s method) Let Z be a subset of {X2, .., XK} with (Ks−
1) members. Sala-i-Martin’s method selects the coefficient of X1 in the short regression

with minimum E(V (Y |X1, Z)) as the population partial effect of X1. In case several short

regressions achieve the minimum E(V (Y |X1, Z)), the partial effect is a weighted average

of the coefficients of X1 in those short regressions.

Under assumption (O), (S) or (I), Sala-i-Martin’s method does not identify the partial

effect nor the importance of the variable X1.

Sala-i-Martin’s method chooses the best fitting population short regression with X1

(in terms of minimum E(V (Y |X1, Z))). As a consequence, the method cannot determine

importance correctly under any of the assumptions proposed in section 2. It does not work

under assumption (O), because the only short regression with an unbiased estimator of β1
is the one with the conditional mean independent regressors and that short regression may

not be the best fitting. The method does not work under the true submodel assumption

(S), because the true submodel may not include X1 and therefore is not part of the
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estimator, γ̂SiM1 , of β1. The true submodel, however, is the only regression guaranteed to

provide an unbiased estimator of β1. The method would be consistent under assumption

(S) if the method is modified to a search over all short regressions. Finally, under the

instrument assumption (I ) the estimator of β1 is biased in any short regression.

3.3 BACE

A simplified version of Bayesian model averaging is implemented by Sala-i-Martin, Dop-

pelhoffer and Miller (2004). They call their version Bayesian Averaging of Classical Esti-

mates (BACE). A closely related application of Bayesian model averaging is considered by

Fernandez, Ley and Steele (2001). It is necessary to assume a distribution of Y . Following

Sala-i-Martin, Doppelhoffer and Miller (2004) we assume conditional normality of Y .

All short regressions are included in the averaging, also ones without the variable of

interest. Let C∗ be the total number of short regressions. The posterior probability of

the j’th short regression, Mj, is:

P (Mj | y) =
P (Mj)N

−kj/2SSE
−N/2
j

C∗X
i=1

P (Mi)N−ki/2SSE
−N/2
i

, (2)

where P (Mi) is the prior probability of model i. Sala-i-Martin et al. suggest using
_

k/K

as prior probability for each variable, where
_

k is the average model size. The BACE

estimator, bγSDM
1 , of β1 is the weighted average of the estimators from each model with

model posterior probabilities as the weights:

bγSDM
1 =

C∗X
i=1

bγi1P (Mi | y),

where bγi1 is the estimator of β1 in model i.
The next proposition states the properties of BACE for the three cases from section

2.

Proposition 7 (BACE) Let Z be a subset of {X1,X2, ..,XK} with at most Ks members.

Assume conditional normality of Y . BACE selects the coefficient of X1 in the short

regression with minimum E(V (Y |Z)) as the population partial effect of X1. In case

several short regressions achieve the minimum E(V (Y |Z)), the partial effect is a weighted
average of the coefficients to X1 in those short regressions.

Under assumption (O) or (I), BACE does not identify the partial effect nor the im-

portance of the variable X1.

10



Under assumption (S), BACE identifies the partial effect and, thus, the importance of

the variable X1.

The BACEmethod works under assumption (S), because the true submodel minimizes

E(V (Y |Z)). Under assumption (O), there is no guarantee that X1 is included in the best

fitting short regression even if it is important. If this is the case, the partial effect of X1 is

estimated to be 0. It may also happen that the best fitting short regression includes X1

though X1 is not important due to omitted variable bias. The same may happen under

assumption (I ).

3.4 General-to-specific

The basic general-to-specific procedure has been refined by Hendry and Krolzig (2004)

and Hoover and Perez (2004). In a sufficiently large sample case, the procedure begins

with a "general" unrestricted model (called GUM) that cannot be rejected by a host of

misspecification tests. Then the procedure searches over different paths where the model

is restricted until all variables are significant. The restricted models are also subjected

to misspecification tests and a path may be abandoned if models do not pass the tests.

In the end, a model is chosen that cannot be rejected by misspecification tests nor by

encompassing tests against candidate models from other paths. Hendry (1995) calls this

a congruent model.

When the sample is undersized a general unrestricted model cannot be estimated.

Therefore, we perform general-to-specific on each short regression with the maximum

number of regressors, Ks. Among the models selected by the general-to-specific procedure

for each of these short regressions we choose the best. The procedure is similar to the one

described by Hansen (1999) in a time series context. The procedure is:

a. Select a subset of Ks regressors.

b. Delete the variable with the lowest insignificant t-statistic. Reestimate

and continue until all coefficients are significant.

c. Repeat a and b for all combinations of the regressors.

d. Among the candidate models, choose the one with the lowest standard

error, E(V (Y | Z)).

There is no reference to misspecification tests for heteroskedasticity or autocorrelation

since none of the short regressions are misspecified in the following.

The next proposition shows properties of the general-to-specific procedure
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Proposition 8 (General-to-specific) Let Z be a subset of {X1,X2, ..,XK} with at
most Ks members. General-to-specific selects the coefficient of X1 in the short regres-

sion with minimum E(V (Y |Z)) as the population partial effect of X1.

Under assumption (O) and (I), general-to-specific does not identify the partial effect

nor the importance of the variable X1.

Under assumption (S), general-to-specific identifies the partial effect and, thus, the

importance of the variable X1.

The result is similar to that of BACE. The general-to-specific procedure works under

the true submodel assumption (S) because it relies on a measure of model fit that identifies

the true submodel.

3.5 Minimum t-statistic over models test

The minimum t-statistic over models test declares the variable of interest as important

if the minimum t-statistic (in absolute value) taken over all short regressions with X1

is statistically significantly different from 0. This is equivalent to the t-statistic, ti, in

each short regression, i, exceeding the appropriate critical value since P (|ti| > c,∀i) =
P
³
Min

i
|ti| > c

´
. This is similar in spirit to Sala-i-Martin’s method. White (2000) and

Hansen (2003) have shown under different conditions that the bootstrap can be applied to

approximate the distribution of the minimum t-statistic. The approach does not provide

an estimator of the partial effect. The following proposition provides the properties of the

minimum t-statistic over models test.

Proposition 9 (Minimum t-statistic over models test) Under assumption (O), (S)

or (I), the minimum t-statistic over models test does not identify the importance of a vari-

able.

The method almost works under assumption (O). It works when β1 = 0, and it

works when β1 6= 0 except when an omitted variable bias exactly offsets β1. The set of
β1’s, β1 6= 0, for which the omitted variable bias cancels the effect of X1 has Lebesgue

measure 0. The minimum t-statistic does not work under assumption (S), because the

true submodel may not include X1, but X1 is always included in the short regressions,

and the estimators of β1 are biased. For the case of assumption (I), the estimator of β1
is biased in all the short regressions.
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3.6 Model selection criteria: BIC and AIC

Model selection criteria are usually based on a penalized likelihood value, see e.g. Burn-

ham and Anderson (2002). The importance of a given variable is determined by whether

or not it is included in the selected model. If it is included, its partial effect is estimated

by the coefficient in the selected model. To analyze the AIC- and BIC-based procedures

it is necessary to make an assumption about the conditional distribution of Y . For com-

parability with BACE, we assume a normal distribution.

One model selection criterion is BIC (Schwarz information criterion). The BIC for

model j is:

BICj = N log
1

N
SSEj + log (N) kj,

where σ2j is the maximum likelihood estimate of the variance of the error associated with

model j, and kj is the number of parameters in model j. It can be shown that the posterior

probability of a model in the Bayesian averaging approach by Sala-i-Martin, Doppelhoffer

and Miller (2004) is a function of BIC when the conditional ditribution of Y is normal.

The next proposition gives the results for BIC for the three cases presented in section 2.

Proposition 10 (BIC) Let Z be a subset of {X1,X2, ..,XK} with at most Ks mem-

bers. Assume conditional normality of Y . BIC selects the coefficient of X1 in the short

regression with minimum E(V (Y |Z)) as the population partial effect of X1.

Under assumption (O) or (I), BIC does not identify the partial effect nor the impor-

tance of the variable X1.

Under assumption (S), BIC identifies the partial effect and, thus, the importance of

the variable X1.

The proposition shows that BIC is similar to BACE and general-to-specific. The con-

clusion under assumption (S) confirms that BIC is a consistent model selection criterion.

Another model selection criterion is the Akaike information criterion, AIC, and its

corrected version, AICC. The AIC and AICC for model j are given by:

AICj = N log
1

N
SSEj + 2kj

AICCj = AICj +
2kj (kj + 1)

N − kj − 1
.

The next proposition shows that AIC and AICC have properties similar to BIC.

Proposition 11 (AIC and AICC) Let Z be a subset of {X1,X2, ..,XK} with at most
Ks members. Assume conditional normality of Y . AIC and AICC select the coefficient
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of X1 in the short regression with minimum E(V (Y |Z)) as the population partial effect
of X1.

Under assumption (O) or (I), AIC and AICC do not identify the partial effect nor the

importance of the variable X1.

Under assumption (S), AIC and AICC identify the partial effect and, thus, the impor-

tance of the variable X1.

Both AIC and BIC identify the partial effect under assumption (S), but they do so by

different short regressions. To see this consider an example in which Ks = 2 and X2 is

the only important variable (β1 = 0, β2 6= 0, β3 = .. = βK = 0). In this case, BIC selects

the regression of Y on X2 with probability 1, whereas AIC selects any short regression

which includes X2 with positive probability. In those regressions, the coefficient on the

other variable equals 0. The reason is that AIC has a positive probability of selecting

models that nest the true model. This confirms the known result that AIC is inconsistent

in selecting variables if the true model is nested in some of the models investigated.

4 New method using conditional mean independence

Section 3 showed that none of the methods identify the partial effect under the assump-

tion of conditional mean independence (O). Assumption (O) is the only one among the

identifying assumptions discussed in section 2 that does not impose restrictions on the

regression coefficients β1,..,βK. In this section, we construct a method that selects re-

gressors and tests if assumption (O) is satisfied with an undersized sample. If it is, the

method determines the partial effect and importance of a regressor.

The method involves three steps. The first step finds the Ks−1 regressors which have
the highest partial correlation with X1. Using the division of regressors obtained in step

1, assumption (O) is tested in the second step. In effect, step one and two test if the

problem is well-posed under assumption (O). If the problem is well-posed, then the third

step is the regression of Y on X1 and the Ks−1 variables found in step 1. The coefficient
of X1 in this regression is the partial effect of X1 in the long regression. Since the method

is based on identification by the conditional mean independence assumption, we denote

the method the CMI-method.

The implementation of the CMI-method is designed to reduce the computational bur-

den of the problem. The implementation is as follows:

1. Find the set, Z, of Ks − 1 variables among {X2, ..,XK} that minimizes BIC in a
linear regression ofX1 on Z. Compute BIC assumingX1 conditional on Z is normal.
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2. One by one tests for zero correlation, ρ, betweenX1 and the variables found in step 1,

and the remainingK−Ks variables. Each test statistic is
√
N − 2ρ/

p
1− ρ2, which

is approximately t-distributed with (N − 2) degrees of freedom. The significance
level in each test is chosen using a Bonferroni correction.

3. Regress Y on the regressors found in step 1 and X1. If the tests in step 2 are

accepted, then the coefficient on X1 is the partial effect of X1.

Step 1 reduces the computational burden of the problem by changing the problem

from selecting a short regression among all the regressions of the (potentially) excluded

regressors onX1 and the (potentially) included regressors, as required by assumption (O),

to a problem of selecting a regression of X1 on the (potentially) included variables. This

reduces the number of regressions by a factor (K − 2). Step 2 of the implementation
also reduces the computational burden. This is achieved by testing simple correlations

among the regressors instead of testing the coefficient of X1 in many regressions. The

next theorem summarizes the results on this implementation of the CMI-method.

Theorem 12 (CMI-method) Assume that all the short regressions among the regres-

sors are linear. The CMI-method specified by steps 1 to 3 consistently rejects the null

hypothesis of assumption (O) and upon acceptance identifies the partial effect and impor-

tance of X1.

The CMI-method consistently rejects assumption (O) when it is false. The CMI-

method may also consistently reject assumption (O) when it is true. This means that

not all cases, where the partial effect is identifiable by conditional mean independence,

is found by the CMI-method. The main point is, however, that the method consis-

tently identifies cases where consistent estimation of the partial effect is possible. The

CMI-method demonstrates that testing is possible in unidentified (with respect to all

parameters) models. Breusch (1986) obtained a similar result in another context.

Steps 1 and 2 in the implementation may be done differently. In step 1, a general-

to-specific approach can be used. In step 2, the maximal t-statistic suggested by Jensen

(2006) can be used instead of testing simple correlations. His approach would regress

X1 on the Ks − 1 variables found in step 1 and one of the remaining variables, one at a
time, and tests if the maximal t-statistic taken over the t-statistics for the extra variable

is significantly different from zero.

The number of variables, Ks, to include in the short regression must be chosen such

that there are at least (K −N + 1) regressors which are conditionally mean independent
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of X1. In practice, step 1 and 2 can be repeated for different values of Ks to find a feasible

value of Ks. When a feasible Ks is found, it does not influence the identification of β1
to include extra regressors but it changes the variance of the estimator of β1. Whether

or not including extra regressors increases or decreases this variance depends both on the

distribution of the regressors and on the unknown values of the corresponding β’s in the

long regression.

The CMI-method involves multiple testing. In step 2, conservative or liberal critical

values can be used. A conservative critical value can be selected by ignoring the multiple

testing problem and using the overall nominal level for each test of zero correlation.

A liberal critical value can be based on the Bonferroni bound. Usually applications of

the Bonferroni bound lead to conservative tests, but here the Bonferroni bound is used

in a two-step procedure. This implies that the smaller critical value, the more likely

conditional mean independent regressors are rejected. Step 1 can be considered a pretest.

Based on Monte Carlo results (some reported below), we have found that using the desired

overall nominal level as the nominal level in each of the steps together with the Bonferroni

correction in step 2 works satisfactorily.

5 Finite sample properties of the methods

In this section we investigate the finite sample properties of the CMI-method presented

in section 4 and compare it with some of the methods considered in section 3. We report

Monte Carlo results on the estimation of the partial effect and power properties for testing

the importance of the variable. The designs focus on the conditional mean independence

assumption (O). We limit ourselves to report three Monte Carlo designs which illustrate

the main effects of the undersized sample.

The Monte Carlo designs have K = 30 important variables. We consider two sample

sizes, n = 25 and n = 50. The sample with n = 25 is undersized. We assume that the

short regressions include Ks = 3 variables and an intercept. With the undersized sample,

this implies 21 degrees of freedom or about 7 degrees of freedom per parameter in the

short regressions. There is a total of 4525 ways of choosing 3 out of 30 regressors. The

variable of interest is X1. It is correlated with X2 and X3. These three variables are

independent of the other 27 variables. This implies that assumption (O) in theorem 2 is

satisfied with A = {X4, ..,X30}. The assumptions of theorems 3 and 4 are not satisfied.
All the variables have zero mean and unit variance. The variables {X1,X2,X3} are drawn
from a multivariate normal distribution with Corr(X1,X2) = Corr(X1, X3) = 0.5 and

Corr(X2,X3) = −0.25. The other variables are independent and identically standard
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normally distributed. The regressand, Y , is generated by

Y = β1X1 + β2X2 + β3X3 + β4X4 + 5X5 + 4.5X6 + 1X7 + ..+ 1X30 + 5 + U , (3)

where U ∼ N(0, 0.25) and U is independent of X1, .., X30. The number of Monte Carlo

replications is 1,000.

The three Monte Carlo designs reported below only differ in their values of β2, β3 and

β4 in (3). Table 1 shows the values of β2, β3 and β4 that define the designs denoted A,

B, and C. To facilitate the interpretation of the Monte Carlo results, table 1 also reports

properties of the designs. The table shows that the best fitting short regression in terms

of minimum E(V (Y | Xi,Xj,Xk)) depends on the value of β1. If there were no sampling

uncertainty, the best fitting short regression determines the properties of many of the

methods discussed in section 3. In particular, the bias of the estimator of β1 in the best

fitting short regression is important. The biases in the short regressions are reported in

the bottom part of table 1.

Table 1. Properties of the three Monte Carlo designs based on (3).

Design

A B C

{β2, β3, β4} {−4,−4, 3} {−2,−2, 4} {10, 12, 3}
Best fit short reg.

β1 ∈ (−∞, 1) ∪ (7,∞) (−2, 6) (−8.7, 8.7)
Regressors X1,X5, X6 X4,X5, X6 X2, X3, X5

β1 ∈ (1, 7) (−∞,−2) ∪ (6,∞) (−∞,−8.7) ∪ (8.7,∞)
Regressors X4,X5, X6 X1,X5, X6 X1, X2, X3

Bias(β1) with reg.

X1, X2, X3

X1, X2, Xk≥4

X1, X3, Xk≥4

X1, Xk≥4, Xj≥4

Xk≥2,Xj≥2,Xi≥2

0

−31
3

−31
3

−4
−β1

0

−12
3

−12
3

−2
−β1

0

10

81
3

11

−β1

Note: Best fit short reg. is the short regression (Ks = 3) with the lowest

E(V (Y | Xk,Xi,Xj)). Bias(β1) with reg. is the bias of the estimator of β1 in

the short regression. IfX1 is not included in the short regression, then the estimator

of β1 is 0. All short regressions include an intercept.
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In design A, X1 is included in the best fitting short regression along with X5 and X6

when X1 is not important (β1 = 0). The variables X5 and X6 are included because they

have relatively large coefficients. The reason X1 is included despite β1 = 0 is that X1 is

correlated with X2 and X3 in such a way that it provides a better fit than including either

X2 or X3.

In design B the best fitting short regression does not include X1 when β1 = 0. When

β1 is sufficiently large, X1 is included in the best fitting short regression of Y on X1, X5,

and X6. The main difference from design A is that X1 is not included in the best fitting

short regression when X1 is not important.

Design C has the property that the best fitting short regression is X1,X2, X3 for β1
sufficiently large. This is the only short regression that provides an unbiased estimator of

β1.

The EBA, Sala-i-Martin’s method and general-to-specific are calculated as described

in section 3 with the exception that the final model selection step in the general-to-specific

procedure is done using BIC. For the Bayesian test, we apply a t-test of bγSDM
1 using the

standard error suggested by Sala-i-Martin et al. (2004). In the implementation of the

CMI-method, step 2 is not used as a stopping rule. Instead we choose the short regression

that minimizes the partial correlation between X1 and the excluded variables.

5.1 Estimation of the partial effect

We first investigate the properties of the methods in estimating the partial effect, β1, of

X1. The comparisons between methods are made in terms of bias and standard deviation

of the estimators of β1. The bias for each short regression is known beforehand, see table

1. In different samples, however, the methods either select different short regressions or

a combination of short regressions, and the estimators are therefore pretest estimators.

The biases for various estimators of the partial effect, β1, in design A with n = 25 are

shown in table 2. The biases are shown as a function of β1. The CMI-method has a low

bias compared to the other methods. The bias in Sala-i-Martin’s method is constant for

different values of β1. The reason is that Sala-i-Martin’s method includes X1 in all the

short regressions and only β1 varies. The bias in the BACE method varies with the value

of β1. The bias is large and negative, and substantially larger (in absolute terms) at e.g.

β1 = 6 than at β1 = 2. In the absence of sampling uncertainty, the bias of the estimator

is −β1 for β1 ∈ (1, 7), see table 1. General-to-specific, AIC and BIC have properties

similar to BACE when there is no sampling uncertainty, see section 3. With sampling
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uncertainty, however, there are differences due to the fact that BACE combines all short

regressions whereas the other three methods select only one short regression.

Table 2: Bias and standard deviation of estimator of β1 in design A with n = 25.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -3.78 -3.78 -3.78 -3.78 -3.78 -3.78

Std 1.70 1.70 1.70 1.70 1.70 1.70

GSP Bias -1.64 -2.32 -3.95 -5.40 -5.39 -4.45

Std 2.43 1.11 0.69 1.63 2.82 2.82

BACE Bias -1.39 -2.25 -3.97 -5.56 -5.93 -5.10

Std 1.78 0.71 0.36 1.07 2.24 2.70

AIC Bias -1.65 -2.33 -3.95 -5.40 -5.38 -4.45

Std 2.42 1.11 0.69 1.63 2.82 2.82

BIC Bias -1.65 -2.33 -3.95 -5.40 -5.38 -4.45

Std 2.42 1.11 0.69 1.63 2.82 2.82

CMI-method Bias 0.07 0.07 0.07 0.07 0.07 0.07

Std 3.52 3.52 3.52 3.52 3.52 3.52

Benchmark Bias 0.13 0.13 0.13 0.13 0.13 0.13

Std 3.47 3.47 3.47 3.47 3.47 3.47

The properties of all the methods can be compared to the only short regression which

provides an unbiased estimator of β1. This is the regression of Y on X1, X2 and X3.

This regression is denoted the benchmark regression. In practice it is not known if such

a regression exists. The CMI-method is designed to select this regression if it exists.

The CMI-method and the benchmark regression have about the same bias. The bias in

the benchmark regression is solely due to Monte Carlo sampling error. The reason for

the similarity of the benchmark regression and the CMI-method is that the CMI-method

selects the benchmark model with probability about 0.95.

The estimator of β1 in the CMI-method has a higher standard deviation than some of

the other estimators. This is mainly a result of the other methods often selecting short

regressions where X1 is not included. This lowers the variation of the estimator of β1. It

is worth noting that if one adopts a mean square error loss criterion, then BACE, general-

to-specific, AIC and BIC have a lower mean square error loss than the CMI-method (and

the benchmark regression). This result is reversed as the sample size grows since the

mean square error loss of the CMI-method approaches 0, whereas for the other methods
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the mean square error loss converges to the bias squared.

The effect of increasing the sample size from n = 25 to n = 50 is seen by comparing

table 2 with table 3. Table 3 shows the results for design A with n = 50. The standard

deviation decreases with the larger sample size for all methods. For the CMI-method, the

bias also decreases. The biases of the other methods, however, do not all decrease. For

example, for BACE and β1 = 0 the bias increases from -1.39 to -2.19. This is consistent

with the results in section 3 and table 1, which show that the bias eventually (for n→∞)
approaches -4. The larger sampling uncertainty for n = 25 compared to n = 50 reduces

the bias because BACE puts lower probability on short regressions with X1 and they

induce bias when β1 = 0.

Table 3: Bias and standard deviation of estimator of β1 in design A with n = 50.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -3.97 -3.97 -3.97 -3.97 -3.97 -3.97

Std 0.99 0.99 0.99 0.99 0.99 0.99

GSP Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

BACE Bias -2.19 -2.24 -4.00 -5.68 -5.04 -4.10

Std 1.89 0.67 0.05 0.74 1.84 1.26

AIC Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

BIC Bias -2.41 -2.25 -4.00 -5.63 -4.77 -4.05

Std 2.28 0.93 0.10 1.04 2.00 1.22

CMI-method Bias 0.08 0.08 0.08 0.08 0.08 0.08

Std 2.25 2.25 2.25 2.25 2.25 2.25

Benchmark Bias 0.08 0.08 0.08 0.08 0.08 0.08

Std 2.25 2.25 2.25 2.25 2.25 2.25

With a sample size of n = 50, the long regression is possible. The long regression

identifies β1. The variance of the estimator of β1 in the long regression cannot be uniformly

ranked against the variance of the estimator of β1 in the benchmark regression. There

are two extremes which do not depend on the distribution of the regressors. If the β’s of

the excluded variables in the Benchmark regression are 0, then the variance is lower in

the Benchmark regression. Conversely, if the β’s of the excluded variables are sufficiently

large, then the variance is lower in the long regression. The Benchmark regression is not
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known in practice, but the properties of the CMI-method are similar. This means that

it is not possible to say whether it is better to run the long regression compared to the

CMI-method when the sample is not undersized. Asymptotically, they are equivalent.

Table 4 presents the results for design B. The bias with the CMI-method is low and

about the same as for the benchmark regression. When β1 = 0, Sala-i-Martin’s method

has the highest bias. This is because Sala-i-Martin’s method assigns most weight to the

best fitting short regression with X1 which results in a bias equal to −2. According to
table 1, if there were no sampling uncertainty, then BACE, general-to-specific, AIC and

BIC would not choose a short regression with X1, when X1 is not important. In finite

samples, this is reflected in a lower bias of the latter methods compared to Sala-i-Martin’s

method when β1 = 0.

The standard deviation is smaller for the existing methods compared to the CMI-

method. This results in lower mean square errors despite all the other methods being

biased. As in design A, the mean square error will be smaller for the CMI-method in

larger sample sizes because the biases do not vanish for the other methods.

Table 4: Bias and standard deviation of estimator of β1 in design B with n = 25.

β1

0 2 4 6 8 10

Sala-i-Martin Bias -1.91 -1.91 -1.91 -1.91 -1.91 -1.91

Std 1.60 1.60 1.60 1.60 1.60 1.60

GSP Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.11

Std 1.15 0.31 1.31 2.69 2.82 2.21

BACE Bias -0.27 -1.99 -3.65 -4.12 -3.30 -2.44

Std 0.74 0.22 0.90 2.14 2.65 2.31

AIC Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.12

Std 1.15 0.31 1.31 2.68 2.82 2.20

BIC Bias -0.33 -2.00 -3.60 -3.68 -2.75 -2.12

Std 1.15 0.31 1.31 2.68 2.82 2.20

CMI-method Bias 0.15 0.15 0.15 0.15 0.15 0.15

Std 3.64 3.64 3.64 3.64 3.64 3.64

Benchmark Bias 0.15 0.15 0.15 0.15 0.15 0.15

Std 3.62 3.62 3.62 3.62 3.62 3.62

Results for design C are reported in table 5. In this design the benchmark regression

is the best fitting short regression if there is no sampling uncertainty and β1 is sufficiently
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large. This, however, is not obvious for sample size n = 25. The reason is that the

benchmark regression is rarely selected by the methods based on model fit. For example,

general-to-specific selects the benchmark regression in just 16.5% of the samples cases

when β1 = 10. In contrast, the bias of the CMI-method is low and comparable to the

benchmark regression.

Table 5: Bias and standard deviation of estimator of β1 in design C with n = 25.

β1

0 2 4 6 8 10

Sala Bias 7.05 7.05 7.05 7.05 7.05 7.05

Std 4.99 4.99 4.99 4.99 4.99 4.99

GSP Bias 0.94 -0.43 -1.26 -1.54 -0.61 1.15

Std 3.22 4.33 5.76 7.30 8.66 9.35

BACE Bias 1.64 0.50 -0.09 0.02 0.92 2.36

Std 3.13 4.16 5.41 6.66 7.65 8.06

AIC Bias 0.95 -0.44 -1.28 -1.55 -0.63 1.13

Std 3.23 4.32 5.74 7.29 8.65 9.34

BIC Bias 0.95 -0.44 -1.28 -1.55 -0.63 1.13

Std 3.23 4.32 5.74 7.29 8.65 9.34

CMI-method Bias 0.52 0.52 0.52 0.52 0.52 0.52

Std 3.86 3.86 3.86 3.86 3.86 3.86

Benchmark Bias 0.14 0.14 0.14 0.14 0.14 0.14

Std 3.47 3.47 3.47 3.47 3.47 3.47

5.2 Test of the importance of the regressor

In this subsection, we investigate the ability of the different methods to determine whether

X1 is important or not. As noted earlier, this is similar in spirit to the question addressed

in the literature on sensitivity analysis and robustness of a variable, namely, if a variable

is robust (important) or not. We do not show the results for AIC and BIC because they

are similar to the results for general-to-specific, and we do not show the results for the

benchmark regression because they are similar to those for the CMI-method.

The control of the Type I error in determining the importance of X1 is shown in figure

1 for design A with n = 25. The figure shows the true value of β1 on the first axis and

the rejection probabilities of testing H0 : β1 = 0 (X1 important) against H1 : β1 6= 0 (X1

not important) on the second axis. The nominal significance level is 0.05 (marked with a
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horizontal line). The CMI-method has a probability of a Type I error close to the nominal

level. The EBA has a low probability of a Type I error whereas the probability for the

other methods is substantially above the nominal level. For example, general-to-specific

and Sala-i-Martin’s method have probabilities of Type I errors of about 0.34 and 0.66,

respectively. In the terminology of sensitivity analysis, these methods accept well above

the nominal significance level that X1 is "robust" when, in fact, it is not.

Figure 1 also shows the power functions. The power of the CMI-method is monotoni-

cally rising for β1 values further away from 0. The powers of the other methods, however,

decrease as β1 moves from 0 to 4. That is, as X1 becomes more important, the less likely

the other methods will accept that X1 is important. For β1 close to 4, EBA, BACE and

general-to-specific have powers close to 0. A reason may be found in table 1, which shows

that the best fitting short regression is Y on X4, X5 and X6 for β1 ∈ (1, 7). Hence, it is
likely that these methods often select the short regression with no X1 and consequently

conclude that X1 is not important.
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Figure 1. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design A with n = 25.

Figure 2 shows the powers for design A with n = 50. Compared to figure 1 it is seen

that the control of the type I error worsens for many of the methods. The reason is that

it becomes more likely that the methods based on best fit select the short regression Y

on X1, X5 and X6 when X1 is not important. The estimator of β1 in this short regression

23



has a bias equal to −4 and thus the test indicates that X1 is important. The power of

the CMI-method increases with the sample size. Since the sample is not undersized when

n = 50, a two-sided t-test in the long regression is feasible. In the long regression, this test

is an invariant uniformly most powerful test. This does not imply, however, that the test

is more powerful than the two-sided t-test performed on the short regression found using

the CMI-method. The reason is similar to the one discussed in subsection 5.1 regarding

the ranking of the efficiency of the estimators of β1 in the benchmark regression versus the

long regression. The ranking depends on the distribution of the regressors and the values

of those β’s in the long regression that are excluded from the benchmark regression.
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Figure 2. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design A with n = 50.

Figure 3 shows the power functions for design B. Contrary to design A, when X1 is

not important, the best fitting short regression does not include X1, see table 1. This

explains why AIC, BIC, general-to-specific and BACE methods control the Type I error

much better than in design A. Their powers, however, still decrease as X1 becomes more

important. The powers only increase for β1 > 2. As can be seen in table 1, the reason is

that X1 is only included in the best fitting population short regression when β1 ≥ 6. The
CMI-method controls the Type I error and has monotonically rising power in β1.
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Figure 3. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design B with n = 25

The power results for design C are shown in figure 4. Contrary to designs A and B,

all methods have monotonically increasing powers in β1. An explanation can be found

in the fact that the best fitting population short regression only includes X1 when X1 is

important and this short regression provides an unbiased estimator of β1. The power of

general-to-specific (and AIC and BIC) and BACE is below the power of the CMI-method.

Only EBA has a power as high as the CMI-method. A reason why EBA is performing

well in this particular case is that the bias is positive in all short regressions which include

X1 and this lowers the probability of getting both positive and negative estimates of β in

these short regressions. The power for negative values of β1, which we calculated but do

not show, is low.
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Figure 4. Power of testing β1 = 0 against β1 6= 0 using a 0.05 nominal significance level
in design C with n = 25.

6 Conclusion

In this paper we considered the problem of determining whether a variable is important

in a regression with more regressors believed to be of importance than observations. In

theorem 1 we showed that in general the undersized sample leads to an ill-posed inverse

problem. Three special cases where the problem is well-posed are given in theorems 2 to

4.

In light of the impossibility of the task, it is no surprise that existing model selection

methods do not solve the ill-posed inverse problem in the general case. The majority

of these methods are based on a measure of model fit. We showed that many of the

methods work only under the assumption (S) of a true submodel. They do not work in

the two other cases where the problem is well-posed, namely, when there is conditional

mean independence among the regressors or an instrument exists. Some of the methods

do not work under any of the identifying assumptions considered.

It is worth emphasizing that our results also hold when the sample is not undersized.

Whether the majority of the methods work is determined by the number of regressors

included in the short regressions. If this number is less than the number of variables in

the long regression, the same properties regarding biases and powers result.
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Our results illustrate the fundamental importance of choosing a loss function appropri-

ate for the task at hand. The loss functions implicit in model selection methods are based

on measures of model fit. These are appropriate when the true model can be estimated.

Our analysis shows that unless it is possible to place restrictions on the parameters in

the long regression, a loss function based on model fit is not suited for determining the

importance of a regressor.

7 Appendix

Proof of Theorem 1 (Impossibility). Identification of parameters is a property of

the population. The proof first translates the undersized sample problem into a rank defi-

ciency in the population. Then identification can be discussed as usual in the population.

The defining property of the undersized sample problem is a reduced rank of the

regressor matrix. It has rank at most N (< K). The implication of the reduced rank is

that N of the regressors span a space that includes the remaining (K − N) regressors.

Suppose regressors 1 to N span an N-dimensional space with probability 1. Let Xk =

(Xk1, .., XkN)
0 be the values of the k’th regressor. The last (K − N) regressors can be

written in terms of the first N regressors as:

Xi =
NX
k=1

aikXk, i = N + 1, ..,K,

where aik are random variables determined by the system:

ai ≡

⎡⎢⎢⎣
ai1

:

aiN

⎤⎥⎥⎦ =
⎡⎢⎢⎣
X11 .. XN1

: :

X1N .. XNN

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

Xi1

:

XiN

⎤⎥⎥⎦ = X−1X i i = N + 1, ..,K, (4)

where X = (X1, .., XN). As a consequence, the long regression (1) with the reduced rank

is

E(Y | X1, .., XK) =
NX
k=1

βkXk +
KX

i=N+1

βi

NX
k=1

aikXk (5)

=
NX
k=1

Ã
βk +

KX
i=N+1

βia
i
k

!
Xk.

The vector ai can be characterized by a linear projection. Since X is an N × N

non-singular matrix with probability 1, the vector ai can be written as

ai = X−1X i = (X
0X)−1X 0Xi (6)
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It is seen that ai is a linear projection of Xi on X1, ..,XN . The expected value of ai equals

the coefficient vector of the population best linear projection of Xi on X1, .., XN and the

expected value of ai conditional on X1, ..,XN is the population best linear projection of

Xi on X1, ..,XN conditional on X1, ..,XN , see Wooldridge (2002) or Goldberger (1991).

Identifiability of β1 from (5) is possible if

E(Y | X1, ..,XK ;β1, .., βK) 6= E(Y | X1, ..,XK ;β
∗
1, .., β

∗
K) (7)

for any choice of β∗1 6= β1 and β
∗
2, .., β

∗
K . Let the coefficient to Xk be ck(= βk+

KX
i=N+1

βia
i
k).

This coefficient is identifiable in the long regression with the reduced rank (5). Then

identifiability of β1 is equivalent to a unique solution for β1 in the following system

⎡⎢⎢⎣
1 0 0 aN+11 · · · aK1

0
. . . 0

...
. . .

...

0 0 1 aN+1N · · · aKN

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
...

βN

βN+1
...

βK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= c, (8)

where c = (c1, .., cN)0. The condition (7) implies that for any β
∗
1 6= β1, c

∗
1 6= c1.

The degrees of freedom to determine β1 only depend on a
N+1
1 , .., aK1 since there are no

restrictions on βN+1, .., βK . Thus, only if all a
N+1
1 , .., aK1 are equal to 0, then β∗1 = β1 is a

unique solution. But there are no restrictions implying aN+11 , .., aK1 equal 0. For example,

as discussed above the expectation of aN+11 can be characterized as the coefficient of X1 in

the population best linear projection of XN+1 on X1, ..,XN . As there are no restrictions

on the linear projections among the regressors, there are no restrictions on ai. Thus, β1
is not identifiable in general.

Proof of theorem 2 (Identification by conditional mean independence). With-

out loss of generality, assume A = {XN+1, .., XK}. Consider identifying β1 by conditioning
on X1, .., XN . Using (5)

E(Y | X1, .., XN) =
NX
k=1

Ã
βk +

KX
i=N+1

βiE(a
i
k | X1, .., XN)

!
Xk

= (β1 +
KX

i=N+1

βiE(a
1
k | X1, ..,XN))X1

+
NX
k=2

Ã
βk +

KX
i=N+1

βiE(a
i
k | X1, .., XN)

!
Xk.
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As discussed in the proof of theorem 1, E(ai1 | X1, ..,XN) is the coefficient to X1 in the

population best linear projection of Xi on X1, ..,XN conditional on X1, ..,XN . Hence, if

this coefficient equals 0 for all i = N +1, ..,K, then a system similar to (8) can be solved

uniquely for β1 and, thus, β1 is identifiable.

Proof of theorem 3 (Identification by true submodel). From the proof of theorem

1, assume that (K −N) of the (K −Ks) variables with coefficient equal to 0 in the long

regression are the variables XN+1, .., XK . From (8) it is seen that β1 is identifiable in the

first row since β1 = c1.

Proof of theorem 4 (Identification by instrument). Without loss of generality,

assume that E(Xk) = 0 and V (Xk) = 1 for k = 1, .., K. Let ρij = Corr(Xi,Xj). Assume

that XN is the variable not correlated with other variables than X1. It will now be shown

that the last row of (8) can be used to solve for β1.

First consider the coefficients aik in (8). The coefficient to the population best linear

regression can be written

αi ≡ E(ai) = E

⎡⎢⎢⎣
⎛⎜⎜⎝
X1

:

XN

⎞⎟⎟⎠³X1 · · · XN

´⎤⎥⎥⎦
−1

E

⎡⎢⎢⎣
⎛⎜⎜⎝
X1

:

XN

⎞⎟⎟⎠Xi

⎤⎥⎥⎦ (9)

The restrictions on the correlations among the X’s imply that (9) can be rewritten:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ12 .. .. ρ1N

ρ12 1 ρij 0

: 1 :

: ρij
. . . 0

ρ1N 0 .. 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
αi
1

:

αi
N

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

ρ1i

:

ρ(N−1)i

0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , for i = N + 1, ....,K.

The last equation in this system is ρ1Nα
i
1 + αi

N = 0 or α
i
N = − ρ1Nα

i
1. Insert this and

βN = 0 into (8):

⎡⎢⎢⎣
1 αN+1

1 · · · αK
1

. . .
...

. . .
...

1 −ρ1NαN+1
1 · · · −ρ1NαK

1

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
...

βN−1

0

βN+1
...

βK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= c.
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Using the last row, solve for β1. The result is that β1 = c1 +
cN
ρ1N
. Since β1 is not a

function of any unknown β’s, β1 is identifiable.

Proof of Proposition 5 (Extreme Bounds Analysis). Let F be the set of all short
regressions with X1 and at most (Ks − 1) other variables. In the sample, X1 is robust if

the estimates of the coefficient, γi1, to X1 in all the short regressions, i, are significant and

have the same sign. In the population without sampling uncertainty, the extreme bounds

for the partial effect of X1 is
∙
min
i∈F

γi1 , max
i∈F

γi1

¸
.1

To prove when an assumption (in this and the following proofs) is not sufficient for

identification, it is sufficient to consider the following example with four regressors. Let

the long regression be E (Y |X1, X2,X3,X4) = β1X1 + β2X2 + β3X3 + β4X4 and suppose

Ks = 2. Let γ
[1k]
1 be the coefficient on X1 in the linear regression of Y on X1 and Xk, and

γ
[10]
1 the coefficient on X1 in the regression of Y on X1. Then

γ
[12]
1 = β1 +

ρ13 − ρ12ρ23
1− ρ212

β3 +
ρ14 − ρ12ρ24
1− ρ212

β4,

γ
[13]
1 = β1 +

ρ12 − ρ13ρ23
1− ρ213

β2 +
ρ14 − ρ13ρ34
1− ρ213

β4, (10)

γ
[14]
1 = β1 +

ρ12 − ρ14ρ24
1− ρ214

β2 +
ρ13 − ρ14ρ34
1− ρ214

β3,

γ
[10]
1 = β1 + ρ12β2 + ρ13β3 + ρ14β4.

Under assumption (O), the short regression with the conditionally mean indepen-

dent regressors excluded provides an unbiased estimator of β1. This implies that β1 ∈∙
min
i∈F

γi1 , max
i∈F

γi1

¸
. The importance of X1, however, cannot be determined correctly.

This can be seen from the example (10). Suppose ρ13 = ρ14 = ρ23 = ρ24 = 0. Then

assumption (O) is satisfied. The extreme bounds is:

[min (β1, β1 + ρ12β2) ,max (β1, β1 + ρ12β2)]

If β1 > 0 (and, thus, important) and β1 < −ρ12β2, then the extreme bounds contains 0
and the lower boundary is negative and the upper bound positive. Then X1 is not robust

and, thus, X1 is incorrectly labelled unimportant.

1In terms of the t-statistics and asymptotics, the decision rule can be determined the following way.

The t-statistics used for testing γ
[1k]
1 = 0 is given by bt[1k]1 = bγ[1k]1 /

q
V (bγ[1k]1 ), where ^indicates the

estimator, for instance the OLS estimator. The probability limit of the t-statistics is degenerate at

+∞ or -∞ when γ
[1k]
1 is positive or negative, respectively (consistency of t-test). For γ[1k]1 = 0 the

distribution of the t-statistics is N(0, 1) under regularity conditions. When the sample size approaches

∞, the significance probability should approach 0 and, thus, the probability of accepting approaches 1.
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Under assumption (S), the extreme bounds may not contain β1. This can be seen

using the example with four regressors from above. Suppose β1 = β2 = 0 (and, thus, X1

is not important) and ρ12 = ρ13 = 0. If ρ14 > 0, ρ34 < 0, β3, β4 > 0, then the lower bound

of the extreme bounds is positive. Hence, β1 is not in the interval, and X1 is denoted

robust when it is not important.

Under assumption (I), the extreme bounds may not contain β1. Using the example

with four regressors, suppose β1 = β2 = 0 and ρ23 = ρ24 = ρ34 = 0. If ρ13, ρ14, β3, β4 > 0,

then the lower bound of the extreme bounds is positive. Hence, β1 is not in the interval,

and X1 is denoted robust when it is not important.

Proof of Proposition 6 (Sala-i-Martin’s method). We first state a general result

which we use in this and the following proofs. The result is a generalization of e.g.

Wooldridge (2002), p. 31, property CV.3. For any subset C ⊂ {X1, .., XK},

E (V (Y | X1, .., XK)) = EC (V (Y | C))−E (E(Y | X1, .., XK)−EC(Y | C))2 .

It follows that

1) E(Y | X1, ..,XK) = EC(Y | C)⇒ E (V (Y | X1, .., XK)) = EC (V (Y | C))
2) E(Y | X1, ..,XK) 6= EC(Y | C)⇒ E (V (Y | X1, .., XK)) < EC (V (Y | C)) .

(11)

Therefore, if A is the smallest subset such that E(Y | X1, .., XK) = EA(Y | A) and A * B

then 2) holds for any such set B.

The robustness of X1 is determined by CDF (0) =
mX
i=1

wiCDFi(0) being above or

below 1− α, where α resemblances a significance level. The Sala-i-Martin’s method does

not have an obvious analogue in the population, and therefore the population version is

derived as a probability limit.

Firstly, consider CDFi (0) =Max
³
Φ(bγi1/bσγi1), 1− Φ(bγi1/bσγi1)´. In the population, bγi1

is replaced by γi1 and there is no uncertainty. If γ
i
1 6= 0, then CDFi(0) = 1. If γi1 = 0, then

both the numerator and the denominator equal 0. Under suitable regularity conditionsbγi1/bσγi1 →p Z, Z ∼ N(0, 1). Since Φ(Z) ∼ U , U ∼ Uniform[0, 1],

P (CDFi(0) < a | γi1 = 0) = P (Max(U, 1− U) < a) = 2a− 1, 0.5 ≤ a ≤ 1. (12)

Therefore, if γi1 = 0, then the test accepts that γ
i
1 = 0.

Secondly, the weight can be rewritten as

wj =
SSE

−N/2
j

mX
i=1

SSE
−N/2
i

=
1

mX
i=1

³
1
N
SSEi

1
N
SSEj

´−N
2

, (13)
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where SSEj is the sum of squared residuals in regression j. Let Z be a subset of

{X2, .., XK} with at most (Ks − 1) members and γiZ the corresponding parameter vector

in short regression i. Then

1

N
SSEi →p Ex1,Z(V (Y | X1, Z)) ≡ σ2i

under suitable regularity conditions.

The convergence of the terms
¡
1
N
SSEj/

1
N
SSEi

¢N
2 depends on the probability limits

of the numerator and denominator:

µ 1
N
SSEj

1
N
SSEi

¶N
2

→p

⎧⎪⎪⎨⎪⎪⎩
∞ if σj > σi

0 if σj < σi

W if σj = σi

,

where W is a random variable with support on the unit interval.

The weight in the population for regression j is

wj = plim
N→∞

1

1 +
X
i6=j

³
1
N
SSEj

1
N
SSEi

´N
2

.

If σ2j < σ2i for all i 6= j, then the weight on regression j equals 1 and γsim1 = γj1. If two

(or more) short regressions achieve the lowest σ, then the weight is between 0 and 1 with

probability 1.

The lack of identification of β1 under the assumptions (I), (O) and (S) can be demon-

strated in the four regressor example (10) used in the proof of proposition 5.

Under assumption (O), suppose β1 = 0 (and, thus, not important) and ρ13 = ρ14 =

ρ23 = ρ24 = 0. Suppose the regression of Y on X1 and X3 has the lowest expected

conditional variance, σ2[13]. Then γSiM1 = ρ12β2 and CDF (0) = 1 if ρ12, β2 6= 0. Hence,
X1 is denoted robust when it is not important.

Under assumption (S), suppose β1 = 0 (and, thus, not important), β2 = 0 and ρ13 =

ρ34 = 0. Suppose the regression of Y on X1 and X3 has the lowest expected conditional

variance, σ2[13]. Then γ
SiM
1 = ρ14β4 and CDF (0) = 1 if ρ14, β4 6= 0. Hence, X1 is denoted

robust when it is not important.

Under assumption (I), suppose β1 = 0 (and, thus, not important), β2 = 0 and ρ23 =

ρ24 = 0. Suppose the regression of Y on X1 and X3 has the lowest expected conditional

variance, σ2[13]. Then γSiM1 = (ρ14−ρ13ρ34)
1−ρ213

β4 and CDF (0) = 1 if β4 and the term in front

of β4 are different from 0. Hence, X1 is denoted robust when it is not important.
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Proof of Proposition 7 (BACE). The BACE estimator of the partial effect, β1, of

X1 is bγSDM
1 =

X
i
bγi1P (Mi | y). The model posterior probability, (2), can be rewritten as

P (Mj | y) =
1

1 +
X
i6=j

P (Mi)
P (Mj)

N (kj−ki)/2
¡
1
N
SSEi/

1
N
SSEj

¢−N
2

.

The population analogue of bγi1 is the regression coefficient, γi1, on X1 in short re-

gression i. The population analogue of the posterior probability can be derived as the

probability limit for N → ∞. Assume that regression j has at most Ks regressors, Z.

Then 1
N
SSEj →p EZ(V (y | Z)) ≡ σ2j , see the proof of proposition 6. Therefore,µ 1

N
SSEj

1
N
SSEi

¶N
2

→p

(
0 if σi > σj

∞ if σj < σi
,

and

N (kj−ki)/2
µ
σ2j
σ2i

¶N
2

→p

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σi > σj

0 if σi < σj

∞ if σi = σj and ki < kj

0 if σi = σj and ki > kj

W if σi = σj and ki = kj

,

whereW is a random variable with support on the unit interval. Let S be the set of indexes
of the short regressions with the minimum expected conditional variance: S =argmin

i
σi.

Then the probability limit of the posterior probability is:

P (Mj | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if σj > min
i
σi

1 if σj < min
i6=j

σi

0 if σj = min
i6=j

σi and kj > min
i∈S

ki

1 if σj = min
i6=j

σi and kj < min
i∈S,i6=j

ki

W1 if σj = min
i6=j

σi and kj = min
i∈S,i6=j

ki

, (14)

where W1 is a random variable with support on the unit interval. Hence, the value of

γSDM
1 is determined by γi1 in the short regression with the smallest σ.

Under assumption (S), the true model is among the short regressions. Since the

expected conditional variance is smallest for the true model according to (11), this model

is chosen by BACE with probability 1 according to (14). For the true model, γ1 = β1

and, thus, γSDM
1 = β1.

Under assumption (O), the four regressor example (10) is used to show that BACE

does not identify β1. Suppose β1 6= 0 and ρ13 = ρ14 = ρ23 = ρ24 = 0. Suppose that the
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short regression of Y on X2 and X3 has the lowest expected conditional variance, σ. This

is possible if β2 and β3 are sufficiently large. Then γSDM
1 = 0 because X1 is not in the

model with the posterior probability equal to 1. Hence, X1 is denoted unimportant when

it is important.

Under assumption (I), the four regressor example (10) in the proof of proposition 5

can be used again to show that BACE does not identify β1. Suppose β1 6= 0, β2 = 0

and ρ23 = ρ24 = 0. Suppose that the short regression of Y on X3 and X4 has the lowest

expected conditional variance, σ. This is possible if β3 and β4 are sufficiently large. Then

γSDM
1 = 0 becauseX1 is not in the model with the posterior probability equal to 1. Hence,

X1 is denoted unimportant when it is important.

Proof of Proposition 8 (General-to-specific). The general-to-specific procedure

selects the models with the smallest expected conditional variance, E(V (Y | Z)), among
the short regressions with all γik 6= 0, where γik is the coefficient to a regressor Xk in

regression i. The reason is that the procedure first eliminates all the short regressions

with γik = 0. Hence, if only one short regression achieves the lowest E(V (Y | Z)), say
in regression j, then the procedure selects γj1 as the partial effect of X1. In case several

short regressions achieve the lowest E(V (Y | Z)), it is necessary with a tie-breaker.
Under assumption (S), the true submodel has the lowest E(V (Y | Z)), see proof of

proposition 6, and γj1 = β1 in that model.

Under assumption (O), the procedure does not identify β1. This can be proved by

using the same example as used in the proof for the BACE procedure.

Under assumption (I), the example from the proof of the BACE procedure can be used

to show that β1 is not identified.

Proof: Proposition 9 (Minimum t-statistic over models test).

The test will accept thatX1 is important if none of the coefficients γi1 toX1 in the short

regressions equal 0. The test accepts that X1 is unimportant if at least one coefficient to

X1 in a short regression equals 0.

Under assumption (O), the short regression, j, with all the conditionally mean in-

dependent regressors excluded gives γj1 = β1. Therefore, the test is correct when X1 is

unimportant because γj1 = 0. If β1 6= 0, then γi1 6= 0 except when an omitted variable

bias exactly cancels the effect of β1. Hence, the test cannot correctly determine when X1

is important. This can also be seen in the four regressor example, (10), in the proof of

proposition 5 with β1 6= 0, ρ13 = ρ14 = ρ23 = ρ24 = 0 and the other parameters being

non-zero. If β1 = −ρ12β2 then γ1 = 0 in the regression of Y on X1.
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Under assumption (S), the four regressor example (10) can be used to show that the

test is not consistent. Suppose the true submodel is Y on X2 and X3. Since the test

always includes X1 as a regressor, the regression of Y on X1, X2 and X3 is not performed.

Hence, the coefficient toX1 in the short regressions may be biased. Note, if the true model

has fewer than Ks variables, then the test is correct when X1 is unimportant. When X1 is

important, the test may give that X1 is not important if an omitted variable bias cancels

the effect of β1 in the same manner as under assumption (O).

Under assumption (I), the value of γj1 6= 0 in all short regressions because of the omitted
variable bias unless the omitted variable happens to cancel the effect of β1. Hence, when

X1 is not important, the test will accept that X1 is important. This is equivalent to the

case under BACE.

Proof: Proposition 10 (BIC). The choice of model can be determined by the differ-

ences in BIC. A model i is chosen over a model j if and only if

N(log
1

N
SSEi − log

1

N
SSEj) + log (N) (ki − kj) < 0

for all j 6= i. The population equivalent or probability limit of 1
N
SSEj is σ2j . The first

term diverges to infinity unless σi = σj. If σi = σj, then

N(log
1

N
SSEj − log

1

N
SSEi)→d eW ,

where W has a non-degenerate distribution. Then

BICj −BICi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σj > σi

−∞ if σj < σi

∞ if σj = σi and kj > kj

−∞ if σj = σi and kj < ki

eW if σj = σi and kj = ki

.

Hence, BIC selects the model with the lowest σ with fewest parameters. In case several

models with the same number of variables achieve the lowest σ, a tie-breaker is necessary.

Under assumption (S), the lowest σ is achieved by the true model according to (11).

The coefficient to X1 in that model equals β1.

Under assumption (O), the short regression with the lowest σ may not include X1.

This can be seen using the same example as in the proof of BACE. Hence, BIC denotes

X1 as unimportant when it is important.

Under assumption (I), none of the coefficients to X1 over all the short regressions

equals β1. This can also be seen using the example in the proof of BACE.
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Proof: Proposition 11 (AIC and AICC). The choice of model can be determined

by the differences in AIC. A model i is chosen over a model j if and only if

N(log
1

N
SSEi − log

1

N
SSEj) + 2(ki − kj) < 0

for all j 6= i. The population equivalent or probability limit of 1
N
SSEj is σ2j . The first

term diverges to infinity unless σi = σj. If σi = σj, then

N(log
1

N
SSEj − log

1

N
SSEi)→d eW ,

where W has a non-degenerate distribution. Then

AICj −AICi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if σj > σi

−∞ if σj < σi

eW + 2(kj − ki) if σj = σi and kj > ki

eW + 2(kj − ki) if σj = σi and kj < ki

eW if σj = σi and kj = ki

.

The corrected AIC is the same as AIC in the population since the correction term is 0

in the population. AIC selects the model with the lowest σ. In case several models with

the same number of variables achieve the lowest σ, a tie-breaker is necessary.

Under assumption (S), the lowest σ is achieved by the true model according to (11).

The coefficient to X1 in that model equals β1.

Under assumption (O), the short regression with the lowest σ may not include X1.

This can be seen using the same example as in the proof of BACE. Hence, AIC denotes

X1 as not important when it is important.

Under assumption (I), none of the coefficients to X1 over all the short regressions

equals β1. This can also be seen using the example in the proof of BACE.

Proof: Theorem 12 (CMI-method). Proof of step 1). Assumption (O) can be

reformulated to a condition on a set of linear regressions withX1 as the dependent variable.

Let Z be a subset with Ks − 1 members of {X2, ..., XK}. Assume that assumption (O)
is satisfied. Then Z = Ac in assumption (O) if E

¡
X1|Z,ZC

¢
= E (X1|Z). Suppose

Xj ∈ ZC . The linear regression of Xj on X1 and Z is E (Xj|X1, Z) = γ1jX1 + ...+ γijXi

for Xi ∈ Z. Define the reverse regression as: E (X1|Xj, Z) = λ1jXj + ... + λijXi for

Xi ∈ Z. It can be shown using Cramer’s rule for matrix inversion that γ1j = 0 iff λ1j = 0.

Hence, the condition on γ1j = 0 for all j is equivalent to λ1j = 0 for all j.
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The choice of Z using the BIC criterion is valid bacause the regression E (X1|Z) is
chosen by BIC in the population since this regression minimizes E (V (X1|Z)) with the
smallest number of parameters.

Proof of step 2). The purpose of step 2 is to check if assumption (O) is satisfied. Let

XI be a matrix with X1 as the first column and Z as the remaining. The coefficients in

the linear regression of Xj(∈ ZC ) on XI are

γ = (E(XIX
0
I))

−1
E(XIXj).

Assuming that E(XIX
0
I) has full rank, E(XIXj) = 0 implies that γ1 = 0. Thus a sufficient

condition for assumption (O) to hold is that corr(Xj,Xi) = 0 for allXi ∈ Z andXi = X1.

In total there will be Ks(K − Ks) correlations. If any of the correlations are different

from zero, then the test rejects that inference is possible. If assumption (O) is false, then

the test consistently rejects that inference can be made.
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