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Abstract

The main objective behind the production of seasonally adjusted time series

is to give an easy access to a common time series data set purged of what is

considered seasonal noise. Although the application of o¢ cially seasonally

adjusted data may have the advantage of being cost saving it may also

imply a less e¢ cient use of the information available, and one may apply a

distorted set of data. Hence, in many cases, there may be a need for treating

seasonality as an integrated part of an econometric analysis. In this article

we present several di¤erent ways to integrate the seasonal adjustment into

the econometric analysis in addition to applying data adjusted by the two

most popular adjustment methods.

JEL Classi�cation: C10, Keywords: Seasonality

Acknowledgement 1 The author is grateful for helpful comments from
Niels Haldrup and Steven Durlauf.



1 Seasonal Adjustment

Seasonal adjustment of economic time series dates back to the nineteenth

century and it is based on an attitude properly expressed by Jevons (1884)

page 4 who wrote:

�Every kind of periodic �uctuation, whether daily, weekly, monthly, quar-

terly, or yearly, must be detected and exhibited not only as a subject of a

study in itself, but because we must ascertain and eliminate such periodic

variations before we can correctly exhibit those which are irregular or non-

periodic, and probably of more interest and importance�.

The most popular model behind seasonal adjustment in the beginning

of the twentieth century was either the so-called additive Unobserved Com-

ponents model

Xt = Tt + Ct + St + It; (1)

t = 1; 2; :::; n

where the observed seriesXt is divided into a trend component, Tt; a business

cycle component, Ct; a seasonal component, St; and an irregular component,

It; or the multiplicative UC model

Xt = Tt � Ct � St � It; (2)

t = 1; 2; :::; n

where the latter is applied if the series is positive and the oscillations in-

creases with the level of the series.

The de�nitions of the individual components could vary, but Mills (1924)

page 357 de�ned the trend component, Tt; as the smoothed, regular, long-

term movement of the series Xt; while the seasonal component , St; contain

�uctuations that are de�nitely periodic in character with a period of one

year i.e. 12 months or 4 quarters. The business cycle component, Ct; is less

markedly periodic, but characterized by a considerable degree of regularity

with a period of more than one year, while the irregular component, It; has

no periodicity. A detailed description of the historical development is given

in Hylleberg (1986).
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The rationale behind seasonal adjustments is that the unobserved com-

ponents model is useful, that the components are independent, and that the

components of interest are the trend and cycle components.

The assumption of independence is a highly questionable assumption,

as the actual economic time series is a result of economic agents�reaction

to some exogenous seasonally varying explanatory factors such as the cli-

mate, the timing of religious festivals and business practices . For a typical

economic actors, decisions designed to smooth against seasonal �uctuations

will naturally interact with nonseasonal �uctuations, since the costs of such

smoothing will necessarily be interrelated, through budget constraints, etc.

Therefore, not only is the independence assumption economically unrea-

sonable, seasonal patterns may be expected to change if economic agent�s

change their behavior rules.

Later Hylleberg (1992, p. 4) de�nes seasonality as �A systematic, al-

though not necessarily regular, intra-year movement caused by the changes

of the weather, the calendar, and timing of decisions, directly or indirectly

through the production and consumption decisions made by agents of the

economy. These decisions are in�uenced by endowments, the expectations

and preferences of the agents, and the production techniques available in

the economy�.

Such a view of seasonality is somewhat di¤erent from the views expressed

by most statistical data producing agencies. The views of the statistical of-

�ces are well represented by the arguments put forward by OECD in OECD

(1999) page vii, where the implied de�nition of seasonality stresses the �xed

timing of certain events during the year. Likewise, they indicate that the

reasons for changes in the seasonal pattern is "The trading day e¤ect" i.e.

the changing number of working days in a month, the changing number of

Saturdays, and movable feasts such as Easter, Pentecost, Chinese New Year,

Korean Full Moon Day.

Obviously, such factors do in�uence the seasonal pattern in economic

time series, but in the longer run technical progress and economic consider-

ations based on these will imply changes in the seasonal pattern as well.

In addition, the seasonal economic time series may constitute an in-

valuable plentiful source for testing theories about economic behavior, as the

seasonal pattern is a recurrent although changing event, where the pattern

despite the changes is somewhat easier to forecast than many other economic
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phenomena1.

Seasonal adjustment and treatment of the seasonal components may in

practise be undertaken in two ways. Either one simply apply the seasonally

adjusted data produced by the statistical agencies, or integrate the modeling

and adjustment into the econometric analysis undertaken.

2 The o¢ cially applied seasonal adjustment programmes

Several di¤erent methods for seasonal adjustment are in actual use, but the

most popular programme is the X-12-ARIMA Seasonal Adjustment Pro-

gramme, see Findley, Monsell, Bell, Otto & Chen (1998a) which is a fur-

ther development of the popular X-11 seasonal adjustment programme, see

Shiskin, Young & Musgrave (1967) and Hylleberg (1986). Another pop-

ular seasonal adjustment programme is the TRAMO/SEATS programme

developed in Gomez & Maravall (1996).

2.1 X-12-ARIMA Seasonal Adjustment programme.

The main characteristics of the X-11 seasonal adjustment method for the

monthly multiplicative model, see (2)

Xt = TCt � St � TDt �Ht � It; (3)

where TCt is the combined trend-cycle component, while TDt is the trading

day component, and Ht the holiday component, is the repeated application

of selected moving averages such as a 12 month centered moving average

to estimate TCt followed by an actual extraction of the estimated trend-

cycle component. The extraction by the moving average �lters takes place

after a prior adjustment for trading days and certain holidays, and a varying

seasonal pattern is taken care of by applying so-called Henderson moving

averages with a 9, 13 or 23 number of terms. The Henderson trend �lters are

used in preference to simpler moving averages because they can reproduce

polynomials of up to degree 3, thereby capturing trend turning points.

1For a general discussion of seasonality an d the literature, see Hylleberg (1986). For a

presentation and discussion of the results since then see Hylleberg (1992), Franses (1996),

and Ghysels & Osborn (2001) and Brendstrup, Hylleberg, Nielsen, Skipper & Stentoft

(2004) for the latest development.
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In addition, treatment for so-called extreme observations was possible,

and a re�ned asymmetric moving averages �lter is used at the ends of the

series.

In order to robustify the initial seasonally adjusted series against data

revisions, the X-11 seasonal adjustment method was improved by extending

the series by forecasts and backcasts from an ARIMA model before season-

ally adjusting the series, see Dagum (1980).

The X-12-ARIMA Seasonal Adjustment programme described in Find-

ley et al. (1998a), extends the facilities of X-11-ARIMA by adding a mo-

deling module denoted RegARIMA, which not only facilitates modeling the

processes in order to forecast and backcast the time series, but also facili-

tates modeling of trading day and holiday e¤ects, detection of outlier e¤ects,

dealing with missing data, detection of sudden level changes, and detection

of changes in the seasonal pattern, trading day e¤ects etc. The second ma-

jor improvement compared to the earlier programmes is the inclusion of

a module for diagnostics which contains many helpful "tests". The third

improvement is a user-friendly interface.

Although X-12 is a major improvement to X-11 several criticisms are

raised such as Wallis (1998), who doubts that the trend estimation procedure

taken over from X-11 is still the best available despite the results obtained

during the last 30 years, and he emphasis the need for giving the user of the

adjusted numbers an indication of their susceptibility to revision.

2.2 TRAMO/SEATS Seasonal Adjustment programme

The main di¤erence between the X-12 programme and the TRAMO/SEATS

programme is that the former uses signal-to-noise ratios to choose between

the di¤erent moving average �lters available while SEATS uses signal ex-

traction with �lters derived from a time series (ARIMA) model.

The programme also contains a preadjustment programme, TRAMO,

which basically performs tasks similar to RegARIMA in X-12.

The signal extraction is based on an additive model such as (1) or

Yt = �t + 
t + "t; (4)

where �t is the trend-cycle component, 
t the seasonal component, and "t
is the irregular component. It is then assumed that the �t and 
t can be
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modelled as two distinct ARIMA processes

AC (L) (1� L)d�t = BC (L) vt and (5)

AS (L) (1� Ls)D
t = BS (L)wt

where the processes vt; wt and "t are independent, serially uncorrelated

processes with zero means and variances �2v; �
2
w and �2", and d and D

are integers, while L is the lag operator. This class of model is also called

Unobserved Components Autoregressive Integrated Moving-Average Models

(UCARIMA) by Engle (1978).

Hence, the TRAMO/SEATS programme requires the estimation of the

UCARIMA parameters for each speci�c series. A non negligible task, which

in principle should allow computation of the correct number of degrees of

freedom. This is not possible in X-12 due to the adjustments undertaken

within the programme based on the characteristics of the individual series.

A discussion of the merits and drawbacks of X-12 and TRAMO/SEATS

may be found in Ghysels & Osborn (2001), Hood, Ashley & Findley (2004)

and in several working papers from EUROSTAT, see Mazzi & Savio (2005),

who �nds that X-12 is slightly preferable to TRAMO/SEATS when applied

to short time series. An result to be expected as the model based approach

requires more data. In fact, the main di¤erences between the two leading

competitors is due to the di¤erence between the model based approach of

TRAMO/SEATS, which tailor a seasonal �lter to each series, and the uni-

form �lter applied by X-12, see below. However, the model based approach

relies on a very restrictive set of models, and the uniform �lter approach is

not really applying the same �lter, as individual characteristics like outliers,

smoothness etc. have in�uence on the �lter.

3 Seasonal adjustment as an integrated part of the
analysis.

The main objective behind the production of seasonally adjusted time series

is to give the policy analyst/adviser etc. an easy access to a common time

series data set, which has been purged for what is considered noise contami-

nating the series. Obviously, the application of the seasonally adjusted data

may be more or less formal and meticulous, ranking from eyeball analysis

to thorough econometric analysis.
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However, although the application of o¢ cially seasonally adjusted data

may have the advantage of being cost saving it also implies that the user

runs a severe risk of not making the most e¤ective use of the information

available, and maybe more serious, apply a distorted set of data for the

speci�c analysis at hand, - distorted by the applied seasonal �lter.

The possible reasons for these shortcomings are

� the seasonal component is a noise component but

� the wrong seasonal adjustment �lter has been applied

� the data have been seasonally adjusted individually without con-
sidering that they are often used as input to a multivariate analy-

sis

� the seasonal components of di¤erent time series may be closely con-
nected, and contain valuable information across series.

A �ltering of the data before applying them may of course distort the

outcome of the analysis if the wrong �lter is applied, but even if the "cor-

rect" �lter is applied, correct seen from the individual series, the �ltering

may produce biased estimates of the parameters in certain cases where, for

instance, a regression model is applied, see Hylleberg (1986) page 3. How-

ever, this result is complicated by the application of other transformations

to the original series. Which �lter to apply may in fact depend on the order

of the applied transformations as shown by Ghysels (1997).

Hence, in order to optimally model many economic phenomena, there

may be a need for treating seasonality as an integrated part of an econo-

metric analysis based on unadjusted quarterly, monthly, weekly and daily

timeseries or panel data observations.

This may be done in many di¤erent ways depending on the speci�c

context and the set of reasonable assumptions one can make within that

context.

As both X-12 and TRAMO/SEATS seasonal adjustment programmes

are available to the individual researcher, they may both be applied as part

of an integrated approach and their use somewhat adapted to the speci�c

analysis, but in the following we will discuss some alternative methods. The

methods discussed below are in three groups
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� Pure noise models,

� Time series models

� Economic models.

3.1 Pure Noise Models

The �rst group contains the seasonal adjustment methods which are based

on the assumption that the seasonal component is noise. Thus, the group

also contains the o¢ cially applied seasonal adjustment programmes pre-

sented earlier. The di¤erence between the seasonal adjustment methods in

this group lies in their ability to take care of a changing seasonal component.

3.1.1 Seasonal dummies

The use of seasonal dummy variables to �lter quarterly and monthly times

series data is a very simple, straightforward and therefore popular method

in econometric applications. The dummy variable method is designed to

take care of a constant, stable seasonal component. The popularity of the

seasonal dummy variable method is partly due to its simplicity and the

�exible way it can be used either as a pre�ltering device where the series

are regressed on a set of seasonal dummy variables and the residuals used

in the �nal regression, or within the regression as an extension of the set

of regressors by seasonal dummy variables, see Frisch & Waugh (1933) and

Lovell (1963).

3.1.2 Band Spectrum Regression and Band Pass Filters

A natural and quite �exible way to analyze time series with a strong and

somewhat varying periodic component is to perform the analysis in the

frequency domain, where the time series is represented as a weighted sum of

cosine and sine waves. Hence, the time series are Fourier transformed and

the seasonal �ltering of the time series may take place by removing speci�c

frequency components from the Fourier transformed data series.

Application of such �lters dates back a long time, see Hannan (1960), and

Band Spectrum Regression was further developed and analyzed by Engle

(1974), Hylleberg (1977), and Hylleberg (1986). Later the so-called Real
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Business Cycle literature has named it Band Pass Filtering, see Baxter &

King (1999). For an overview see Cogley (2006).

Let us assume that we have data series with T observations in a vector

y and a matrix X related by y = X� + "; where " is the disturbance term

and � a coe¢ cient vector. Band spectrum regression is then performed as

a regression in the transformed model A	y = A	X� + A	"; where the

transformation by the matrix 	 is a �nite Fourier transformations of the

data. The transformation by the diagonal matrix A with zeros and ones

on the diagonal, symmetric around the southwest northeast diagonal, is

a �ltering, which removes the frequency components corresponding to the

elements with the zeros. Hence, by an appropriate choice of zeros in the

main diagonal of A the exact seasonal frequencies or in addition a band

around them may be �ltered from the series.

An obvious advantage of the band spectrum regression representation is

that the model A	y = A	X� + A	" lends itself directly to a test for the

appropriate �ltering as argued in Engle (1974). In fact the test is just the

well known so-called Chow test applied to a stacked model with the null

hypothesis that the parameters are the same over the di¤erent frequencies.

A drawback of band spectrum regression is that the temporal relations

between series may be a¤ected in a complicated way by the two sided �lter,

see Engle (1980) and Bunzel & Hylleberg (1982).

3.1.3 Seasonal integration and seasonal fractional integration

A simple �lter often applied in empirical econometric work is the seasonal

di¤erence �lter (1 � Ls)d, where s is the number of observations per year,
and d the number of times the �lter should be applied to render the se-

ries stationary at the long run and seasonal frequencies, see Box & Jenkins

(1970).

In the unit root literature a time series is said to be integrated of order

d if its d�th di¤erence has a stationary and invertible ARMA representation.

Hylleberg, Engle, Granger & Yoo (1990) generalized this to seasonal integra-

tion and denote for instance a quarterly series yt; t = 1; 2; ::; T represented

by the model
�
1� L4

�
yt = "t, "t s iid

�
0; �2

�
as integrated of order 1 at

frequency �; since
�
1� L4

�
= (1 � L)(1 + L)(1 + L2) has real roots at the

unit circle at the frequencies � =
�
0; 12 ; [

1
4 ;
3
4 ]
	
; where � is given as the share

of a total circle of 2�:
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Many empirical studies have applied the so-called HEGY test for sea-

sonal unit roots developed by Hylleberg et al. (1990) and Engle, Granger,

Hylleberg & Lee (1993) for quarterly data, extended to monthly data by

Beaulieu & Miron (1993), and to daily data integrated at a period of one

week by Kunst (1997). These tests are extensions of the well known Dickey-

Fuller test for a unit root at the long-run zero frequency Dickey & Fuller

(1979) and at the seasonal frequencies Dickey, Hasza & Fuller (1984)

The HEGY test is the simplest and most easily applied test for seasonal

unit roots. In the quarterly case the test is based on an autoregressive model

�(L)yt = "t, "t s iid
�
0; �2

�
where �(L) is a lagpolynomial with possible unit

roots at frequencies � =
�
0; 12 ; [

1
4 ;
3
4 ]
	
: A rewritten linear regression model

where the possible unit roots are isolated in speci�c terms is

��(L)y4t = �1y1t�1 + �2y2t�1 + �3y3t�2 + �4y3t�1 + "t (6)

y1t =
�
1 + L+ L2 + L3

�
yt

y2t = �
�
1� L+ L2 � L3

�
yt

y3t = �
�
1� L2

�
yt

y4t =
�
1� L4

�
yt:

The lag polynomial �� (L) is a stationary and �nite polynomial by assump-

tion. Denoting integration of order d at frequency � by I�(d) we thus have

y1t � I0(1), y2t � I 1
2
(1);and y3t � I[1=4;3=4](1) while y1t � I 1

2
;[1=4;3=4](0),

y2t � I0;[1=4;3=4](0); y3t � I0; 1
2
(0)and y4t � I0; 1

2
;[1=4;3=4](0) provided yt �

I0; 1
2
;[1=4;3=4](1):

The HEGY tests of the null hypothesis of a unit root are conducted by

�t-value�tests on �1 for the long-run unit root, �2 for the semiannual unit

root, and �F -value� tests on �3 and �4 for the annual unit roots. In fact

the �t-value�tests on �1 is just the unit root test of Dickey and Fuller with

a special augmentation applied. As in the Dickey-Fuller cases the statistics

are not t or F distributed, but have non-standard distributions, which for

the �t�are tabulated in Fuller (1976) while critical values for the �F�test

are tabulated in Hylleberg et al. (1990).

As in the Dickey-Fuller case the correct lag-augmentation in the auxiliary

regression (6) is crucial. The errors need to be rendered white noise in order

for the size to be close to the stipulated signi�cance level, but the use of too

many lag coe¢ cients reduces the power of the tests.
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Obviously, if the DGP contains a moving average component, the aug-

mentation of the autoregressive part may require long lags, see Hylleberg

(1995) and the HEGY test may be seriously a¤ected by autorcorrelation in

the errors, moving average terms with roots close to the unit circle, so-called

structural breaks, and noisy data with outliers.

The existence of seasonal unit roots in the DGP implies a varying sea-

sonal pattern where �summer may become winter�. In most cases such an

extreme situation is not logically possible and the �ndings of seasonal unit

roots should be taken as an indication of a varying seasonal pattern and the

unit root model as a parsimonious approximation to the DGP.

Another test where the null is no unit root at the zero frequency is

suggested by Kwiatkowski, Phillips, Schmidt & Shin (1992) and extended to

the seasonal frequencies by Canova & Hansen (1995), and further developed

by Busetti & Harvey (2003). See Hylleberg (1995) for a comparison of

the Canova-Hansen test and the HEGY test. See also Taylor (2002) for a

variance ratio test.

Recently, Arteche (2000) and Arteche & Robinson (2000) have extended

the analysis to include non-integer values of d in the de�nition of a sea-

sonally integrated process. In case d is a number between 0 and 1 the

process is called fractionally seasonally integrated. The fractionally inte-

grated seasonal process is said to have strong dependence or long memory

at a frequency ! since the autocorrelations at that frequency die out at a

hyperbolic rate in contrast to the much faster exponential rate in the weak

dependence case where d = 0. In the integrated case where d = 1 the

autocorrelations never die out.

The di¢ culty with the fractional model is estimation of the parameter

d, and even in the quarterly case there are three possible d parameters, and

the testing procedure may become very elaborate, requiring for instance a

sequence of clustered tests as in Gil-Alana & Robinson (1997).

3.2 The Time Series Models

The time series models may be univariate models such as the Box-Jenkins

model, unobserved components model, time varying parameter models or

evolving seasonal models, or multivariate models with seasonal cointegra-

tion, periodic cointegration or models with seasonal common features.
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3.2.1 Univariate seasonal models

The Box-Jenkins model. In the traditional analysis of Box and Jenkins,

see Box & Jenkins (1970), the time series where s is the number of quarters,

months etc. in the year, were made stationary by application of the �lters

(1� L) and/or (1� Ls) = (1� L)S (L) ; where S (L) = (1 + L+ L2 + L3 +
::::::Ls�1); as many times as was deemed necessary from the form of the

resulting autocorrelation function. After having obtained stationarity the

�ltered series were modelled as an Autoregressive Moving Average model

or ARMA model. Both the AR and the MA part could be modelled as

consisting of a non seasonal and seasonal lag polynomial. Hence, the so-

called Seasonal ARIMA model has the form

�(L)�s(L
s)(1� Ls)D(1� L)dyt = �(L)�s(Ls)"t (7)

where �(L) and �(L) are invertible lag polynomials in L; while �s(L
s) and

�s(L
s) are invertible lag polynomials in Ls; and D and d integers.

In light of the results mentioned in the section on seasonal unit roots

the modeling strategy of Box and Jenkins may easily be re�ned to allow

for situations were the nonstationarity exists only at some of the seasonal

frequencies.

The �Structural� or Unobserved Components Model. When modeling

processes with seasonal characteristics, intractable, complicated and high

ordered polynomials must be applied in the ARMA representation. As an

alternative to this the Unobserved Components model (UC) discussed earlier

was proposed.

It is easily seen that the UCARIMA model is a general ARIMA model

with restrictions on the parameters. Alternatively, the UC model may be

speci�ed as a so-called structural model following Harvey (1993).

The structural model is based on a very simple and quite restrictive

modeling of the components of interest such as trends, seasonals and cycles.

The model is often speci�ed as (4). The trend �t is normally assumed only to

be stationary in �rst or second di¤erences whereas the seasonal component


t is stationary when multiplied by the seasonal summation operator S (L).

In the Basic Structural Model (BSM) the trend is speci�ed as

�t = �t�1 + �t�1 + �t (8)

�t = �t�1 + �t
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where each of the error terms is independently distributed2. The seasonal

component is speci�ed as

S (L) 
t =
n�1X
j=0


t�j = wt (9)

where s is the number of periods per year and where wt � N
�
0; �2w

�
.3 ;4 The

BSM model can also be written as

yt =
�t
�2

+
wt
S (L)

+ "t; (10)

where �t = �t � �t�1 + �t�1 is equivalent to an MA(1) process. Expressing
the model in the form (10) makes the connection to the UCARIMA model

in (4) clear.

Estimation of the general UC model is treated in Hylleberg (1986) and

estimation of the structural model is treated in Harvey, Koopman & Shep-

hard (2004).

In the structural approach the problems of specifying the ARMA models

for the components is thus avoided by a priori restrictions. Harvey & Scott

(1994) argue that the type of model above which has a seasonal component

evolving relatively slowly over time can �t most economic time series, irre-

spective of the apparently strong assumptions of a trend component with

a unit root and a seasonal component with all possible seasonal unit roots

present.

Periodic Models and other Time Varying Parameter Models. The pe-

riodic model extends the nonperiodic time series models by allowing the

parameters to vary with the seasons. The so-called periodic autoregressive

(PAR) model assumes that the observations in each of the seasons can be

described using di¤erent autoregressive models, see Franses (1996).

Consider a quarterly times series yt which is observed for N years. The

2 If �2� = 0 this collapses to a random walk plus drift. If �2� = 0 as well it corresponds

to a model with a linear trend.
3This speci�cation is known as the dummy variable form, since it reduces to a standard

deterministic seasonal component if �2w = 0.
4Specifying the seasonal component this way makes it slowly changing by a mechanism

that ensures that the sum of the seasonal components over any s consecutive time periods

has an expected value of zero and a variance that reamins constant over time.
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stationary PAR(h) quarterly model can be written as

yt =
4X
s=1

�sDs;t +
4X
s=1

�1sDs;tyt�1 + :::+
4X
s=1

�hsDs;tyt�h + "t (11)

with s = 1; 2; 3; 4, t = 1; 2; :::; T = 4N , and whereDs;t are seasonal dummies,

or as yt = �s + �1syt�1 + :::+ �psyt�h + "t:

It has been shown that any PAR model can be described by a non-

periodic ARMA model Osborn (1991). In general, however, the orders will

be higher than in the PAR model. For example, a PAR(1) corresponds

to a non-periodic ARMA(4,3) model. Furthermore, it has been shown that

estimating a non-periodic model when the true DGP is a PAR can result in a

lack of ability to reject the false non-periodic model,Franses (1996). Fitting

a PAR model does not prevent the �nding of a non-periodic AR process, if

the latter is in fact the DGP. It practice it is thus recommended that one

starts by selecting a PAR(h) model and then tests whether the autoregressive

parameters are periodically varying using the method described above.

A major weakness of the periodic model is that the available sample for

estimation N = n=s often is too small. Furthermore, the identi�cation of a

periodic time series model is not as easy as it is for non periodic models.

Now, let us rewrite the series yt; t = 1; 2; 3; ::::T; as ys;� ; where s =

1; 2; 3; 4 indicating the quarter, and � = 1; 2; :::; n indicating the year. The

PAR(1) process can then be written as

ys;� = �sys�1;� + "s;� ; s = 1; 2; 3; 4; � = 1; 2; :::; n (12)

or in vector notation

�(L)Y� = U� (13)
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where

�(L) =

266664
1 0 0 0

��2 1 0 0

0 ��3 1 0

0 0 ��4 1

377775

�

266664
0 0 0 �1

0 0 0 0

0 0 0 0

0 0 0 1

377775L
Y
0
� = [y1;� ; y21;� ; y2;� ; y2;� ]

U
0
� = ["1;� ; "21;� ; "2;� ; "2;� ]

with L operating on the seasons. The PAR(1) process in (13) is stationary

provided j�(z)j = 0 has all its roots outside the unit circle, which is the case
if and only if j�1�2�3�4j < 1:

The model may be estimated by Maximum Likelihood or OLS. Testing

for periodicity in (11) amounts to testing the hypothesis H0 : �is = �i for

s = 1; 2; 3; 4 and i = 1; 2; :::; p; and this can be done with a likelihood ratio

test, which is asymptotically �23p under the null, irrespective of any unit

roots in yt, see Boswijk & Franses (1995).

The vector representation of the PAR model forms an e¤ective vehicle for

generating estimation and testing procedures directly from the general result

for stationary VAR models, but it also create an e¤ective way to handle the

non stationary case and compare the periodic models to the models with

seasonal integration.

In the non stationary case, a periodically integrated process of order 1;

P I(1) is de�ned as a process, where there exists a quasi-di¤erence

Dsys;� = 1� �sys�1;� (14)

�1�2�3�4 = 1

not all �s = 1; s = 1; 2; 3; 4:

such that Dsys;� has a stationary and invertible representation. Notice, that

the PI(1) process is neither an integrated I0(1) process nor a seasonally

integrated I0; 1
2
;[1=4;3=4](1) process as shown in Ghysels & Osborn (2001).

The periodic models can be considered special cases of what is referred

to as the Time-Varying Parameter models, see Hylleberg (1986). These are
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regression models of the form

Yt = X 0
t�t + ut (15)

B (L)
�
�t � ��

�
= A
t + �t

which can be written in state-space form and estimated using the Kalman

�lter. However, the number of parameters is often large compared to the

number of observations, and in practice one may be forced to restrict the pa-

rameter space. A sensible assumption is that the parameters vary smoothly

over the seasons, an assumption used by Gersovitz & MacKinnon (1978)

applying Bayesian techniques.

The Evolving Seasonals Model The evolving seasonals model was promul-

gated by Hannan, Terrell & Tuckwell (1970). The model was revitalized by

Hylleberg & Pagan (1997), who showed that the evolving seasonals model

produces an excellent vehicle for analyzing di¤erent commonly applied sea-

sonal models as it nests many of them. Recently, the model has been used by

Koop & Dijk (2000) to analyze seasonal models from a Bayesian perspective.

The evolving seasonals model for a quarterly time series is based on a

representation like

yt = �1t cos(�1t) + �2t cos(�2t) + 2�3t cos(�3t) + 2�4t sin(�3t); (16)

= �1t + �2t cos(�t) + 2�3t cos(�t=2) + 2�4t sin(�t=2);

= �1t(1)
t + �2t(�1)t + �3t[it + (�i)t] + �4t[it�1 + (�i)t�1];

where �1 = 0; �2 = �; �3 = �=2; cos(�t) = (�1)t; 2 cos(�t=2) = [it + (�i)t],
2 sin(�t=2) = [it�1 + (�i)t�1]; i2 = �1; while �jt; j = 1; 2; 3; 4; is a linear

function of its own past and a stochastic term ejt; j = 1; 2; 3; 4: For instance,

�1t = �1�1;t�1 + e1t; (17)

�2t = �1�2;t�1 + e2t;

�3t = �3�3;t�2 + e3t;

�4t = �4�4;t�3 + e4t:

In such a model, �1t(1)t = �1t represents the trend component with the unit

root at the zero frequency, �2t(�1)t represents the semiannual component
with the root �1; while �3t[it + (�i)t] + �4t[it�1 + (�i)t�1] represents the
annual component with the complex conjugate roots �i. In Hylleberg &
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Pagan (1997) it is shown that the HEGY auxiliary regression in (6) has an

evolving seasonals model representation, and also the Canova-Hansen test

and the PAR(h) model may be presented in the framework of the evolving

seasonals model.

3.2.2 Multivariate seasonal time series models

The idea that the seasonal components of a set of economic time series

are driven by a smaller set of common seasonal features seems a natural

extension of the idea that the trend components of a set of economic time

series are driven by common trends.

If the seasonal components are seasonally integrated, the idea immedi-

ately leads to the concept of seasonal cointegration, introduced in Engle,

Granger & Hallman (1989), Hylleberg et al. (1990), and Engle et al. (1993).

In case the seasonal components are stationary, the idea leads to the concept

of seasonal common features, see Engle & Hylleberg (1996), while so-called

periodic cointegration considers cointegration season by season, see Birchen-

hal, Bladen-Howell, Chui, Osborn & Smith (1989), and Ghysels & Osborn

(2001).

Seasonal Cointegration Seasonal cointegration exists at a particular sea-

sonal frequency if at least one linear combination of series, which are sea-

sonally integrated at the particular frequency, is integrated of a lower order.

Consider the quarterly case where yt and xt are both integrated of

order 1 at the zero and at the seasonal frequencies, i.e. the transfor-

mations corresponding to 6 are fy1t; x1tg � I0(1), fy2t; x2tg � I 1
2
(1);and

fy3t; x3tg � I[1=4;3=4](1): Cointegration at the frequency � = 0 then exists

if y1t � k1x1t � I0(0) for some nonzero k1; cointegration at the frequency

� = 1
2 exists if y2t�k2x2t � I 12 (0) for some nonzero k2; while cointegration at

the frequency � = [1=4; 3=4] exists if y2t � k3x2t � k4x2;t�1 � I[1=4;3=4](0) for
some nonzero pair fk3; k4g: The complex unit roots at the annual frequency
[1=4; 3=4] lead to the concept of polynomial cointegration, where cointegra-

tion exists if one can �nd at least one linear combination including a lag of

the seasonally integrated series which is stationary.

In Hylleberg et al. (1990) and Engle et al. (1993) seasonal cointegration

was analyzed along the path set up in Engle & Granger (1987).

The well known drawbacks of this method, especially when the number
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of variables included exceeds two, is partly overcome by Lee (1992) who

extended the maximum likelihood based methods of Johansen (1995) for

cointegration at the long run frequency, to cointegration at the semiannual

frequency � = 1
2 .

To adopt the ML based cointegration analysis at the annual frequency

� = [1=4; 3=4] with the complex pair of unit roots �i; is somewhat more
complicated, however. The general results may be found in Johansen &

Schaumburg (1999), and Cubadda (2001) applies the results of Brillinger

(1981) on the canonical correlation analysis of complex variables to obtain

tests for cointegration at all the frequencies of interest, i.e. at the frequencies

0 and � with the real unit roots �1 and at the frequency � = [1=4; 3=4] with
the complex roots �i:

Periodic cointegration The periodic cointegration extends the notion of

seasonal cointegration by allowing the coe¢ cients in the cointegration rela-

tions to be periodic, see Ghysels & Osborn (2001).

Consider the example given above with two quarterly time series yt and

xt; t = 1; 2; :::; T which are integrated of order 1 at the zero and seasonal

frequencies implying that a transformation by the fourth di¤erence 1 � L4

will make the two series stationary. Such series are called seasonally inte-

grated series. Let us rewrite the series as ys;� and xs;� with s = 1; 2; 3; 4

indicating the quarter, and � = 1; 2; :::; n indicating the year. Hence, the

eight yearly series ys;� ; xs;� ; s = 1; 2; 3; 4 are all integrated of order 1 at the

zero frequency.

Hence, full periodic cointegration exists, see Boswijk & Franses (1995),

if y�t � ksx�t � I0(0) for some nonzero ks; s = 1; 2; 3; 4; ; � = 1; 2; 3: In

case stationarity is only obtained for some s = 1; 2; 3; 4; partially periodic

cointegration exists.

Several interesting and useful results reviewed in Ghysels & Osborn

(2001) follow:

� Two seasonally integrated series may fully or partially periodically
cointegrate

� Two I0(1) processes cannot be periodically cointegrated. They are
either non-periodically cointegrated or not cointegrated at all.
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� If two PI(1) processes cointegrate in one quarter they cointegrate in
all four quarters.

Periodic cointegration is a promising, but currently not fully exploited

area of research, which has the inherent problem that it requires a large

sample. It is therefore not surprising, that the recent advances in this area

happen when data are plentiful (daily) and it is possible to restrict the model

appropriately, see Haldrup, Hylleberg, Pons & Sansó (2006).

Common Seasonal Features Although economic time series often exhibit

non-stationary behavior, stationary economic variables exist as well, espe-

cially when conditioned on some deterministic pattern such as linear trends,

seasonal dummies, breaks etc. However, a set of stationary economic times

series may also exhibit common behavior, and for instance share a com-

mon seasonal pattern. The technique for �nding such patterns, known as

Common Seasonal Features, see Engle & Hylleberg (1996), and Cubadda

(1999), is based on earlier contributions de�ning common features by Engle

& Kozicki (1993) and Vahid & Engle (1993).

Consider a multivariate autoregression written in error correction form

as

�Yt =

pX
j=1

Bj�Yt�j +�vt�1 + �zt + "t; t = 1; 2; ::::; T; (18)

where Yt is k�1 vector of observations on the series of interest in period t and
the error correction term is �vt�1: The vector vt contains the cointegrating

relations at the zero frequency, and the number of cointegrating relations is

equal to the rank of �: If � has full rank equal to k the series are stationary.

In the quarterly case the vector zt is a vector of trigonometric seasonal

dummies, such as fcos(2�ht=4 + 2�j=T ); h = 1; 2; j 2 (��T � j � �T ),

sin(2�h4 + 2�j=T ); h = 1; 2; j 2 (��T � j � �T ); j 6= 0; when h = 2g: The
use of trigonometric dummy variables facilitates the �modeling�of a varying

seasonal pattern, since a proper choice of � takes care of the neighboring

frequencies to the exact seasonal frequencies. If � is 0, the �lter is equivalent

to the usual seasonal dummy �lter.

The implication of a full rank of the k�m matrix �, equal to min[k;m],

is that di¤erent linear combinations of the seasonal dummies in zt are needed

in order to explain the seasonal behavior of the variables in Yt. However,

if there are common seasonal features in these variables we do not need all
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the di¤erent linear combinations, and the rank of � is not full. Thus, a test

of the number of common seasonal features can be based on the rank of �;

see Engle & Kozicki (1993).

The test is based on a reduced rank regression similar to the test for

cointegration by Johansen (1995). Hence, the hypotheses are tested using

a canonical correlation analysis between of zt and �Yt, where both sets of

variables are purged of the e¤ect from the other variables in (18).

This kind of analysis has proved useful in some situations, but it is di¢ -

cult to apply in cases where the number of variables is large, and the results

are sensitive to the lag-augmentation as in the case of cointegration. In ad-

dition, the somewhat arbitrary nature of the choice of zt poses di¢ culties.

3.3 Economic Models of Seasonality

Many economic time series have a strong seasonal component, and obviously

economic agents must react to that. Hence, the seasonal variation in eco-

nomic time series must be an integrated part of the optimizing behavior of

economic agents, and the seasonal variation in economic time series must be

a result of the optimizing behavior of economic agents, reacting to exogenous

factors such as the weather, the timing of holidays etc.

The fact that economic agents react and adjust to seasonal movements

on one hand and in�uence them on the other, implies that the application

of seasonal data in economic analysis may widen the possibilities for testing

theories about economic behavior. The relative ease at which the agents

may forecast at least some of the causes of the seasonality may be quite

helpful in setting up testable models for production smoothing, for instance.

Apart from what is caused by the easiness of forecasting exogenous fac-

tors, the type of optimizing behavior and the agents�reactions to a seasonal

phenomenon may be expected not to di¤er fundamentally from what is hap-

pening in a non-seasonal context. However, the recurrent characteristic of

seasonality may be exploited.

The economic treatment of seasonal �uctuation has been discussed in

the Real Business Cycle literature, e.g. Chatterjee & Ravikumar (1992), or

Braun & Evans (1995), working with a utility optimizing consumer faced

with some feasibility constraint. However, in most of this RBC branch,

seasonality arises from deterministic shifts in tastes and technology. A few

other papers incorporate seasonality through stochastic productivity shocks,
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see e.g. Wells (1997) and Cubadda, Savio & Zelli (2002).

Another area is the production smoothing literature as for instance Ghy-

sels (1988), Miron & Zeldes (1988), and Miron (1996), and habit persistence

as in Osborn (1988), who present a model for seasonality and habit persis-

tence in a life cycle consumption model.
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