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Abstract

The role of additive outliers in integrated time series has attracted
some attention recently and research shows that outlier detection should
be an integral part of unit root testing procedures. Recently, Vogelsang
(1999) suggested an iterative procedure for the detection of multiple ad-
ditive outliers in integrated time series. However, the procedure appears
to suffer from serious size distortions towards the finding of too many
outliers as has been shown by Perron and Rodriguez (2003). In this note
we prove the inconsistency of the test in each step of the iterative proce-
dure and hence alternative routes need to be taken to detect outliers in
nonstationary time series.
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1 Introduction
The detection of outlying observations has attracted much attention in time
series econometrics. In the classical autoregressive moving average (ARMA)
paradigm it has been suggested to use iterative procedures to locate and identify
the types of outliers, see e.g. Box and Tiao (1975) Chen and Liu (1992), and
Gómez and Maravall (1996). For integrated data it has been shown by Franses
and Haldrup (1994) and Haldrup, Montanés and Sanso (2005a) that unit root
testing at both the zero and seasonal frequencies can be much effected by size
distortion if no proper account is made to deal with the outliers. In all cases
it appears that the detection and location of outliers should be made prior
to estimation and testing regarding the essential model parameters, and hence
appropriate testing procedures are needed.
Vogelsang (1999) proposes an iterative outlier detection procedure which

uses the fact that the null hypothesis of a unit root can be exploited to derive a
non-degenerate limiting distribution for the t−ratio associated with a relevant
one-time dummy variable. Even though this test has the right size under the
null of no single outlier, it was shown by Perron and Rodriguez (2003) that when
applied in an iterative fashion to select multiple outliers, the test exhibits serious
size distortion as an excessive number of outliers will be detected. Consequently,
Perron and Rodriguez suggested a modified version of the Vogelsang iterative
procedure which had the right size but which nevertheless appeared to suffer
from power loss unless the outliers are huge. In the present note we show that
even when the Vogelsang test is used to detect a single outlier the test will
have asymptotic power equal to the size of the test. Hence the test is generally
inconsistent.

2 The Vogelsang test
Consider the univariate process generated by

yt = yt−1 + ut, t = 1, 2, ..., T (1)

where ut is an I(0) process which for instance can be a linear process ut = ϕ(L)et
with

ϕ(L) =
∞X
i=0

ϕiL
i,

∞X
i=0

i2ϕ2i <∞ (2)

and et is a mean zero martingale difference sequence with respect to yt, yt−1, .....y1
and with

σ2e = lim
T→∞

T−1
TX
t=1

E(ε2t )

being finite. Without loss of generality we assume y0 = 0. The sequence ut
satisfies the condition for the application of a functional central limit theorem,
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whereby

T−1/2
[Tr]X
t=1

ut = T−1/2St ⇒ σ2W (r)

where W (r) is a standard Wiener process and "⇒ ” denotes weak convergence
in distribution and

σ2 = lim
T→∞

T−1E
¡
S2T
¢
<∞

is the long run variance.
The variable being observed is

zt = µt + yt + θδt (3)

where µt collects the deterministic terms and δt is a Bernouilli-type variable
independent of ut, such that P (δt = 1) = P (δt = −1) = p/2, P (δt = 0) = 1−p,
0 ≤ p < 1. Accordingly, zt is an integrated process subject to the presence of
additive outliers that occur with a given probability.
The test proposed by Vogelsang (1999) is based on least squares estimation

of the sequence of (spurious) regressions

zt = F (t/T )0bβ + bθD(Tao)t + but (4)

for any Tao = 1, 2, ..., T, where F (t/T ) is a vector of deterministic terms such as
time trends and seasonal dummy variables. D(Tao)t is a dummy variable that
takes value 1 for t = Tao and 0 otherwise. The test statistic is given by

τ = sup
Tao

¯̄
tθ (Tao)

¯̄
and the null hypothesis of θ = 0 is rejected if τ is greater than a given critical
value. Under the null hypothesis of θ = 0 and the assumption that λ = Tao/T
remains fixed as T grows, the asymptotic distribution of the test is given by (see
Vogelsang, 1999):

τ ⇒ sup
λ

¯̄̄̄
¯̄̄ W ∗ (λ)³R 1

0
W ∗(r)2dr

´1/2
¯̄̄̄
¯̄̄ (5)

where ⇒ denotes weak convergence of the associated probability measures and
W ∗(r) are the residuals from the projection of W (r) onto the space spanned by
F (r) on (0,1). This asymptotic distribution is free of nuisance parameters and
is invariant to the autocorrelation structure of ut.

Proposition 1 Under the alternative hypothesis of θ 6= 0, the asymptotic dis-
tribution of τ is given by (5).

Proof. From (3), define µt = F (t/T )0β. Then the data-generation process
under the alternative of θ 6= 0 is given by zt = µt + (St + θδt) = µt + Sηt,
whereas under the null Sηt = St. Let D∗(Tao)t and S∗ηt denote the residuals from
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the regression of D(Tao)t and zt respectively on F (t/T ). Following Vogelsang
(1999), (Appendix page 251), the t-ratio testing θ = 0 can be written as:

tθ(Tao) =
T−1/2S∗ηTao¡

T−2
P

S∗2ηt + op (1)
¢1/2

Note that the presence of additive outliers does not modify neither the long-run

variance of ∆yt : σ2 = limT→∞E
¡
T−1S2ηT

¢
= limT→∞E

³
T−1 (ST + θδT )

2
´
=

limT→∞E
¡
T−1S2T

¢
, nor the asymptotic limits of the numerator and the de-

nominator: T−1/2S∗η[rT ] ⇒ σW ∗(r) and T−2
PT

[rT ]=1 S
∗2
η[rT ] ⇒ σ2

R 1
0
W ∗(r)2dr

in both cases, for θ = 0 and for θ 6= 0. Hence, the test has the same limit under
the null and the alternative hypothesis.

The implications of this result is that the power of the test will equal the
size even asymptotically; hence the proposed test is inconsistent1. Note that
the problem is present also when the test is applied in an iterative fashion. One
intuition behind this result is that the presence of additive outliers introduces
a MA component in I(1) processes, see e.g. Franses and Haldrup (1994). How-
ever, the asymptotic distribution of the test, given by (5), is invariant to serial
correlation. Another intuition behind the proposition is that an additive outlier
will become negligible compared to the I(1) stochastic trend component as the
sample size tends to infinity and hence cannot be identified asymptotically.
Some Monte Carlo experiments confirm these findings. Table 1 shows the

detection frequencies of the test when there is a fixed outlier in the middle of
the sample of a random walk. Four sample sizes, T = {50, 100, 200, 400}, and
values of θ = {0, 5, 10, 15} are considered. When θ = 0, no outliers are present
and around 96% of the times the test gets the correct conclusion of absence of
outliers using Vogelsangs critical values. For θ > 0, the test only detects the
outlier for large values of θ and small sample sizes (say 50). When the sample
size grows the performance of the test quickly deteriorates because the influence
of the outlier is hidden in the total variation of the variable.

[insert table 1 about here]

Systematic AOs are considered in table 2. Four different probabilities of
outliers, p = {0.01, 0.025, 0.05, 0.1}, two sample sizes, T = {100, 400}, and
values of θ = {5, 15} are considered. The results of the experiments confirm
that the test only detects a small amount of the effective number of outliers.
Only for large magnitudes of the outlier (say, θ = 15) the total number of
detected outliers almost corresponds to the actual number of AOs. As well as
for fixed outliers, the sample size deteriorates the ratio between detected outliers
and effective outliers.

1Of course, the test will be consistent against a sequence of alternatives where the size of
the outliers are allowed to increase with the sample size at a given speed. However, in practice
we believe this class of models is of little interest.
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[insert table 2 about here]

Hence, we conclude that the test proposed by Vogelsang (1999) is generally
inadequate for the detection of outliers.

3 Conclusions
We have shown that the testing procedure of Vogelsang (1999) to detect additive
outliers in unit root processes is inconsistent. Fortunately, alternative testing
procedures are available. In particular, Perron and Rodriguez (2003) have sug-
gested a test for additive outliers adequate for outlier detection in integrated
time series. The test uses first differences of the data and has excellent power
and size properties. Haldrup, Montañés and Sanso (2005b) generalize the test
to data observed with a seasonal frequency and possible seasonal unit roots.
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Table 1: Detection frequencies for the Vogelsang τ statistic for a fixed outlier.
θ T nao = 0 nao = 1 nao > 1
0 50 0.971 0.012 0.017

100 0.955 0.027 0.018
200 0.962 0.018 0.020
400 0.964 0.011 0.025

5 50 0.781 0.202 0.017
100 0.878 0.100 0.022
200 0.948 0.031 0.021
400 0.961 0.014 0.025

10 50 0.299 0.672 0.029
100 0.580 0.380 0.040
200 0.791 0.179 0.030
400 0.900 0.073 0.027

15 50 0.080 0.890 0.030
100 0.261 0.696 0.043
200 0.490 0.478 0.032
400 0.732 0.240 0.028

Notes: The data-generating process is given by zt = yt + D(0.5T )t,
t = 1, 2, ...T , where ∆yt = εt, εt ∼ N(0, 1). The auxiliary regression is
given by: yt = µ+θ̂D(Tao)t+ût. 1000 replications and 10% significance
level were used. nao stands for the number of outliers detected.
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Table 2: Detection frequencies for the Vogelsang τ statistic for systematic out-
liers.

p θ T Nao nao
0 100 0 0.024

400 0 0.235
0.01 5 100 1.023 0.142

400 4.070 0.273
15 100 1.023 0.832

400 4.070 1.238
0.025 5 100 2.509 0.245

400 9.959 0.285
15 100 2.509 1.855

400 9.959 2.519
0.05 5 100 5.074 0.338

400 20.113 0.341
15 100 5.074 3.093

400 20.113 4.265
0.1 5 100 9.974 0.394

400 40.029 0.352
15 100 9.974 3.343

400 40.029 4.585
Notes: The data-generating process is given by zt = yt + θδt, t =
1, 2, ...T , where ∆yt = εt, εt ∼ N(0, 1) and δt is an independent se-
quence of Bernouilli variables with P (δt = 1) = P (δt = −1) = p/2.
The auxiliary regression is given by: yt = µ + θ̂D(Tao)t + ût. 1000
replications and a 10% significance level were used. N̄ao stands for the
(average) number of outliers in the samples and n̄ao for the (average)
number of outliers detected.
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