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Abstract

The functioning of electricity markets has experienced increasing com-
plexitiy as a result of deregulation in recent years. Consequently this
affects the multilateral price behaviour across regions with physical ex-
change of power. It has been documented elsewhere that features such as
long memory and regime switching reflecting congestion and non-congestion
periods are empirically relevant and hence are features that need to be
taken into account when modeling price behavior. In the present paper we
further elaborate on the co-existence of long memory and regime switches
by focusing on the effect that the direction of possible congestion episodes
has on the price dynamics. Under non-congestion prices are identical.
The direction of possible congestion is identified by the region with excess
demand of power through the sign of price differences and hence three
different states can be considered: Non-congestion and congestion peri-
ods with excess demand in the one or the other region. Using data from
the Nordic power exchange, Nord Pool, we find that the price dynamics
and long memory features of the price series generally are rather different
across the different states. Also, there is evidence of fractional cointegra-
tion at some grid points when conditioning on the states.
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1 Introduction
The design of many electricity markets is characterized by some interesting fea-
tures which affect the price dynamics in such markets. In particular, regions can
be physically interconnected bilaterally in the exchange of electricity whereby
the price formation is dependent upon whether the market is subject to conges-
tion or non-congestion. For instance, the Nordic power exchange, Nord Pool,
is organized such that when no bottlenecks or congestions exist bilaterally at
exchange points the prices across regions will be identical, whereas the market
mechanism makes prices depart in situations with capacity constraints. It is
thus natural to consider price processes which accommodate regime switching
subject to the presence or absence of congestion. Furthermore, the direction of
the congestion reflecting the region of excess demand for power may be of im-
portance. Yet another aspect of electricity prices is that the price series seem to
indicate a high degree of long memory measured in terms of their fractional or-
der of integration, see e.g. Escribano, Pena, and Villaplana (2002) and Haldrup
and Nielsen (2005).
In some studies, for instance Granger and Ding (1996), Diebold and Inoue

(2001), and Granger and Hyung (2004), it has been argued that under cer-
tain conditions time series variables can spuriously have long memory when
measured in terms of their fractional order of integration (see Granger and
Joyeux (1980), Beran (1994), and Baillie (1996)), when in fact the series ex-
hibit non-linear features such as regime switching. Haldrup and Nielsen (2005)
suggest a model framework which allows for separate long memory price dy-
namics depending upon whether the bilateral market is subject to congestion or
non-congestion. The model is of the Markov switching type originally defined
by Hamilton (1989). However, because the defining property of e.g. a non-
congestion state is that prices are identical, the state variable is observable as
opposed to being a latent variable. An important feature of the model is that
the price processes in the different regimes can have different degrees of long
memory which gives rise to a number of interesting possibilities. For instance,
consider the state with non-congestion and assume that the associated bivariate
prices are fractionally integrated of a given order. It follows that prices are frac-
tionally cointegrated in this case, i.e. extending the notion of Granger (1981)
and Engle and Granger (1987), in the sense that individual prices are fraction-
ally integrated but price differences are identically zero. Thus, an extreme form
of cointegration occurs in this situation because the prices are identical and
hence are governed by exactly the same price shocks. The price behavior in the
congestion state can (and typically will) be very different. That is, the bivariate
prices can be fractionally cointegrated in a more conventional way or the prices
can appear not to cointegrate. Hence the model can potentially exhibit state
dependent fractional cointegration.1 By not appropriately conditioning on the
congestion state, i.e. when having a model with no regime switching, the full

1 In the literature, Markov switching (integer-valued) cointegration models have been sug-
gested by a number of authors, see inter alia Krolzig (1997), Krolzig, Marcellino, and Mizon
(2002), and Hansen and Seo (2002).
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sample estimates are likely to be a convex combination of the behavior in the
single states and hence misleading inference is likely to result. Indeed, this is
one of our major empirical findings in Haldrup and Nielsen (2005).
In the present paper we further explore this class of models by allowing for

an increased number of states. In particular, the Nord Pool electricity price data
at hand allows us to identify the direction of a possible congestion. Consider
electricity prices in two regions A and B, pA and pB. If pA = pB prices are
identical and there is a free flow of power across the regions, i.e. the non-
congestion state. The congestion state considered by Haldrup and Nielsen (2005)
concerns the case pA 6= pB. However, when pA > pB there is excess demand
in region A whereas when pA < pB there is excess demand in region B. It
is of interest to further explore the price dynamics in these separate states.
First of all, the spurious results argued to potentially exist when disregarding
the congestion/non-congestion states are likely to extend to the case where the
price dynamics depends upon the direction of the congestion but the direction
is left unmodeled. In other words, if (fractional) cointegration cannot be found
to exist in the congestion state (as defined in Haldrup and Nielsen (2005)) it
is still possible, for instance, that cointegration may be present when there is
excess demand in region A (pA > pB) but not when there is excess demand in
region B (pA < pB).
Identifying separate price dynamics is important for several reasons. Since

the operation of electricity markets is similar to the operation of financial mar-
kets with electricity power derivatives being priced and traded in highly com-
petitive markets, the dynamics of the price process is important, both in means
and variances, even though our focus in the present paper only concerns the
modeling of the mean-process. Furthermore, the price dynamics is of interest
with respect to competition analysis of electricity markets where market de-
lineation is a central issue, see e.g. Sherman (1989) and Motta (2004). Even
though most power markets are highly liberalized there is still a scope for regu-
lating authorities to closely follow the market behavior, see also Fabra and Toro
(2005). Under non-congestion there is obviously a single price existing in the
market and the relevant geographical market consists of the regions with identi-
cal prices. However, when there is directional congestion in one way or the other
it is of interest to follow the price dynamics closely because suppliers can have
a dominating position. The geographical market delineation thus becomes less
straightforward in this case. If the price dynamics appears to be very different
there is scope for further examination of the market conditions by regulatory
authorities.
The plan of the paper is as follows. In the next section we give a very brief

description of the way the Nordic power market functions. Section 3 presents
the data, and preliminary analyses are conducted which support the idea of sep-
arating between the three distinct regimes previously defined. The subsequent
section presents the 3-state long memory model with regime switching, and sec-
tion 5 presents the empirical results. The analysis shows that there is strong
support for very different time series properties of the price data in the different
regimes. In some states the prices cointegrate fractionally and in other states
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they do not. When estimation is made without appropriate conditioning on the
relevant states the analysis shows that there is a high risk of making spurious
inference regarding the price dynamics. In the final section we conclude.

2 The power market in the Nordic countries
Often, electricity markets, like the Nordic Power market, have capacity barriers
which tend to affect the relevant market delineation, depending upon the exis-
tence or absence of bottlenecks across neighboring regions.2 The Nordic power
market consisting of Norway, Sweden, Finland, and Denmark has undergone a
remarkable development towards liberalization over the past decade or so and
today all Nordic power markets have adapted to the new competitive environ-
ment and serves as a model for the restructuring of other power markets3.
The supply of electricity power in Norway is almost 100% hydropower whereas

Sweden and Finland use nuclear plants, fossil-fuel powered plants, and hy-
dropower. Approximately 90% of the Danish electricity is produced from con-
ventional thermal plants and combined heating and power facilities; a minor
proportion (10-12%) of Danish supply is from wind power turbines4. The hy-
dropower production is mainly found in the northern parts of the Nordic power
web whereas thermal power plants are located in the south. In general, the
relatively cheap hydropower generation is transmitted to the heavily populated
southern regions which of course requires a well established power grid trans-
mission capacity to facilitate the flow. When the reservoir levels are adequate,
the less costly hydropower production causes the market to prefer this energy
source and thus causes low spot prices. In these cases national and cross-border
transmission systems will be used to their capacity in order to level out price
discrepancies across regions. On the other hand, when reservoir levels are low
there will be a net flow from south to north, and the market will see relatively
high prices for thermally generated electricity.

Figure 1 about here

With respect to the connection points in the transmission of power, Norway
is divided into three regions (North Norway (NNO), Mid Norway (MNO), and
South Norway (SNO)), Denmark is divided into two regions (East Denmark
(EDK) and West Denmark (WDK)), and Sweden (SWE) and Finland (FIN)
each constitute their own region. This division reflects the physical linkages of

2 In microeconomics a related subject concerns the development of peak-load pricing models
for non-storable public goods. Often, these models are studied in the context of regulation
of, e.g., electricity supply. Classical treatments of this subject are Boiteux (1949) and Steiner
(1957) and a recent review is Crew, Fernando, and Kleindorfer (1995). Some extensions
that are relevant for electricity markets in particular include the consideration of multiple
technologies and time periods in Crew and Kleindorfer (1976) and the introduction of supply-
side uncertainty in Kleindorfer and Fernando (1993).

3 See Nord Pool (2003a) which provides a detailed description of the Nordic power market.
4The total power supply for the Nordic area is 55% hydro, 24% nuclear, 20% thermal and

combined heating, and 1% renewable.
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power exchanges and the bidding areas with respect to the pricing of electricity
as we shall explain shortly. Figure 1 displays the actual electricity exchange
points.
The power spot market5 - operated by Nord Pool Spot A/S - is an exchange

where market participants trade power contracts for physical delivery the next
day and is thus referred to as a day-ahead market. The spot market is based
on an auction with bids for purchase and sale of power contracts of one-hour
duration covering the 24 hours of the following day. At the deadline for the
collection of all buy and sell orders the information is gathered into aggregate
supply and demand curves for each power-delivery hour. From these supply and
demand curves the equilibrium spot prices - referred to as the system prices -
are calculated.
In a situation where no grid congestions (or grid bottlenecks) exist across

neighboring interconnectors there will be a single identical price across the areas
with no congestions. However, when there is insufficient transmission capacity in
a sector of the grid, a grid congestion will arise and the market system will estab-
lish different price areas. This is because the Nordic market is partitioned into
separate bidding areas which become separate price areas when the contractual
flow between bidding areas exceeds the capacity allocated by the transmission
system operators for spot contracts. The direction of the flow congestion can
be easily identified from observed prices since the bidding area with the largest
price is the area with excess demand. When no capacity constraints exist in
a given hour, the spot system price is also the spot price for the entire Nordic
power exchange area, i.e. the system price. The situation where different price
areas arise due to bilateral congestions is relevant within the Norwegian power
system and the border interconnectors between the Nordic countries. Because
separate prices may coexist depending upon regional supply and demand causes
the relevant market definition to vary with time. Many different price area com-
binations will occur in practice. In some hours there will only be a single price
area, in other hours there will be two or more price areas.
Our main interest in the present paper is to analyze separate prices bilaterally

across grid points and in particular we will focus on the direction of the flow
congestion. Hence we will not address the price dynamics for multiple price areas
simultaneously even though such an analysis might be of interest in future work.

3 The data
For the Nord Pool area hourly spot electricity prices are available for the period
3 January 2000 - 25 October 2003, thus yielding more than 33000 observations.
For East Denmark the sample period starts slightly later and only about 27000
observations are available. We decided not to include North Norway in the

5Since only the spot market will be relevant for the present study, only this market will be
described here, see also Nord Pool (2003b). In Nord Pool (2003c) a description is given of the
futures and forward markets of the Nordic power exchange which are used for price hedging
and risk management.
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study since most of the year this market is merged with Mid Norway.

Figure 2 about here

Figure 2 displays the electricity log price series. Most price series are char-
acterized by huge fluctuations and outliers, however, the general level of these
series tends to be highly persistent possibly with mean reversion. These fea-
tures are well-known to exist for electricity prices, see e.g. Escribano, Pena, and
Villaplana (2002), Carnero, Koopman, and Ooms (2003), and Atkins and Chen
(2005). Since weather conditions are dominant factors influencing equilibrium
prices through changes in both supply and demand, it seems reasonable that
prices will exhibit mean reversion, see e.g. Lucia and Schwartz (2002) and Knit-
tel and Roberts (2005). Also, the year-to-year variation in water reservoirs is
rather significant and the fact that more than 50% of total electricity supply is
from hydropower plants explains an important part of the within year seasonal
variation.
In Haldrup and Nielsen (2005) both the unit root I(1) and I(0) hypothe-

ses were tested using Phillips-Perron and KPSS tests (see Phillips and Perron
(1988) and Kwiatkowski, Phillips, Schmidt, and Shin (1992)). Both these hy-
potheses were strongly rejected and hence suggest that neither an I(1) nor an
I(0) description of the price series is appropriate. An alternative way of measur-
ing long memory and mean reversion is by estimation of fractionally integrated
processes for the price series (see Granger and Joyeux (1980), Beran (1994), and
Baillie (1996)). In fact, as shown by Lee and Shie (2004) and Lee and Schmidt,
both the Phillips-Perron and the KPSS tests are consistent against fractional
alternatives if the fractional order is less than unity. Estimates of the fractional
order of integration of the series were obtained by specifying a multiplicative
seasonal ARFIMA (SARFIMA) model

A(L)(1− aL24)(1− L)d(yt − µ) = εt, εt ∼ nid(0, σ2ε), (1)

where A(L) is a lag polynomial of order 8 capturing the within-the-day effects,
the polynomial (1 − aL24) corresponds to a daily quasi-difference filter, and µ
is a mean. The mean component captures deterministic seasonality which was
obtained by regression on seasonal dummy variables (hour-of-day, day-of-week,
and month-of-year) prior to the estimation of (1). We tried other specifications
including longer A(L) polynomials and weekly stochastic seasonality instead
of daily, but (1) was found to be the superior model in terms of in-sample fit
and whiteness of the residuals. The estimates were obtained by conditional
maximum likelihood estimation6 of (1) and typically lie in the interval 0.41 <
d < 0.52 with West Denmark being an exception with a slightly lower estimate,
0.31.7 Carnero et al. (2003) also find long memory in Norwegian electricity price

6Note that the estimation method and asymptotic normality of the estimates do not re-
quire Gaussianity of the errors, but only that they are i.i.d. or martingale differences, and
furthermore the data can be both stationary or non-stationary, for details see Tanaka (1999)
and Nielsen (2004).

7These estimation results are presented in Haldrup and Nielsen (2005).
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data but less so in electricity markets of The Netherlands, Germany, and France.
Whether this feature reflects the fact that a significant amount of power within
the Nord Pool area is generated from hydropower plants is an open question,
however, it is a well-known empirical finding that e.g. river flows and water
reservoir levels exhibit long memory, see Hurst (1951, 1956), and this might
have an effect on power supply and prices.

Figure 3 about here

The characteristics of prices given above are entirely univariate and do not re-
flect cross-region linkages. In particular, we are interested in the regime switch-
ing features of the data, that is, the feature that in certain hours capacity
constraints prevent electricity from flowing freely across grid points. Under
congestion the market prices across neighboring grid point regions will differ
whereas prices will be identical under non-congestion. In Figure 3 scatter plots
for each of the seven grid points within the Nord Pool area are displayed. As
seen, there is a clear tendency for a significant number of observations to lie on
a 45 degree line. Obviously, these observations reflect non-congestion hours. On
the other hand, observation pairs off the 45 degree line reflect congestion hours.
The analysis in Haldrup and Nielsen (2005) focused on the possibility of two

regimes: The congestion state and the non-congestion state. However, the data
provides further insights regarding the direction of congestion in the congestion
state. In particular, if referring to A as the region on the vertical axis and B as
the region on the horizontal axis, observations above the 45 degree line indicate
that pA > pB, and hence there is excess demand for electricity in region A. On
the other hand, observation pairs below the 45 degree line indicate that pA < pB
and hence indicating excess demand in region B. In the following we define the
3 states as follows:

Regime 0: No congestion, pA = pB
Regime 1: Congestion with excess demand in region A, pA > pB
Regime 2: Congestion with excess demand in region B, pA < pB

Table 1 about here

It follows from Figure 3 that the direction of a given congestion is not evenly
distributed for a particular grid point. In Table 1 the number of observations
in each regime is indicated for each of the seven grid points. As seen, some grid
points are more subject to congestion than others. Conditional upon conges-
tion, there are clear differences regarding which area cause a possible bottleneck.
There can be many reasons behind insufficient capacity and congestion originat-
ing from both the demand and the supply side, but obviously there is also the
possibility that congestion (of either types) is caused by exploitation of market
power, and hence is a scope for further analysis by regulating authorities.

Table 2 about here
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We assume that the transition between states follows a Markov process, c.f.
Hamilton (1989), although the states are observable as mentioned above. Since
the separate states are observable it is fairly easy to calculate the transition
dynamics across the different states and the mean duration of each of the states.
The estimated transition matrices for each grid point is defined as

P =

⎡⎣ p00 p01 p02
p10 p11 p12
p20 p21 p22

⎤⎦ (2)

with X
j

pij = 1 for i, j = 0, 1, 2.

Estimates of the transition probabilities are reported in Table 2 using the for-
mula

p̂ij =
nijP
j nij

, for i, j = 0, 1, 2, (3)

where nij is the number of observed transitions from state i to state j.

Table 3 about here

The mean durations of the particular states are reported in Table 3. For
all gridpoints the separate states appear to be fairly persistent even though
the non-congestion state generally is most persistent (the links including West
Denmark being an exception). Also, the transition back to the non-congestion
state appears to be very similar regardless of initially being in states 1 or 2, i.e.bp10 ≈ bp20. On the other hand, the probabilities of moving into states 1 and 2
when initially being in the non-congestion state, state 0, are relatively dissimilar.
The transitions directly from states 1 to 2 (and opposite) are generally few with
the Mid-South Norway connection being an exception.

4 A 3-state regime switching model with long
memory

In some studies it has been argued that long memory in the form of fractional
integration can easily be interchanged with non-linear models. For instance,
Diebold and Inoue (2001) demonstrate that mixture or regime switching mod-
els with suitably adapted time varying transition probabilities can generate an
autocovariance structure similar to fractionally integrated processes, see also
Granger and Ding (1996). In addition, Bos, Franses, and Ooms (1999), Hal-
drup and Nielsen (2003), and Granger and Hyung (2004) argue that level shifts
that are not appropriately dealt with can result in spurious indication of long
memory and one may conjecture that in fact many types of hidden non-linearity
can be expected to generate long memory as a result of model misspecification.
Here we extend the model of Haldrup and Nielsen (2005) which accom-

modates both fractional integration and regime switching simultaneously. The
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model in Haldrup and Nielsen (2005) allows for 2 regimes: congestion versus
non-congestion. The extension made here concerns the number of states in ac-
cordance with the discussion in the previous section. A number of different
scenarios can be considered. Assume that in the non-congestion state the bi-
lateral price series across a particular grid point are fractionally integrated. In
this case an extreme form of (fractional) cointegration occurs because the single
prices are identical and thus the difference in log prices is identically zero. In
the congestion state the price behavior can be very different. Separating the
congestion state into the regime 1 and regime 2 states where the location of the
excess demand region is further detailed, very dissimilar price dynamics can ex-
ist. Comparing prices without considering the different regime possibilities it is
hard to say what to expect from the data, however, the mixing of the processes
across regimes is likely to produce series which have a behavior being a convex
combination of separate state processes.
Extending the model (1) to be state dependent we can define a 3-state regime

switching multiplicative SARFIMA or RS-SARFIMA8 as follows,

Ast (L)
¡
1− astL

24
¢
(1− L)dst

¡
yt − µst

¢
= εst,t, εst,t ∼ nid

¡
0, σ2st

¢
, (4)

where Ast (L) is a 8th order lag polynomial and st = 0, 1, 2 denotes the regime,
determined by a Markov chain with transition probability matrix (2). All states
are observable and hence differ from Hamilton’s (1989) class of regime switching
models, where the Markov process generating the states is unobserved.
For each bilateral price pair, the (univariate) series yt may denote one of the

two individual log price series or the log relative price series. In each case, yt
has been corrected for deterministic seasonality prior to the estimation of (4),
and to reflect the regime switching nature of the model and using the fact that
the regimes are observable, the coefficients on the dummy variables are allowed
to differ across states. When yt denotes a log relative price, all parameters are
zero when st = 0 including σ20, i.e. a deterministic state. We experienced with
several alternative specifications of the regime switching model (4), i.e. with
a longer Ast(L) polynomial and weekly instead of daily stochastic seasonality,
but (1) was found to be the superior model in terms of in-sample fit.
We have previously described how the transition probabilities can be cal-

culated. Estimation of the remaining parameters is by conditional maximum
likelihood following the results of Tanaka (1999) and Nielsen (2004) for the non-
switching model (1). By normality of the errors in (4), the likelihood function
reads

L = −T
2
ln

Ã
1

T

TX
t=1

ε̂2st,t

!
− T

2
(1 + ln (2π)) , (5)

where

ε̂st,t = Âst (L)
¡
1− âstL

24
¢
(1− L)

d̂st
¡
yt − µ̂st

¢
, st = 0, 1, 2,

8Note that the model (4) is a regime switching version of the non-switching model (1).
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and we use the convention that ε̂j,t = 0 if st 6= j for j = 0, 1, 2. That is,
we take advantage of the fact that the regimes are observable which allows us
to extract the residual series to maximize the likelihood function (5). Equiv-
alently, the estimation procedure can be described as the maximization of (5)
with ε̂t =

P2
j=0 ε̂j,t1 (st = j) instead of ε̂st,t and 1 (·) being the indicator func-

tion. Because regimes are observable, the maximization problem can be solved
by minimizing the residual sum-of-squares

PT
t=1 ε̂

2
t . The maximum likelihood

estimate of the variance is

σ̂2st =
1

T

TX
t=1

ε̂2st,t, st = 0, 1, 2,

where ε̂j,t = 0 if st 6= j for j = 0, 1, 2. The starting values for the numer-
ical maximization of (5) were the estimates from the two-state multiplicative
SARFIMA model of Haldrup and Nielsen (2005), i.e. both regimes 1 and 2
used the estimates from the congestion state of Haldrup and Nielsen (2005) as
starting values.9

According to the results of Tanaka (1999) and Nielsen (2004) for the non-
switching model, errors do not in fact have to be Gaussian, but may be mar-
tingale differences. This is important in our case where the errors are likely to
be heavy tailed. Another important aspect discussed in these references is that
the estimation results do not depend on the stationarity or non-stationarity of
the data; standard asymptotics apply for all values of the fractional integration
parameters.
Disregarding the matrix P, which is not needed for the estimation of the

remaining parameters, the RS-SARFIMA model (4) has exactly three times as
many parameters as the non-switching SARFIMA model (1). Since the estima-
tion is by conditional maximum likelihood, the significance of the RS-SARFIMA
model relative to the simpler and more parsimonious SARFIMA model can be
tested by means of e.g. a likelihood ratio (LR) test. Such an LR test would
thus be asymptotically χ2 distributed with degrees of freedom equal to twice
the number of parameters in each state. This test can be calculated because the
states are observable as opposed to the Hamilton (1989) class of models with
latent regimes.
In addition, another LR test can be calculated to test the significance of

our 3-state regime switching model against the two-state model of Haldrup and
Nielsen (2005), i.e. a test of the significance of the directional congestion effect.
Such a test would be χ2 distributed with degrees of freedom equal to the number
of parameters in each state. In the subsequent empirical analysis we will apply
both these two LR tests (null of no switching and null of no directional effect) to
examine the significance of our regime switching model in the Nord Pool data.

9Throughout we used the Ox programming language, see Doornik (2001), for all the cal-
culations.

10



5 Empirical findings
In this section we adopt the model and estimation framework described above to
the Nord Pool electricity data set. Each data set considered includes a pair of log
prices for two regions connected physically in a grid point plus the associated
log relative price. Before estimation, each log price series yt (which for each
data series can be either of the two individual price series or the log relative
price) had deterministic seasonality removed by regression on dummy variables
corresponding to hour-of-day, day-of-week, and month-of-year. The coefficients
on the dummy variables are allowed to differ across the different states. In case
yt is a log relative price, all dummy variable coefficients in regime 0, i.e. the
non-congestion state, are estimated to be zero. Hence the pre-filtering removes
deterministic seasonality while allowing for seasonal effects to be different across
states.

Table 4 about here

Table 4 presents the empirical results. The first three columns present the
estimates when no regime switching is allowed for and correspond to estimation
of the model (1). The estimate bd1 corresponds to the fractional d estimate of
the first region, whereas bd2 corresponds to the second region, and bd3 signifies
the estimate for the log relative price. Note that these estimates correspond
to the imposition of the restriction that all parameters, and in particular the
estimated d values, should be identical across states. These estimates are very
similar to those reported in Haldrup and Nielsen (2005). Differences occur
because the detrending was done prior to estimation of (1) and hence slightly
different detrending is applied due to the differently defined states. Similarly,
the estimates of d for a particular region are subject to the connecting region
comparison is made with since different subsamples are used due to the different
definition of states.
The next 9 columns contain the estimates of d for the same series, but

conditional upon the state, i.e. these estimates correspond to estimation of (4)
where the superscript signifies the regime. All estimates of parameters in the
non-congestion regime 0 are identically zero when yt is a relative price, that is,bd03 ≡ 0. In Table 4 all standard errors of estimates are provided in parentheses.

Table 5 about here

Table 5 reports a number of likelihood ratio tests for the adequacy of the
regimes. The first three columns test the null of no regime switching against the
model with three regimes whilst the last three columns report the LR tests where
the null of no directional effect is tested against the model with a directional
effect. In other words, the first tests test the non-switching model against the 3
regime model, whereas the remaining tests test the 2 regime model against the 3
regime model. Note that the 2 regime model only separates between congestion
and non-congestion. All the tests reject at any reasonable level of significance,
and hence there is strong support for the presence of 3 regimes.
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Next, we examine some of the empirical results concerning the long memory
properties of the price series at the individual grid points. Consider first the
West Denmark - Sweden (WDK-SWE) connection. The non-switching model
provides no evidence of fractional cointegration amongst the series in this case.
The single series appear to be integrated of different orders (0.30 respectively
0.39) and the log relative price has bd3 = 0.26. Addressing the regime-switching
model, the non-congestion state tells a different story. In this case estimates for
the single prices are 0.40 and 0.44, respectively, and the log relative has bd03 = 0.
Hence, fractional cointegration is particularly strong in this case. In Haldrup
and Nielsen (2005) it was further found that the congestion state did not exhibit
cointegration for this connection. The present analysis tells a somewhat different
story because a further detailed analysis of the congestion state can be made.
The state 1 regime in this case reflects the state where there is excess demand
in West Denmark. The integration orders in this case are estimated to be
0.20 and 0.21 for West Denmark and Sweden, respectively, and hence are very
similar. The log relative prices are close to being I(0) in this case where d13 is
estimated to be 0.02 (with a 0.06 standard error). Hence there is also strong
indication of fractional cointegration to occur in state 1, although the type of
fractional cointegration is of a more conventional form.10 In state 2, where
congestion originates from excess demand in Sweden, there is no indication of
cointegration, i.e. bd21 = 0.23, bd22 = 0.25 and the log relative price has bd23 = 0.32.
When considering the full sample there is thus a strong evidence that the state 2
price behavior dominates the overall process behavior because no cointegration
was found in the model with no regime switching.11

In general, the qualitative results for the Mid-South Norway (MNO-SNO)
connection are very similar to those just discussed for the WDK-SWE link
except that the non-switching model indicated fractional cointegration. Hence,
the "fractional cointegration" part of the sample observations seems to dominate
the series based on the full sample in this case.
For the West Denmark-South Norway (WDK-SNO) link, there is no indi-

cation of cointegration in the non-switching model, and in the switching model
fractional cointegration only takes place in the non-congestion state, state 0.
However, the likelihood ratio test still indicates that the price behavior is differ-
ent in the two congestion states, but as seen parameter estimates do not indicate
fractional cointegration in either of the two congestion states.
With respect to the South Norway-Sweden (SNO-SWE) and Mid Norway-

Sweden (MNO-SWE) connections, the non-regime switching model suggests
fractional cointegration, and equally so for the non-congestion regime in the
regime switching model. However, no cointegration seems to exist in either of
congestion states. These findings support the findings of the 2-regime model
of Haldrup and Nielsen (2005) although the likelihood ratio tests find strong
support for the 3 regime model.

10The cointegration feature occuring in state 1 may originate from prices being indirectly
connected through the South Norway connection, even though there is a physical bottleneck
between West Denmark and Sweden.
11 State 2 covers about 22% of all observations for this connection.
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Finally, we comment briefly on the East Denmark-Sweden (EDK-SWE) and
Sweden-Finland (SWE-FIN) connections. In both these cases, the numerical op-
timization of the likelihood function for the 3-state regime switching model failed
to converge for the log relative prices (although it did converge for the individual
prices and for the non-switching and two-state regime switching models for the
log relative prices). We attribute this failure to converge to the fact that, exactly
for these two connections, very few observations fall into regimes 1 and 2 relative
to regime 0. In particular, c.f. Table 1, for EDK-SWE n1+ n2 = 2, 429 relative
to n0 = 25, 276 and for SWE-FIN n1 + n2 = 3, 911 relative to n0 = 29, 373
(indeed, for EDK-SWE only 99 observations appear in regime 2). For all other
connections, n1 + n2 ≥ 9, 253. Some general comments can be made about
these two connections, though, based on the estimates that are available in Ta-
ble 4. In both cases, there are clear signs of fractional cointegration based on
the non-switching model and also in the non-congestion state of the switching
model. However, even with the estimates available it appears that the inference
from the non-switching model is spurious in the sense that there is clearly no
cointegration when there is excess demand in SWE (regime 2 for EDK-SWE
and regime 1 for SWE-FIN) since in that case the individual price series appear
to be I(0).

6 Conclusion
We have presented a 3-state regime switching model for electricity prices which
allows for different (long memory) price dynamics in the separate states. The
analysis refines the model set up of Haldrup and Nielsen (2005) to allow for more
than two states depending on the direction of the congestion between grid points.
The analysis shows that for Nord Pool data the model extension is empirically
relevant and hence suggesting in many cases a different long memory price
behavior depending upon the nature of the market conditions at a particular
point in time. Further analysis of the price behaviour by e.g. the regulatory
authorities may be called for in these cases. In particular, deeper analysis of the
reasons underlying different congestion states may be conducted. Our analysis
can be considered a first test to identify grid points with very separate price
behavior in different congestion states.
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Table 1: Observations in each regime
Bivariate series n0 n1 n2
EDK-SWE 25276 1430 99
WDK-SWE 19590 6049 7645
WDK-SNO 15865 9961 7458
MNO-SWE 24031 3256 5997
SNO-SWE 22775 2324 8185
MNO-SNO 21017 7975 4292
SWE-FIN 29373 2255 1656

Note: ni is the number of hours the link has been in regime i, e.g. n1 means
the price in the first exchange is higher.

Table 2: Estimated matrices of transition probabilities

EDK-SWE WDK-SWE WDK-SNO
0 1 2 0 1 2 0 1 2

0 0.987 0.012 0.001 0 0.874 0.057 0.069 0 0.877 0.055 0.068
1 0.212 0.787 0.001 1 0.199 0.787 0.014 1 0.098 0.892 0.010
2 0.263 0.020 0.717 2 0.166 0.022 0.812 2 0.131 0.027 0.842

MNO-SWE SNO-SWE MNO-SNO
0 1 2 0 1 2 0 1 2

0 0.955 0.018 0.027 0 0.953 0.015 0.032 0 0.943 0.036 0.021
1 0.131 0.869 0.000 1 0.143 0.857 0.000 1 0.094 0.878 0.028
2 0.110 0.000 0.890 2 0.091 0.000 0.909 2 0.106 0.051 0.843

SWE-FIN
0 1 2

0 0.980 0.013 0.007
1 0.165 0.835 0.000
2 0.138 0.001 0.861

Note: The transition probability matrices are estimated as in (2) and (3) for
each of the seven physical connections.
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Table 3: Mean duration of states, λ (hours)
Bivariate series bλ0 bλ1 bλ2
EDK-SWE 76.92 4.69 3.54
WDK-SWE 7.93 4.70 5.32
WDK-SNO 8.15 9.27 6.37
MNO-SWE 22.22 7.63 9.12
SNO-SWE 21.23 7.00 11.05
MNO-SNO 17.48 8.19 6.37
SWE-FIN 48.78 6.05 7.20

Note: bλi is the estimate of the mean duration of state i in hours.
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Table 5: LR tests of switching models for log prices and log relative prices
Null of no switching Null of no directional effect

Bivariate series LR1 LR2 LR3 LR1 LR2 LR3
EDK-SWE 2228∗∗ 2650∗∗ 5168∗∗ 848∗∗ 1088∗∗ −
WDK-SWE 448∗∗ 3738∗∗ 2787∗∗ 236∗∗ 3530∗∗ 319∗∗

WDK-SNO 518∗∗ 3760∗∗ 2150∗∗ 316∗∗ 3288∗∗ 330∗∗

MNO-SWE 3188∗∗ 2512∗∗ 6882∗∗ 1576∗∗ 800∗∗ 968∗∗

SNO-SWE 3724∗∗ 2542∗∗ 5850∗∗ 1912∗∗ 1000∗∗ 512∗∗

MNO-SNO 3670∗∗ 3506∗∗ 4068∗∗ 550∗∗ 220∗∗ 1276∗∗

SWE-FIN 7670∗∗ 6218∗∗ − 652∗∗ 1560∗∗ −
Notes: LRi is the likelihood ratio test for price region i (i = 3 is the relative
price). The LR test of the null of no switching, i.e. a test of equal coefficients
in all three states, is χ2 distributed with 24 degrees of freedom (1% critical
value is 43.0), and the LR test of the null of no directional effect is a test of
equal coefficients in states 1 and 2 which is χ2 distributed with 12 degrees of
freedom (1% critical value is 26.2). One and two asterisks denote significance

at the 5% and 1% level, respectively.
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Figure 1: Map of the Nord Pool Power Grid
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Figure 2: Hourly log spot electricity prices for the Nord Pool area
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Figure 3: Scatter plots of hourly log prices across Nord Pool regions
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