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Abstract

This paper presents a new framework for coping with problems often encountered

when modeling seasonal high frequency data containing both flow and stock variables.

The idea is to apply a multivariate weekly representation of a daily periodic model and

to exploit the possible cointegration and common feature properties of the variables

in order to obtain a more parsimonious model representation. We introduce the

notion of common periodic correlations, which are common features that co-vary -

possibly with a phase shift - across the different days of the week and possibly also

across weeks. The paper also suggests a way of modelling the dynamic interaction

of stock and flow variables within a periodic setting that is similar to the concept of

multicointegration among integrated variables. The proposed modelling framework

is applied to a data set of daily arrivals and departures in the airport of Mallorca.
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1 Introduction

A frequent criticism concerning the use of periodic models to describe seasonal phe-

nomena is the fact that such models often require a huge number of parameters to

be estimated, a problem which grows with the sampling frequency and periodicity of

the observations. The present paper makes two contributions. First, it suggests a

method to alleviate the problems associated with the potential overparametrization

of periodic models by appropriate imposition of periodic cointegration and common

feature restrictions on the short run dynamics. Secondly, within a periodic setting

the paper scrutinizes the dynamic interaction that may exist in a system with both

flow and stock variables which potentially are non-stationary.

Periodic models are often considered a convenient and flexible framework to model

seasonal variation in the data, see e.g. Ghysels and Osborn (2001) and Franses

and Paap (2004). In particular, it was demonstrated by Osborn (1988) how the

multivariate representation of periodic models due to Gladyshev (1961) and Tiao and

Grupe (1980) could be used as a basis for examining the non-stationary properties

that frequently characterize economic time series. Because non-periodic models are

nested within the periodic model, this is an attractive benchmark for testing various

hypotheses. For instance, non-stationarity in the form of periodic integration can be

challenged against (non-periodic) integration.

In the present paper, our running example assumes data sampled daily for which

a high degree of overparametrization is likely to occur in a periodic context. The sam-

ple consists of approximately 8 years of observations of daily arrivals and departures

in the airport of Mallorca. The data exhibits a strong form of periodic variation over

the days of the week in addition to a strong seasonal variation over the year. The

arrivals and departure series can be considered flow variables, and by looking at the

difference between arrivals and departures on a given day, the net contribution to the

stock of airline passengers visiting Mallorca can be calculated. The stock of visitors

naturally follows as the accumulation of the net flow of passengers. Interestingly, the

stock variable generated in this fashion tends to co-move with the individual arrivals

and departures series, but statistical tests will demonstrate that the stock variable

is indeed non-periodically integrated, whereas the arrivals and departure series are

periodically integrated. This opens up for a description of how different (periodic
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or non-periodic) cointegration possibilities may arise in a complicated dynamic sys-

tem where flows interact with the stock. The phenomenon that a stock variable will

cointegrate with the flow variables (from which it is generated) is called multicoin-

tegration and was initially defined by Granger and Lee (1989, 1991). The notion of

multicointegration cannot be directly adopted to a periodic context, but in the paper

we describe how periodic models can be formulated to account for similar features.

To obtain more parsimonious representations of periodic models, we suggest apply-

ing the concept of serial correlation common features, see Engle and Kozicki (1993),

within a periodic framework. The notion of serial correlation common features was

initially suggested as a convenient way to restrict the short-run dynamics of multivari-

ate models. However, for a periodic model of a univariate (or possibly multivariate)

time series, it means that the periodic serial correlation features for the single days of

the week appear to be common across the days and possibly also when linked to other

series. By imposing such restrictions on the dynamics, the full model can be greatly

simplified. This kind of restrictions will be named common periodic correlations, and

to our knowledge this way of modelling periodic features has not yet been proposed in

the literature. The representation of Hecq et al. (2004), which discriminates between

strong and weak form features, is adapted to periodic models. Also, we extend the

idea of non-synchronous features, Cubbada and Hecq (2001), which allow common

features to co-vary - possibly with a phase shift - across the different days of the

week and also potentially across weeks. It is shown that the presence of multiple

common periodic cycles implies a nested reduced rank structure in a multivariate

weekly model, which enables more efficient estimation of the highly parametrized

model. When applying the methodology to the airport data, it is found that common

periodic correlation features is a distinct property of the data, and by imposing the

resulting restrictions the number of estimated parameters can be reduced by 30-35

%.

The characteristic features of the airport data set are described in Section 2, and

especially motivation for the stock-flow analysis is discussed. Section 3 contains a

presentation and discussion of the periodic autoregressive model for daily data with

focus on the representation of such a model for univariate as well as bivariate stock

and flow series. Section 4 discusses the common periodic correlation features both

within and across weeks. Section 5 contains the empirical application, and the final
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section concludes.

2 The data set

The data set used in this paper consists of daily arrivals and departures in the Airport

of Mallorca. The data spans the period from 1 January, 1994 to 28 February, 2002.

This corresponds to 2981 daily observations (425 weeks). The Balearic Islands, and

Mallorca in particular, are amongst the most important tourist destinations in the

Mediterranean Sea. The annual volume of tourists is around 10 million people of

whom over 95% travel by plane. More than 80% of these are tourists visiting Mallorca.

Since Mallorca is a "sun and sand" tourist destination, it is not surprising that

passenger data exhibits a high degree of seasonal variation. This is verified by figure 1,

which shows the variation of the data over the entire sample period. In addition to the

arrivals and departures data, the figure shows the net flow of passengers to Mallorca,

(arrivals minus departures), as well as the cumulation of the net flows denoted the

stock. Note that the net flow variable indicates the contribution to the number of

airline passengers who stay in Mallorca on a given date.1

From figure 1 the yearly variation of the transit data is most obvious. In partic-

ular, the very close co-movement of arrivals and departures is apparent suggesting

a strong common seasonal pattern over the year. However, the day-of-week effect is

also very apparent as can be seen from figure 2, where the daily variation for the year

2001 is displayed. Whereas the arrivals and departures exhibit very strong weekly

fluctuations, the net flow and the stock variable obviously have much less variation

within the week. This seems to indicate that some kind of common seasonal feature

exists amongst the arrivals and departures series.

To focs further on the weekly periodicity, figure 3 displays the individual weekday

observations for each series for the year 2001. As can be seen, the arrivals and

departures have strong day-of-week effects (especially for Saturdays and Sundays),

and this feature seems to vary over the year. Moreover, all days seem to co-move,

which might indicate that the series potentially can be modelled as periodic seasonal

processes. For the net flow series and the stock series, no significant periodic seasonal

1The stock variable indicates the level of people staying in Mallorca and not the actual figure
because the initial value of observations is unknown.
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Figure 1: Arrivals, departures, net flow (i.e. arrivals minus departures), and the level

of stock (i.e. the cumulated net flow of passengers) in the Airport of Mallorca, 1

January, 1994 - 28 February, 2002.

5



2001 2002

25000

50000

75000
Arrivals 

2001 2002

25000

50000

75000
Departures 

2001 2002

-20000

0

20000
Net_Flow 

2001 2002

0

200000

Stock 

Figure 2: Arrivals, departures, net flow (i.e. arrivals minus departures), and the level

of stock (i.e. the cumulated net flow of passengers) in the Airport of Mallorca, 1

January, 2001 - 31 December, 2001.
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Figure 3: Arrivals, departures, net flow (i.e. arrivals minus departures), and the level

of stock (i.e. the cumulated net flow of passengers) in the Airport of Mallorca, for

each weekday (Monday 1, Tuesday 2,..., Sunday 7) of 2001.
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variation seems to be present.

A further aspect of the present data set concerns the possibility of a multicointe-

gration like feature amongst the series. If we assume that the arrivals and departures

series are cointegrated, it is of interest to look at the cumulated net flow series, i.e. the

stock variable generated from the arrivals and departures. Interestingly, it appears

from figures 1 and 2 that although the stock series has much less (if any) weekly

variation, the level around some trend co-varies with both the arrivals and depar-

tures series. This is an interesting phenomenon because it allows for the possibility of

more than just one cointegrating relationship existing between just two series. The

property is often referred to as multicointegration. There are numerous examples of

multicointegration (at the zero frequency) in the literature as indicated in the intro-

duction. What is of particular interest is the fact that a similar property is likely to

arise in the daily transit data. The challenge of the present paper is to examine si-

multaneously the interactions between stocks and flows as well as the strong seasonal

pattern in the data.

3 A Periodic Autoregressive Model for daily observations

As argued in section 2, it is likely that the arrivals and departures series follow peri-

odic processes. Periodic models have frequently been criticized because such models

require a lot of parameters to be estimated. However, in the present case data is not

scarce, and a periodic modelling framework seems feasible as well as reasonable. An-

other implication is that models with fixed parameters and standard seasonal ARIMA

processes, including seasonal unit root processes, are encompassed within the periodic

model for certain restrictions on the parameters, and hence these restrictions can be

tested.

3.1 The representation and properties of the model

Seasonal processes with a periodic correlation structure can be represented by periodic

ARMA (henceforth PARMA) models, which allow for different parameters across the

seasons. In practice, the estimation of pure PAR models has certain advantages over

PARMA models, see Pagano (1978) and the review by McLeod (1995).

Let us describe the most relevant characteristics of the periodic model for a uni-
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variate time series where the periodicity is allowed for the day of the week.2 General

comprehensive surveys of periodic models and required inferential tools can be found

in e.g. Ghysels and Osborn (2001) and Franses and Paap (2004). In the following we

abstract from deterministic components to simplify notation, but extensions to this

case are straightforward.

The daily periodic autoregressive process of order p, PAR(p), reads:

yt = φs,1yt−1 + φs,2yt−2 + · · ·+ φs,pyt−p + εt, s = 1, .., 7 (1)

where all the autoregressive parameters φs,j (j = 1, ..., p) are allowed to vary with the

season s, (s = 1, ..., 7), i.e. the day of the week.3 It should hold that at least one

φs,p 6= 0. εt is a white noise error term with periodic heteroskedasticity, E (ε2t ) = σ2s.

Note that, in this model, the parameters are allowed to be different for each day of

the week, and therefore the PAR process is non-stationary since the autocorrelation

function varies with the season. Another interesting source of nonstationarity fre-

quently observed for economic data is the presence of stochastic trends, which can be

examined within a multivariate representation of the PAR process. We denote this

the vector of days (VD) representation.

This representation defines the 7-dimensional weekly multivariate process Yτ ≡
(y1,τ , ..., y7,τ)

0 with τ ≡ [(t − 1)/7] + 1 denoting the week. The vector series has the
following multivariate (nonperiodic) representation, (see Gladyshev, 1961, or Tiao

and Grupe, 1980):

Φ0Yτ = Φ1Yτ−1 + · · ·+ ΦPYτ−P +Eτ , (2)

where Φk (k = 0, ..., P ; P = [(p+ 6) /7]) are 7× 7 matrices of parameters

Φ0=


1 0 · · · 0

−φ2,1 . . . . . .
...

...
. . . . . . 0

−φ7,6 · · · −φ7,1 1

 ,Φk=


φ1,7k · · · · · · φ1,7k−6
...

. . .
...

...
. . .

...

φ7,7k+6 · · · · · · φ7,7k

 ,
for k = 1, ..., P , and Eτ ≡ (ε1,τ , ..., ε7,τ)0 ∼N(0,Σ), where Σ =diag(σ21, σ22, ...., σ27) .

2Franses and Paap (2004) apply a daily periodic autoregressive model with 5 seasons for financial
data.

3Note that the season s is related to the observation number t through s ≡ t−7 [(t− 1) /7] where
[·] signifies the integer part of its argument.
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For instance, the PAR(1) model, yt = φsyt−1 + εt, can be written as

1 0 · · · · · · 0

−φ2 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 −φ7 1





y1,τ

y2,τ
...
...

y7,τ


=



0 · · · 0 φ1
0 · · · · · · 0
...

...
...

...

0 · · · · · · 0





y1,τ−1
y2,τ−1
...
...

y7,τ−1


+



ε1,τ

ε2,τ
...
...

ε7,τ


.

(3)

The unit root properties of the multivariate process Yτ determine those of the

daily process yt. Define the matrix lag polynomial

Φ
¡
L7
¢
= Φ0 − Φ1L

7 − · · ·− ΦPL
7P ,

where Lys,τ = ys−1,τ (with Ly1,τ = y7,τ−1) and L7ys,τ = ys,τ−1. When all the roots of
the characteristic equation |Φ (L7)| = 0 lie outside the unit circle, the process Yτ is
second order stationary, and yt is PI(0). Following the PAR(1) example, the necessary

and sufficient condition for second order stationarity of this model is |φ1φ2 · · · φ7| < 1.
The multivariate process is integrated at the zero frequency if |Φ (L7)| = 0 has some
roots equal to one. Of particular interest are those situations where every weekly

process ys,τ (s = 1, ..., 7) is I(1). This property is known as first order non-stationarity

(see Osborn, 2002).

A convenient way to represent the different possibilities of first order non-stationary

processes is the error correction representation. Consider the VAR representation of

(2) on error correction model form:

Π(L7)Yτ = Uτ ,

whereΠ(L7) = I7−Π1L7−...−ΠPL
7P , withΠk ≡ Φ−10 Φk, andUτ = Φ−10 Eτ ∼N(0,Φ−10 Σ(Φ−10 )

0).
Decompose the matrix lag polynomial as Π(L7) = −ΠL7 + Γ(L7)(1 − L7) where

Π = Φ−10
³PP

j=1Φj

´
− I7, Γ0 = I7, and Γk = Φ−10 ΣP

j=k+1Φj (k = 1, .., P − 1) such that
we obtain the VAR model:

∆7Yτ = ΠYτ−1 +
P−1X
k=1

Γk∆7Yτ−k + Uτ , (4)

with ∆7 = 1− L7.
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The different cases of first order non-stationarity are associated with different

properties of the impact matrix Π. In particular, when Π has rank 7, the process yt is

periodically integrated of order zero, PI(0), and when Π has rank 6, yt is periodically

integrated of order one, PI(1)4. In this case we may distinguish two important cases.

When the 6 cointegrating relations are given by y2,τ−y1,τ , y3,τ−y2,τ , ..., y7,τ−y6,τ , then
yt is a non-seasonally and non-periodically integrated process, that is an I(1) process.

When the 6 cointegrating relations read y2,τ−φ2y1,τ , y3,τ−φ3y2,τ , ..., y7,τ−φ7y6,τ with
at least one φs 6= 1 (s = 2, ..., 7), then yt is PI(1) where φs are named the periodic

integration coefficients. Hence the I(1) model appears as a special case of the PI(1)

model. When yt ∼PI(1), the difference operator ∆ does not remove the stochastic

trend from yt. In this case it is necessary to apply a specific difference filter for every

season, the quasi-difference filter, δs(L) ≡ 1− φsL such that δs(L)yt ∼PI(0).
When Π has rank 0 ≤ r < 6, yt is a seasonally integrated process with 7− r unit

roots at seasonal frequencies, see Hylleberg et al. (1990), Franses (1994), and Ghysels

and Osborn (2001).

Generally, under the reduced rank of Π (0 < r < 7), the impact matrix can be

decomposed as Π = αβ0, where α and β are 7× r matrices of full column rank that

contain the adjustment vectors and the cointegrating vectors, respectively. Then we

can rewrite (4) as

∆7Yτ = αβ0Yτ−1 +
P−1X
k=1

Γk∆7Yτ−k + Uτ . (5)

We denote the r-dimensional cointegrating disequilibrium process by Zτ ≡ β0Yτ .
For instance, the general PAR(1) process can be represented as

∆7Yτ =



−1 0 · · · 0 φ1

0
. . . . . . 0 φ1φ2

...
. . . . . . 0

...
... · · · . . . −1 φ1φ2φ3φ4φ5φ6
0 · · · · · · 0 φ1φ2φ3φ4φ5φ6φ7 − 1


Yτ−1 + Uτ .

If φ1φ2 · · · φ7 = 1, but not all φs = 1, then yt ∼PI(1). In the case of PI(1), the
4The PI(0) process was introduced by Gladyshev (1961) denoted a periodically correlated process,

and the PI(1) was introduced by Osborn (1988).
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cointegrating matrix β will contain six of the coefficients φs:

β0 =



−φ2 1 0 0 0 0 0

0 −φ3 1 0 0 0 0

0 0 −φ4 1 0 0 0

0 0 0 −φ5 1 0 0

0 0 0 0 −φ6 1 0

0 0 0 0 0 −φ7 1


, (6)

and the remaining coefficient is φ1 = (φ2φ3φ4φ5φ6φ7)
−1.

Note that the common stochastic trend can be found as β0⊥Yt where β⊥ is the
orthogonal complement of β satisfying β0⊥β = 0 and thus

β0⊥ =
³
φ1, (φ3φ4φ5φ6φ7)

−1 , (φ4φ5φ6φ7)
−1 , (φ5φ6φ7)

−1 , (φ6φ7)
−1 , φ−17 , 1

´
.

(7)

The weekly multivariate representation can be used to select among the different

first order non-stationary possibilities, by means of multivariate cointegration analysis

(see Johansen, 1991). This procedure is proposed by Franses (1994) for quarterly PAR

models. The same method can be used to test for periodic integration of the daily

flows and stock series. Within the unifying framework of a periodic model we can test

for a multitude of different types of first order unit roots, which is somewhat more

involved when considering the daily representation of the time series, see Ghysels and

Osborn (2001).

3.2 Bivariate Periodic Models

Consider the daily bivariate PAR(p) process yt = (y1t , y
2
t )
0 where y1t and y

2
t can denote,

for instance, arrivals and departures:

yt = φs,1yt−1 + φs,2yt−2 + · · ·+ φs,pyt−p + εt, s = 1, ..., 7,

and φs,j (j = 1, .., p) are 2-dimensional square matrices of coefficients φ
i,h
s,j (i, h = 1, 2),

which may vary with the day of the week. Under cointegration we can represent the

PAR(p) as

Dsyt = αsκ
0
syt−1 + Σp−1

j=1γs,jDs−jyt−j + εt,
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where Ds = diag(δ1s(L), δ
2
s(L)) (with Ds−7 = Ds) is the quasi-difference operator

turning the bivariate PI(1) process into a bivariate PI(0) process (see Ghysels and

Osborn, 2001).

3.2.1 Cointegration between Flow Variables

In this section we consider the multivariate representation of the daily flow variables y1t
and y2t . Consider the weekly representation of the daily bivariate process yt = (y

1
t , y

2
t )
0,

where now we define the 14−dimensional VD process Y τ ≡ (y11,τ , ..., y17,τ , y21,τ , ..., y27,τ )0,
and assume that it can be represented by a VAR(P ) model

Π(L7)Yτ = Uτ ,

whereΠ(L7) = I14−Π1L
7−...−ΠPL

7P , with P = [(p+6)/7], Uτ is a 14-dimensional

white noise process with a covariance matrix having 7×7 diagonal square blocks. The
error correction representation of the VAR model reads:

∆7Yτ = ΠYτ−1 +
P−1X
k=1

Γk∆7Yτ−k +Uτ . (8)

Under the presence of (periodic) cointegration between the daily series, the 14 weekly

series have a common stochastic trend, and the impact matrix Π can be written

Π =αβ0, where α and β are full column rank 14× 13−matrices,

β0=

"
I7 K

0 β20

#
. (9)

I7 is the 7-dimensional identity matrix, 0 is the 6 × 7-dimensional null matrix, K
is a 7-dimensional matrix containing the cointegrating coefficients on the diagonal,

K =diag(−k1,−k2, .....,−k7), and hence y1s,τ − ksy
2
s,τ ∼PI(0) (s=1,...,7). β2 is the

7 × 6-dimensional matrix containing the periodic integration coefficients associated
with y2t . We define the general notation

βi0 =



−φi2 1 0 0 0 0 0

0 −φi3 1 0 0 0 0

0 0 −φi4 1 0 0 0

0 0 0 −φi5 1 0 0

0 0 0 0 −φi6 1 0

0 0 0 0 0 −φi7 1


, (10)

13



where φis are the periodic integration coefficients for the series y
i
t.

Osborn (2002) discusses how periodically and non-periodically integrated processes

can potentially cointegrate in various cases. When both daily variables yit (i = 1, 2)

are I(1), then ks = k (s = 1, ..., 7), and φ2s = 1 (s = 1, ..., 6), that is, in this case

the daily variables are non-periodically cointegrated. When both daily variables yit
(i = 1, 2) are PI(1), the cointegrating vectors may be different across the different

days of the week, i.e. such that the series are fully periodically cointegrated ks 6= k

(at least for some s), and ks 6= 0 (s = 1, ..., 7). However, the series could also be

non-periodically cointegrated such that ks = k (s = 1, ...., 7). When one daily vari-

able is I(1), and the other one is PI(1), the variables may only be fully periodically

cointegrated.

Under the absence of (periodic) cointegration between y1t and y2t , the 14 weekly

series have two stochastic trends. In particular, the impact matrix reads Π =αβ0,
where α and β are full column rank 14× 12−matrices, where in particular

β0=

"
β10 0

0 β20

#
,

and 0 is the 6× 7-dimensional null matrix.
The multivariate representation of the flow variables (8) is the basis to testing for

periodic cointegration between daily arrivals and daily departures. First, one should

test for cointegration using e.g. the ML procedure of Johansen (1991). Then, one may

test for non-periodic cointegration through the hypothesis ks = k (s = 1, ..., 7). Given

the relation φ1s = φ2sks/ks−1, the test for non-periodic cointegration can be interpreted
as a test of equivalent periodic integration coefficients φ1s = φ2s (s = 1, ..., 7), such

that under non-periodic cointegration, the periodic integration coefficients for the

departures are also the periodic integration coefficients of the arrivals.

3.2.2 Cointegration between Stock and Flow Variables

Assume that the net flow y3t = y1t − y2t is PI(0). Consequently there exists fully non-

periodic cointegration between the daily arrivals y1t and the daily departures y
2
t , and

the stock variable y4t = y40 +
Pt

j=1 y
3
t is I(1) by definition. It is then feasible that the

daily stock y4t may cointegrate with the daily arrivals or with the daily departures.

This phenomenon is known as multicointegration (see Granger and Lee, 1989, 1990),
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and it implies that cointegration may occur not only between the flow variables, but

also between the flow and the stock variable, which itself is generated from the flows.

The notion of multicointegration does not extend directly to periodic models, but

similar features are likely to exist concerning the interaction of stock and flows. The

property can be analyzed in the same way as the cointegration between the arrivals

and departures by substituting for example the seven weekly arrivals series by the

seven stock series in Y τ .5

Potentially, the analysis can be undertaken in a smaller system when the stock

variable is non-periodically integrated. Hence, if the flow variable is PI(1), and the

stock variable is non-periodic I(1), then if these variables are cointegrated, cointe-

gration between the stock and the flow variables can only be periodic (see Osborn,

2002)

y1s,τ − ksy
4
s,τ with ks 6= k for some ks.

Because the stock variable y4s,τ is non-periodically integrated by assumption, it is nat-

ural to reduce the model from a 14-dimensional to a 8-dimensional system. Consider

the following transformation matrix of dimension 8×14 :

W =

Ã
I7 0

0 1
7
β40⊥

!
,

where β4⊥ is the orthogonal complement associated with β
4 given in (10). In this parti-

cular case, non-periodic integration implies that φ4s = 1, (s = 1, ...7), and hence the

orthogonal matrix according to (7) simplifies to a vector of ones. This means that the

reduced system can be defined for the variables Y∗τ =WYτ = (y
1
1,τ , y

1
2,τ , ..., y

1
7,τ , y

4
τ)

where y4τ =
1
7

P7
s=1 y

4
s,τ is the mean of the stock series over the week. The new system

reads

∆7Y
∗
τ = α∗β∗0Y∗τ−1 +

P−1X
k=1

Γ∗k∆7Y
∗
τ−k +U

∗
τ ,

where β∗ in this case takes the form

β∗0=
h
I7 k

i
. (11)

5Daily arrivals y1t could be used in place of daily departures.
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where k ≡ (k1, k2, k3, k4, k5, k6, k7)0 is a 7× 1 column vector containing the multicoin-
tegrating coefficients such that y1s,τ − ksy

4
τ is PI(0). Note that alternatively the stock

variable of the single days represents the common I(1) stock trend.

When y4t and y
1
t are not cointegrated, then Π

∗ = α∗β∗0, where α∗ and β∗ are full
column rank 8× 6 matrices, and the cointegration matrix can be written

β∗0=
h
β20 0

i
,

where 0 is a 6× 1 column vector of zeros, and β2 is given by (10).

4 Common Periodic Correlation Features

When building PAR models it is recommended to introduce restrictions on the pe-

riodic components of the model to increase the degrees of freedom, see Ghysels and

Osborn (2001). One way to do this is by imposing appropriately tested common

feature restrictions on the model like common business cycles, common stationary

annual seasonality, or common deterministic annual seasonality6, Engle and Hylle-

berg (1996). It is a very plausible assumption that the daily series yt, in addition to

the trend, will share common features across the days of the week. To our knowledge,

these kinds of restrictions to describe the common periodicity of the cycles have not

yet been proposed in the literature.

4.1 Common Periodic Correlation features within the week

Engle and Kozicki (1993) introduced the notion of serial correlation common fea-

tures to represent common cycles among different economic time series. For an n-

dimensional system like (4) (e.g. with n = 7, 8, 14), we get that if there exists an

n× q matrix eβ that annihilates both the short-run and the long-run dynamics
(i) eβ0Γk = 0 (k = 1, ..., P − 1),
(ii) eβ0Π = −eβ0αβ0 = 0,

then Yτ is said to have serial correlation common features.

6In the sequel the notion ’periodic’ refers to the daily variation of the data, whereas the remaining
seasonality (e.g. within the year) is referred to simply as ’seasonality’.

16



Under these two conditions, the cofeature matrix eβ turns the differenced variables
into a q-dimensional white noise process eβ0∆7Yτ = eβ0Uτ , and the short-run dynamics

of the n series is driven by n−q dynamic factors. However, in this case the number of
common features n− q is bounded by the cointegration rank r, r ≤ n− q ≤ n. When

the daily series is PI(1) or I(1), the number of common features cannot be smaller

than 6. Hence, the serial correlation common features allow only little flexibility

concerning the imposition of restrictions on the periodicity of the process.

Hecq et al. (2004) consider a less restrictive form of common cycles and intro-

duce the idea of a Weak Form (WF) of serial correlation common features, which

requires that the cofeature matrix removes the short-run component, but not the

long-run. Hence, under i), but not ii), different common factors generate the long-

run and the short-run dynamics of the variables. In the present case, under the WF

structure there exists an n× q dimensional cofeature matrix eβ that turns the differ-
enced variables adjusted for long-run effects into a q-dimensional white noise processeβ0 (∆7Yτ − αZτ−1) = eβ0Uτ . Then the cointegrated system can be expressed as

∆7Yτ = αZτ−1 + eβ⊥Wτ−1 + Uτ ,

whereWτ = ΥXτ contains the serial correlation common features. Xτ = (∆7Y
0
τ ,...,∆7Y

0
τ−P+2, )

0,
Υ ≡ [Υ1, ...,ΥP−1] is a (n − q) × (n(P − 1)) matrix, and eβ⊥ is an n × (n − q) full

column rank matrix satisfying eβ0eβ⊥ = 0. In Hecq et al. (2004) inferential procedures
for common serial correlation feature models are discussed in detail using canonical

correlation techniques.

The notion of WF serial correlation common features is more flexible in our setting

than the serial correlation common features, since the number of common features

(n − q) is not bounded by the cointegrating rank. Concretely, the number of com-

mon features may take any value between 1 and n. For example, in the case of the

multivariate representation of one of the daily series, 1 ≤ 7− q ≤ 7. When 7−q = 1,
the short-run dynamics of the seven day-of-week series are driven by the same factor.

On the other extreme, when 7−q = 7, the short-run dynamics of the single days is
generated by different factors. In our framework, when 0 < q < n, we name such

common features common periodic correlation (CPC) features, and n− q denotes the

number of CPC features.

The CPC feature in the periodic correlation framework implies that the short-run
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dynamics of each day of the week (including the stationary annual seasonality as well

as the business cycles) is driven by a reduced number of factors. Strictly speaking,

the common dynamic factors are asynchronous in terms of the daily model since they

relate to different days of the week, but they are synchronous in terms of the weekly

representation. Obviously, it is likely that asynchronous common cyclical components

occur also in the weekly representation in the sense that the dynamics of consecutive

days of different weeks could be as close as the dynamics of consecutive days of the

same week.

4.2 Common Periodic Correlation features across the weeks

When considering the presence of common periodic cyclical features between high fre-

quency variables, say the arrivals and the departures, it is likely that such variables

will exhibit non-contemporaneous cyclical co-movements in the sense that cycles co-

move with a phase shift of a particular number of days exceeding a week; a property

that is not captured by the CPC features described in the preceding section. The

notion of a polynomial serial correlation common feature (Cubadda and Hecq, 2001)

can also be considered in its weak form (Hecq et al., 2004), which in this periodic

context we name weak form polynomial CPC features.

The PI(1) process Yτ has weak form polynomial CPC of order m (m < P − 1),
denoted CPC(m), if there exists a 7 × qm polynomial matrix eβm(L) = Pm

j=0
eβm,jL

j

such that eβm,0 has full column rank, and

eβ0m,0Γk =

(
−eβ0m,k if k = 1, ..., m,

0 if k > m.

Under CPC(m), the cofeature matrix reduces the order of the error correction model

from P −1 tom, eβ0m,0 (∆7Yτ − αZτ−1) = −eβ0m,1∆7Xτ−1− ...−eβ0m,m∆7Xτ−m+eβ0m,0Uτ ,

such that under CPC(m) the cointegrated system can be written as

∆7Yτ = αZτ−1 +
mX
k=1

Γk∆7Yτ−k + eβm,0⊥

P−1X
k=m+1

Υj∆7Yτ−j + Uτ ,

where Υj are (n− qm)× 7 matrices, eβm,0⊥ is a 7× (n− qm) full column rank matrix

satisfying eβ0m,0
eβm,0⊥ = 0, and

PP−1
k=m+1Υj∆7Yτ−j contains the (n − qm)-dimensional
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common dynamic factor. The presence of the CPC(m) implies restrictions on the

periodic coefficients in a similar way as non-polynomical CPC (or CPC(0)), but now

involving only more distant lags, and therefore implies complex restrictions among

the autocorrelation coefficients of the cyclical component of Yτ , which is basically the

short-run dynamics of yt.

Notice that CPC(m) of different orders may cohabit in the error correction model

and thus imply different restrictions on the autocorrelation structure. To illustrate

this consider the 7-dimensional error correction model ∆7Yτ = αβ0Yτ−1+Γ1∆7Yτ−1+
Γ2∆7Yτ−2 + Uτ . In the unrestricted case without any CPC features, the short-run

matrices Γ1 and Γ2 each contain 49 parameters, that is, we have 98 parameters to

estimate. Now, consider the case where we have a contemporaneous common feature

CPC(0) of q0 = 3. In this case, Γ1 = eβ⊥Υ1, and Γ2 = eβ⊥Υ2, where eβ⊥ is n×(n−q0) =
7× 4, and Υ1 and Υ2 are both (n− q0)×n = 4× 7 matrices, which implies a total of
84 parameters. Next, consider the case with polynomial common feature CPC(1) of

q1 = 4. Under this property there are no synchronous common dynamic factors, and

Γ1 is n × n = 7 × 7, with 49 parameters. There are three common dynamic factors
among the day-of-week series, where at least one of these elements pertains to the

preceding week, and Γ2 = eβ⊥Υ2 with eβ⊥ being n×(n−q1) = 7×3 and Υ2 being 3×7
matrices. Hence, the number of parameters is 49 + 42 = 91. Alternatively, consider

the case where we have CPC(1) with q1 = 6. Here Γ1 is n×n = 7× 7 as above, while
Γ2 = eβ⊥Υ2 with eβ⊥ being 7× 1 and Υ2 being 1× 7 matrices, such that the number
of short-run parameters is given by 49 + 14 = 63.

Some limitations of the existing methods to detect the presence of such common

features (see Cubadda and Hecq, 2001, and Hecq et al., 2004) are that the statis-

tical tests for q0 CPC(0) and for q1 CPC(1) are not independent, the test for non-

polynomial common features imposes the same rank for all the short-run matrices,

while the test for polynomial common features tells nothing about the first short-run

matrices. All in all, we can test for the presence of different CPC(m), but we cannot

impose the structure implied by all of them. A solution is thus to select the CPC(m)

that is the most parsimonious representation of the short-run dynamics. Returning

to our example, we may distinguish two VAR models, one with CPC(0) of q0 = 3 and

CPC(1) of q1 = 4, and another one with CPC(0) of q0 = 3 and CPC(1) of q1 = 1. The

CPC(0) implies a more parsimonious representation of the short-run dynamics in the
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first model, while the CPC(1) gets the biggest reduction of parameters in the second

model. We suggest selecting the most parsimonious model. Again the estimation

procedure of Hecq et al. (2004) can be used to estimate the models using canonical

correlation analysis.

5 Empirical Application

To perform both the univariate and the bivariate analyses of the airport passenger

data described in section 2, we specify the following model

∆7Yτ = µ+Ψdτ +Θcτ +ΠYτ−1 +
P−1X
k=1

Γk∆7Yτ−k +Uτ , (12)

where µ is a (n × 1) vector of unrestricted intercepts (and linear trends when Yτ

includes stock series), Ψ is a n×12 matrix of unrestricted parameters associated with
dτ , which is a matrix of 12 trigonometric variables cos (jπ/26× τ) and sin (jπ/26× τ)

(j = 1, ..., 6) to account for the deterministic annual seasonality in a parsimonious

way,Θ is a n×5matrix of unrestricted parameters corresponding to calendar effects.7
As previously, Π and Γk are n× n matrices possibly of reduced rank. The Yt vector

consists of various combinations of the passenger series, i.e. arrivals y1t , departures

y2t , net flow y3t = y2t − y1t , and the stock of visitors variable y4t = y40 +
Pt

j=1 y
3
t .

For the periodic integration and CPC(0) analyses, n = 7, and Yτ = (yi1,τ , ..., y
i
7,τ )

0

(i = 1, 2, 3, 4); whereas for the periodic cointegration and multiple CPC(m) analyses

n = 14, and Yτ = (y11,τ , ..., y
1
7,τ , y

2
1,τ , ..., y

2
7,τ)

0. Based upon the univariate empirical
findings it appears useful for the analysis of stock-flow interactions to consider n = 8

and Yτ = (y
2
1,τ , ..., y

2
7,τ , y

4
τ )
0 where y4τ is the weekly average of the stock series.

The daily series are filtered from additive outliers to prevent the potential distor-

tionary effect of such outliers on the cointegration analysis (see Haldrup et al., 2004).

All the outliers capture effects not collected by the calendar effect variables.

The order P of the VAR model has been chosen according to the AIC criterion,

which performs reasonably well within high dimensional systems (see Gonzalo and

Pitarakis, 2002) such that for the univariate analysis P = 8 is selected for arrivals

7Concretely, we introduce five calendar type dummy variables accounting for Easter, Christmas,
end-of-the-year, May-the-first and the All-Saints week of festivals.
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and departures (y1t and y2t ), and P = 3 for the net flow and stock variables (y3t and

y4t ). For the bivariate analyses P = 8 is selected for both the periodic cointegration

analysis of the pairwise flow relations and the stock-flow relations.8

5.1 Testing for periodic integration and cointegration amongst stocks and
flows

5.1.1 The univariate series

The rank of the matrix Π has been determined according to the Johansen procedure.

Table 1 reports the Johansen trace test statistic (LRr) and the estimated coefficients

φs of the quasi-difference operators δs(L) ≡ 1−φsL associated with the cointegrating
vectors of the four series. The cointegration analysis of the VD series corresponding

to the daily arrivals and departures provides strong evidence favouring the PI(1)/I(1)

characteristic of such series by detecting 6 cointegrating relations.9 The fact that 6

cointegrating relations are present means that the 7 daily series exhibit the same sto-

chastic trend which implies that the series cannot be seasonally integrated (Hylleberg

et al., 1990, and Franses, 1994).

The cointegration analysis of the net flow series does not detect any cointegrating

relationships, while the cointegration analysis of the stock series again detects a coin-

tegration rank of 6 and hence suggests the series to be PI(1) or I(1) depending upon

further restrictions. I(1) against PI(1) of the arrivals, departures and the stock series

can be tested by restricting the value of the cointegrating vectors. More specifically,

when φis = 1 for all s = 1, 2, ..., 7, a (1, -1) cointegrating relation exists across the

single days of the VD representation, and hence in this case non-stationarity is non-

periodic I(1). As seen from the estimates of the periodic coefficients, both the arrivals

and departures series are PI(1), i.e. the periodic coefficients are very different. Hence,

the series are potentially non-periodically cointegrated with vector (1,-1), given that

the net flow series is stationary. The stock series is seen to have coefficients almost

8These lags imply a maximum lag for the daily models of p = 62 and p = 27 days.
9New critical values for the LRr test have been computed to account for the specific nature of

the fitted weekly multivariate model. Specifically, we tabulated critical values for an n-dimensional
random walk (independent) process with 425 observations and including the same calendar efects
and (trigonometric) deterministic seasonality specified in model (12). n=7,8,14 and an order P = 3
and 8.
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exactly equal to one, and hence this series is non-periodically integrated I(1), which

by and large is a result of the way it is constructed.

Table 1: Periodic integration analysis of the arrivals y1t , departures y
2
t , net flow y3t

and stock series y4t .

LR0 LR1 LR2 LR3 LR4 LR5 LR6

y1t 168.51∗∗∗ 114.49∗∗∗ 76.70∗∗∗ 50.11∗∗∗ 28.54∗∗∗ 11.41∗∗ 1.28

y2t 181.64∗∗∗ 115.55∗∗∗ 80.39∗∗∗ 52.99∗∗∗ 32.09∗∗∗ 14.65∗∗∗ 2.31

y3t 985.82∗∗∗ 733.18∗∗∗ 545.96∗∗∗ 397.70∗∗∗ 272.08∗∗∗ 168.67∗∗∗ 70.55∗∗∗

y4t 850.82∗∗∗ 634.46∗∗∗ 438.52∗∗∗ 271.06∗∗∗ 167.71∗∗∗ 73.15∗∗∗ 2.91

Periodic Integration Coefficientsbφi1 bφi2 bφi3 bφi4 bφi5 bφi6 bφi7
y1t 0.910 0.561 3.039 0.683 1.100 1.390 0.617

y2t 0.889 0.551 3.087 0.602 1.044 1.583 0.665

y3t - - - - - - -

y4t 0.999 0.999 1.000 0.998 0.997 1.001 1.006

Note: LRr signifies the trace statistic of Johansen. ∗,∗∗ ,∗∗∗ indicate rejection of the null
hypothesis at 10% , 5%, 1%.

5.1.2 Bivariate analyses of the flow variables and their interaction with
the stocks

The univariate properties displayed in the preceding section have several implications

for the bivariate analysis. Because the daily arrivals y1t and daily departures y2t
are PI(1), and the net flow y3t is I(0), the (flow) arrivals and departures series are

potentially non-periodically cointegrated with cointegrating vector (1,−1)0, y1s,τ −
y2s,τ ∼ I(0). However, the analysis may also be considered for a full (14-dimensional)

system where the simultaneous analysis of the arrivals and stock series is conducted.

This analysis may show whether periodically cointegrating relations amongst the flow

variables may exist. Secondly, due to the I(1)-ness of the stock variable y4t and the

PI(1)-ness of the flow variables, possible cointegration amongst the stocks and the

flows will be periodic, whereby e.g. y1s,τ − ksy
4
τ is I(0) and ks 6= k for at least one

s = 1, ..., 7.
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Consider the analysis of the weekly flow series Yτ ≡ (y11,τ , ..., y
1
7,τ , y

2
1,τ , ..., y

2
7,τ )

0.
For the extended system we follow the same procedure as for the univariate analysis

in section 5.1, that is, we first test for the cointegration rank, and next hypotheses

regarding the cointegrating space are tested.

Table 2: Periodic cointegration analysis of the arrivals y1t , and departures y
2
t series.

Trace Test

LR0 LR1 LR2 LR3 LR4 LR5 LR6

769.77∗∗∗ 594.74∗∗∗ 475.16∗∗∗ 376.21∗∗∗ 300.01∗∗∗ 232.61∗∗∗ 175.08∗∗∗

LR7 LR8 LR9 LR10 LR11 LR12 LR13

124.88∗∗∗ 90.72∗∗∗ 61.25∗∗∗ 40.81∗∗∗ 22.20∗∗∗ 9.40 1.35

Cointegrating Relationsbk1 bk2 bk3 bk4 bk5 bk6 bk7
1.003 1.043 1.013 1.105 1.237 1.030 0.977bφi1 bφi2 bφi3 bφi4 bφi5 bφi6 bφi7

y1t 0.895 0.592 3.125 0.646 1.156 1.331 0.609

y2t 0.872 0.569 3.219 0.592 1.032 1.598 0.642

Note: κ̂i are the periodic cointegration parameters relating arrivals and departures,

whereas φ̂
i
j are the periodic coefficients of the single series. LRr signifies the trace statistic

of Johansen. ∗,∗∗ ,∗∗∗ indicate rejection of the null hypothesis at 10% , 5%, 1%.

The test results are reported in Table 2. The trace test does not reject the null

hypothesis for r = 12, 13, but the likelihood ratio test (LR12 = 9.40) is rather close

to the 10% critical value 9.67, which leads us to conclude that the rank equals 13.

Hence the daily arrivals and departures are cointegrated and thus share the same

stochastic trend, which confirms the results of the previous section. The analysis of

PI(1)-ness of the flow variables can also be undertaken from the multivariate model of

the flows Yτ for r = 13 in this highly parametrized model. We test for non PI(1)-ness

of the departures variable through the linear hypothesis H0: φ
2
1 = ... = φ26 = 1, and

obtain LR=22.38, which is asymptotically distributed as χ2(6) under the null and

hence rejects at the 1% level. This reinforces the evidence about PI(1)-ness of the

daily departures series.

The next step is to test for nonperiodic cointegration between the arrivals and
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departures. The estimates of the cointegrating coefficients bks associated with the
arrivals series are also displayed in Table 2. We want to test the hypothesis H0: ks = 1

for all s = 1, 2, ..., 6, but in this case, and contrary to the univariate findings, we reject

the null at 1% level with a LR=21.21. From the estimated kss we recognize that the

k5 coefficient, that is the cointegrating coefficient associated with Friday arrivals and

Friday departures, is significatively different from 1. A test for equal cointegrating

vectors for all days with the exception of Fridays H0: k1 = k2 = k3 = k4 = k6 = 1

cannot be rejected (LR=7.64). This slight departure from unity of the k5 coefficient

may be explained by the different periodic integration coefficients of Saturday arrivals

and Saturday departures, which are respectively bφ16 = 1.331, and bφ26 = 1.598. This
result was also found in the univariate analysis of the previous section yielding the

estimates bφ16 = 1.390 and bφ26 = 1.583 (see panel B of table 1).
Finally, we test for periodic cointegration amongst the flow and stock series by con-

sidering the cointegration analysis of the 8-dimensional processY∗τ ≡ (y21,τ , ..., y27,τ , y4τ )0,
which includes the departures series (for illustration) and the average stock series (for

the reasons previously given). Conducting the Johansen ML-procedure on this sys-

tem it is found, see Table 3, that the cointegration rank is 7, implying that the stock

(derived from arrivals and departures) itself cointegrates with the departure (and ar-

rivals) series. Hence, similarities to the notion of multicointegration seem apparent.

Because the flow variables are periodic while the stock variable is non-periodic, the

cointegrating relationship is necessarily periodic.

Table 3: Periodic cointegration analysis of the departures, y2t , and stock, ȳ
4
t , series.

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7

384.81∗∗∗ 288.87∗∗∗ 214.19∗∗∗ 147.03∗∗∗ 92.61∗∗∗ 49.42∗∗∗ 18.60∗∗∗ 0.55

Note: LRr signifies the trace statistic of Johansen. ∗,∗∗ ,∗∗∗ indicate rejection of the null
hypothesis at 10% , 5%, 1%.

5.2 Testing for common periodic cyclical features

5.2.1 The univariate series

Given the evidence of the cointegration analysis in the previous section, we test for

the presence of common periodic correlation features within the week and across
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the weeks of the individual variables y1t , y
2
t , and y4t and the bivariate time series

(y1t , y
2
t ). We use the likelihood ratio test (ξm=0(q)) given by Hecq et al. (2004) for

the case of contemporaneous cycles and the likelihood ratio test given by Cubadda

and Hecq (2001) for the case of common periodic features across different weeks

(ξm>0(q)). Because the estimated cointegrating rank r = 6 for all the cases, we

can safely concentrate out the cointegrating vectors without affecting the limiting

distribution.10

Table 4: Common periodic correlation feature analysis of the arrivals series y1t .

q ξm=0(q) ξm=1(q) ξm=2(q) ξm=3(q) ξm=4(q) ξm=5(q) ξm=6(q)

1 50.39 33.38 28.34 15.34 10.71 4.37 0.02

2 107.22∗ 77.47 65.00 35.78 27.82 14.28 0.54

3 196.99∗∗∗ 139.77∗ 113.24∗ 62.61 47.59 26.05 1.82

4 306.10∗∗∗ 210.00∗∗∗ 167.96∗∗ 107.96 78.75 43.57 10.00

5 432.96∗∗∗ 303.89∗∗∗ 228.06∗∗∗ 154.76∗ 122.33∗∗ 64.56 23.61

6 581.74∗∗∗ 412.46∗∗∗ 307.06∗∗∗ 228.13∗∗∗ 185.20∗∗∗ 108.84∗∗ 44.82

7 862.96∗∗∗ 637.36∗∗∗ 503.77∗∗∗ 337.59∗∗∗ 277.53∗∗∗ 168.61∗∗∗ 75.92∗∗∗

Note: ξm(q) signifies the likelihood ratio test.
∗,∗∗ ,∗∗∗ indicates rejection of the null

hypothesis at 10% , 5%, 1%.

Table 5: Common periodic correlation feature analysis of the departures series y2t .

q ξm=0(q) ξm=1(q) ξm=2(q) ξm=3(q) ξm=4(q) ξm=5(q) ξm=6(q)

1 49.12 36.53 24.49 11.65 9.31 2.56 0.01

2 120.19∗∗ 81.42 58.56 40.49 30.80 13.84 1.14

3 211.65∗∗∗ 137.26∗ 107.46 81.31 58.17 31.55 4.67

4 307.36∗∗∗ 212.90∗∗∗ 173.78∗∗∗ 141.49∗∗∗ 102.82∗∗∗ 50.98 15.22

5 441.22∗∗∗ 306.19∗∗∗ 254.94∗∗∗ 209.20∗∗∗ 160.48∗∗∗ 88.58∗∗∗ 29.24

6 581.41∗∗∗ 422.86∗∗∗ 345.65∗∗∗ 292.86∗∗∗ 229.93∗∗∗ 138.92∗∗∗ 58.77∗∗∗

Note: See table 4.

10See the limiting result of Paruolo (2002), and the finite sample results of Hecq et al. (2004).
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Table 4 shows the results for the arrivals variable. The hypothesis of CPC(0) with

q0 = 1 is not rejected at the 10% level. Therefore, we do not reject n− q0 = 7−1 = 6
dynamic factors driving the short-run component of the arrivals system. We do not

reject at the 10% level, n−q1 = 7−2 = 5 CPC(1) factors, n−q3 = 7−4 = 3 CPC(3)
factors, n− q5 = 7− 5 = 2 CPC(5) factors, and finally for the last lagged matrix Γ7

we do not reject n− q6 = 7− 6 = 1 CPC(6) scalar factor. These results suggest that
the more remote the past is, the less influence it has on the present of the short-run

dynamics of the arrivals.

The most parsimonious representation of the short-run dynamics is given by

CPC(3) of q3 = 4 with 252 parameters (compared to 343 free parameters), while,

for example, the CPC(0) of q0 = 1 implies 336 short-run parameters. Similar results

are obtained for the departures variable (see table 5). In this case the most parsimo-

nious representation is obtained with the CPC(2) with q2 = 3 with 266 parameters.

These two cases illustrate that in our setting there is a relevant efficiency gain by

imposing CPC(m) type restrictions.

Table 6 shows the results for the stock of visitors. The test statistics do not reject

CPC(0), CPC(1) and CPC(2) with qi = 6 (i = 0, 1, 2) which imply that the short-run

dynamics of the day-of-week stocks are generated by just one dynamic factor. This

reflects the non-periodic behavior of the stock of visitors.

Table 6: Common periodic correlation feature analysis of the stock series y4t .

q ξm=0(q) ξm=1(q)

1 4.90 2.10

2 17.61 8.54

3 37.09 18.73

4 59.75 32.11

5 92.30 48.72

6 135.96 72.61

Note: See table 4.

Finally, table 7 presents the likelihood ratio tests for the 14-dimensional system includ-

ing arrivals and departures. As seen in the table, we do not reject n−q0 = 14−5 = 9
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CPC(0) common factors between arrivals and departures. This suggests that the flow

variables do have idiosyncratic and common dynamic factors. In this case, the more

parsimonious representation is obtained with CPC(1) of q1 = 6 or CPC(2) with q2 = 7

with a 30% reduction of the number of estimated parameters.

Table 7: Common periodic correlation feature analysis of the arrivals and departures

series y1t and y2t .

q ξm=0(q) ξm=1(q) ξm=2(q) ξm=3(q) ξm=4(q) ξm=5(q) ξm=6(q)

1 52.27 42.61 36.66 22.69 17.88 5.83 0.02

2 136.33 102.35 75.61 52.08 40.38 13.55 1.17

3 236.20 173.72 136.88 87.64 67.47 24.49 3.30

4 343.12 257.12 202.66 138.22 99.97 42.25 6.44

5 467.96 347.37 276.21 192.96 140.66 64.49 15.88

6 600.17∗∗ 457.92 360.89 260.51 193.04 96.02 26.92

7 772.26∗∗∗ 581.78∗ 457.75 341.69 253.23 135.95 40.17

8 951.53∗∗∗ 719.11∗∗∗ 566.19∗∗ 440.51∗ 331.96∗∗ 181.30 63.61

9 1151.53∗∗∗ 890.87∗∗∗ 705.88∗∗∗ 563.89∗∗∗ 429.98∗∗∗ 228.21 91.21

10 1359.52∗∗∗ 1081.58∗∗∗ 858.38∗∗∗ 706.25∗∗∗ 533.55∗∗∗ 299.35∗∗∗ 124.66∗∗

11 1615.92∗∗∗ 1282.73∗∗∗ 1027.67∗∗∗ 858.45∗∗∗ 658.08∗∗∗ 392.23∗∗∗ 168.34∗∗∗

12 1924.45∗∗∗ 1493.79∗∗∗ 1207.28∗∗∗ 1018.86∗∗∗ 786.36∗∗∗ 490.94∗∗∗ 222.04∗∗∗

13 2252.74∗∗∗ 1733.56∗∗∗ 1414.33∗∗∗ 1188.78∗∗∗ 939.01∗∗∗ 607.36∗∗∗ 299.13∗∗∗

Note: See table 4.

6 Conclusion

Periodic models are often criticized for being too flexible in the sense that they require

too many parameters to be estimated. In the present paper, we have suggested

restricting the correlation structure of periodic models by identifying common periodic

correlation features that can be imposed upon the model. An application to arrivals

and departures data for passenger trafic in the airport of Mallorca demonstrated that

a significant reduction in the number of estimated parameters can be obtained by such

common feature restrictions. We have also suggested a way to model stock and flow

data with a daily periodicity of observations, and in so doing we have generalized the
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notion of multicointegration to a periodic context. It is our belief that the suggested

advances are quite promising avenues for future research and in particular for the way

of making periodic models parsimonious and operational.
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