DEPARTMENT OF ECONOMICS

Working Paper

Improving Size and Power in Unit Root Testing

Niels Haldrup and Michael Jansson

Working Paper No. 2005-02

TN o,
3 Yo

® o
e

<

%

n
s
< <

s TAS ARV\\)‘,

\Al
é\?

D ¢,

| SSN 1396-2426

UNIVERSITY OF AARHUS « DENMARK



INSTITUT FOR GKONOMI

AFDELING FOR NATIONAL@KONOMI - AARHUS UNIVERSITET- BYGNING 322
8000 AARHUS C- 7 89421133- TELEFAX 86136334

WORKING PAPER

Improving Size and Power in Unit Root Testing

Niels Haldrup and Michael Jansson

Working Paper No. 2005-02

DEPARTMENT OF ECONOMICS

SCHOOL OF ECONOMICS AND MANAGEMENT UNIVERSITY OF AARHUS- BUILDING 322
8000 AARHUS C- DENMARK T +4589421133- TELEFAX +45861363 34



Improving Size and Power in Unit Root Testing*

NiELs HALDRUPT MICHAEL JANSSONY
DEPARTMENT OF ECONOMICS DEPARTMENT OF ECONOMICS
UNIVERSITY OF AARHUS UC BERKELEY

March 14, 2005

ABSTRACT. A frequent criticism of unit root tests concerns the poor
power and size properties that many of such tests exhibit. However, the past
decade or so intensive research has been conducted to alleviate these problems
and great advances have been made. The present paper provides a selective
survey of recent contributions to improve upon both size and power of unit root
tests and in so doing the approach of using rigorous statistical optimality crite-
ria in the development of such tests is stressed. In addition to presenting tests
where improved size can be achieved by modifying the standard Dickey-Fuller
class of tests, the paper presents theory of optimal testing and the construction
of power envelopes for unit root tests under different conditions allowing for
serial correlation, deterministic components, assumptions regarding the initial
condition, non-Gaussian errors, and the use of covariates.

JEL Cobpgs: C12, C22
Key WoORDs: Unit roots, optimal tests, power envelope.

1. INTRODUCTION
The past couple of decades has witnessed a veritable explosion of research on the
importance of unit roots in the analysis of economic and other time series data. The
reasons for this are manifold, but perhaps the most important motivation for this
work is the fact that the development of the notion of cointegration by Granger
(1981) and Engle and Granger (1987) has stressed the significance of unit roots and
the importance of making valid statistical inference in the presence of non-stationary
time series data. There is vast literature developing statistical theory for unit root
(integrated) processes and the list of empirical applications using unit root testing
is even more impressive. Also, there is a tremendous literature examining the power
and size of unit root tests, not least by adopting numerical simulation (Monte Carlo)

*Prepared for the Palgrave Handbooks of Econometrics: Vol. 1 Econometric Theory.
fe-mail: nhaldrup@econ.au.dk.
fe-mail: mjansson@econ.berkeley.edu.
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techniques under a multitude of different designs of the underlying process. Refer-
ring to exhaustive lists of contributions to the theoretical, numerical and empirical
literature in this field goes far beyond the space limitation we have here, but surveys
referring to many of these contributions can be found in e.g. Stock (1994), Maddala
and Kim (1998), and Phillips and Xiao (1998).

The present chapter reviews some of the results and findings in the unit roots
literature that we believe are the most important contributions over the past decade
or so. The review is deliberately chosen to be selective and focuses on those contri-
butions we believe are most likely to be fruitful for future developments of theory
as well as in applications. Historically, the criticisms of unit root testing have con-
cerned both the power and size properties of conventional unit root tests [e.g., Schwert
(1989), Agiakloglou and Newbold (1992), and DeJong, Nankervis, Savin, and White-
man (1992a, 1992b)]. Stimulated in part by these influential Monte Carlo studies, a
considerable amount of effort has been devoted to improving the size and/or power
properties of unit root tests and much progress has been made. Most of these ad-
vances have been made with the help of rigorous statistical theory and are therefore
potentially of general methodological interest. Here we survey (a subset of) these
recent, contributions.

We focus narrowly on the problem of testing for the presence of autoregressive
unit roots, partly for concreteness and partly because this branch of non-stationary
time series analysis appears to be the one in which the pertinent problems are best
understood at this point. Consequently, several important recent advances in the
analysis of non-stationary data are abstracted from in the present exposition. These
advances include models of higher orders of integration [e.g., Dickey and Pantula
(1987), Haldrup (1998)], tests of seasonally integrated processes [e.g., Hylleberg, En-
gle, Granger, and Yoo (1990), Franses (1996), Ghysels and Osborn (2001)], tests of
unit roots against structural breaks [e.g., Perron (1989, 2005)], fractionally integrated
processes [e.g., Granger and Joyeux (1980), Baillie (1996), Velasco (2005)], testing
stationarity against non-stationarity [e.g., Kwiatkowski, Phillips, Schmidt, and Shin
(1992), Saikkonen and Luukkonen (1993a, 1993b), Jansson (2004)], and panel data
unit root tests [e.g., Levin, Lin, and Chu (2002), Im, Pesaran, and Shin (2003),
in Choi (2005)]. Also, a recent literature has developed adopting bootstrap methods
for unit root tests [e.g., Park (2002, 2003), Paparoditis and Politis (2003), Davidson
and MacKinnon (2005)].

The chapter proceeds as follows. Section 2 is concerned with the Dickey-Fuller
class of tests (Dickey and Fuller (1979)) and the modifications of this testing frame-
work that have been suggested in order to accommodate (particularly) serially de-
pendent processes and the size distortions that this complication generally implies.
The modifications discussed herein include the proposal of Said and Dickey (1984)
to use long autoregressions to approximate general dependent processes and the non-
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parametric corrections of Phillips (1987a) and Phillips and Perron (1988). Special
emphasis will be put on the further improvements towards alleviating size distortions
made in a series of papers by Ng and Perron culminating in Ng and Perron (2001).
The focus in this recent work is on the importance of appropriately estimating the
long run variance by use of an autoregressive based spectral density estimator whilst
simultaneously accounting for the serious bias that the estimate of the least squares
estimator of the autoregressive coefficient implies even in large samples. Extending
the approach to allow for deterministic components by exploiting the GLS detrending
procedure of Elliott, Rothenberg, and Stock (1996), the class of tests suggested by
Ng and Perron (2001) are argued to exhibit excellent power and size performance. In
fact, the tests of Ng and Perron are “nearly efficient” in the sense that they almost
achieve the asymptotic power envelope for unit root tests. The concepts of test effi-
ciency and power envelopes in the construction of tests for unit roots are discussed
in depth in Section 3. To highlight the nonstandard aspects of the unit root testing
problem, the discussion of efficiency starts from the benchmark case of a zero mean
Gaussian AR(1) model, a fully parametric model in which there are no nuisance para-
meters. Subsequent subsections discuss how Elliott, Rothenberg, and Stock’s (1996)
efficiency results for the benchmark change under modifications of that model. The
discussion emphasis the role nuisance parameters caused by accommodation of serial
correlation [Elliott, Rothenberg, and Stock (1996)], deterministic components [El-
liott, Rothenberg, and Stock (1996)], and/or a non-zero initial condition [Miiller and
Elliott (2003)], but also touches upon two sources of potentially important power
gains in unit root testing, namely non-Gaussian errors and stationary covariates.

2. UNIT ROoOT TESTING
Suppose the observed data {y; :t =1,...,T} is generated by the AR(1) model

Yt = PYt—1 + &, (1)

where yo = 0 and ¢; ~ i.i.d. (0,02%) are unobserved errors. In this model, the unit
root testing problem is the problem of testing

Hy:p=1 VS. Hy:p<l1.
Let

2?22 Yt—1Yt

p=""F
thz yt271

denote the OLS estimator of p and let
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T
51 ) )
tp = P =T lz<yt—,0yt71)2;

— = 7
s/ \/ Zt:2 yt271 t=2

be the t-statistic associated with the unit root hypothesis. As is well known, p and ¢,
exhibit nonstandard large sample behavior under the unit root hypothesis. Indeed,
when p =1,

1

T 1), Jo W (r)dW (r)

fol %% (r)2 dr

(2)

and

) [ W () dW (r)
YW (r)* dr

0

ti)—>

(3)

where W is a standard Brownian motion (i.e., a Wiener process). Although the
results in the preceding displays can be traced back to White (1958), the limiting dis-
tributions in (2) and (3) are frequently referred to as the Dickey-Fuller distributions,
in recognition of the contribution of Dickey and Fuller (1979).

2.1. The Augmented Dickey-Fuller and Phillips-Perron Classes Of Tests

An important implication of (2) and (3) is that both 7" (p — 1) and t; are asymp-
totically pivotal under the null hypothesis. However, the practical usefulness of these
results is limited by the implausibility of the assumptions regarding the errors ;. The
impact of serially correlated errors can be illustrated by means of the model

Y = PYp—1 + U, up =1 (L) &y, (4)

where yo = 0, & ~ d.i.d. (0,02), and ¢ (L) = 329, L7 is a lag polynomial whose
coefficients {¢;} satisfy > 1 d z/Jj} < 00.

The model (4) imposes much weaker assumptions on the serial correlation pattern
of y; — py;—1 than does the AR(1) model in (1) . As in the AR(1) model, the parameter
of interest is p, the unit root testing problem being Hy : p =1 vs. H; : p < 1. Relative
to the AR(1) model (1), the unit root testing problem in model (4) is complicated
by the presence of the nuisance parameters {1/}j} .

Phillips (1987a) shows that in this case (2) and (3) are modified as follows:
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[y W () dW (r) + A

fol %% (r)2 dr

T(p—1) —a

and

L —a %fo W (r)dW (r) + )\7 (6)

Jy W (r)*dr

where A = (w? —0?) / (2w?), 0% = E [u}] = o2 (Z;io 1/1]2) is the variance of u;, and

2 2
w? = limp_ o T 'E [(ZtT_l ut> } = o? (Z;O:o @Dj) is the long-run variance of u,.!

When the innovations u; are i.i.d. (i.e., when ; = 0 for j > 1), w? = 0% and the
limiting distributions in (5) and (6) simplify to the nuisance parameter free limiting
distributions in (2) and (3).

Different routes have been followed in the literature to account for the presence of
nuisance parameters in the limiting distributions of 7' (p — 1) and t,. It was shown by
Dickey and Fuller (1979) that when w; is an AR process of (finite) order k, T'(p — 1)
and t; calculated from the regression

k—1
Yt :Ibytfl‘f‘Zﬁ/jAyt,j—Ff)tk (tIk+1,...,T> (7)

j=1

will indeed have the limiting null distributions in (2) and (3). However, if u; is an
ARMA(p, q) process (with ¢ > 1), then the auxiliary regression model (7) will inade-
quately solve the nuisance parameter problem, at least if & is held fixed. On the other
hand, utilizing the results of the Berk (1974) variety and generalizing the celebrated
results of Said and Dickey (1984), it has been shown by Chang and Park (2002) that
if u; is an ARMA(p, q) process, then the limiting null distributions of 7' (p — 1) and ¢,
coincide with the limiting distributions in (2) and (3) provided E (¢}) < oo, k — o0,
and k = o (T"/?7%) for some § > 0.2

Rather than solving the nuisance parameter problem by employing an autoregres-
sive sieve, Phillips (1987a) and Phillips and Perron (1988) use consistent estimators
of w? and o? to transform the statistics 7' (p — 1) and ¢, in a manner that eliminates
the influence of nuisance parameters. More specifically, they suggest the statistics

'Under the stated assumptions regarding wu;, the long-run variance w? equals 27 f,(0), where
fu (¢) is the spectral density of u;.

2 As shown by Chang and Park (2002), the ARMA (p, ¢) assumption on u; can actually be replaced
by the weaker assumption that Z;io Y27 # 0 for every |z| <1 (and Z;ioj |wj| < 00).
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~2 ~2
W —0

- _ T
272 Zt:2 yt2—1

Z,=T(p—1)

and

& O? — 62

Zt — Ttﬁ - y
“ 2\/@2T72 2;2 {1

where &? and 6% are consistent estimators of w? and ¢2. The limiting null distributions
of Z, and Z, coincide with the limiting distributions in (2) and (3).

(9)

2.2. Size Distortions Of Unit Root Tests. Several studies [e.g., Schwert (1989),
Agiakloglou and Newbold (1992)] have documented that the tests discussed in the
previous subsection generally exhibit significant size distortions in finite samples when
errors are serially correlated, especially when the errors are of the moving average type
with a root approaching minus one. Because a near cancellation of roots occurs when
the MA root is very close to minus one, it is not surprising that any unit root test
will suffer from severe size distortions in that case. However, it has been found that
size can be seriously inflated even for negative roots of moderate magnitude. Schwert
(1989) found that the test with the least size distortion is the (Said-Dickey) ¢-test
based on t; obtained from a high order autoregression, but even for this test the size
problem is not negligible. Moreover, even though long autoregressions may moderate
the size problems, the use of long autoregression typically leads to a nontrivial loss
of power [e.g., DeJong, Nankervis, Savin, and Whiteman (1992a, 1992b)].

Ng and Perron (1995, 2001) further scrutinized rules for truncating long autore-
gressions when performing unit root tests based on (7). Consider the information
criterion

T
IC (k) =log6} + kCr/T,  Gp=(T k)™ > o, (10)
t=Fk-+1

where {Cr} is a positive sequence satisfying Cr = o (T') . The Akaike Information Cri-
terion (AIC) sets Cr = 2, whereas the Schwartz or Bayesian Information Criterion
(BIC) puts Cr = logT. Ng and Perron (1995) found that although these informa-
tion criteria satisfy the requirement that & = o(7"/3), generally models with a too
low values of k are selected with size distortions as a consequence. Ng and Perron
(1995) also demonstrate that using a sequential data dependent procedure, where the
significance of coefficients on additional lags are sequentially tested, will yield a test
with improved size. However, a problem with the latter procedure is that in other
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cases the sequential test procedure tends to overparameterize, hereby resulting in a
loss of power. More recently, Ng and Perron (2001) have developed an information
criterion with a penalty function adequate for integrated time series. The idea is to
select some lag order k in the interval between 0 and a preselected value k.., where
the upper bound ky.x satisfies kyax = 0 (T') . Their preferred criterion, which can be
interpreted as a modified form of the AIC, is given by

MAIC (k) =log 3 + 2(77(k) + k) /(T — kmax), (11)

where 62 = (T = k) " S0,y 8 and 7o(k) = 6,20 — 120, 02,

It is interesting to observe that the penalty function of the modified criteria is
data dependent which is a way to account for the fact that the bias in the sum
of the autoregressive coefficients (i.e., p — 1) is highly dependent upon the selected
k. Even though Ng and Perron (2001) did not examine directly the effect on the
size of the Said-Dickey test by using the above rules, simulation results in other
contexts demonstrate that modified information criteria are superior to conventional
information criteria in truncating long autoregressions with integrated variables when
moving average errors are present.

In the implementation of the (Phillips-Perron) tests based on Z, and Z;, the
estimator

T

) 1 ') N n

o" =T E:Ut; Uy = Yt — PYi—1,
t=2

serves as a consistent estimator of o2. With respect to estimation of w?, a wide range
of kernel estimators have been considered. These kernel estimators are of the form

T T—-1 T
hpr =T 47 +2> w(j/My) <T1 > atatj> , (12)
t=2 j=1 t=j+2

where w (-) is some kernel (weight) function and My is a bandwidth parameter [e.g.,
Newey and West (1987), Andrews (1991)].* The vast majority of unit root tests pro-
posed in the literature use such kernel estimators of the long run variance w? to remove

3 A similarly modified form of the BIC is

MBIC (k) = log 5% + 1Og(T - kmax)(TT(k) + k)/(T - kmax)'

“When {y;} is generated by (4), the estimator &% pp is consistent if My' +T~Y2Myp = o(1)
and w (-) satisfies the conditions of Jansson (2002).
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the influence of nuisance parameters in the asymptotic distributions. Notwithstand-
ing, it has been shown by Perron and Ng (1996) that no spectral density estimator
can completely eliminate size distortions and, in fact, kernel based estimators tend to
aggravate the size distortions.” This finding is due to the fact that estimation of p and
w? are coupled in the sense that the least squares estimator p is used in constructing
iy and hence affects &% ;5. Because the least squares estimator p is well known to be
seriously biased in finite (and even in large) samples when wu; exhibits strong serial
correlation, the nuisance parameter estimator d)%( er is expected to be very imprecise
in critical regions of the serial correlation parameter space. An seemingly obvious way
to alleviate this problem is to construct an estimator where residuals are calculated
under the null hypothesis, i.e. by using Ay; instead of 4, in (12), but it has been
shown by Phillips and Ouliaris (1990) that this leads to inconsistent unit root tests.

To ensure an estimator that is consistent under the unit root null whilst attenuat-
ing the dependence on p, Perron and Ng (1996), following earlier work by Berk (1974),
suggested using an autoregressive spectral density estimator based on estimation of
the long autoregression (7) :

g = & (13)

where k is chosen according to one of the information criteria discussed above. The
motivation for using the regression (7) to estimate Z;:ll 7, rather than basing esti-
mation on an autoregressive model in first differences (i.e., the model under the null)
is that this ensures a consistent unit root test [e.g., Stock (1999)]. The construction
(13) decouples estimation of w? from the estimation of p and therefore helps avoid
the problems caused by the bias of p. In particular, @?4 g 1s immune to potentially
severe biases in p that are caused by the presence of serial correlation in the errors.
In a comparison of the size properties of the Phillips-Perron tests using the esti-
mator cbiR and the tests using a Bartlett kernel estimator of w?, it was found that
significant size improvements can be achieved in the most critical parameter space.
Nevertheless, size distortions are still severe and remain so even if &% is replaced by
the (unknown) true value w? [Perron and Ng (1996)], a finding which indicates that
biases in p are an important source of size distortions. The next subsection discusses
developments that seek to obtain further improvements by addressing this issue.

2.3. Modified Unit Root Tests With Good Size. Perron and Ng (1996)
consider modified Phillips-Perron tests (referred to as M-tests in the following) that

% Also, Kim and Schmidt (1990) demonstrate by means of Monte Carlo simulations that a range of
different kernel estimators and different ways of selecting the bandwidth parameter seem to deliver
unit root tests with fairly similar finite sample properties.



UNIiT RooTs 9

appear to have much improved size properties compared to any other unit root test.

Moreover, the tests can be designed such that they satisfy desirable optimality criteria

in terms of power; a topic which we will later return to. The class of tests belong to

a class of tests, originally suggested by Stock (1999), which exploits the fact that a

series converges at different rates under the null and the alternative hypotheses.
The first statistic reads

1,2 A2
Ty — wag

p = ’ (14)
272 ZZ:Q Yy
which also can be written in terms of Z, as
T . 2
MZp:Zp+§(p—1) ) (15)

Because p — 1 = O, (T'") under the null (super consistency), it is seen that Z, and
M Z, will be asymptotically equivalent (under the null), implying in particular that
the limiting null distribution of M Z, is the one given in (2).

The next statistic reads

T
MSB = |62 g2, (16)
t=2

which is stochastically bounded under the null and O, (T') (and thus tends to zero)
under fixed alternatives. This test is related to the Sargan and Bhargava (1983) test,

hence the name, and critical values are reported by Stock (1999). Finally, because
Zy = MSB - Z,, a modified Phillips-Perron ¢ test can be defined as

T
1| . .
MZ =7+ CarT2Y y2, (p—1)7%. (17)
t=2

Even though p is super consistent (under the null), implying that the correction
terms associated with Z, and Z, are asymptotically negligible, it is still the case
that the correction factors can be important even in moderately large samples, the
reason being that p is severely biased in the presence of strong serial correlation.
Simulation experiments reported in Perron and Ng (1996) show that the M-tests
have impressively lower size distortion compared to other unit root tests that are
available in the literature. However, it is essential that the autoregressive spectral
density estimator ffuiR is used as an estimator of w? to decouple estimation of the
unit root and the long run variance for the tests to have good size properties. For
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instance, for an MA root of e.g. —0.8 the actual size of the M Z, test is about 6% at
a nominal 5% level, whereas Phillips-Perron tests or modified Phillips-Perron tests
using kernel estimates of w? have size close to 100%.

The M-tests also appear to be robust to e.g. measurement errors and additive
outliers in the observed series. Franses and Haldrup (1994) and Haldrup, Montanés,
and Sanso (2005) show that in these cases with data contamination unit root inference
using standard tests become seriously size affected. Vogelsang (1999) shows that the
M-tests effectively solve these problems in terms of test size.’

2.4. Deterministics. In practical applications the underlying model will also
contain deterministic components. These can be accommodated by generalizing (4)
to a components representation of the form

Y = [y —+ 2, 2t = PZt—1 + Ug, (18)

where zp = 0, u; is as in (4), and g, is a deterministic component. Most of the
specifications of yu, used in applications are linear-in-parameters specifications of the
form

where d; are known k-vectors of deterministic terms (for some k > 1) while § are
k-vectors of unknown parameters. The leading special cases of linear-in-parameters
specifications are the constant mean and linear trend specifications in which d; = 1
and d; = (1,t)", respectively.”

Appropriate detrending of the data is needed if one tests the unit root hypothesis
against a trend stationary alternative (i.e., p < 1 in (18) and d; = (1,t)" in (19)).
Specifically, the Dickey-Fulller (or Said-Dickey) regressions should take the alternative
form

k1
Y = by + pYi-1 + Z V;AYt—j + V. (20)

j=1

6Haldrup, Montanés, and Sanso (2005) show that the presence of additive and other types of
outliers (as well as measurement errors) has implications for the (moving average) serial correlation
structure of the data, so Vogelsangs’s (1996) results are consistent with Perron and Ng’s (1996)
Monte Carlo results on the behavior of the M-tests in the presence of MA errors.

"The class of linear-in-parameters specifications also includes structural break models with a
known break date. In contrast, structural break models with an unknown break date do not belong
to the class of linear-in-parameters specifications. For a survey of structural break models, see
Perron (2005).
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Appropriate treatment of deterministics is extremely important. For instance,
failure of including a time trend regressor in a the auxiliary regression when power
against the trend stationary alternative is wanted will lead to a test with zero asymp-
totic power. Similarly, the Phillips-Perron class of tests allow inclusion of determin-
istic components or alternatively detrending of the series prior to unit root testing
can me made. For all the cases where the model is augmented with deterministics
the relevant distributions change accordingly as Brownian motion processes should
be replaced with demeaned and detrended Brownian motions of the form

W) = W ()~ D (r) (/Olmsw(s)/ds)_l ([peweas). e

where D (r) = 1 when d; = 1 and D (r) = (1,7) when d;, = (1,t)".

With respect to the M-tests of the previous subsection, Ng and Perron (2001)
suggest an alternative way of dealing with deterministics. The alternative detrend-
ing method, local GLS detrending, is in the spirit of Elliott, Rothenberg, and Stock
(1996) and has the advantage of yielding tests that are “nearly” efficient in the sense
that they nearly achieve the asymptotic power envelopes for unit root tests. (A dis-
cussion of these power envelopes will be provided in Section 3.) The GLS detrending
method can be described as follows. For any series {xt}le of length T" and any con-
stant ¢, define 2° = (21, Azy — Ty, ..., Axp — T 'xr_;)". The GLS detrended
series {7} is given by

gt = yt — déB, B = arg mﬁin (yé _ dé//@)/ (yé o dé//[))) )

Elliott, Rothenberg, and Stock (1996) suggested ¢ = —7 and ¢ = —13.5 for d; =
1 and d; = (1,t)’, respectively, as these values of ¢ correspond to the local al-
ternatives against which the local asymptotic power envelope for 5% tests equals
50%. The M-tests constructed using GLS detrended data (and using the &%y to-
gether with the modified information criteria of Section 2.2) are denoted respectively
MZG"S, MSBEYS, and MZF"S. These tests are shown by Ng and Perron (2001)
to have excellent size and power. In conclusion, unit root tests can be constructed
with both excellent size and power properties, but achieve these dual objectives it is
necessary to use GLS detrended data.

3. POWER ENVELOPES FOR UNIT ROOT TESTS
This section discusses power envelopes (efficiency bounds) for tests of the unit root
hypothesis. Power envelopes for unit root tests have proven to be useful for two rea-
sons. First, being attainable upper bounds on power they give an objective standard
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against which the power properties of any feasible unit root test can be compared.
For instance, the fact that the M-tests discussed in the previous Section have local
asymptotic power “close” to the appropriate power envelopes [Ng and Perron (2001)]
imply that these are ‘“nearly” efficient. Second, the derivation of power envelopes
is useful because it suggests how admissible unit root tests with good overall power
properties can be constructed. Indeed, the GLS detrending method, which is the
key to accommodating deterministic components without sacrificing efficiency, is a
natural by-product of the derivation of the power envelope in the presence of deter-
ministic components [Elliott, Rothenberg, and Stock (1996)].

3.1. The Leading Special Case. A natural starting point for the discussion of
power envelopes for unit root tests is the known-variance, zero-mean Gaussian AR(1)
model.® In this model, the observed data {y; : t = 1,...,T} is generated as

Yt = PYt—1 + €4,y (22)

where yo = 0 and &; ~ i.i.d. N'(0,1).

Any (possibly randomized) unit root test can be represented by means of a test
function ¢5 : RT — [0, 1] such that Hp, the unit root hypothesis, is rejected with prob-
ability ¢p (Y) if Y7 = (y1,...,yr) = Y. The power (function) associated with ¢ (-)
is given by E,¢, (Yr), where the subscript on “E” indicates the distribution with
respect to which the expectation is taken (i.e., the argument of the power function).

When evaluating the power properties of a unit root test, a power envelope is
very useful. By definition, a power envelope for a class of unit root tests gives an
attainable upper bound on E,¢; (Yr) for tests in the class. Throughout this section,
the class of tests under consideration will be the class of tests of (asymptotic) size
a or some subset thereof. The power envelope for size « tests is the function II (-)
given by

7 (p) = maxy, ()56 (vr)=a Epdr (Y1) - (23)

By construction, I1% (p) is an upper bound on E,¢ (Yr) for test functions ¢4 (-)
associated with tests of size a. Moreover, the power envelope is attainable (pointwise)
in the sense that for every p, E, ¢ (Yr) = II% (p) for some ¢ () corresponding to a
test of size a.

8The following discussion draws on Stock (1994).

More generally, the power envelope for a class ®r of tests functions is given by
SUPy, caor Lpdr (Y7). In (23), “sup” has been replaced with “max” in recognition of the fact that
the sup is attained.
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There is a simple and constructive way to derive the power envelope. For the
known-variance, zero-mean Gaussian AR(1) model, the log likelihood function, Lt () ,
satisfies the relation

Lr(p) ~ Lr (1) =T (p— 1) Sy — 5 [T (o — 1)} Hr, (24)

where Sp := TS0y, 1Ay, and Hp == T-23] ,4? ;. An application of the
Neyman-Pearson lemma therefore yields

115 () = Pr, | T (p— 1) Sz — 5 [T (p— 1 Hr > k. (p)] (25)

where k% (p) satisfies Pry [T (p — 1) Sr — 3 [T (p — 1))* Hr > k% (p)] = a and the sub-
script on “Pr” indicates the distribution with respect to which the probability is
evaluated.

In addition to providing a formula for computing the power envelope, expression
(25) delivers a characterization of the test that attains the power envelope at any
given value of p. Specifically, it follows from (25) that the power envelope I1% (p) is
attained by the test which rejects for large values of T'(p — 1) S — 3 [T (p — 1)) Hr.
Because the functional form of the optimal test against any specific alternative p < 1
depends on p, the unit root testing problem does not admit a uniformly most powerful
(UMP) size « test in spite of the fact that it is a one-sided testing problem without
any nuisance parameters.

Applying the preceding arguments to other simple hypotheses on p, it can be
verified that non-existence of a UMP size « test is a property shared by all one-sided
hypothesis tests on the autoregressive coefficient p in (22). In other words, the non-
existence of a UMP size « test is not specific to the unit root hypothesis. What is
somewhat special about the unit root hypothesis is the fact that non-existence of a
UMP size « test holds even asymptotically.”

By analogy with the finite sample situation, the asymptotic power envelope for
a class of (sequences of) unit root tests gives an attainable upper bound on local

107t follows from (24) and the properties of exponential families [e.g., Lehmann (1994)] that
the model admits a two-dimensional minimal sufficient statistic whose distribution belongs to a
curved exponential family [Efron (1975)]. By implication, one-sided testing problems in the known-
variance, zero-mean Gaussian AR(1) model do not admit UMP size « tests. The limiting experiment
associated with a simple null hypothesis on p with |p| < 1 corresponds to a full exponential family
model (the log likelihood ratios are locally asymptotically normal [Le Cam (1960)]) and therefore
admits a UMP size « test. In contrast, the limiting experiment associated with the unit root
hypothesis corresponds to a curved exponential family model (the log likelihood ratios are locally
asymptotically quadratic [Jeganathan (1995)], but not locally asymptotically (mixed) normal) and
does not admit a UMP size « test.
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asymptotic power for (sequences of) tests in the class. Assuming the limit exists,
the local asymptotic power function of a sequence {¢; (-)} of unit root tests is the
function (with argument ¢ < 0) limy_,o, Ey p-1.07 (Y7) 1! A sequence {¢4 ()} of unit
root tests is said to have asymptotic size « if limy_., E1¢1 (Y7) = . The asymptotic
power envelope for tests asymptotically of size « is the function II% (-) given by

112, (€) = MaxX{4,.()}dimp_.oc Brp(Yr)—a DT 00 B1pr-1000 (Y1) - (26)

An explicit formula for the asymptotic power envelope is available. Because the
optimal unit root test against the alternative p = 1 + T~ 'c rejects for large values of
cST——c2HT, it stands to reason that the asymptotic power envelope ®%. (c) is attained
by the sequence of tests with rejection regions of the form {CST — —C2H > k% (c )}
where k2 (c) is such that the sequence has asymptotic size a. Indeed it can be shown
that

1
5, (¢) = limp_o Pripp-1c {CST - §C2HT > kg (C)]

= Pr {c /01 W, (r)dW (r) + %C2 /01 W, (r) dr > k& (c)} : (27)

where k2 (c) satisfies Pr [c fo r)dW (r) — 2 2f0 Y dr > k2 (c )] =a, Wisa

Wiener process, and W, is an Ornsteln—UhlenbeCk process satisfying the stochastic
differential equation dW, (r) = ¢W. (r) dr+dW (r) with initial condition W, (0) = 0.

As is true of its finite sample counterpart, the asymptotic power envelope can
only be attained pointwise. In other words, there does not exist a sequence of tests
(asymptotically of size ) which attains II%, (c¢) for all values of c¢. In the absence
of a UMP test, it seems natural to try to derive tests enjoying weaker optimality
properties in the hope that these tests will have good overall power properties. Two
complementary notions of optimality, local optimality and point optimality, have
been employed to derive unit root tests with demonstrable optimality properties. The

HFor details on local asymptotic power and local-to-unity asymptotics, see Stock (1994) and the
references therein [e.g., Chan and Wei (1987) and Phillips (1987Db)].
12 A proof of (27) can be based on the inequality

1 a _
Eyyp-1c9r (Yr) < Pr [CST - §CZHT > k3T (14T 10)] , ar = E1¢7 (Y1),

and the fact that (St — cHr, Hr) —q, (fo W (r), fol W, (r)2 dr) , where —_ signifies con-

vergence in distribution when p = 1+ T !c.
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notion of local optimality leads to a test which maximizes (the scaled limit of) the
derivative of the power function under the null hypothesis. For the unit root testing
problem, the locally most powerful test rejects for small values of Sp.'* Although
admissible, the locally most powerful unit root test turns out to have pretty poor
local asymptotic power properties [Stock (1994)]. In contrast, the notion of point
optimality has been found to deliver (admissible) unit root tests with excellent power
properties.

By definition, a point optimal unit root test maximizes power against a specific
(point) alternative [e.g., King (1988)].14 The family of point optimal unit root tests
was obtained as a by-product of the power envelope. It consists of all tests with
rejection regions of the form {cSr — 2c?Hy > k2 (c)}, where ¢ indexes the local
alternative against which optimal power is desired. Elliott, Rothenberg, and Stock
(1996) found that point optimal unit root tests have local asymptotic power functions
essentially identical to the power envelope for a wide range of values of the index c. A
popular choice, advocated in the unit root context by Elliott, Rothenberg, and Stock
(1996), is the value of ¢ such that the asymptotic power envelope for 5% tests equals
50% when evaluated at c; that is, the recommended value of ¢ solves the equation
1995 (¢) = 0.5.

Numerous other unit root tests have been proposed [for a review, see Stock (1994)].
The most well known examples are probably the Dickey-Fuller (1979) tests (i.e., the
tests based on T (p — 1) and t;) and their asymptotic equivalents (e.g., the tests based
on Z, and Z; discussed in section 2.1). In the case where the error variance is known
to equal unity, a Dickey and Fuller (1979)-type rejects for small values of

This test can be interpreted as a (signed) likelihood ratio test.!’> Moreover, the

BLocal optimality of St follows from a Neyman-Pearson argument and the fact that

d

%El-i-T*lc(bT (Yr)

4 d
=7 d_pEp¢T (Yr)
c=0

3 = Iy [Srér (Y1)]

for any test function ¢ (+).

HFollowing Davies (1969), point optimal testing procedures are sometimes referred to as beta-
optimal testing procedures.

5The (signed) likelihood ratio test rejects for large values of

min (S, 0 2
max,<1 L7 (p) — Lt (1) = ;TTT)’

a decreasing function of St/+/Hr.
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test has excellent local asymptotic power properties [Elliott, Rothenberg, and Stock
(1996)]. In spite of this, the test does not seem to enjoy any conventional optimality
properties.'® On the other hand, the Dickey and Fuller (1979) estimator test, which
rejects for small values of T'(p — 1) = Sr/Hp, is a member of the class of point
optimal tests and is therefore admissible [Stock (1994)].

Power envelopes have been derived for a variety of extensions of the basic model
(22) . The remainder of this section discusses five such extensions. These extensions
are all of both practical and theoretical interest, the practical interest being due to
the empirical relevance of the extensions. To simplify the exposition we discuss each
of the extensions in isolation, in each case studying a model which departs as little
as possible from the known-variance, zero-mean Gaussian AR(1) model.

3.2. Serial Correlation. This subsection discusses the impact of serial correla-
tion on the form of the asymptotic power envelope. As was explained in the section
2, the presence of serial correlation introduces nontrivial complications for practi-
tioners wanting to employ unit root tests. In contrast, the presence of serial corre-
lation has no impact on the asymptotic properties of the unit root testing problem
because the asymptotic power envelope (27) remains valid under rather general as-
sumptions on the short-run temporal dependence properties of the quasi-difference

process {y; — pyi_1} -
Consider the Gaussian variant of (4) in which

Yt = PYt—1 + Uy, uy = Y (L) &y, (28)

where yo = 0, &, ~ i.i.d. N'(0,1), and ¢ (L) = >°22 ;L7 is a lag polynomial whose
(unknown) coefficients {¢;} satisfy > o }¢j| < oo and 1 (e7) = Y2 1p;e" # 0 for
all r € R.

The construction of the asymptotic power envelope proceeds in two steps. In
the first step, the Neyman-Pearson lemma is used to derive the asymptotic power
envelope under the (counterfactual) assumption that {1/}j} is known. The second
step then shows that this envelope is indeed the asymptotic power envelope for unit
root tests in the model (28) by showing that the bound can be attained (pointwise)
without knowledge of {%} .

For now, suppose the parameters {@Dj} are known. In that case, the derivation of
an asymptotic power envelope is conceptually straightforward because p is the only

161n fact, it appears to be unknown if the Dickey-Fuller (1979) t-test is even admissible. Studying
a general class of models with locally asymptotically quadratic log likelihood ratios, Ploberger (2004)
gives a complete class result for a two-sided testing problem and shows that the likelihood ratio test
is not a member of his (essentially) complete class of tests.
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parameter of the model. By the Neyman-Pearson lemma, the unit root test with
optimal power against the local alternative p = 1 + T~ !c rejects for large values
of the log likelihood ratio L% (1 +T~'¢) — L¥ (1), where LY (-) is the log likelihood
function. A slick derivation of the asymptotic power envelope can be based on the
fact that

Ly (14T ) — LY (1) = cSp — %CQH;# +0,(1) (29)
under the null hypothesis, where Sy = 1 (w2712 — 1), Hy = w 2T 23,42 |,
and w? = ¢ (1)* is the long-run variance of ¢ (L) ,.!” Using the quadratic expansion
(29) and the theory of limits of experiments [e.g., Le Cam and Yang (2000), van
der Vaart (1998)], it can be shown that the asymptotic power envelope for size «
tests is attained (at the point ¢) by the sequence of tests with rejection regions of
the form {cS% — %C2Hr}/’ > ko (c)} , where k%Y (c) is such that the sequence has as-
ymptotic size . Under the null and contiguous alternatives, the limiting distribution
of (S’% , H%) does not depend on {@Dj} . By implication, the critical value function
k¥ (¢) does not depend on {Q/Jj} . More importantly, the asymptotic power envelope
is invariant with respect to {1} and is given by the function II% (-) defined in (27).

To show that the upper bound II% () constitutes the asymptotic power envelope
for the model (28), it must be shown that [I (-) is attainable without knowledge of

{¢ j} . To do so, it suffices to exhibit a pair (5”%, ﬁ}/’ ) , computable without knowledge
of {wj}, such that (‘SA%, I:IQT/’> = (S#, H%) + 0, (1) under the unit root hypothesis

(irrespective of the value of {t,}). (Assuming such a pair can be found, the test
which rejects for large values of ck% — 50211}/’ will attain the asymptotic power enve-
lope.) The asymptotic equivalence requirement is met by SY = % (@72T L2 — 1) and

HY = o712 42 |, where & is any consistent (under the unit root hypothesis)
estimator of w?.!8
3.3. Deterministics. Proceeding as in Section 2.4, deterministic terms can be

accommodated by extending the basic model (22) as follows:

I"Elliott, Rothenberg, and Stock (1992) obtained the expansion (29) under the assumption that
{y:} is generated by a Gaussian AR model of finite order. Using ingeneous arguments, Elliott,
Rothenberg, and Stock (1996) established (29) for model (28) under the additional assumption that
Z;’il j Wj| < 00. The latter assumption can be removed by using a slightly modified version of the
proof employed by Elliott, Rothenberg, and Stock (1996).

18The existence of such estimators follows from Jansson (2002), who shows that standard kernel
estimators of w? [e.g., Newey and West (1987), Andrews (1991)] are consistent under the assumptions
of this subsection.



UNIiT RooTs 18

Ye = My + 24, 2y = P21+ €y, (30)

where 1, is an unknown deterministic component, zo = 0, and &; ~ 4.i.d. N (0,1).

In this model, {yu,} is a nuisance feature in the unit root testing problem. When
deriving an asymptotic power envelope in the presence of {y,}, it is tempting to try
to employ the same strategy as in the previous subsection; that is, it is tempting to
first derive the asymptotic power envelope assuming {y,} is known and then attempt
to find a feasible test which attains the bound obtained under the assumption that
{p,} is known. That method of construction breaks down in general, however. On
the one hand, because z; = y; — y, is generated by the model of Section 3.1 it is
obvious that the asymptotic power envelope is given by the function I12 (-) (defined
in (27)) when {u,} is known. On the other hand, for many specifications of {u,}
used in practice it turns out to be impossible to find tests that attain I12, (-) without
knowledge of {u,} .

When p, = di8 (i.e., p, is of the linear-in-parameters form (19)), the princi-
ple of invariance [e.g., Lehmann (1994, Chapter 6)] can be employed to eliminate
the deterministic component from the unit root testing problem. Any testing prob-
lem regarding p is invariant under transformations of the form g, (y1,...,yr) =
(y1 + db, ..., yr + dyb) (where b € R¥), the induced transformation in the parameter
space being g (p, 5) := (p, 3+ b). When [ is treated as an unknown nuisance para-
meter, it therefore seems natural to restrict attention to unit root tests that are invari-
ant in the sense that their test functions ¢ () satisfy ¢r (y1 + dib, ..., yr + djb) =
b7 (y1,...,yr) for every b € R¥. In other words, a test is invariant if the conclusion
drawn by the test depends on the observed data {y;} only through the unobserved
series {z:}. As a consequence, an invariant test has a test function whose distribu-
tion depends only on p.!? Therefore, reduction by invariance eliminates the nuisance
parameter 3 from the unit root testing problem, hereby making it possible to obtain
power envelopes by means of the Neyman-Pearson lemma. Drawing on the work of
King (1980) and King and Hillier (1985), Dufour and King (1991) used this insight
to obtain point optimal invariant tests of simple hypotheses on p in the AR(1) model
(30) . Asymptotic power envelopes were obtained (in a model accommodating ser-
ial correlation) for the unit root testing problem by Elliott, Rothenberg, and Stock
(1996) in the case where d; is a polynomial trend term. The functional form of the
asymptotic power envelope depends on the order of the polynomial trend. It is given
by 1% (-) in the constant mean case, but not otherwise.

As was true in the model without deterministic components, the derivation of

19 A formal proof of this claim can be based on Lehmann (1994, Chapter 6) and the fact that p is
a maximal invariant under the group of trasnformations of the form g (p, 3) , where b € R*.
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the asymptotic power envelopes in model (30) is constructive in the sense that tests
attaining the asymptotic power envelope are obtained as a by-product. The optimal
invariant test against the local alternative p = 1 + T~ 'c rejects for large values of the
profile log likelihood ratio maxg Lt (1 + T ¢, 3) —maxg Lt (1, 8) , where Ly (-) is the
log likelihood function. As in the model without deterministic components, no test
attains the power envelope uniformly but appropriately chosen point optimal invari-
ant tests are “nearly efficient” in the sense that their local asymptotic power func-
tions are “close” to the asymptotic power envelopes [Elliott, Rothenberg, and Stock
(1996)]. This “near-efficiency” property is not shared by the popular Dickey-Fuller
(1979) tests whose local asymptotic power functions fall well short of the asymptotic
power envelope. Nevertheless, the class of “nearly efficient” invariant unit root tests
contains tests other than the point optimal tests obtained in the derivation of the
asymptotic power envelope. Examples include the DF-GLS test of Elliott, Rothen-
berg, and Stock (1996) and Ng and Perron’s (2001) MEL¥ tests discussed in Section
2.4. Consequently, the M5 tests have both excellent size properties and “nearly”
optimal power properties.

In view of the inferiority of the Dickey-Fuller (1979) tests in the model (30),
it would appear that practitioners ought to abandon the use of these tests. More
recent research, examining the role of the initial condition 2y, has arrived at a slightly
less drastic conclusion. A brief discussion of that literature is provided in the next
subsection.

3.4. The Initial Condition. In the known-variance, zero-mean Gaussian AR(1)
model of Section 3.1, the (unobserved) initial observation g is assumed to be equal to
zero. Analogous assumptions are made in the models of Sections 3.2 and 3.3. At first
sight, these would appear to be innocuous normalizations because it is easy to show
that the initial observation is asymptotically negligible whenever T—'/2y, = op (1),
a condition that is satisfied also if y, is treated as a nuisance parameter (i.e. mod-
eled as a constant) or modeled as a random variable with a fixed distribution. Now,
if {y: : 0 <t < T} is generated by a stationary Gaussian AR(1) model with autore-
gressive coefficient p and innovation variance equal to unity, the initial observation
will satisfy yo ~ N[0,1/(1 — p?)]. In that case, the initial observation is not as-
ymptotically negligible, the limiting distribution 7'/2y, being A'[0,1/ (—2¢)] under
local-to-unity asymptotics with p = 1 + T~ !¢ for some ¢ < 0. To the extent that sta-
tionarity is a plausible alternative to the unit root hypothesis, these considerations
suggest that the role of the initial condition are worth investigating.

The role of the initial condition can be explored by means of the following stripped
down version of the model studied by Miiller and Elliott (2003):

Y= 1+ 2, 2 = pz—1 + €, (31)
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where ¢; ~ i.i.d. N'(0,1) and 29 ~ N (0, k02 (p)), where £ > 0 is a known constant,
o2 (p) :=1(lp| <1)/(1 —p*, 1(-) is the indicator function, and z, is independent of
{e:} . The model (31) reduces to the model of Section 3.3 when £ = 0. When k = 1,
in contrast, {z} is generated by a stationary AR(1) whenever |p| < 1 and the model
reduces to a special case of the model studied by Elliott (1999). Irrespective of the
value of k, the initial condition is zp = 0 under the unit root hypothesis. Due to the
inclusion of the constant term p, this assumption is simply a normalization.

The derivation of the asymptotic power envelope for the unit root testing problem
proceeds as in Section 3.3. First, the principle of invariance can be employed to
remove the nuisance parameter p. Then, the Neyman-Pearson lemma can be used
to characterize the functional form of point optimal invariant tests. The optimal
invariant test against the local alternative p = 1 + T 'c rejects for large values of
the profile log likelihood ratio maxg L% (1 + T ¢, 8) — maxg L% (1, 8) , where Lf (-)
is the log likelihood function. The functional form of the point optimal tests and the
shape of the asymptotic power envelope both depend on the value of the constant «.
Moreover, although the tests discussed in Section 3.3 (“nearly efficient” when x = 0
in the model considered here) are asymptotically similar for any value of s, these
tests have power well below the power envelopes corresponding to moderately large
values of x [Miiller and Elliott (2003)].2

Miiller and Elliott (2003) emphasize an alternative interpretation of the power
envelopes discussed in the previous paragraph. If the initial condition z is treated
as an unknown nuisance parameter (as opposed to a random variable with a known
distribution), the unit root testing problem is complicated by the presence of an
unidentified nuisance parameter under the null hypothesis, the parameters p and
2o appearing in the likelihood only through their sum. Miiller and Elliott (2003)
deal with this problem by applying a weighted average power criterion in the spirit
of Andrews and Ploberger (1994) when deriving asymptotic power envelopes. The
weighting functions employed by Miiller and Elliott (2003) correspond to the distri-
butional assumption on zy made in (31) and give rise to the same asymptotic power
envelopes.

In addition to deriving asymptotic power envelopes for the model (31) , Miiller and
Elliott (2003) explore the extent to which existing unit root tests can be “rationalized”
as being point optimal tests in model (31) for appropriately selected values of the

20 Asymptotic similarity of the tests discussed in Section 3.3 follows from the fact that the null
distribution of {y;} does not depend on k. The same fact implies that the test which rejects for
large values of maxg L% (1+T ¢, ) — maxg L (1, 3) is a point optimal unit root test even if
is treated as an unknown nuisance parameter. By implication, the power envelope for the model in
which « is treated as an unknown nuisance parameter coincides with the family (indexed by &) of
power envelopes derived under the assumption that x is a known constant.
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constant k and the local-to-unity parameter c. They find that the tests proposed by
Bhargava (1986) can be interpreted as (limiting versions of) point optimal tests in
the model (31), as can the locally best invariant tests derived by Dufour and King
(1991) and Nabeya and Tanaka (1990). Moreover, Miiller and Elliott (2003) argue
that although the popular Dickey-Fuller (1979) tests cannot be “rationalized” in this
way, there is a sense in which the Dickey-Fuller (1979) tests are well approximated
by certain members of the class of point optimal tests in the model (31), albeit with
rather large values of k.

3.5. Non-Gaussian Errors. All of the power envelopes discussed so far have
been derived under the assumption that the latent errors {e;} are (standard) nor-
mally distributed. Because the normality assumption is implausible in most empirical
applications of unit root tests, it is of interest to develop asymptotic power envelopes
for unit roots in (possibly) non-Gaussian environments.

Consider the model?!

Yt = PYi—1 + &, (32)

where yo = 0 and {e;} are i.i.d. errors from an unknown (possibly non-Gaussian)
distribution with mean zero and variance one. The derivation of the asymptotic
power envelope in Section 3.1 made use of two results, the Neyman-Pearson lemma
and the fact that

(Sp — cHy, Hy) —q, (/01 W, (r) dW (7“),/01 W, (r)2d7‘>, ¢ <0.

The displayed convergence result, which was used to characterize the local asymptotic
power of point optimal tests (derived by means of the Neyman-Pearson lemma), re-
mains valid in the model (32) . In other words, the limiting representation of (Sr, Hr) ,
the minimal sufficient statistic under the assumption of normality, is invariant with
respect to the distribution of {e;} as long as E (¢;) = 0 and E (¢7) = 1.?* By impli-
cation, the local asymptotic power function of the point optimal tests from Section
3.1 does not depend on the distribution of {&;} in the model (32). The Gaussian
asymptotic power envelope of Section 3.1 therefore gives a lower bound on maximal
attainable local asymptotic power in the model (32).

21The following discussion draws on Jansson (2005).
22This invariance result follows from Donsker’s theorem [e.g., Billingsley (1999)] and the contin-
uous mapping theorem.
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An upper bound on the magnitude of the power gains available when the errors in
the model (32) are non-Gaussian can be obtained by deriving the asymptotic power
envelope under the (counterfactual) assumption that the underlying error distribution
is known. Assuming the errors are generated by a continuous distribution with density
f (), it follows from the Neyman-Pearson lemma that the point optimal unit root
test against the local alternative p = 1 + T~ 'c rejects for large values of the log
likelihood ratio L% (1+T'¢) — L1 (1), where L. (-) is the log likelihood function.
Under appropriate smoothness conditions on f (-), the Neyman-Pearson test admits
the following quadratic expansion under the unit root hypothesis:

T T
Ly (14T ') = L4 (1) = Y logf (Ays — T 'yra) = Y log f (Ay,)
t=2 t=2

1
= ¢S) - 58}151 +0,(1) (33)

where S = T S2T y 1ly (Ayy), HE: = T T25°1 42 1, and £ (-) is a function
satisfying E [(; (e;)] = 0, E[eiy (/)] =1, and 1 < I;y = E [{; (5t)2] < 00.

As the notation suggests, the function ¢; (-) can be interpreted as a score function
and Z;; is the associated Fisher information for location.?® Jeganathan (1995) gives
(absolute continuity and moment) conditions on f (-) under which (33) holds with
ly(e) = Olog f (e — 0)/00|,_,, while Jansson (2005) shows that differentiability in
quadratic mean, an even weaker condition, is sufficient. By implication, the expansion
(33) is valid for a wide range of error distributions.

Using (33) and the theory of limits of experiments [e.g., Le Cam and Yang (2000),
van der Vaart (1998)], it can be shown that an upper bound on the local asymptotic
power of a unit root test (asymptotically of size «) in the model (32) is given by the
function (of ¢ < 0)

1
limg o Prypr-1c {Iffl <CS£ — 502[—[%) > k;g‘(;f (c)}
—1/2 ! 1 2 ' 2
_ pr {czf ; /0 W, (r) dBy (r) + 5e /0 W, ()2 dr > ke (c)} 39

where k%/ (c) satisfies Pr [cIf_fl/2 fol W (r)dV (r) — 3¢ fol W () dr > k2 (c)} = q,

23Indeed, ¢ (+) is the score function, evaluated at § = 0, of the location model X; = 6 + ¢;, where
the errors {e;} are i.i.d. with density function f (-).
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W and By are correlated Wiener processes with coefficient of correlation Z 2 and

W, satisfies the stochastic differential equation dW. (r) = c¢W, (r)dr + dW (r) with
initial condition W, (0) = 0.

The upper bound (34) depends on the density f () through Zy, which equals one
when the error ¢, is perfectly correlated with ¢; (¢;) and is strictly greater than one
otherwise.?* Rothenberg and Stock (1997) evaluated (34) for various values of Z;; and
found large increases in power as Z;; increased. Although this result suggests that
non-normality may be an important source of power in unit root testing, a potential
problem with the result is that it is derived under the counterfactual assumption
the f(-) is known. The upper bound (34) is attained by the test which rejects for

large values of cS% — %CQH:{:. Adaptation is possible if there exists a pair (5’%, ﬁ%) ,
computable without knowledge of f(-), such that (5’%, I:IQJ:) = (S%,quw) + 0, (1)

under the unit root hypothesis. Jansson (2005) shows that adaptation is possible when
f (+) is known to be symmetric, but not in general. Section 3.6, the final subsection
of this section, discusses a source of nontrivial power gains which is available in many
cases.

3.6. Covariates. In most applications of unit root tests, the series {y;} being
tested for a unit root is not observed in isolation. Instead, one typically observes
at least one time series, say {z;}, in addition to the time series {y;} of interest.
As observed by Hansen (1995), the additional time series {x;} contains exploitable
information about {y;} whenever its order of integration is known.?’

As in Section 3.1, suppose {y;} is generated by the model

Yt = PYi—1 + ¢, (35)

where yo = 0 and &; ~ i.i.d. N (0,1). To accommodate a covariate with a known
order of integration, suppose an additional time series {z; : 1 <t < T} is observed
whose generating mechanism is

(5 )~ian((0)(51)) (36)

where 6 is known (and satisfies |6 < 1).

?4The correlation between &; and ¢y (¢;) is unity when the underlying distribution is Gaussian,
the score function of the standard normal location model being £¢ (¢) = e.

25 An important example of a unit root testing problem in which a covariate with a known order of
integration is observed is the problem of testing for absence of cointegration when the (potentially)
cointegrating vector is prespecified [Elliott, Jansson, and Pesavento (2005), Zivot (2000)].
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The log likelihood function L§ (-) associated with the model (35) — (36) satisfies
the relation

1
LS (14T ) — L5 (1) = ¢S5 — 5c2H§2, (37)

where S% = T'S°7 g1 (Ay, — 6x,) and HS = T2, y? . By the Neyman-
Pearson lemma, the test which rejects for large values of ¢S% — %C2H§Z is the point
optimal unit root test against the local alternative p = 1 + T 'c. Unless {z;} is
independent of {y;} (in which case § equals zero), this point optimal test makes use
of the information in {z,}. By implication, the stationary covariate {z;} contains
exploitable information about p unless it is independent of {y;} .

The magnitude of the gains in local asymptotic power achievable by exploiting
the information in the covariate {z;} can be evaluated by deriving the asymptotic
power envelope for the model (35) — (36) . The asymptotic power envelope (for unit
root tests asymptotically of size «) is given by the function

limp oo Priyr-1c lcS% — %CQH% > k0 (c)}
1 1 1
= Pr lc\/ 1-— 52/ W. (r)dV (r) + 562/ W, (r)? dr > k20 (c)} . (38)
0 0

where k2% (c) satisfies Pr [C\/ 16 fol W (r)dV (r) — 5¢2 fol W (r)?dr > k0 (c)} —

a, W and V are correlated Wiener processes with coefficient of correlation v/1 — 62,
and W, satisfies the stochastic differential equation dW. (1) = ¢W, (r) dr+dW (r) with
initial condition W, (0) = 0. The functional form of the power envelope (38) is exactly
the same as the functional form of the (infeasible) power envelope (34) associated
with (known) non-Gaussian error distributions, the quantity \/1 — 6 playing the
same role here as If_fl /2 did there. As a consequence, appreciable power gains are
available whenever “good” covariates (having 6° moderately large) can be found.

The asymptotic power envelope (38) was derived by Hansen (1995). In addition
to (implicitly) proposing a family of point optimal tests, Hansen (1995) proposed
a regression-based unit root test, the covariate augmented Dickey-Fuller (CADF)
test. The CADF test is “nearly efficient” in the model (35) — (36). If the model is
extended to include deterministic components, however, the local asymptotic power of
the CADF test is well below the asymptotic power envelope for invariant tests [Elliott
and Jansson (2003)]. In contrast, the point optimal tests of Elliott and Jansson (2003)
are “nearly efficient” in the presence of deterministic components.
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4. CONCLUSION

This chapter has reviewed recent advances in the literature on unit root testing, em-
phasizing developments aimed at reducing size distortions and/or boosting power of
unit root tests. As should be apparent from the discussion herein, significant advances
in both directions have been made during the decade since the publication of Stock
(1994). The literature now seems to have reached a relatively mature state and it
is difficult to predict if any major advances will occur over the next decade. Never-
theless, it seems worth pointing out two potential shortcomings of the existing body
of knowledge. In relation to the first of the two main themes of the present survey,
size distortions, it remains an open question whether the use of refined asymptotic
approximations can enhance the theoretical understanding of the properties of the
bootstrap and/or guide the choice among asymptotically equivalent testing proce-
dures. On the power front, it would appear to be useful to further investigate the
extent to which non-Gaussianity and/or extraneous information (other than informa-
tion about the integration properties of observed covariates, as in Section 3.6) can be
an exploitable source of power in unit root testing applications.
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