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Abstract

In this paper we develop a regime switching model which can generate
long memory (fractional integration) in each of the regime states. This
property is relevant in a number of cases. For instance, the deregulated
market for electricity power in the Nordic countries is characterized by
electricity spot prices with a high degree of long memory. It occurs that
in some time periods bilateral prices are identical whereas in other peri-
ods the prices differ. The latter occurs when a capacity congestion exists
across regions and multiple price areas will result. If the price series are
fractionally integrated this means that in some regimes, an extreme form
of fractional cointegration amongst prices will exist. We define a Markov
switching fractional integration model from which the fractional orders of
integration in separate states can be estimated using Maximum Likelihood
techniques. The model is adapted to data for the Nordic electricity spot
market, and we find that regime swithing and long memory are empiri-
cally relevant to co-exist. In particular, we find that the price behaviour
for single markets can be very different depending upon the presence or
absence of bottlenecks in electricity transmission. Using Monte Carlo fore-
casting we find that the regime switching model appears to be especially
attractive in forecasting relative prices.
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1 Introduction

It has been argued in some studies, for instance Granger and Ding (1996),
Granger and Hyung (1999), and Diebold and Inoue (2001), that under certain
conditions time series variables can spuriously have long memory when measured
in terms of their fractional order of integration (see Granger and Joyeux (1980),
Beran (1994), and Baillie (1996)), when in fact the series exhibit non-linear
features, regime switching for instance. In the present paper we present a model
which allows both regime switching and long memory in the separate regime
states.

The model is motivated by some interesting features characterizing electric-
ity prices when physical interconnections in the exchange of electricity exist
bilaterally across regions. For instance, the Nordic power exchange, Nord Pool,
is organized such that when no bottlenecks or congestions exist bilaterally at ex-
change points the prices will be identical, whereas the market mechanism makes
prices depart in situations with capacity constraints. It is thus natural to con-
sider price processes which accommodate regime switching subject to presence
or absence of congestion.

The model we consider is of the Markov switching type originally defined by
Hamilton (1989). However, because the defining property of a non-congestion
state is that prices are identical, the state variable is observable as opposed to
being a latent variable. An important feature of the model is that the price
processes in the different regimes can have different degrees of long memory.
This gives rise to a number of interesting possibilities. For instance, consider
the state with non-congestion and assume that the associated bivariate prices
are fractionally integrated of a given order. It follows that prices are fraction-
ally cointegrated in this case and thus extending the notion of Granger (1981)
and Engle and Granger (1987). In fact, an extreme form of cointegration oc-
curs in this situation because the prices are identical and hence are governed
by the same price shocks. The price behavior in the congestion state can (and
typically will) be very different. That is, the bivariate prices can be fraction-
ally cointegrated in a more conventional way or the prices can appear not to
cointegrate. Hence our model can potentially exhibit state dependent fractional
cointegration. In the literature, Markov switching (integer valued) cointegra-
tion models have been suggested by a number of authors, see inter alia Krolzig
(1997), Krolzig, Marcellino, and Mizon (2002), and Hansen and Seo (2002). It
is our conjecture that by not conditioning on the congestion state, i.e. when
having a model with no regime switching, fractional cointegration can or can-
not be found in the full sample. What we do observe in the full sample with no
separation into regimes is likely to be a convex combination of the behavior in
the single states and hence misleading inference is likely to result.

The appropriate modelling of electricity price processes is of interest for
several reasons, see e.g. Engle, Granger, and Hallman (1989) and Ramanathan,
Engle, Granger, Vahid-Araghi, and Brace (1997). First of all, the forecasting of
such prices is of interest by itself in the management and trading in electricity
markets. Because the operation of electricity markets is similar to the operation



of financial markets with electricity power derivatives being priced and traded
in highly competitive markets, dynamic modelling of means and variances is
essential. In the present paper we focus only on the first moment behavior of
electricity prices but the modeling and forecasting of second moments is clearly
of separate interest for price hedging and risk management in such markets.
Also, the price dynamics is of interest with respect to competition analysis of
electricity markets. Market delineation is a central issue in competition analysis,
see e.g. Motta (2004). Even though the Nordic power markets, for instance, are
highly liberalized there is still a scope for regulating authorities to closely follow
the market behavior. When there is no congestion there is obviously a single
price existing in the market and the relevant geographical market consists of the
regions with identical prices. However, when there is congestion it is of interest
to follow the price dynamics closely because suppliers can have a dominating
position and the geographical market delineation becomes less straightforward.
The fact that the definition of the relevant geographical market can have a
temporal aspect is a particular feature of the electricity market.

The plan of the paper is as follows. In the subsequent section the functioning
of the Nordic power market is described. Its organization is explained and the
price setting behavior which is necessary to understand the regime switching
properties of the market are presented. Furthermore, some stylized facts about
the electricity prices in the Nordic region are discussed, and, in particular, it
is shown how seasonality, long memory, and regime switching are important
features to consider when building models of the price dynamics. In section 3
the regime switching multiplicative seasonal ARFIMA model is presented and
in section 4 it is estimated for prices and relative prices of neighboring regions
within the Nordic area. Generally the price behaviour in the different states
appears to be rather different. The analysis also demonstrates the importance
of allowing for regime switching since non-switching models can generate very
misleading inference with respect to the fractional integration and cointegration
properties of the data. In particular, two misclassifications of the model dy-
namics are likely to occur. First, a non-switching model may indicate that the
price series are fractionally cointegrated although the phenomenon only applies
to one of the regime states. Secondly, the opposite can happen in which case
it is concluded from a non-switching model that the data are not integrated
of the same fractional order (and hence cannot be cointegrated) although the
series are in fact cointegrated in one of the states. In section 5 the out-of-sample
performance of the switching model is evaluated and compared with the non-
switching model. For both the regime switching model and the non-switching
model a Monte Carlo forecasting methodology is used. We find that for relative
prices the switching model is superior to a non-switching model and the advan-
tages improve the more persistent the regime states appear to be. Also with
respect to one step forecasting of the single price series, the regime switching
model is superior in the sense that a larger concentration of density around the
actual outcome can be found. The final section concludes.



2 The Nordic Power Market

2.1 The Nordic power area

The motivation behind the present paper concerns the functioning of compet-
itive power markets which are physically connected for exchange of electricity.
Typically, such markets have capacity barriers which tend to affect the rele-
vant market delineation, depending upon whether bottlenecks exist or do not
exist across neighboring regions. The Nordic power market has undergone a
remarkable development towards liberalization in recent years. Norway, Swe-
den, Finland, and Denmark have cooperated for several years to provide their
24 million population with an efficient and reliable power supply. Since 1991
market reforms and deregulation in all the countries have increased competi-
tion and today all Nordic power markets have adapted to the new competitive
environment and serves as a model for the restructuring of other power markets.

The supply of electricity power in Norway is almost 100% hydropower whereas
Sweden and Finland use nuclear plants, fossile-fuel powered plants, and hy-
dropower'. Approximately 90% of the Danish electricity is produced from con-
ventional thermal plants and combined heating and power facilities; a minor
proportion (10-12%) of Danish supply is from wind power turbines?. The hy-
dropower production is mainly found in the northern parts of the Nordic power
web whereas thermal power plants are located in the south. In general, the
relatively cheap hydropower generation is transmitted to the heavily populated
southern regions which requires of course a well established power grid transmis-
sion capacity to facilitate the flow. When the reservoir levels are adequate, the
less costly hydropower production causes the market to prefer this energy source
and thus causing low spot prices. But in these cases national and cross-border
transmission systems will be used to their capacity in order to level out price
discrepancies across regions. On the other hand, when reservoir levels are low
there will be a net flow from south to north, and the market will see relatively
high prices for thermally generated electricity.

The physical connections of different areas within the Nordic countries are
displayed in Table 1. When capacity constraints exist such that demand and
supply do not clear the markets across neighboring regions, then congestion
occurs. The operation of the power spot market is designed to deal with this
problem.

1See Nord Pool (2003a) which provides a detailed description of the Nordic power market.
2The total power supply for the Nordic area is 55% hydro, 20% thermal and combined
heating, 24% nuclear, and 1% renewable.



Table 1. Gridpoints of Nordic power market with physical exchange of electricity

NNO MNO SNO FIN SWE EDK WDK

North Norway (NNO)

Mid Norway (MNO) v

South Norway (SNO) - v

Finland (FIN) - -

Sweden (SWE) v v v v

East Denmark (EDK) - - - - v

West Denmark (WDK) - - v i v .

Source: Nord Pool (2003a).

2.2 The functioning of the power spot market

In the establishment of a joint Nordic power market an important ingredient has
been the construction of the Nordic power exchange which in fact is the world’s
first multinational power exchange. The spot market® - operated by Nord Pool
Spot AS - is an exchange where market participants trade power contracts for
physical delivery the next day and is thus referred to as a day-ahead market.
The spot market is based on an auction with bids for purchase and sale of power
contracts of one-hour duration covering the 24 hours of the following day. At the
deadline for the collection of all buy and sell orders the information is gathered
into aggregate supply and demand curves for each power-delivery hour. From
these supply and demand curves the equilibrium spot prices - referred to as the
system prices - are calculated.

In a situation where no grid congestion (or grid bottlenecks) exist across
neighboring interconnectors there will be a single identical bilateral price. How-
ever, when there is insufficient transmission capacity in a sector of the grid, a
grid congestion will arise and the market system will establish different price
areas. This is because the Nordic market is partitioned into separate bidding
areas which become separate price areas when the contractual flow between bid-
ding areas exceeds the capacity allocated by the transmission system operators
for spot contracts. On the other hand, when no such capacity constraints ex-
ist in a given hour, the spot system price is also the spot price for the entire
Nordic power exchange area. The situation where different price areas arise due
to bilateral congestions is relevant within the Norwegian power system and the
border interconnectors between the Nordic countries®.

The fact that separate prices may co-exist depending upon regional supply
and demand causes the relevant market definition to vary with time. For in-

3Since only the spot market will be relevant for the present study this market will be
described, see also Nord Pool (2003b). In Nord Pool (2003c) a description is given of the
futures and forward markets of the Nordic power exchange which are used for price hedging
and risk management.

4Within Sweden, Finland, and Denmark grid congestion is managed by counter trade in
case of excess supply (demand). In this case the transmission system operators ask generators
to reduce (increase) production or large buyers to increase (decrease) demand until excess
supply or demand is eliminated.



stance, for the data set we are going to analyze a total of 48 different price area
combinations could be calculated for the hourly observations of 2001. However,
52% of the time prices for the entire Nordic region were in fact identical and
thus a single price existed for more than half of the time. Two price areas ex-
isted in 30% of time (with North and Mid Norway being one region against all
other regions, and West Denmark against all other regions, being the two most
frequent combinations). Obviously many price area combinations occur with a
very small probability.

2.3 Some stylized facts about Nord Pool electricity prices

Analyzing electricity data is interesting for several purposes. The functioning
of the electricity market makes it of relevance to build statistical models useful
for e.g. forecasting of electricity prices. But adequate models for price behavior
is also of interest due to the nature of deregulated electricity markets which
have similarities with the operation of financial markets. Options, futures, and
forward markets exist and act as the financial markets for price hedging and risk
management. In the case of the Nordic power exchange - Nord Pool - exchange
members can hedge purchases and sales of power with a time horizon of up
to four years by continuously traded power derivatives. The development of
models for pricing of power derivatives is therefore of importance. Even though
the electricity power market is similar to financial markets, and electricity prices
have properties similar to financial data, there are also features of electricity
price data that are somewhat different, in particular the long memory and strong
seasonal variation existing in the data as will be shown.

The data used for analysis in the present paper are hourly spot electricity
prices for the Nord Pool area, Mid Norway (MNO), South Norway (SNO), West
Denmark (WDK), East Denmark (EDK), Sweden (SWE), and Finland (FIN),
for the period 3 January 2000 - 25 October 2003. This yields a total of 33308
observations. For FEast Denmark the sample period starts 29 September 2000
and thus covers 26828 sample points. Data for North Norway is not included
because most of the year this market is merged with Mid Norway.

In Figure 1 the electricity price series are displayed. As seen, most price series
are characterized by huge fluctuations and outliers, however, the general level
of these series tend to be highly persistent possibly with mean reversion. The
dominant features of electricity price series have also been discussed by, among
others, Escribano, Pena, and Villaplana (2002) and Carnero, Koopman, and
Ooms (2003). In the latter paper, analyzing a number of European electricity
markets, it is argued that volatility clustering is likely to be a periodic phenom-
enon and hence pointing to an important difference in electricity price behavior
compared to financial assets. Also the fact that huge jumps and outliers in the
series seem to exist has caused authors to suggest modelling derivative prices
by use of jump diffusions, see for instance Atkins and Chen (2002) and Knittel
and Roberts (2001). These effects are likely to occur because there is no easy
smoothing of supply and demand shocks as storage is difficult and expensive.
Also, the fact that the single market prices are subject to periods with switches



between congestion and non-congestion is likely to produce jumps in prices.
Figure 1 about here

Because weather is a dominant factor influencing equilibrium prices through
changes in demand (and to some degree also supply) it seems reasonable that
prices will exhibit mean reversion, see e.g. Knittel and Roberts (2001) and
Lucia and Schwartz (2001). Also, the year-to-year variation in water reservoirs
is rather significant and the fact that more than 50% of total electricity supply is
from hydro power plants explains an important part of the within year seasonal
variation.

In Table 2 we report augmented Dickey-Fuller tests for a unit root, see
Dickey and Fuller (1979), assuming that the electricity price series follow a
linear autoregressive process of finite order. Also, Table 2 reports the KPSS
test of Kwiatkowski et al. (1992), which tests the null of a stationary I(0)
process. Interestingly, a unit root can be rejected for all series despite the fact
that (apart from West Denmark) the estimates of the autoregressive roots are
extremely close to one. Furthermore, the KPSS test of I(0)-ness also strongly
rejects. This supports our visual impression from Figure 1 which suggests high
persistence but mean reversion.

Table 2. Unit root and stationarity tests in hourly electricity prices

EDK WDK SWE FIN SNO MNO

AR root 0.988 0.910 0.991 0.987 0.996 0.996
ADF test  -5.23** -14.80**  -5.90** -6.19** -4.54** -4.52**
KPSS test 152.51**  49.53**  244.15** 229.88** 263.65** 258.18**

Note: Hourly, daily, and monthly seasonal dummy variables, and a constant plus a trend
were included in the auxiliary ADF regressions. The ADF tests used initially 336 lags of the
first differences with the most insignificant lags being removed. The KPSS tests were applied
to the deseasonalized series and used the Parzen kernel with bandwidth 7%/, One and two
asterisks denote significance at the 5% and 1% level.

These results suggest that neither an I(1) nor an I(0) description of the
price series is appropriate. An alternative way of measuring long memory and
mean reversion is by estimation of fractionally integrated processes for the price
series. Krémer (1998) shows that the augmented Dickey-Fuller test is consistent
against fractional alternatives if the order of the autoregression does not tend
to infinity too fast. Also, Lee and Smith (1996) show that the KPSS test is
consistent against fractional stationary long memory alternatives, such as I(d)
processes for d € (f%, %), d # 0. Given the evidence of the augmented Dickey-
Fuller tests and the KPSS tests, the I(d) specification seems attractive.

The estimated fractional d parameters are reported in Table 3 using a para-
metric ARFIMA model. The specification is the multiplicative seasonal ARFIMA

(SARFIMA) model
AL)(1 - CLL24)(1 - L)d(yt — W) =¢t, et ~ N(0, a?), (1)



where A(L) is a lag-polynomial of order 8 capturing the within-the-day effects,
the polynomial (1 — aL?*) corresponds to a daily quasi-difference filter, and p
is a mean. All the series have been corrected for deterministic seasonality by
regression on seasonal dummy variables (hour-of-day, day-of-week, and month-
of-year). Several other specifications were experimented with, e.g. longer A(L)
polynomial and weekly stochastic seasonality instead of daily, but (1) was found
to be the superior model in terms of in-sample fit and whiteness of the residuals.

As seen in Table 3 there is a clear indication of both long memory, border-
line non-stationarity, and mean reversion because the fractional d is estimated
to be in the interval 0.41 < d < 0.52. West Denmark is an exception, however.
Hence, compared with the ADF and KPSS tests there seems to be a strong
support for long memory and fractional integration to appropriately describe
the price dynamics®. It is interesting to note that Carnero et al. (2003) also
find long memory in Norwegian electricity data but less so in electricity markets
of The Netherlands, Germany, and France. One possible explanation of this
is the fact that a significant amount of electricity supply in Nord Pool is from
hydropower plants and it is a classical empirical finding that e.g. river flows
and water reservoirs exhibit long memory, see Hurst (1951, 1956).

Table 3. Univariate estimates of fractional d
EDK WDK SWE FIN SNO MNO

SARFIMA 0.41 0.31 0.44 0.41 0.52 0.52
(0.0122)  (0.0152)  (0.0113)  (0.0113)  (0.0101)  (0.0112)

Note: Standard errors are in parentheses. The SARFIMA is the
parametric model specification (1) estimated by conditional maximum

likelihood. The series have been corrected for deterministic seasonality
prior to estimation of d.

Price persistence within the year can be partially explained by seasonal vari-
ation due to hydropower reservoir levels. General economic and business activ-
ities may be other sources of this property. However, seasonality at the high
frequencies, that is hour-of-day, and day-of-week effects, appear to be rather
important as can be seen from Figure 2 which displays the autocorrelation
function® of a representative series, i.e. the log of the South Norwegian price
series, together with the spectral density of the hourly and daily differences re-
spectively. The long memory of the series is also apparent given the slow decay
of the autocorrelation function. Clearly, the seasonal variation in the data needs
particular focus when analyzing these data. The strong seasonal variation is a
stylized fact of most electricity price series. For data measured at a daily fre-
quency Carnero et al. (2003) favor periodic models, whereas Escribano et al.
(2002) and Lucia and Schwartz (2001) prefer deterministic seasonal models. For

5Carnero et al. (2003) also find that long memory is important for Norwegian electricity
price series and that periodic coefficients are needed to model daily spot prices.

6The autocorrelation function includes 672 lags of hourly observations which corresponds
to 4 weeks of sample points.



the analysis undertaken in the present paper, periodic models are simply infea-
sible given that an hourly sampling frequency is relevant. Instead, we prefer a
model specification with a mixture of deterministic and stochastic seasonality.

Figure 2 about here

The descriptive measures presented so far do not discriminate between the
regime switching features of the data, i.e. the fact that in certain hours capacity
constraints prevent electricity from flowing freely across grid points. When there
is congestion, the market prices across neighboring regions with a physical cable
connection will differ. When no congestion exists, the prices will be identical
which in fact is the defining property of non-congestion. Figure 3 displays scatter
plots for six grid points within the Nord Pool area. The clear tendency for a
significant number of observations to lie on a 45 degree line is rather obvious
from these plots.

Figure 3 about here

3 A Regime Switching Model with Long Mem-
ory

Based on the stylized facts presented in the previous section it seems obvious
that, in addition to seasonal effects and long memory, an adequate statisti-
cal model for electricity prices should include information concerning the co-
variation with other markets. In particular, the regime switching feature seems
important.

It has been argued in some studies that long memory in the form of fractional
integration can easily be interchanged with non-linear models. For instance,
Diebold and Inoue (2002) demonstrate that mixture or regime switching mod-
els with suitably adapted time varying transition probabilities can generate an
autocovariance structure similar to fractionally integrated processes, see also
Granger and Ding (1996). Bos et al. (1999), Granger and Hyung (1999), and
Haldrup and Nielsen (2003) argue that level shifts that are not appropriately
dealt with can result in spurious indication of long memory and one may conjec-
ture that in fact many types of hidden non-linearity can be expected to generate
long memory as a result of model misspecification.

In the present case it is of importance to have a model which accommodates
both fractional integration and regime switching simultaneously in order not to
mix up model features. Some interesting scenarios can be considered. Assume
that electricity prices across two regions are fractionally integrated in the non-
congestion state. This means that an extreme form of fractional cointegration
will exist in this state because the prices are identical across the two areas. On
the other hand, the behavior of the two individual price series in the congestion
state can be very different. If prices are compared without considering the
different regime possibilities it is hard to say what to expect from the data,



however, the mixing of the two processes is likely to produce series which have
a behavior being a convex combination of the two state processes.

Consider the following model specification, which we denote a regime switch-
ing multiplicative SARFIMA or RS-SARFIMA",

As, (L) (1 — aStL24) (1- L)dst (yt - ,uSt) = Es, t €5t ~ Mid (0, azt) , (2)

where Ag, (L) is a 8th order lag polynomial and s; = 0,1 denotes the regime,
determined by a Markov chain with transition probabilities

p— Poo 1 —poo ' (3)
1-pu  pn

Observe that because identical prices means that we are in a non-congestion
state, all regimes are observable. Hence, as opposed to a standard Hamilton
(1989) regime switching model, the Markov process generating the states is
non-latent. The series g; has been corrected for deterministic seasonality prior
to the estimation of (2), and to reflect the regime switching nature of the model
and using the fact the the regimes are observable, the coefficients on the dummy
variables are allowed to differ across states. If y; denotes a log relative price, all
parameters are zero when s; = 0 including o3, i.e. a deterministic state. Several
alternative specifications for the regime switching model (2) were experimented
with, e.g. longer A, (L) polynomial and weekly instead of daily stochastic
seasonality, but (1) was found to be the superior model in terms of in-sample
fit.

Since the regimes are observable, the maximum likelihood estimates (MLEs)
of the transition probabilities are simply given as

. n00
Poo = —m—, 4
Moo + No1 4)

. ni1
11 = —, 5
P nio + n11 (5)

where n;; is the number of times we observe regime ¢ follow regime j, for ¢, j =
0,1.

Estimation of the remaining parameters is by conditional MLE using the
likelihood function

T
T 1 .2 T
L——Eln (T t_glgst’t> —5(14—11’1(27(')), (6)
where
22 = A, (L) (1 —a, L) (1 - D)™ (y — f1,,),  s=0,1,

the estimate of the variance is
T
.2 l 22
Os, = T €5t7t7
t=1

"Note that the model (2) is a regime switching version of the non-switching model (1).
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and we use the convention that &;; = 0 if s; # j for j = 0,1. As starting values
for the numerical maximization of (6) we choose (for the parameters of both
regimes) the estimates from the multiplicative SARFIMA model (1) with no
regime switching®.

Notice that the RS-SARFIMA model (2) has exactly twice as many para-
meters as the non-switching SARFIMA model (1). Since the estimation is by
conditional maximum likelihood, the significance of the RS-SARFIMA model
relative to the simpler and more parsimonious SARFIMA model can be tested
by means of e.g. a likelihood ratio (LR) test. Such an LR test would thus be
asymptotically x2 distributed with degrees of freedom equal to the number of
parameters in each state. We shall apply such a test in the subsequent empirical
analysis to test the significance of the regime switching model for our data.

4 Empirical Results

In this section we consider the empirical analysis of the Nordic electricity price
data (described above) applying the regime switching long memory model from
section 3. Each data set is a pair of log price series for two physically connected
markets and the corresponding log relative price. In particular, we consider the
five pairs for Sweden (see Table 1) and the pair West Denmark - South Norway.
First, the estimated transition probabilities (4)-(5) are displayed in Table 4
for each of our data sets. The estimates of pgo, the probability of staying in
regime 0 (non-congestion), range from 0.873 to 0.987 implying a mean time in
regime 0 of 7.93-76.57 hours. The smallest estimates of Py, are obtained for the
data sets containing WDK (0.873 resp. 0.877), and are much smaller than the
other estimates of ppg which range from 0.953 to 0.987. The estimates of pi1,
the probability of staying in regime 1 (congestion), range from 0.785 to 0.898
implying a mean time in regime 1 of 4.65-9.79 hours. I.e., the mean times in
regime 1 are not as different across data sets as the mean times in regime 0.
It thus appears that both states are rather persistent, and in particular, the
non-congestion state generally tends to be more persistent than the congestion
state. The persistence of the states will be helpful for forecasting purposes, since
more persistent states can be forecasted more accurately, see section 5 below.

Table 4. Transition probabilities and mean duration of states, A (hours)

Bivariate series Poo P11 Ao A1
EDK-SWE 0.98694 0.78483 76.57 4.65
WDK-SWE 0.87386 0.81956 7.93 5.54
WDK-SNO 0.87728 0.88823 8.15 8.95
SNO-SWE 0.95284 0.89790 21.20 9.79
MNO-SWE 0.95493 0.88306 22.19 8.55
SWE-FIN 0.97950 0.84633 48.78 6.51

Note: ); is the estimate of the mean duration of state 7 in hours.

8The OX programming language, see Doornik (2001), was used for estimation.
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We next turn to the estimation of the model. The estimation was carried out
as described in section 3 above, but did not use the last 24 hours of observations
for each data pair. The last 24 hours of observations are to be used for compar-
ison with the model out-of-sample forecasts in section 5. Prior to estimation,
each price series y; has had deterministic seasonality removed by regression on
dummy variables for hour-of-day, day-of-week, and month-of-year, where the
coefficients on the dummy variables may differ across states. If y; is a log rela-
tive price, all dummy variable coefficients in regime 0, the non-congestion state,
are estimated to be zero (which is the obvious estimate). Thus, the procedure
removes any deterministic seasonality while allowing the seasonal effects to vary
across states.

The empirical results from the estimation of the full model in (2) are pre-
sented in Table 5. The first three columns of estimates give the estimated d
values for the three series (two price series and the relative price series) with no
regime switching. The next six columns contain the estimates of d for the same
series with regime switching, where superscripts denote regimes’. Note that
the MLEs of all parameters in the non-congestion regime 0 are identically zero
when y; is a log relative price. For all estimates, standard errors are provided
in parentheses. In the final three columns, we present the likelihood ratio (LR)
tests of the significance of the regime switching models compared to the models
with no switching, i.e. compared to (1). The LR tests are asymptotically x?2
distributed with 12 degrees of freedom and the 1% critical value is 26.22.

Table 5. Switching model estimates of d for log prices and log relative prices

SARFIMA (1) RS-SARFIMA (2)

Bivariate series dy do ds d9 d} ds d3 d$ d3 LRy LR, LRs

EDK-SWE 043 043  0.05 0.46 0.03 0.46 003 0 —0.26 1148 1000**  5376**
(0.012)  (0.012)  (0.018) (0.012)  (0.013)  (0.011)  (0.012) (0.077)

WDK-SWE 0.31 042  0.27 0.38 0.28 0.33 046 0 037 144> 444*  2982**
(0.015)  (0.011)  (0.017) (0.024)  (0.021)  (0.013)  (0.014) (0.015)

WDK-SNO 030 044  0.28 0.30 0.31 0.16 063 0 037 151 872" 2138**
(0.015)  (0.011)  (0.016) (0.026)  (0.017)  (0.008)  (0.017) (0.015)

MNO-SWE 044 042  0.31 0.39 0.38 0.43 018 0 040 796**  498**  6276**
(0.010)  (0.012)  (0.014) (0.008)  (0.018)  (0.012)  (0.014) (0.016)

SNO-SWE 045 041 0.31 0.38 0.32 0.41 021 0  0.39 1092 702**  5116**
(0.011)  (0.012)  (0.016) (0.008)  (0.013)  (0.012)  (0.013) (0.018)

SWE-FIN 039 038  0.24 042 —0.02 043 —-0.02 0 048 1070 2604**  6528**
(0.012)  (0.012)  (0.017) (0.011)  (0.012)  (0.012)  (0.005) (0.022)

Notes: Standard errors are in parentheses. The subscripts denote the price region (3 is the log relative price) and the superscripts
denote the state. LR; is the likelihood ratio test of equal coefficients in state 0 and 1 for price region ¢ (¢ = 3 is the relative price),
i.e. a test of the null of no switching. All the LR tests are x? distributed with 12 degrees of freedom (1% critical value is 26.22).
One and two asterisks denote significance at the 5% and 1% level.

First, for the East Denmark - Sweden (EDK-SWE) physical link, there is
rather clear evidence from the estimates of the non-switching model that the

90bserve that the estimated price process for a particular region is defined subject to the
region with which it is compared, i.e. the regimes vary for different combinations of regions
and hence this will affect the estimated price processes.
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two series are fractionally cointegrated. Both series are fractionally integrated
at the same value (at least to two decimal places both estimates are 0.43), but
the relative price is integrated of a much smaller value (0.05). However, given
the special features of the data we may suspect that this finding is in some
way spurious. This is indeed confirmed by looking at the estimates for the
switching model. Here we see that the model is perfectly cointegrated in the
non-congestion regime 0, where the individual prices are integrated of order 0.46
and the relative price is zero by definition. On the other hand, in the congestion
regime 1, there is no sign of cointegration, but instead the data appears to be
roughly I(0). It thus appears that the results for the non-switching model reflect
a kind of convex combination of the results for the two individual regimes and
that the finding of fractional cointegration in the non-switching model is indeed
spurious in the sense that cointegration really only exists in the non-congestion
state.

Secondly, for the WDK-SWE physical link, the estimates from the non-
switching model bear no indication of cointegration between the two price series
since they appear integrated of rather different orders (0.31 resp. 0.42). How-
ever, in the regime switching model the integration orders of the two series are
estimated at roughly the same value in the non-congestion regime where the rel-
ative prices are identically zero!". In the congestion regime there is no indication
of cointegration since the two series appear integrated of different orders in that
case. This implies that the results for the non-switching model again appear to
be a combination of the results for the two regimes, but with a higher weight
on the congestion regime making the non-switching estimates appear as though
the prices are not cointegrated. Thus, the importance of the regime switching
model is very clear in this case, since ignoring the possibility of different regimes
actually leads us to falsely conclude that no type of cointegration exists among
the two price series.

The MNO-SWE, the SNO-SWE, and the SWE-FIN links are very similar
to the first case, i.e. to the EDK-SWE link, in the sense that they appear
cointegrated based on the non-switching model whereas the regime switching
model reveals that cointegration exists only in the non-congestion regime. Note
that the SWE-FIN price behavior is rather extreme under congestion where the
individual prices are approximately I1(0) whereas the relative price is integrated
of order 0.48. Finally, for the WDK-SNO link, there does not appear to be
cointegration in the non-switching model, and in the regime switching model the
estimates of the fractional integration orders are quite different across regimes
and price series, even though there is cointegration in regime 0 by definition.
Since the estimates under regime 0 depend on regime 1 observations through
the long lags, this strange finding may be attributed to the rather extreme (the
only non-stationary estimate of d in the table) estimate of d under regime 1.

Finally, the LR tests of significance of the regime switching specification take
values between 144 and 6528, with the highest values being obtained for the

10Note that even though the prices are identical in the non-congestion state, the estimates
of d in the single price series can be different. This is because the dynamics of the estimated
models in the non-congestion state include observations from the congestion state.
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relative price series. Obviously, all these values are highly significant in their
asymptotic chi-squared distributions. The tremendous significance of the LR
tests thus stress the importance of regime switching for an adequate description
of our electricity price data.

Summing up our empirical findings, we have seen that our new regime switch-
ing specification, with a potentially deterministic state and observable regimes,
is very important in order to reach correct conclusions about the behavior of the
electricity prices and relative electricity prices in the bivariate analyses consid-
ered here. This is due to the state-dependent cointegration that exists in these
price series because of the functioning of the electricity markets, see section
2. In particular, there are two distinct misclassifications of the behavior of the
bivariate price series. First, a non-switching model analysis may indicate that
the two price series are (fractionally) cointegrated, as for the EDK-SWE data,
even though this reflects the fact that the data are cointegrated only in one of
the two regimes and not cointegrated in the other regime. Second, the oppo-
site may happen in which case we erroneously conclude from a non-switching
model analysis that the data are not integrated of the same (fractional) order
and hence cannot be cointegrated, as for the WDK-SWE data, even though
the data are cointegrated in one of the two regimes. This illustrates the im-
portance of allowing regime switching in our data analysis due to the special
characteristics of the electricity price data.

5 Forecasting

We now consider the forecasting of electricity prices and relative prices for up
to 24 hours, which is the relevant forecast horizon as discussed in section 2.2,
see also Engle, Granger, and Hallman (1989) and Ramanathan et al. (1997).
The forecasting of electricity prices is important for a number of reasons as we
have previously argued.

Analytical formulae for forecasting regime switching models such as (2) are
available, see e.g. Davidson (2004a, 2004b), but are computationally very inten-
sive since the calculation of analytical forecast error bands for a k step ahead
forecast requires M* 1 steps, where M is the number of states. The compu-
tation time required with M = 2 and with over 33,000 observations makes
analytical forecasting infeasible even for small to moderate k such as kK = 3 or
k= 4.

Instead we consider forecasting by Monte Carlo stochastic simulation as
advocated and implemented by Davidson (2004a). However, note that our im-
plementation differs in several respects, for instance we have observable states
and a deterministic regime (when y; is a log relative price). Thus, for forecast-
ing, the model is simulated 24 periods ahead assuming Gaussian innovations.
Conducting 1,000 Monte Carlo replications, we can extract the median forecast
and 95% forecast error bands for each period from the simulated forecasts.

Figures 4-9 display the forecasting results for six data sets also considered
above. Each figure displays median forecasts and 95% error bands for the two

14



individual price series (top two graphs) as well as for the relative prices (bottom
graph). For each graph, the solid line with diamonds represents the actually
realized values of the series in question, the dotted lines display the forecasts
and 95% error bands for the non-switching model, and the solid lines display the
corresponding forecasts and error bands for the regime switching model. Note
that the forecasts for the relative prices are not defined as the simple difference
between the forecasts for the two price series, but rather they are forecasts
from the (switching or non-switching) model for the relative prices which was
estimated in the previous section.

Figures 4-9 about here

In Figure 4 the forecasts are shown for the EDK-SWE physical link. For
all three series, we notice that the median forecasts from both models are very
close to the actually observed value. For the two individual price series in the
top two graphs of Figure 4, it appears that the confidence bands for the regime
switching model forecasts are initially slightly tighter than the confidence bands
for the non-switching model forecasts. After 3-4 hours the regime switching
model confidence bands become a little wider, though. This is most likely due
to the fact that the uncertainty about the state is increasing as we forecast
further into the future. However, the forecast confidence bands for the regime
switching model remain similar to those of the non-switching model even for
the 24 hours ahead forecast.

For the relative prices in the bottom graph of Figure 4, the switching model
produces vastly superior forecasts compared to the non-switching model. Whereas
the forecast confidence bands for the non-switching model remain of the same
order of magnitude as for the individual price series, the switching model is ca-
pable of exploiting the structure of the data to produce much tighter confidence
bands, at least for the first 3 hours. For the entire 24 hour forecast horizon, the
median forecast for the switching model is exactly equal to the observed value
(which is zero throughout the forecast period). Indeed, for the first 3 forecasts,
the forecast confidence bands for the switching model are just points, i.e. all
three solid lines are equal to zero, meaning that at least 95% of the probabil-
ity mass for those forecasts are located at that point, see also Figure 10. For
the remaining forecasts, the switching model upper confidence band is still zero
meaning that with 95% confidence we can predict that East Denmark prices
will be no higher than the Sweden prices.

Figures 5 and 6 display the forecasts for the WDK-SWE and WDK-SNO
physical links, respectively. In both cases, the forecasting performance for WDK
is similar to that for EDK in Figure 4, in that the regime switching model seems
to give very similar but slightly wider confidence bands compared to the non-
switching model. For the SWE prices in both Figures 5 and 6, the forecast
error bands for the regime switching model are somewhat wider than for the
non-switching model. However, for all four individual price series in Figures 5
and 6 the median forecasts are very close to the actually observed value. For the
relative prices, both pairs end the estimation period in the congestion regime,
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and we thus do not expect the forecast performance of the regime switching
model to be as great as in Figure 4 where the estimation period ended in the
deterministic state. Indeed, this is confirmed in the bottom graphs of Figures
5 and 6 where the forecasting performances of the non-switching and regime
switching models are very similar.

In Figures 7 and 8 the forecasts for the SNO-SWE and MNO-SWE physical
links are displayed. Each of the four individual prices in these two figures are
very similar to the SWE and SNO forecasts in Figures 5 and 6 where the switch-
ing model provides somewhat wider confidence bands than the non-switching
model. In all four cases the median forecasts are very close to the actually
observed values. Both the relative price series in Figures 7 and 8 end in the
non-congestion regime, and thus the regime switching model seems to outper-
form the non-switching model in the prediction of the relative prices.

Finally, Figure 9 displays the forecasts for the SWE-FIN link. For this data
pair, the regime-switching model seems to perform at least as well as the non-
switching model in terms of out-of-sample forecasting, except maybe the lower
confidence band for the relative prices which is a little wide even though the
upper confidence band is very tight. This is in spite of the fact that the data
pair ends in the congestion regime.

The relatively poor forecast performance of regime switching models, and
non-linear models in general, is well known in the literature, see e.g. Clements
and Hendry (1999) and Dacco and Satchell (1999). On that background it is
somewhat surprising that our regime switching model seems to perform similarly
to the linear SARFIMA model in terms of out-of-sample forecasting for the
individual series, and even outperforms the linear model in the forecasting of
relative prices. Note also that the forecasting performance of the switching
model could be significantly improved upon if the forecasts were conditional on
the regime. Thus, if the regime was perfectly predictable the switching model
would clearly outperform the non-switching model in terms of out-of-sample
forecasting as well as in-sample fit.

The switching model does seem to provide superior forecasts for the relative
prices, and it appears to be particularly successful when the post sample ob-
servations belong to the relatively more persistent regime 0 (non-congestion).
Another way to see this is to consider the forecast densities. As an example, we
provide in Figure 10 the one step ahead forecast densities of the forecasts for
the EDK-SWE physical link also considered in Figure 4. Each panel in Figure
10 displays the forecast densities for both the non-switching and the regime
switching model for each of the three time series (two prices and the relative
price). The vertical lines in the graphs are the actually observed values.

Figure 10 about here

It appears that, for the two individual price series, the forecasts from the
regime switching model has a higher concentration of density around the actually
observed value. Furthermore, when we look at the bottom panel which displays
the one step ahead forecast densities for the log relative prices, the regime
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switching model is, not surprisingly, greatly superior to the non-switching model
in terms of out-of-sample forecasting. The density of the simulated forecasts
from the regime switching model is highly concentrated around the observed
value (of zero), whereas the density of the non-switching model appears in the
graph as an almost flat line close to the horizontal axis (due to the scaling of
the vertical axis and the concentration of the regime switching forecasts around
Z€ro).

6 Conclusion

We have suggested a Markov regime switching model with long memory in
the separate states which appears to well describe the dynamics of electricity
prices within the Nord Pool area. The model is motivated by the functioning
of the Nordic electricity power market where natural switches between different
regimes exist reflecting the possible presence or absence of bottlenecks in the
transmission of electricity across exchange grid points.

In our empirical analysis, we have seen that our new regime switching spec-
ification, with a potentially deterministic state and observable regimes, is very
important in order to reach correct conclusions about the behavior of the elec-
tricity prices and relative electricity prices. Furthermore, the switching model
seems to provide better forecasts for the relative prices, and it appears to be
particularly successful when regime persistence is high and the post sample
observations belong to the non-congestion regime.

A number of generalizations are obvious for future research. The analysis
undertaken in the present study considers bivariate comparisons of the price
series. However, because all the separate regions in the Nord Pool regions are
interconnected directly or indirectly one can in fact define multiple regime states
where more than two price area combinations are considered. For instance East
Denmark and West Denmark have no direct transmission line for electricity
exchange, but a connection exists via Sweden and possibly Sweden plus southern
Norway. So in some periods prices in East Denmark and West Denmark are
identical due to their linkages via Sweden and Norway. An extension of our
model set up to include multiple regions and price areas would be interesting
to pursue in the future. Another interesting extension concerns the inclusion of
other relevant variables in the model like weather, the flow quantity of electricity,
and other variables. In particular the influence of such factors on the transition
probabilities seems interesting. Also the direction of a possible congestion is
potentially of relevance, i.e. the question of whether the bottleneck is from
region 1 to region 2 or opposite.

In the paper we have focussed on models for the level of electricity prices.
With respect to risk management and the pricing of power derivatives, models
for the volatility are essential and a similar framework with regime switching
and long memory seems natural for this case as well. The development and
analysis of such models remain for the future.
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7 Appendix: Figures
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Figure 1. Hourly log spot electricity prices for the Nord Pool area, 3 January
2000 - 25 October 2003.
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Figure 2. Autocorrelation function, ACF, of p; and spectral density of hourly
differences, Apy, and daily differences, Aoyp;, for hourly log prices of South
Norway. 672 lags were included corresponding to 4 weeks of observations.
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Bivariate comparisons.
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Figure 3. Scatter plots of hourly (log) prices across Nord Pool regions.
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Figure 4. Forecasts for the EDK-SWE physical link. Diamonds are actual
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Figure 5. Forecasts for the WDK-SWE physical link. Diamonds are actual
values, the solid lines are median forecasts and 95% forecast error bands for
the RS-SARFIMA model, and the dotted lines are the corresponding median

forecasts and error bands for the non-switching SARFIMA model.

25



~ WDK price

2 [
1 [
0
1k
T S T T S T S T MY S R S |
0 5 10 15 20 50
2 SNO price
1 [
0
1k
1 1 1 1 1 Lo L 1 1 1 |
o5 10 15 20 25 30 35 40 45 50
2 Relative price
1 [
0
1k
T S T T TS T A S T S T AN S N R |
0 5 10 15 20 50

Figure 6. Forecasts for the WDK-SNO physical link. Diamonds are actual
values, the solid lines are median forecasts and 95% forecast error bands for
the RS-SARFIMA model, and the dotted lines are the corresponding median

forecasts and error bands for the non-switching SARFIMA model.
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Figure 7. Forecasts for the SNO-SWE physical link. Diamonds are actual
values, the solid lines are median forecasts and 95% forecast error bands for
the RS-SARFIMA model, and the dotted lines are the corresponding median

forecasts and error bands for the non-switching SARFIMA model.
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Figure 8. Forecasts for the MNO-SWE physical link. Diamonds are actual
values, the solid lines are median forecasts and 95% forecast error bands for
the RS-SARFIMA model, and the dotted lines are the corresponding median

forecasts and error bands for the non-switching SARFIMA model.
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Figure 9. Forecasts for the SWE-FIN physical link. Diamonds are actual
values, the solid lines are median forecasts and 95% forecast error bands for
the RS-SARFIMA model, and the dotted lines are the corresponding median

forecasts and error bands for the non-switching SARFIMA model.
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Figure 10. Densities for one step ahead forecasts for the EDK-SWE physical
link.
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