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SEASONAL UNIT ROOT TESTING BASED ON
THE TEMPORAL AGGREGATION OF

SEASONAL CYCLES

Gabriel Pons Rotger∗

Department of Economics, University of Aarhus

Abstract

The effects of systematic sampling and temporal aggregation on the sea-
sonal cycle model (see Miron, 1993) and the seasonally integrated process (see
Hylleberg et al., 1990) are discussed. The temporal aggregation theory is used
to improve the sequential test for monthly seasonal unit roots of Rodrigues
and Franses (2003). It is shown by simulation that the monthly sequential
test has better finite sample properties than the BM test (see Beaulieu and
Miron, 1993). The new test is applied to monthly US Industrial Production
and, contrary to the BM test, rejects the presence of any seasonal unit root.

1 Introduction

The seasonal analysis of discrete time series is strongly influenced by the aliasing effect
(see Koopmans, 1974), since the seasonal cycles with a period smaller than twice the
sampling interval are not observable with its real period but with a longer one. For
example, a monthly seasonal cycle with a period of 4 months turns into a quarterly
cycle with a period of 12 months. This effect may lead to erroneous interpretations
of the nature of seasonal cycles.
Testing for seasonal unit roots, as any seasonal analysis, is affected by the aliasing

effect, and therefore when a particular seasonal unit root is not rejected, it is not
possible to state whether a unit root is present at the equivalent underlying seasonal
frequency or at a nonobservable one with the available data. The most serious prob-
lem concerning the aliasing effect and unit root testing, is that a zero-frequency unit

∗Comments from Niels Haldrup, Phillip Hans Franses, Svend Hylleberg, and Andreu Sansó are
gratefully acknowledged. This research has been supported by a Marie Curie Fellowship of the Eu-
ropean Community Programme ”Improving the Human Research Potential and the Socio-Economic
knowledge Base” under contract number HPMF-CT-2002-01662. Tel.:+45-89421604; fax:+45-8613
6334; E-mail address: gpons@econ.au.dk.
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root can be due to an underlying seasonal unit root. This zero-frequency aliasing
may even lead to spurious cointegration (see Granger and Siklos, 1995).
The aliasing problem can be alleviated if time series is available at a sampling

frequency where the relevant cycles are observable without aliasing. However, when
seasonal unit roots are tested with high frequency time series, the presence of many
seasonal cycles deteriorates the power of the HEGY test (see Rodrigues and Osborn,
1999). To deal with this problem, Rodrigues and Franses (2003) have proposed a
sequential strategy for testing monthly seasonal unit roots. The idea is to use the
quarterly unit root findings to reduce the set of monthly frequencies where to test for a
unit root. However, the Rodrigues and Franses’ links among the frequencies are not
entirely correct and the method does not use the quarterly information efficiently.
Therefore, we propose an improved version of Rodrigues and Franses’ test based
on the theoretical relation between seasonally integrated (SI) processes measured at
different sampling intervals. The new test is not only more powerful than the BM test
but in some occasions more robust to structural breaks at the deterministic seasonal
component.
The outline of the paper is as follows. In section 2 we study the effects of sys-

tematic sampling and temporal aggregation on the seasonal cycle model and on the
SI model, and discuss its implications for the seasonal unit root tests which allow
to test for separate unit roots (see Hylleberg et al., 1990; Beaulieu and Miron, 1993;
Canova and Hansen, 1995; Caner, 1998; Taylor, 1998; Smith and Taylor, 1999 and
Taylor, 2003). In section 3 we describe an improved version of the sequential ap-
proach of Rodrigues and Franses. The finite sample properties of the new method
are compared with the BM tests in section 4 by means of Monte Carlo simulation.
In section 5 we apply the new tools for testing monthly seasonal unit roots at the
US Industrial Production (1950M1-2003M11). Finally section 6 concludes the paper.
The proofs of the theorems are presented in the appendix 1, the monthly regressors
for the monthly sequential test are listed in the appendix 2, and the tables with the
new critical values are in the appendix 3.
A word on notation. W denotes a standard Brownian motion. t denotes months,

τ denotes bimonths, T denotes quarters, and Υ denotes semesters. x denotes a
time series measured at the shortest sampling interval the time series is available
(disaggregated time series). Xs denotes a systematically sampled time series and Y
a temporally aggregated time series. Concretely, Xs

τ ≡ x2(τ−1)+s (s = 1, 2) and Yτ =
Σ2s=1X

s
τ denote the bimonthly series; X

s
T ≡ x3(τ−1)+s (s = 1, 2, 3) and YT = Σ3s=1X

s
T

denote the quarterly series; and Xs
Υ ≡ x6(τ−1)+s (s = 1, ..., 6) and YΥ = Σ6s=1X

s
Υ

denote the semi-annual series.
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2 Temporal Aggregation of Seasonal Time Series
Models

In this section we discuss the implications of the relation of seasonal cycles at different
sampling intervals for testing seasonal unit roots with systematically sampled and
temporally aggregated time series. For this purpose, we first present the relation
among seasonal cycles measured monthly, bimonthly, quarterly and semiannually.
Next, we discuss the links between the trigonometric representation of the seasonal
cycle model measured at those sampling intervals. Then, we discuss the temporal
aggregation effect on the SI process, and the implications of systematic sampling and
temporal aggregation for seasonal unit root testing.

2.1 Relation among seasonal cycles at different sampling in-
tervals

Table 1 presents the relation of monthly, bimonthly, quarterly and semi-annual sea-
sonal cycles. The cycles below the horizontal line are aliases of the observable seasonal
cycles above the line. The table shows how the seasonal cycles of a disaggregated
process are observed after systematic sampling. For example, a monthly seasonal
cycle with a period of 4 months (at frequency π/2) is observable without aliasing as
a bimonthly seasonal cycle with a period of 4 months (at frequency π), aliased as a
quarterly seasonal cycle with a period of 12 months (at frequency π/2), and aliased
as a semi-annual seasonal cycle with a period of 12 months (at frequency π/2). It is
seen in table 1, how different seasonal cycles of a disaggregated model are observable
as the same seasonal cycle at a systematically sampled process. For example a zero-
frequency component at the semi-annual model can be generated by a zero-frequency
component at the quarterly process or by a quarterly seasonal cycle with a period of
6 months (at frequency π).

Table 1: Relation among seasonal cycles at different sampling intervals
Monthly Interval Bimonthly Interval Quarterly Interval Semi-annual Interval

θk Period Cycles θk Period Cycles θk Period Cycles θk Period Cycles
0 ∞ 0 0 ∞ 0 0 ∞ 0 0 ∞ 0

π/6 12 1 π/3 12 1 π/2 12 1 π 12 1
π/3 6 2 2π/3 6 2 π 6 2 0 ∞ 0
π/2 4 3 π 4 3 π/2 12 1 π 12 1
2π/3 3 4 2π/3 6 2 0 ∞ 0 0 ∞ 0
5π/6 2.4 5 π/3 12 1 π/2 12 1 π 12 1
π 2 6 0 ∞ 0 π 6 2 0 ∞ 0

∗ θk is the seasonal frequency; periods in months and cycles per year.
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2.2 Temporal Aggregation of the Seasonal Cycle Model

Let us consider the temporal aggregation of a monthly time series generated by the
seasonal cycle model (Miron, 1993):

xt = Σ12s=1ψsds,t + ut, (1)

where ψs denotes the seasonal mean of xt, ds,t is a monthly seasonal dummy variable
and ut is a linear process. The focus of the paper is on seasonal unit root tests, which
are based not on the time-domain representation of seasonality but on the spectral
representation. Therefore, it is necessary to discuss the effects of systematic sampling
and temporal aggregation on the trigonometric representation of the seasonal cycle
model (1) (see Hannan et al., 1970):

xt = γ0 + Σ5k=1(γk cos(θkt) + λk sin(θkt)) + γ6 cos(πt) + ut,

where γ0 denotes the overall mean of xt (the overall drift when xt is the first differenced
series), γk (k = 1, ..., 6), λk (k = 1, ..., 5) are the coefficients associated with the
seasonal cycles with a period of 12

k
months, and θk = kπ/6 (k = 1, ..., 5) denotes the

seasonal frequency.

Theorem 1 Let xt be a monthly process generated by

xt = γ0 + γ1 cos(
π

6
t) + λ1 sin(

π

6
t) + γ2 cos(

π

3
t) + λ2 sin(

π

3
t) + γ3 cos(

π

2
t) + λ3 sin(

π

2
t)

+γ4 cos(
2π

3
t) + λ4 sin(

2π

3
t) + γ5 cos(

5π

6
t) + λ5 sin(

5π

6
t) + γ6 cos(πt) + ut,

where ut is a linear process.
The systematically sampled bimonthly processes Xs

τ (s = 1, 2) are

Xs
τ = Γs0 + Γs1 cos(

π

3
τ) + Λs

1 sin(
π

3
τ) + Γs2 cos(

2π

3
τ) + Λs

2 sin(
2π

3
τ) + Γs3 cos(πτ) + U s

τ ,

where Γ10 ≡ γ0− γ6, Γ
2
0 ≡ γ0+ γ6, Γ

1
1 ≡
√
3/2(γ1− γ5)− 1/2(λ1+ λ5), Γ21 ≡ γ1+ γ5,

Λ11 ≡ 1/2(γ1−γ5)+
√
3/2(λ1+λ5), Λ21 ≡ λ1−λ5, Γ12 ≡ 1/2(γ2−γ4)−

√
3/2(λ2+λ4),

Γ22 ≡ γ2+ γ4, Λ
1
2 ≡
√
3/2(γ2− γ4) + 1/2(λ2+ λ4), Λ22 ≡ λ2− λ4, Γ13 ≡ −λ3, Γ23 ≡ γ3,

and U s
τ = u2(τ−1)+s.

The temporally aggregated bimonthly process Yτ is

Yτ = Γ0 + Γ1 cos(
π

3
τ) + Λ1 sin(

π

3
τ) + Γ2 cos(

2π

3
τ) + Λ2 sin(

2π

3
τ) + Γ3 cos(πτ) + Vτ ,

where Γ0 = 2γ0, Γ1 =
2+
√
3

2
γ1 +

2−√3
2

γ5 − 1/2(λ1 + λ5), Λ1 = 1
2
(γ1 − γ5) +

2+
√
3

2
λ1 +√

3−2
2

λ5, Γ2 = 3
2
γ2 +

1
2
γ4−

√
3
2
(λ2 + λ4), Λ2 =

√
3
2
(γ2− γ4) +

3
2
λ2− 1

2
λ4, Γ3 = γ3− λ3,

and Vτ ≡ Σ2s=1U
s
τ .
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The systematically sampled quarterly processes Xs
T (s = 1, 2, 3) are

Xs
T = Γs0 + Γs1 cos(

π

2
T ) + Λs

1 sin(
π

2
T ) + Γs2 cos(πT ) + Us

T ,

where Γ10 ≡ γ0 +
1
2
(
√
3λ4 − γ4), Γ

2
0 ≡ γ0 − 1

2
(γ4 +

√
3λ4), Γ30 ≡ γ0 + γ4, Γ

1
1 ≡

1
2
(γ1−

√
3λ1−2γ3+γ5+

√
3λ5), Γ21 ≡ 1

2
(
√
3γ1−λ1−2λ3−

√
3γ5−λ5), Γ31 ≡ γ1+γ3+γ5,

Λ11 ≡ 1
2
(
√
3γ1 + λ1 + 2λ3 −

√
3γ5 + λ5), Λ21 ≡ 1

2
(γ1 +

√
3λ1 − 2γ3 + γ5 −

√
3λ5),

Λ31 ≡ λ1−λ3+λ5, Γ12 ≡ 1
2
(−γ2−

√
3λ2+2γ6), Γ

2
2 ≡ 1

2
(γ2−

√
3λ2−2γ6), Γ32 ≡ γ2+2γ6,

and U s
T ≡ u3(T−1)+s.

The temporally aggregated quarterly process YT is

YT = Γ0 + Γ1 cos(
π

2
T ) + Λ1 sin(

π

2
T ) + Γ2 cos(πT ) + VT ,

where Γ0 = 3γ0, Γ1 =
3+
√
3

2
γ1 − 2+

√
3

2
λ1 − λ3 +

3−√3
2

γ5 − 2−√3
2

λ5, Λ1 = 2+
√
3

2
γ1 +

3+
√
3

2
λ1 − γ3 +

2−√3
2

γ5 +
3−√3
2

λ5, Γ2 = γ2 −
√
3λ2 + 2γ6, and VT ≡ Σ3s=1U

s
T .

The systematically sampled semi-annual processes Xs
Υ (s = 1, ..., 6) are

Xs
Υ = Γs0 + Γs1 cos(πΥ) + Us

Υ,

where Γ10 ≡ 1/2(2γ0+γ2+
√
3λ2−γ4+

√
3λ4−2γ6), Γ20 ≡ 1/2(2γ0−γ2+

√
3λ2−γ4−√

3λ4+2γ6), Γ
3
0 ≡ γ0− γ2+ γ4− γ6,Γ

4
0 ≡ 1/2(2γ0− γ2−

√
3λ2− γ4+

√
3λ4+2γ6),

Γ50 ≡ 1/2(2γ0+γ2−
√
3λ2+γ4−

√
3λ4−2γ6), Γ60 ≡ γ0+γ2+γ4+γ6, Γ

1
1 ≡ 1/2(−

√
3γ1−

λ1−2λ3+
√
3γ5−λ5), Γ21 ≡ 1/2(−γ1−

√
3λ1+2γ3−γ5+

√
3λ5), Γ31 ≡ −λ1+λ3−λ5,

Γ41 ≡ 1/2(γ1 −
√
3λ1 − 2γ3 + γ5 +

√
3λ5), Γ51 ≡ 1/2(

√
3γ1 − λ1 − 2λ3 −

√
3γ5 − λ5),

Γ61 ≡ γ1 + γ3 + γ5 and U6(Υ−1)+s.
The temporally aggregated semi-annual time series YΥ is

YΥ = Γ0 + Γ1 cos(πΥ) + VΥ,

where Γ0 = 6γ0, Γ1 =
3
2
γ1 − 4+3

√
3

2
λ1 − λ3 +

3
2
γ5 +

3
√
3−4
2

λ5, and VΥ ≡ Σ6s=1U
s
Υ.

Proof. See the appendix 1.

Corollary 2 Let xT be a quarterly process generated by

xT = γ0 + γ1 cos(
π

2
T ) + λ1 sin(

π

2
T ) + γ2 cos(πT ) + uT ,

where uT is a linear process.
The systematically sampled semi-annual processes Xs

Υ (s = 1, 2) are

Xs
Υ = Γs0 + Γs1 cos(πΥ) + Us

Υ,

where Γ10 = γ0 − γ2, Γ
2
0 = γ0 + γ2, Γ

1
1 = −λ1, Γ21 = γ1 and U

s
Υ = u2(T−1)+s.

The temporally aggregated semi-annual process YΥ is

YΥ = Γ0 + Γ1 cos(πΥ) + VΥ,

where Γ0 = 2γ0, Γ1 = γ1 − λ1, and VΥ ≡ Σ2s=1U
s
Υ.

5



As seen in Theorem 1 and Corollary 2, the dependency of the ‘aggregated’ spectral
coefficients Γsj and Λs

j on the ‘underlying’ spectral coefficients γk and λk reflect the
relation among seasonal cycles measured at different sampling intervals (see table
1). Let us consider the case of the quarterly seasonal model. From Corollary 2,
different seasonal patterns are allowed at the quarterly model. When γ1 6= 0 there
is an annual cycle linking the 2nd quarter with the 4th quarter, when λ1 6= 0 there is
another annual cycle relating the 1st quarter with the 3rd quarter, and when γ2 6= 0
there is a semi-annual cycle. Any of the associated semi-annual processes X1

Υ, X
2
Υ, or

YΥ only capture part or a distorted part of the underlying seasonal component due
to an aggregation bias or an information loss. The annual cycle of X1

Υ captures the
cycle linking the 1st and 3th quarters (λ1) while its overall mean (or drift) is affected
by the aggregation bias since this parameter is a linear combination of the overall
mean (or drift) of the quarterly model and the quarterly π-frequency (Γ10 = γ0− γ2).
Analogously X2

Υ reflects the annual cycle linking the 2
nd and the 4th quarters (γ1)

and the quarterly overall mean (or drift) is Γ20 = γ0+ γ2. The overall mean (or drift)
of the temporally aggregated series YΥ is only linked to the quarterly overall mean (or
drift) γ0, and therefore there is no aggregation bias or loss of information about the
quarterly overall mean (or drift). However, the information about the semi-annual
cycle (γ2) is lost by the effect of the summation filter, and the annual cycle of YΥ is
affected by the aggregation bias (Γ1 = γ1 − λ1). Then, it is possible (when γ1 = λ1)
that the annual cycle disappears from the model of the temporally aggregated series.
All the quarterly parameters γ0, γ1, λ1, and γ2 only can be recovered with two of the
semi-annual models of X1

Υ, X
2
Υ, or YΥ.

2.3 Temporal Aggregation of the Seasonal Unit Root Model

Theorem 3 Let xt be a monthly SI(d0, ..., d6) process with dk = 0, 1

(1−L)d0(1−
√
3L+L2)d1(1−L+L2)d2(1+L2)d3(1+L+L2)d4(1+

√
3L+L2)d5(1+L)d6xt = ut

where ut is a stationary and invertible ARMA process.
The systematically sampled bimonthly processes are Xs

τ˜SI(d
∗
0, d

∗
1, d

∗
2, d3) (s = 1, 2)

(1− L2)d
∗
0(1− L2 + L4)d

∗
1(1 + L2 + L4)d

∗
2(1 + L2)d3Xs

τ = Us
τ ,

and the temporally aggregated bimonthly process is Yτ˜SI(d0, d∗1, d
∗
2, d3)

(1− L2)d0(1− L2 + L4)d
∗
1(1 + L2 + L4)d

∗
2(1 + L2)d3Yτ = Vτ ,

where L2Xs
τ = Xs

τ−1, d
∗
0 = max{d0, d6}, d∗1 = max{d1, d5}, and d∗2 = max{d2, d4}.

The systematically sampled quarterly processes are Xs
T˜SI(d

∗
0, d

∗
1, d

∗
2) (s = 1, 2, 3)

(1− L3)d
∗
0(1 + L6)d

∗
1(1 + L3)d

∗
2Xs

T = Us
T ,
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and the temporally aggregated quarterly process is YT˜SI(d0, d∗1, d
∗
2)

(1− L3)d0(1 + L6)d
∗
1(1 + L3)d

∗
2YT = VT ,

where L3Xs
T = Xs

T−1, d
∗
0 = max{d0, d4}, d∗1 = max{d1, d3, d5}, and d∗2 = max{d2, d6}.

The systematically sampled semi-annual processes are Xs
Υ˜SI(d

∗
0, d

∗
1) (s = 1, ..., 6)

(1− L6)d
∗
0(1 + L6)d

∗
1Xs

Υ = U s
Υ,

and the temporally aggregated semi-annual process is YΥ˜SI(d0, d∗1)

(1− L6)d0(1 + L6)d
∗
1YΥ = VΥ,

where L6Xs
Υ = Xs

Υ−1, d
∗
0 = max{d0, d2, d4, d6}, and d∗1 = max{d1, d3, d5}.

Proof. See the proof and the error terms in the appendix 1.
As seen in theorem 3, the dependency of the aggregated orders of seasonal inte-

gration d∗1, ..., d
∗
6/m at the bimonthly (m = 2), quarterly (m = 3), and semi-annual

(m = 6) models is determined by the relation among seasonal cycles at different
sampling intervals (see table 1). The link is exactly the same for all the systemati-
cally sampled series Xs and for the temporally aggregated series Y .1 Specifically, the
order of integration at a particular ‘aggregated’ frequency d∗j depends on the order
of integration of the monthly unit root that generates the same cycle and on the
orders of integration affected by aliasing. For example, the π/2-frequency unit root
of any quarterly model X1

T , X
2
T , X

3
T , or YT is linked to the monthly unit roots at the

π/6-frequency, the monthly seasonal cycle with the same period than the quarterly
cycle, and the aliased frequencies π/2 and 5π/6. All orders of seasonal integration
are at most one because the monthly process has hidden periodicity of order m.2

The differential effect for Xs and Y takes place at the zero-frequency since the
summation filter present at Y cancels the unit roots that aliases to the zero-frequency.
In the case of the sampled seriesXs the zero-frequency integration order d∗0 is linked to
the monthly zero-frequency d0 and other monthly seasonal integration orders, while
the zero-frequency integration order of Y is only linked to the disaggregated zero-
frequency integration order. For example, the monthly 2π/3 unit root turns into a
zero-frequency unit root after quarterly systematic sampling and is cancelled after
quarterly temporal aggregation.3

The main difference between the systematic sampling of SI processes and the
deterministic seasonal models is that seasonal unit roots do not allow the presence

1The Monte Carlo results of Granger and Siklos (1995) are in contradiction to this common effect,
probably due to the poor performance of the monthly seasonal unit root test they use.

2A model is said to be without hidden periodicity of order m if the characteristic roots of the
AR polynomial satisfy zmj = zml iff zj = zl ∀j, l (see Stram and Wei, 1986).

3Rodrigues and Franses (2003) find by simulation that the monthly root at 2π/3 is linked to
the quarterly root at the π/2-frequency which is not correct. If we raise to 3 the root z = ei2π/3

becomes z3 = ei2π = 1.
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of seasonal cycles at some but not all of Xs
T . For example if the monthly series

contains seasonal unit roots at some or all the frequency π/6, π/2, and 5π/6, the
three quarterly series X1

T , X
2
T , X

3
T will contain a π/2-frequency unit root. In the case

of a deterministic monthly seasonal cycle it is possible that for particular restrictions
at the spectral coefficients of the deterministic seasonal components at frequencies
π/6, π/2, and 5π/6 (when γ1+γ3+γ5 = 0 and λ1−λ3+λ5 = 0) the quarterly series
X1

T and X
2
T have a seasonal cycle at frequency π/2 but not X

3
T . We discuss this issue

in more detail in section 3.
The different seasonal behavior of the seasons has important implications when

we consider structural breaks at the spectral coefficients. A structural break at one of
the monthly spectral coefficients can affect the seasonal cycles of the quarterly series
in a different way. For example, if a structural break affects λ2, associated to the
π/3-frequency of the monthly process, then only the quarterly parameters Γ12 and Γ22
will be affected by the break but not Γ32.

4

Let us consider the temporal aggregation of a quarterly flexible SI process.

Corollary 4 Let xT be a quarterly SI(d0, d1, d2) process with dk = 0, 1

(1− L)d0(1 + L2)d1(1 + L)d2xT = uT ,

where ut is a stationary and invertible ARMA process. The semi-annual processes
are seasonally integrated, Xs

Υ˜SI(d
∗
0, d1) (s = 1, 2) and YΥ˜SI(d0, d1)

(1− L2)d
∗
0(1 + L2)d1Xs

Υ = Us
Υ,

(1− L2)d0(1 + L2)d1YΥ = VΥ,

where L2Xs
Υ = Xs

Υ−1, and d
∗
0 = max{d0, d2}.

From corollary 4, the semi-annual processes Xs
Υ and YΥ are integrated at the

π-frequency if the quarterly process is integrated at the π/2-frequency. The semi-
annual systematically sampled processes Xs

Υ are integrated at the zero-frequency
if the quarterly process is integrated at the zero or at the π frequency; and the
temporally aggregated semi-annual process YΥ is integrated at the zero-frequency
only if the quarterly process is integrated at the zero-frequency.
As discussed in the preceding lines, systematic sampling through the aliasing effect

confuses different seasonal cycles when these cycles are observed at a longer sampling
interval they are generated. The aliasing effect in many cases prohibits the interpre-
tation of the observable cycles with discrete time series since the information on the
underlying seasonality is lost with systematic sampling. This situation has important
implications for testing seasonal unit roots. When using HEGY-type tests, the rejec-
tion of a particular unit root at the seasons Xs or at the temporally aggregated series
Y implies the rejection of the associated unit roots at the disaggregated process x,

4This issue is discussed in more detail at section 3.
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while the nonrejection of the root implies the nonrejection of at least some of the as-
sociated roots of the disaggregated process. When using CH-type tests, the rejection
of deterministic seasonality at a particular frequency at Xs or Y implies the presence
of some or all the associated disaggregated roots, while the nonrejection implies the
absence of all the associated disaggregated roots. For example, the nonrejection of a
quarterly π-frequency unit root does not guarantee that the monthly process has a
unit root at the π/3 frequency, because a monthly π-frequency unit root can gener-
ate the same quarterly unit root. On the other hand, the rejection of the quarterly
π-frequency unit root implies the rejection of the monthly unit roots at frequencies
π/3, and π.

3 Sequential Test forMonthly Seasonal Unit Roots

The relation of seasonal cycles at different sampling intervals can be used to propose
an alternative approach to test for seasonal unit roots. The precedents of this idea
are Rodrigues and Franses (2003) who propose a sequential test for monthly seasonal
unit roots, and Franses (1994) who proposes a cointegration approach for testing
quarterly unit roots. We focus on the sequential test because its original implemen-
tation has some important limitations. Rodrigues and Franses propose a test which
uses pretesting information on quarterly unit roots at the temporally aggregated se-
ries YT to simplify the monthly test. However, the links between the monthly and
quarterly unit roots are derived by simulation and erroneously it is found a relation
between the monthly 2π/3-frequency unit root and the quarterly π/2-frequency unit
root. In addition, the test is based on the quarterly unit root findings at YT , which
is an inefficient use of the quarterly information contained at the monthly data.
We propose another version of the sequential test. Concretely, we suggest to use

the quarterly seasonal unit root findings at the three systematically sampled time
series X1

T = x3(T−1)+1, X2
T = x3(T−1)+2, and X3

T = x3(T−1)+3 to reduce the set of
monthly frequencies where to test for unit roots.
Let us consider a monthly series generated by a SI(d0, ..., d6) process (dk = 0, 1

for k = 0, ..., 6):

φ(L)α(L)(xt − γ0 − Σ5k=1(γk cos(θkt) + λk sin(θkt))− γ6 cos(πt)− δt) = ut,

where θk = kπ/6, φ(L) is a lag polynomial with all its roots outside the unit circle
and α(L) is a lag polynomial with some or all seasonal unit roots. The sequential
test for monthly seasonal unit roots can be implemented in two steps:
1. Test with a HEGY-type test for the presence of quarterly seasonal unit roots

at the quarterly series X1
T , X

2
T , and X3

T :

Xs
T −Xs

T−4 = Γs0 + Γs1 cos(
π

2
T ) + Λs

1 sin(
π

2
T ) + Γs2 cos(πT ) +∆T

+Π0X
s
0,T−1 +Πα

1X
αs
1,T−1 +Πβ

1X
βs
1,T−1 +Π2X

s
2,T−1 + UT ,
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whereXs
0,T = Xs

T+X
s
T−1+X

s
T−2+X

s
T−3, X

αs
1,T = −Xs

T−1+X
s
T−3, X

βs
1,T = −Xs

T+X
s
T−2,

and Xs
2,T = −Xs

T + Xs
T−1 − Xs

T−2 + Xs
T−3. The test statistics associated to the 0,

π/2, and π frequencies are denoted ts0, F
s
1 , and t

s
2, respectively. Given the asymptotic

uncorrelation of the three semi-annual series under the null, the quarterly tests ts0,
F s
1 , and ts2, are mutually independent across seasons (see Chan and Wei, 1988):

Pr(t1 ∈ C1, t2 ∈ C2, t3 ∈ C3) = Pr(t1 ∈ C1) Pr(t2 ∈ C2) Pr(t3 ∈ C3),

where the realizations of ts fall into the region Cs of the observation space χ which
is common for the three random variables.
1.1 SE1 Test (Conservative strategy)
The rejection of a particular unit root at the three quarterly series Xs

T implies the
rejection of all the associated of monthly unit roots (see table 1). Otherwise, it is
necessary to test monthly for the presence of the monthly unit roots. The individual
level a1 for the quarterly tests have to be determined according to a desired overall
level A1:

Pr(t1 > a1, t
2 > a1, t

3 > a1)=Pr(t1 > a1) Pr(t
2 > a1) Pr(t

3 > a1)=(1− a1)
3=1−A1.

Then, overall levels (A1) 1%, 5% and 10% correspond to the individual levels (a1)
0.334%, 1.6952%, and 3.451%, respectively.5

1.2 SE2 Test
The rejection of a particular quarterly unit root at least at one of the quarterly

series implies the rejection of the associated monthly unit roots. Otherwise, the
associated monthly unit roots need to be tested. The individual level for the quarterly
tests now can be obtained from

Pr(ts > a2, t
s+1 < a2, t

s+2 < a2)=Pr(ts > a2) Pr(t
s+1 < a2) Pr(t

s+2 > a2)=(1−a2)a22=(1−A2)A22.

The overall levels (A2) of 1%, 5% and 10% correspond in this case to individual
levels (a2) 0.01%, 0.239%, and 0.917%, respectively.6

The conservative sequential test SE1 can be used with small samples where size
distortions or power problems may affect the HEGY test, while the SE2 test can
be used with moderate or big samples where only structural breaks may affect the
behavior of the HEGY test. In this case, the rejection of a particular unit root at some
but not allXs

T reveals a possible structural break at a spectral coefficient which affects
the aggregated deterministic components of the quarterly seriesXs

T in a different way.
For example, if we assume that the levels of a monthly series xt is generated by a
seasonal cycle model, a structural break at the monthly parameter λ2− > λ2+ δ will
only affect the quarterly parameters Γ12− > Γ12 −

√
3
2
δ and Γ22 = Γ22 −

√
3
2
δ but not Γ32.

5The critical values for the quarterly individual tests are presented in table 9 at the appendix 3.
6The critical values for the quarterly individual tests of SE2 test are presented in table 10 at the

appendix 3.
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As a second example, a structural break of the type γ2− > γ2 + δ, γ6− > γ6 +
1
2
δ

will only affect the parameter Γ32− > Γ32 + 2δ but not Γ
1
2 or Γ

2
2.

Therefore, testing for quarterly seasonal unit roots at the three sampled series
is a more robust strategy with structural breaks than testing directly at xt for all
the monthly unit roots. Obviously if the structural break affects the deterministic
component of the three series the three quarterly tests will be affected. For example
when there is a structural break at the overall mean γ0− > γ0+δ, the three quarterly
overall means will be affected in the same way Γ10− > Γ10 + δ, Γ20− > Γ20 + δ, and
Γ30− > Γ30 + δ.7,8

2. Test for the presence of the restricted set of monthly unit roots at the auxiliar
regression:eφ(L)α(L)(xt − eγ0 − Σ5k=1(eγk cos(θkt) + eλk sin(θkt))− eγ6 cos(πt)− eδt)

=
X

k∈{0,6}
πjexj,t−1 + X

k∈{1,...,5}
(παkexαk,t−1 + πβkexβk,t) + ut

where9 ex0,t−1 = eS0(L)xt−1, exαk,t−1 = (cos(kπ/6)−L)eSk(L)xt−1, exβk,t−1 = − sin(kπ/6)eSk(L)xt−1,ex6,t−1 = −eS6(L)xt−1, eS0(L) = α(L)(1−L)−1, eSk(L) = α(L)(1−2 cos(kπ/6)L+L2)−1,
and eS6(L) = α(L)(1 + L)−1.

Table 2: Sequential Testing for Monthly Unit Roots
Case Quarterly Unit Roots Monthly Regressand (α(L)xt) Monthly Regressors (k)
A 0, π/2, π ∆12xt 0, 1, 2, 3, 4, 5, 6

B 0, π/2 (1− L3+L6−L9)xt 0, 1, 3, 4, 5

C 0, π (1− L6)xt 0, 2, 4, 6

D π/2, π (1 + L3+L6+L9)xt 1, 2, 3, 5, 6

E 0 (1− L3)xt 0, 4

F π/2 (1 + L6)xt 1, 3, 5

G π (1 + L3)xt 2, 6

Due to the asymptotic uncorrelation of the regressors under the null (Chan and
Wei, 1988) the separate tests for seasonal unit roots can be obtained from the following
regressions:

∆ex0,t = π0ex0,t−1 + ut, (2)

(1− 2 cos θk L+ L2)exk,t = παkexαk,t−1 + παkexαk,t−1 + ut, k = 1, ...5, (3)

(1 + L)ex6,t = −π6ex6,t−1 + ut, (4)

7See the links between Γsj (s = 1, 2, 3) and γk, λk at theorem 1.
8Changing seasonality can be due other reasons that a technological or an institutional change

like a different seasonality depending on the phase of the business cycle, a pattern which cannot
be represented by a SI process or a seasonal cycle model with structural breaks. Other classes of
models like periodic autoregressive models (see Franses, 1996) or nonlinear models (see for example
van Dijk et al., 2003) better represent that changing seasonality.

9The expressions for the regressors of all possible cases are listed in table 2.
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where exk,t = eSk(L)xt. Even though the seasonal unit roots is tested separately at
every seasonal frequency, the possible presence of the unattended unit roots implies
that the original series is filtered from the other unit roots exj,t (j = 0, ..., 6). Filtering
for unattended unit roots is shown to be not neutral for the power of the HEGY test at
the zero-frequency (see Franses, 1991), because the summation filter S0(L) increases
the persistence of the stationary process at the zero-frequency. This important effect
of the summation filter on the behavior of the HEGY test has not been stressed
that much in the literature, and we show in table 3 that a very similar situation is
produced at all the seasonal frequencies. For example a similar effect when filtering for
all possible unattended seasonal unit roots is produced at the frequencies π/6, 5π/6,
and π, a smaller effect at frequencies π/3, and 2π/3, and the smallest one at the
π/2-frequency. The filters applied to the monthly series xt to obtain the regressands
of the separate test for seasonal unit roots implied by restricted monthly regressions
B-G have a smaller impact on the spectrum than the filters of the BM test, and
therefore it is likely that when some quarterly unit roots are rejected this will device
a more powerful monthly test.

Table 3: limω→θk of the filter functions
¯̄̄ eSk(eiω)¯̄̄2for Monthly regression

Cases 0 1 2 3 4 5 6
A 144 144 48 36 48 144 144
B 36 72 − 18 12 72 −
C 36 − 12 − 12 − 36
D − 72 12 18 − 72 36
E 9.0 − − − 3 − −
F − 36 − 9 − 36 −
G − − 3 − − − 9

For example if we do not reject ±1 (0, π) and reject ±i (π/2) either at all (SE1)
or at some (SE2) of the sampled quarterly series, the restricted monthly auxiliar
regression, without transient dynamics or deterministic regressors, reads:

(1−L6)xt = eπ0ex0,t−1 + eπ2exα2,t−1 + eπβ2exβ2,t−1 + eπα4 exα4,t−1 + eπβ4exβ4,t−1 + eπ6ex6,t−1 + ut, (5)

where ex0,t−1, ex6,t−1, exα2,t−1, exβ2,t−1, exα4,t−1, and exβ4,t−1 are given in the appendix 2.
The distributions of the restricted monthly t statistics etj (j = 0, 6) for the presence

of real unit roots and the restricted F statistics eFk (k = 1, ..., 5) for the presence of
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complex unit roots are (see Chan and Wei, 1988):10

etk =⇒
R
WkdWk¡R
W 2

k

¢1/2 (k=0,6),
eFk =⇒

¡R
Wα,kdWα,k+

R
Wβ,kdWβ,k

¢2
2
¡R

W 2
α,k+

R
W 2

β,k

¢k +

¡R
Wβ,kdWα,k-

R
Wα,kdWβ,k

¢2
2
¡R

W 2
α,k+

R
W 2

β,k

¢k (k=1,...,5),

where Wk, Wα,k, and Wβ,k are standard Brownian motions.
In section 4 we evaluate the finite sample properties of the sequential approach,

and in section 5 we apply this method to test for seasonal unit roots at the U.S.
Industrial Production. The sequential testing approach can also be implemented by
using bimonthly rather than quarterly findings on unit roots. The same method can
be extended easily for testing daily or weekly unit roots. The sequential approach
can be also applied to the likelihood ratio tests of Smith and Taylor (1999). We leave
these issues for future research.

4 Finite Sample Properties

We compare the BM test (see Beaulieu & Miron, 1993) with the sequential tests SE1
and SE2. To do so we use the DGP (1−r3L3+r6L6−r9L9)xt = ut which coincide with
case B where r = {1, 0.95, 0.9, 0.85} and ut is a zero-mean Gaussian white noise with
unit variance, t = 1, ..., 12N , with two sample sizes N = 10, 20. 15,000 replications
are used to compute the empirical size and power of the tests. The overall level of
the test for the monthly seasonal unit roots of interest is 5%.
Table 4 contains the empirical size and empirical power of both tests. As seen

in the table the SE2 is slightly oversized, for the sample N=20 with empirical levels
around 6% and 7%. On the other hand, the empirical size of the SE1 test is practically
equivalent to the nominal size.
If we focus on the power, is seen how the sequential tests are more powerful than

the BM test, being the SE2 the most powerful. The gains of power obtained with the
SE2 with respect to the other tests are specially significative at the zero-frequency,
for example when r = 0.85 and N = 10, the power of the SE2 test is 0.57 while
the power of the SE1 test is 0.42 and the power of the BM test is 0.35. The bigger
power of the sequential tests than the BM test can be explained by the fact that
the sequential procedures apply shorter moving average filters to the monthly series
than the annual summation filter applied by the BM approach (see Franses, 1991).
The bigger power of the SE2 with respect to the SE1 can be explained by the same
reasoning.

10The critical values for the restricted versions of the monthly test are presented in the appendix
3. The critical values for case A can be found in Beaulieu and Miron (1993) and Franses and Hobijn
(1997).
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If we look at the seasonal frequencies for the same case, the power gain obtained
with the sequential test SE2 (0.90, 0.89, 0.89 and 087 at frequencies 1,3,4,5) is still
relevant with respect to the BM test (0.78, 0.77, 0.77, and 0.81 at frequencies 1,3,4,5)
and only slightly bigger than the power of the SE1 test (0.85, 0.85, 0.82, and 0.84 at
frequencies 1,3,4,5). The gains of power at the seasonal frequencies can be explained
by similar arguments than the zero-frequency. In addition the seasonal frequency are
more separate from each other, and the monthly auxiliar regression of the sequential
tests have smaller number of parameters than the BM test.

Table 4:Empirical size (r = 1) and power (r 6= 1) of BM and Sequential Tests

(1− r3L3+r6L6−r9L9)xt= ut, t = 1, ..., 12N
r Test 0 1 2 3 4 5 6

N=10
1 BM 0.06 0.06 − 0.05 0.05 0.05 −
1 SE1 0.05 0.05 − 0.05 0.05 0.05 −
1 SE2 0.05 0.05 − 0.05 0.05 0.05 −
0.95 BM 0.11 0.22 − 0.20 0.24 0.20 −
0.95 SE1 0.10 0.23 − 0.24 0.24 0.24 −
0.95 SE2 0.12 0.23 − 0.24 0.24 0.24 −
0.9 BM 0.23 0.56 − 0.51 0.56 0.55 −
0.9 SE1 0.25 0.63 − 0.63 0.61 0.62 −
0.9 SE2 0.33 0.65 − 0.66 0.65 0.63 −
0.85 BM 0.35 0.78 − 0.77 0.77 0.81 −
0.85 SE1 0.42 0.85 − 0.85 0.82 0.84 −
0.85 SE2 0.57 0.89 − 0.89 0.88 0.86 −

N=20
1 BM 0.05 0.05 − 0.05 0.05 0.05 −
1 SE1 0.05 0.05 − 0.05 0.05 0.05 −
1 SE2 0.06 0.06 − 0.06 0.07 0.06 −
0.95 BM 0.25 0.66 − 0.62 0.67 0.62 −
0.95 SE1 0.31 0.72 − 0.72 0.73 0.70 −
0.95 SE2 0.50 0.78 − 0.78 0.80 0.77 −
0.9 BM 0.63 0.99 − 0.99 0.98 0.99 −
0.9 SE1 0.94 1.00 − 1.00 1.00 1.00 −
0.9 SE2 0.99 1.00 − 1.00 1.00 1.00 −
0.85 BM 0.85 1.00 − 1.00 1.00 1.00 −
0.85 SE1 1.00 1.00 − 1.00 1.00 1.00 −
0.85 SE2 1.00 1.00 − 1.00 1.00 1.00 −
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5 Empirical Application

We test for the presence of seasonal unit roots at the monthly US Industrial Produc-
tion (1950M1-2003M11) (xt), by using the BM and the sequential methods proposed
in the paper.
Table 5 presents the results of the BM test, concretely the t-statistic for the

monthly real unit roots and the joint F -statistic for the monthly complex unit roots.
The auxiliar regression for the BM test includes seasonal dummies, a time trend,
and the lag p={1,2,4,5,6,9,12,13,15,16,19,21,24,25,26,28,29,31}.11 The monthly test
does not reject the presence of the nonseasonal unit root and the seasonal unit root
at the π/3-frequency, while rejects at the 5% the presence of seasonal unit roots at
frequencies π/2 and π; and rejects at the 1% the presence of seasonal unit roots at
frequencies 2π/3, π/6, and 5π/6.

Table 5: BM Test for Seasonal Unit Roots at the Monthly Time Series xt
t0 F4 F1 F3 F5 F2 t6
−1.83 21.44∗∗∗ 13.88∗∗∗ 8.17∗∗ 10.01∗∗∗ 2.24 −2.98∗∗

Table 6 presents the results of the quarterly individual tests. The auxiliar regres-
sions of the quarterly tests for seasonal unit roots at Xs

T include seasonal dummies,
time trend and the lag p={8,4,-}.12 The quarterly tests do not reject the presence of
the nonseasonal unit root at all Xs

T , reject at the 1% with the joint F statistic the
π/2-frequency unit root; and do not reject the π-frequency unit root at X1

T and X2
T

but reject at the 1% at X3
T . From the quarterly results we clearly reject the presence

of the monthly unit roots at frequencies π/6, π/2, and 5π/6; we do not reject the
presence of monthly unit roots at the zero or 2π/3 frequencies, and have some doubts
about the presence of monthly unit roots at π/3 or π frequencies

Table 6: Test for Seasonal Unit Roots at the Quarterly Time Series Xs
T

s t0 F1 t2
1 −1.62 31.82∗∗∗ −2.01
2 −2.06 37.36∗∗∗ −2.06
3 −2.80 72.99∗∗∗ −10.50∗∗∗

We apply now the conservative sequential test SE1 (case C of table 2). In this
case, the auxiliar regression contains seasonal dummies, a time trend, and the lag
p={1,2,4,6,7,8,10,11,12,13,15,18,19,21,23,24,25,26, 27,30,31,32,34}. The SE1 does not
reject the nonseasonal unit root and the π/3-frequency unit root while rejects at the
1% the presence of a unit root at frequencies 2π/3 and π (see table 7).

11The augmentation of the monthly auxiliar regression is specified by eliminating from a maximum
lag of 36 periods the less significative lag while the joint significance of all the eliminated lags is
rejected at the 5% level.
12The augmentation of the quarterly auxiliar regression is determined by eliminating from a

maximum lag of 12 quarters the last lag if it is nonsignificant at the 10%.
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Table 7: SE1 Test for Seasonal Unit Roots at the Monthly Series xtet0 eF4 eF1 eF3 eF5 eF2 et6
−1.58 15.48∗∗∗ − − − 4.96 −4.48∗∗∗

Finally, we apply the sequential test SE2 (case E of table 2). Now the auxiliar
regression contains the same deterministic regressors as the BM and SE1 test and
the lag p={1,3,4,6,7,9, 10,12,14,16,18,19,21,22,27,29,30,31,33,34,36}. The SE2 test
does not reject the nonseasonal unit root and rejects at the 1% the presence of the
2π/3-frequency unit root (see table 8).

Table 8: SE2 Test for Seasonal Unit Roots at the Monthly Series xtet0 eF4 eF1 eF3 eF5 eF2 et6
−1.72 36.06∗∗∗ − − − − −

To summarize the results up to this point, all the monthly tests support the pres-
ence of a nonseasonal unit root at the U.S. Industrial Production. Concerning the
seasonal unit roots, even though the BM and SE1 tests do not reject the presence
of a seasonal unit root at the π/3-frequency, a potential structural break may lead
these monthly tests to a erroneous nonrejection. The evidence on a potential struc-
tural break is provided by a clear rejection of the π-frequency unit root at X3

T and
the nonrejection of the same root at the other two quarterly series. This situation
indicates a possible structural break at the parameter λ2, associated to the monthly
π/3-frequency and the quarterly π-frequency of the seasons X1

T and X2
T . The size

of the sample recommends to choose the less conservative SE2 test which is robust
to this kind of structural breaks, and rejects the presence of the π/3-frequency unit
root.
Given the rejection of seasonal unit roots and the nonrejection of the nonseasonal

unit root, we apply the instability test of Hansen (1992) to the regression of the first
differences of the monthly series ∆xt on the spectral regressors of a deterministic
seasonal component:13

∆xt = γ#0 + Σ5k=1(γ
#
k cos(θkt) + λ#k sin(θkt)) + γ#6 cos(πt) + ut,

The joint stability test statistic Lc =14.66 rejects the stability of the parameters of
this regression, and the main responsible of such instability is the coefficient associated
with the spectral coefficients γ#2 associated to the π/3-frequency. This coefficient is in
terms of the original parameters of the monthly auxiliar regression γ#2 =

1
2
γ2+

√
3
2
λ2.

Table 9: Instability Individual Test

γ#0 γ#1 λ#1 γ#2 λ#2 γ#3 λ#3 γ#4 λ#4 γ#5 λ#5 γ#6
0.33 0.55∗∗ 0.14 9.05∗∗∗ 0.76∗∗ 0.34 2.37∗∗∗ 0.17 0.19 0.80∗∗ 0.75∗∗ 0.68∗∗

13This test can only be applied to a stationary regression.
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The individual instability tests add additional evidence on the presence of an
important structural break at the deterministic seasonal component associated to the
π/3-frequency. The instability test also indicates possible structural breaks at other
frequencies, but the much lower values of the statistics suggest that these breaks are
not big enough to confuse the seasonal unit root tests.

6 Conclusion

This paper has discussed the effects of systematic sampling and temporal aggregation
on two relevant linear seasonal models, the seasonal cycle model and the SI model.
It has been shown how the sampling effects on the seasonal cycles determine the
relation among the spectral coefficients of the seasonal cycle model and the relation
among the seasonal unit roots of processes measured at different sampling intervals,
i.e. monthly, bimonthly, quarterly, and semiannually.
The temporal aggregation theory of seasonal cycles has been used to propose

an improved version of the sequential test for monthly unit roots of Rodrigues and
Franses (2003). The proposed method can be considered a serious alternative to the
BM test since in addition to have better finite sample properties it is more robust to
structural breaks at the deterministic seasonal component.
The sequential test has been applied to the monthly US Industrial Production

(1950M1-2003M11), and it has been shown how the seasonal unit root detected at
the π/3-frequency by the BM test is only an artifact of the presence of an important
structural break at the spectral coefficient associated to the π/3-frequency.
The sequential test can be easily extended to the likelihood test of Smith and

Taylor (1999), and to testing seasonal unit roots at higher frequency data like daily
or weekly time series.
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Appendix 1: Proofs of theorems.
Proof of Theorem 1. Substitute the monthly time index t by the bimonthly time
index 2(τ −1)+s for s = 1, 2; by the quarterly time index 3(T −1)+s for s = 1, 2, 3;
and by the semi-annual time index 6(Υ − 1) + s for s = 1, ..., 6, and simplify the
expressions.
Proof of Theorem 3. Since the relation of seasonal cycles (table 1) proves the
relation among different seasonal unit roots, to demonstrate the existence of a system-
atically sampled and a temporally sampled SI process it is necessary to demonstrate
that the corresponding aggregated error terms are invertible for any combination of
seasonal unit roots at the monthly process. Then, let xt be an univariate time series
xt generated by

α(L)xt = ut, (6)

where the S simple reciprocals of the roots of α(z) lie on the unit circle (z1 = eiθ1 ,...,
zS = eiθS) and ut is a white noise process. Assume that some different roots zl =
eiθl 6= zj = eiθj of α(L) when raised to the positive integer m, are equal zml = eimθl =
zmj = eimθj, that is the model has hidden periodicity. Let us denote by n the number
of subsets of unit roots of α(L) linked to a particular cycle mθj (j=1, ..., n), hn is the
number of unit roots in the subsets, and h = Σn

1hn is the total number of hidden unit
roots. Similarly, we use the notation ny, hny , and hy for the summed process with
ny ≤ n and hy ≤ h.
Equation (6) can be written in terms of the reciprocal roots of the AR polynomial:

ΠS
1 (1− eiθjL)xt = ut, (7)

Then, let us multiply both sides of (7) by the lag polynomial ΠS
1 (1−eimθjLm)/ΠS

1 (1−
eiθjL) to obtain the model:

ΠS
1 (1− eimθjLm)xt =

ΠS
1 (1− eimθjLm)

ΠS
1 (1− eiθjL)

ut. (8)

The lags of the AR operator of model (8) are observable at a longer sampling interval
m. Note that (8) is noninvertible.
Let us consider the summed process yt = sm(L)xt, that from (6) reads:

α(L)yt = sm(L)ut. (9)

The summation polynomial sm(L) contains m− 1 unit roots,

sm(L) =

(
(1 + L)Σ

m/2−1
j=1 (1− ei

2jπ
m L)(1− e−i

2jπ
m L), m even

Σ
[m/2]
j=1 (1− ei

2jπ
m L)(1− e−i

2jπ
m L). m odd

(10)

such that α(L) and sm(L) may have S−Sy ≥ 0 common unit roots denoted by β(L):
αy(L)yt = sym(L)ut, (11)
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where αy(L) = α(L)/β(L), and sym(L) = sm(L)/β(L). Then let us multiply (11) by
ΠSy

1 (1− eimθjLm)/ΠSy

1 (1− eiθjL):

ΠSy

1 (1− eimθjLm)yt = ΠSy

1

1− eimθjLm

1− eiθjL
sym(L)ut, (12)

a representation of yt with all the AR lags multiples of m.
Let us introduce hidden periodicity of order m due to h θj-frequency unit roots

(2 ≤ h ≤ m) such that eiθj = eimθj = eiθ
∗
(j = 1, ..., h). Then the model of xt (8) can

be written
ΠS−h
1 (1− eiθjL)ΠS

S−h+1(1− eiθjL)xt = ut. (13)

Again, let us multiply (13) by ΠS−h
1

1−eimθjLm

1−eiθjL
(1−eiθ∗Lm)h

ΠS
S−h+1(1−eiθjL)

:

ΠS−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)hxt = ΠS−h

1

1− eimθjLm

1− eiθjL

(1− eiθ
∗
Lm)h

ΠS
S−h+1(1− eiθjL)

ut. (14)

When h < m the AR and MA polynomials of (14) have a common term (1 −
eiθ

∗
Lm)h−1:

ΠS−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)xt = ΠS−h

1

1− eimθjLm

1− eiθjL

1− eiθ
∗
Lm

ΠS
S−h+1(1− eiθjL)

ut. (15)

When h = m, ΠS
S−h+1(1− eiθjL) = 1− eiθ

∗
Lm and (15) simplifies to:

ΠS−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)xt = ΠS−h

1

1− eimθjLm

1− eiθjL
ut. (16)

We can obtain the model of yt for the case of hidden periodicity in an analogous
way than we have obtained the model of xt.
Periodic AR model and we obtain the multivariate representation of U
The model of the systematically sampled series X without and with hidden pe-

riodicity are obtained by applying systematic sampling to (8) and (16), respectively.
Then, the error terms of the SI bimonthly models are

U s
τ =

·
1− L2

(1− L)d0(1 + L)d6

¸d∗0 · 1− L2 + L4

(1−√3L+ L2)d1(1 +
√
3L+ L2)d5

¸d∗1
·

1 + L2 + L4

(1− L+ L2)d2(1 + L+ L2)d4

¸d∗2
u2(T−1)+s,

Vτ = Σ2s=1U
s
τ ,
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where d∗0 = max{d0, d6}, d∗1 = max{d1, d5}, and d∗2 = max{d2, d4}; the error terms of
the SI quarterly processes are

Us
T =

·
1− L3

(1− L)d0(1 + L+ L2)d4

¸d∗0 · 1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1
·

1 + L3

(1− L+ L2)d2(1 + L)d6

¸d∗2
u3(T−1)+s,

VT = Σ3s=1U
s
T ,

where d∗0 = max{d0, d4}, d∗1 = max{d1, d3, d5}, and d∗2 = max{d2, d6}, and the error
terms of the SI semi-annual processes are

Us
Υ =

·
1− L6

(1− L)d0(1− L+ L2)d2(1 + L+ L2)d4(1 + L)d6

¸d∗0
·

1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1
u6(Υ−1)+s,

VΥ = Σ6s=1U
s
Υ,

where d∗0 = max{d0, d2, d4, d6}, and d∗1 = max{d1, d3, d5}.
By Theorem 1 of Niemi (1984), the systematically sampled and temporally aggre-

gated models are always invertible because the aggregate MA components U s and V
do not contain in any case the unit root component (1− eimθkLm).

Appendix 2: Auxiliar Regressors for the Sequen-
tial Monthly Test
Case Bex0,t−1 = (L+ L2 + L3 + L7 + L8 + L9)xt,

exα1,t−1 = (
1

2

√
3L+

1

2
L2 − 1 +

√
3

2
L4 − 1 +

√
3

2
L5 − L6 +

1

2
L7 +

1

2

√
3L8 + L9)xt,

exβ1,t−1 = (−1
2
L− 1

2

√
3L2 − L3 +

1−√3
2

L4 − 1−
√
3

2
L5 + L6 +

√
3

2
L7 +

1

2
L8)xt,exα3,t−1 = (−L2 + L4 + L5 − L6 − L7 + L9)xt,exβ3,t−1 = (−L+ L3 + L4 − L5 − L6 + L8)xt,exα4,t−1 = (−1

2
L− 1

2
L2 + L3 − 1

2
L7 − 1

2
L8 + L9)xt,

exβ4,t−1 =

√
3

2
(L− L2 + L7 − L8)xt,

exα5,t−1 = (−1
2

√
3L+

1

2
L2 + (

√
3− 1
2

)L4 + (

√
3− 1
2

)L5 − L6 +
1

2
L7 − 1

2

√
3L8 + L9)xt,

exβ5,t−1 = (−1
2
L+

√
3

2
L2 − L3 + (

1 +
√
3

2
)L4 − (1 +

√
3

2
)L5 + L6 − 1

2

√
3L7 +

1

2
L8)xt.
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Case C

ex0,t−1 =
¡
L+ L2 + L3 + L4 + L5 + L6

¢
xt,exα2,t−1 = (

1

2
L− 1

2
L2 − L3 − 1

2
L4 +

1

2
L5 + L6)xt,

exβ2,t−1 = −1
2

√
3(L+ L2 − L4 − L5)xt,

exα4,t−1 = −1
2

√
3
¡
L− L2 + L4 − L5

¢
xt,

exβ4,t−1 = −1
2

√
3
¡
L− L2 + L4 − L5

¢
xt,ex6,t−1 = (−L+ L2 − L3 + L4 − L5 + L6)xt.

Case D

exα1,t−1 = (
1

2

√
3L+

1

2
L2 − 1−

√
3

2
L4 +

1−√3
2

L5 − L6 − 1
2
L7 − 1

2

√
3L8 − L9)xt,

exβ1,t−1 = −1
2
(L+

√
3L2 + 2L3 + (1 +

√
3)L4 + (1 +

√
3)L5 + 2L6 +

√
3L7 + L8)xt,

exα2,t−1 = (
1

2
L− 1

2
L2 − L3 +

1

2
L7 − 1

2
L8 − L9)xt,

exβ2,t−1 = −1
2

√
3
¡
L+ L2 + L7 + L8

¢
xt,exα3,t−1 =

¡−L2 + L4 − L5 − L6 + L7 − L9
¢
xt,exβ3,t−1 = − ¡L− L3 + L4 + L5 − L6 + L8

¢
xt

exα4,t−1 = (−1
2

√
3L+

1

2
L2 − 1 +

√
3

2
L4 +

1 +
√
3

2
L5 − L6 − 1

2
L7 +

1

2

√
3L8 − L9)xt,

exβ4,t−1 = −1
2
(L−√3L2 + 2L3 + (1−√3)L4 + (1−√3)L5 + 2L6 −√3L7 + L8)xt,ex6,t−1 =

¡−L+ L2 − L3 − L7 + L8 − L9
¢
xt.

Case E

ex0,t−1 = (L+ L2 + L3)xt,exα4,t−1 = (−1
2
L− 1

2
L2 + L3)xt,

exβ4,t−1 = −1
2

√
3(L− L2)xt.
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Case F

exα1,t−1 = (

√
3

2
L+

1

2
L2 − 1

2
L4 −

√
3

2
L5 − L6)xt,

exβ1,t−1 = −1
2
(L+

√
3L2 + 2L3 +

√
3L4 + L5)xt,exα3,t−1 =

¡−L2 + L4 − L6
¢
xt,exβ3,t−1 = − ¡L− L3 + L5

¢
xt,exα5,t−1 = (−1

2

√
3L+

1

2
L2 − 1

2
L4 +

1

2

√
3L5 − L6)xt,

exβ5,t−1 = −1
2
(L−

√
3L2 + 2L3 −

√
3L4 + L5)xt.

Case G

exα2,t−1 = (
1

2
L− 1

2
L2 − L3)xt, exβ2,t−1 = −12√3(L+ L2)xt,ex6,t−1 = −(L− L2 + L3)xt.

Appendix 3: Critical Values
Table 10: Critical values for the quarterly statistics of the sequential test SE1

Seasonal dummies Seasonal dummies and time trend
A1 10 20 30 40 50 10 20 30 40 50
0.01 −3.80 −3.80 −3.78 −3.78 −3.81 −4.39 −4.36 −4.33 −4.25 −4.35

t0 0.05 −3.20 −3.21 −3.23 −3.26 −3.26 −3.78 −3.77 −3.79 −3.77 −3.82
0.10 −2.92 −2.95 −2.97 −2.99 −3.00 −3.49 −3.50 −3.53 −3.52 −3.55
0.01 11.22 10.56 10.43 10.31 10.14 11.14 10.46 10.35 10.33 10.08

F1 0.05 8.54 8.08 8.20 8.25 8.08 8.36 8.08 8.19 8.19 8.06
0.10 7.30 7.16 7.16 7.21 7.13 7.18 7.10 7.11 7.19 7.11
0.01 −3.87 −3.74 −3.75 −3.78 −3.74 −3.88 −3.75 −3.75 −3.76 −3.74

t2 0.05 −3.24 −3.22 −3.23 −3.25 −3.24 −3.24 −3.23 −3.23 −3.24 −3.24
0.10 −2.94 −2.95 −2.97 −2.96 −2.99 −2.94 −2.95 −2.97 −2.96 −2.99

Note: CVs generated with xT−xT−4 = εT~i.i.d.N(0,1) T = 1, ..., 4N = {10, 20, 30, 40, 50}.
Overall levels (A1) of 0.01, 0.05 and 0.10 correspond to individual levels of 0.00334, 0.01695,
and 0.03451, respectively. To generate the critical values, 30000 Monte Carlo replications
are used with GAUSS RNDN function of GAUSS for Windows NT/95 Version 3.2.38.
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Table 11: Critical values for the quarterly statistics of the sequential test SE2
Seasonal dummies Seasonal dummies and time trend

A2 10 20 30 40 50 10 20 30 40 50
0.01 −5.22 −5.03 −4.60 −4.68 −4.83 −5.82 −5.19 −5.51 −5.07 −5.14

t0 0.05 −3.94 −3.87 −3.87 −3.89 −3.86 −4.59 −4.43 −4.42 −4.44 −4.31
0.10 −3.41 −3.42 −3.48 −3.45 −3.46 −4.02 −4.00 −4.00 −3.99 −3.96
0.01 19.16 16.42 15.96 14.06 15.35 19.42 16.42 16.28 14.07 15.24

F1 0.05 12.22 11.09 11.08 10.49 10.57 12.13 10.98 11.07 10.48 10.57
0.10 9.71 8.93 9.22 8.96 8.85 9.58 8.90 9.20 8.95 8.81
0.01 −4.77 −4.68 −4.64 −4.61 −4.93 −4.78 −4.68 −4.72 −4.61 −4.88

t2 0.05 −3.90 −3.88 −3.88 −3.86 −3.82 −3.91 −3.86 −3.88 −3.86 −3.83
0.10 −3.43 −3.45 −3.46 −3.43 −3.47 −3.43 −3.45 −3.46 −3.43 −3.46

Note: CVs generated with xT−xT−4 = εT~i.i.d.N(0,1) T = 1, ..., 4N = {10, 20, 30, 40, 50}.
Overall levels (A2) of 0.01, 0.05 and 0.10 correspond to individual levels of 0.0001, 0.00239
and 0.00917, respectively. To generate the critical values, 30000 Monte Carlo replications
are used with GAUSS RNDN function of GAUSS for Windows NT/95 Version 3.2.38.

Table 12: Critical values for the monthly statistics of the restricted case B
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 −3.21 −3.32 −3.36 −3.38 −3.37 −3.73 −3.86 −3.88 −3.90 −3.90et0 0.05 −2.65 −2.77 −2.79 −2.82 −2.84 −3.17 −3.29 −3.32 −3.36 −3.36
0.10 −2.38 −2.47 −2.50 −2.53 −2.53 −2.89 −3.01 −3.04 −3.08 −3.08
0.01 8.14 8.39 8.35 8.73 8.70 8.17 8.38 8.34 8.70 8.70eF1 0.05 5.91 6.25 6.36 6.49 6.46 5.93 6.24 6.35 6.50 6.45
0.10 4.97 5.25 5.37 5.46 5.47 4.95 5.25 5.36 5.46 5.46
0.01 7.97 8.41 8.54 8.59 8.55 7.90 8.41 8.51 8.59 8.53eF3 0.05 5.91 6.22 6.36 6.50 6.55 5.87 6.21 6.35 6.49 6.54
0.10 4.98 5.27 5.39 5.46 5.53 4.95 5.26 5.38 5.46 5.51
0.01 7.97 8.37 8.58 8.55 8.82 7.93 8.34 8.58 8.55 8.81eF4 0.05 5.87 6.23 6.36 6.42 6.52 5.85 6.20 6.36 6.41 6.51
0.10 4.95 5.25 5.38 5.43 5.48 4.92 5.24 5.37 5.42 5.48
0.01 8.02 8.45 8.54 8.51 8.70 7.99 8.44 8.52 8.52 8.70eF5 0.05 5.91 6.27 6.44 6.45 6.52 5.85 6.25 6.44 6.43 6.51
0.10 4.94 5.31 5.41 5.44 5.50 4.91 5.30 5.40 5.43 5.50

Note: CVs generated with (1− L3+L6−L9)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.
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Table 13: Critical values for the monthly statistics of the restricted case C
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 −3.23 −3.33 −3.35 −3.39 −3.42 −3.75 −3.86 −3.87 −3.91 −3.89et0 0.05 −2.67 −2.78 −2.78 −2.82 −2.83 −3.20 −3.31 −3.34 −3.37 −3.36
0.10 −2.38 −2.48 −2.50 −2.53 −2.53 −2.91 −3.03 −3.05 −3.08 −3.08
0.01 8.20 8.39 8.54 8.61 8.79 8.18 8.36 8.50 8.60 8.76eF2 0.05 6.05 6.32 6.38 6.50 6.49 5.99 6.31 6.36 6.49 6.48
0.10 5.00 5.33 5.41 5.49 5.52 4.97 5.32 5.41 5.48 5.51
0.01 8.19 8.41 8.34 8.62 8.70 8.18 8.40 8.31 8.62 8.70eF4 0.05 6.03 6.27 6.39 6.49 6.49 5.98 6.26 6.37 6.47 6.49
0.10 5.03 5.29 5.44 5.47 5.46 4.98 5.28 5.43 5.46 5.45
0.01 −3.24 −3.35 −3.36 −3.38 −3.38 −3.22 −3.35 −3.35 −3.38 −3.38et6 0.05 −2.65 −2.75 −2.79 −2.82 −2.84 −2.65 −2.75 −2.79 −2.82 −2.84
0.10 −2.37 −2.47 −2.50 −2.52 −2.52 −2.37 −2.47 −2.50 −2.52 −2.52

Note: CVs generated with (1− L6)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.

Table 14: Critical values for the monthly statistics of the restricted case D
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 8.07 8.30 8.51 8.64 8.62 8.09 8.32 8.50 8.62 8.61eF1 0.05 5.86 6.19 6.37 6.46 6.44 5.82 6.16 6.36 6.45 6.43
0.10 4.92 5.26 5.38 5.47 5.46 4.88 5.24 5.36 5.46 5.45
0.01 7.95 8.34 8.56 8.53 8.66 7.88 8.32 8.51 8.50 8.65eF2 0.05 5.93 6.23 6.39 6.37 6.51 5.87 6.20 6.37 6.36 6.50
0.10 4.98 5.25 5.39 5.44 5.53 4.92 5.22 5.38 5.42 5.51
0.01 8.01 8.33 8.52 8.61 8.65 7.92 8.27 8.48 8.59 8.63eF3 0.05 5.89 6.24 6.38 6.43 6.53 5.82 6.18 6.35 6.40 6.52
0.10 4.94 5.25 5.38 5.43 5.51 4.89 5.22 5.36 5.41 5.50
0.01 8.06 8.41 8.49 8.59 8.63 8.00 8.37 8.47 8.57 8.62eF5 0.05 5.87 6.26 6.38 6.37 6.45 5.80 6.23 6.35 6.36 6.43
0.10 4.92 5.26 5.39 5.43 5.49 4.86 5.23 5.36 5.42 5.47
0.01 −3.26 −3.32 −3.35 −3.38 −3.38 −3.24 −3.31 −3.34 −3.38 −3.37et6 0.05 −2.68 −2.78 −2.79 −2.82 −2.80 −2.66 −2.77 −2.78 −2.81 −2.80
0.10 −2.39 −2.48 −2.50 −2.54 −2.51 −2.37 −2.47 −2.49 −2.53 −2.50

Note: CVs generated with (1 + L3+L6+L9)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.
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Table 15: Critical values for the monthly statistics of the restricted case E
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 −3.26 −3.34 −3.36 −3.37 −3.45 −3.76 −3.82 −3.89 −3.92 −3.90et0 0.05 −2.69 −2.78 −2.79 −2.82 −2.84 −3.21 −3.28 −3.33 −3.36 −3.38
0.10 −2.39 −2.48 −2.50 −2.52 −2.54 −2.93 −3.01 −3.04 −3.07 −3.10
0.01 8.31 8.48 8.71 8.63 8.71 8.25 8.46 8.71 8.61 8.71eF4 0.05 6.11 6.39 6.51 6.50 6.51 6.06 6.38 6.49 6.49 6.51
0.10 5.12 5.40 5.47 5.47 5.51 5.08 5.39 5.47 5.46 5.51

Note: CVs generated with (1− L3)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.

Table 16: Critical values for the monthly statistics of the restricted case F
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 8.15 8.42 8.72 8.68 8.73 8.10 8.42 8.68 8.64 8.70eF1 0.05 5.99 6.29 6.47 6.46 6.50 5.95 6.29 6.45 6.45 6.49
0.10 4.97 5.30 5.39 5.46 5.49 4.93 5.28 5.37 5.45 5.48
0.01 8.06 8.54 8.61 8.66 8.61 7.99 8.52 8.59 8.63 8.59eF3 0.05 5.98 6.32 6.42 6.49 6.51 5.91 6.30 6.40 6.47 6.50
0.10 5.02 5.30 5.42 5.45 5.51 4.95 5.27 5.40 5.44 5.50
0.01 8.13 8.40 8.73 8.74 8.68 8.08 8.33 8.71 8.72 8.66eF5 0.05 6.03 6.27 6.44 6.47 6.55 5.96 6.24 6.42 6.45 6.53
0.10 5.04 5.30 5.43 5.48 5.52 4.98 5.27 5.42 5.47 5.51

Note: CVs generated with (1 + L6)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.

Table 17: Critical values for the monthly statistics of the restricted case G
Seasonal dummies Seasonal dummies and time trend

10 20 30 40 50 10 20 30 40 50
0.01 8.50 8.57 8.62 8.60 8.59 8.43 8.50 8.58 8.58 8.58eF2 0.05 6.13 6.37 6.43 6.52 6.50 6.07 6.34 6.42 6.51 6.48
0.1 5.16 5.34 5.45 5.54 5.50 5.10 5.30 5.43 5.52 5.48
0.01 −3.22 −3.36 −3.34 −3.38 −3.37 −3.20 −3.35 −3.33 −3.37 −3.36et6 0.05 −2.66 −2.76 −2.79 −2.79 −2.82 −2.64 −2.75 −2.78 −2.79 −2.81
0.10 −2.38 −2.47 −2.51 −2.50 −2.55 −2.37 −2.46 −2.50 −2.50 −2.54

Note: CVs generated with (1 + L3)xt= εt~i.i.d.N(0,1) t = 1, ..., 12N={10,20,30,40,50}.
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