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Abstract

The temporal aggregation effect on seasonal unit roots and its im-
plications for seasonal unit root testing are discussed. The aggregation
effect allows to test with any HEGY-type method for integration at
the harmonic frequencies through the Nyquist frequency of properly
temporally aggregated series.
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1 Introduction

Temporal aggregation and seasonality are related issues since seasonal vari-
ation can only be described with data measured at a particular sampling
interval. Available data may contain seasonal cycles with different periods,
and in this situation the time unit at which some particular seasonal varia-
tion is generated may be different with respect to the time unit the data is
used to test for seasonal properties. For example, aggregated consumption
is only available at a quarterly basis, while some seasonal variation can be
generated inside the quarter. Commonly, the aggregation problem occurs
when the practitioner uses data measured at a wider sampling interval than
it is generated. However, when we focus on seasonality, we show how an ag-
gregation problem, the presence of complex unit roots, can be present when
the practitioner test for integration at a seasonal cycle with data measured
at a narrower interval than the cycle is generated.
The purpose of the paper is to study the effect of temporal aggregation on

flexible seasonally integrated (SI) processes and discuss the implications for
seasonal unit root testing. We focus on monthly and quarterly SI processes,
but the theoretical results can be extended to other sampling frequencies.
The aggregation theory allows us to propose a simple procedure for HEGY-
type testing for unit roots at the harmonic frequencies that avoids complex
unit roots.
The outline of the paper is as follows. In section 2 the effect of temporal

aggregation on unit root processes is discussed with special attention to SI
processes. In section 3 we describe an alternative approach for testing sea-
sonal unit roots at the harmonic frequencies that can be applied to HEGY
type tests (Hyllebert et al., 1990). In section 4 a Monte Carlo simulation
compares the finite sample properties of the alternative approach for the
standard HEGY test. Finally section 5 concludes the paper. The proofs are
presented in the appendix.
A word on notation. xt denotes the disaggregated time series. XT ≡ xmT

denotes a systematically sampled (SS) series where m is a finite positive in-
teger that denotes the order of temporal aggregation. xat ≡ Sm(L)xt denotes
an overlapping summed series where Sm(L) = 1 + L + · · · + Lm−1 is the
summation filter. Xa

T ≡ Sm(L)xmT = xamT denotes an average sampled (AS)
series. Systematic sampling is typically applied when yt is a stock variable,
while average sampling is applied to flow and stock variables as well.

2



2 Temporal Aggregation of Seasonal Unit Root
Processes

In this section we discuss the temporal aggregation effect on a flexible SI
process. We focus on two particular cases, the monthly and the quarterly
flexible SI processes.1 The empirical evidence has found in many situations
that a process with some but not all the seasonal unit roots describes real
macroeconomic time series better than the seasonal random walk (Hylle-
berg et al., 1993). However, the literature on temporal aggregation of sea-
sonal processes has focused on the multiplicative seasonal ARIMA model,
that includes the seasonal random walk as a particular case (see Wei, 1978).
Thus, there is no study on the effects of temporal aggregation on flexible SI
processes, and we try to fill this gap here.2

We first discuss the temporal aggregation of AR models that contain
single unit roots at different frequencies, and then specialize the aggregated
model to the particular cases of monthly and quarterly SI processes. To do
so, it is assumed that a univariate time series xt measured at a sampling
interval of length ∆t is generated by

φp(L)ϕd(L)xt = εt, (1)

where the d simple3 reciprocals of the roots of ϕd(z) lie on the unit circle
(z1 = eiθ1 ,..., zd = eiθd), the p reciprocals of the roots of φp(z) lie inside the
unit circle (zd+1, ..., zd+p, with |zi| < 1) and εt is a white noise process. The
stochastic process (1) is denoted an ARI(p, d).4

Let us allow the presence of hidden periodicity in model (1). Generally,
SI processes are models with hidden periodicity at different frequencies.5 For

1Other situations of temporal aggregation like day-to-week, or week-to-quarter aggre-
gation can be analyzed with our approach.

2Franses and Boswijk (1996) analyzed the aggregation effect on the periodic integrated
model.

3We do not study double or fractionally seasonal integrated processes.
4Note that a θ-frequency unit root generates persistent cycles of 2π/θ t-periods. The

relevant cycles for economic time series are seasonal cycles, θk = 2kπ/S, k =1,...,[S/2],
business cycles θ ≤ π/S, and the long-run component θ0 = 0. Since the coefficients of
the lag polynomial ϕ(L) are real, all the complex unit roots (θi 6= 0, π) come in complex
conjugate pairs.

5A model is said to be without hidden periodicity of order m if zmj = zml iff zj = zl
∀j, l (see Stram and Wei, 1986).
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example, a quarterly seasonal random walk∆4xt = εt, has hidden periodicity
of order 2 at two frequencies because the roots±1 and±i are equal when they
are raised power 2 (12 = (−1)2, and i2 = (−i)2) and has hidden periodicity
of order 4 at one frequency because all the unit roots are equal after being
raised power 4 (14 = i4 = (−1)4 = (−i)4). To include hidden periodicity
in the analysis we denote by n the number of subsets of unit roots linked
to a particular cycle mθj (j=1, ..., n), hn is the number of unit roots in any
of these subsets, and h = Σn

1hn is the total number of hidden unit roots.
Similarly, we use the notation na, hna, and ha for the summed process with
na ≤ n and ha ≤ h. The next lemma presents the representation of the SS
process XT = xmT and the AS process Xa

T = Sm(L)xmT = xamT for finite
temporal aggregation order m.

Lemma 1 Let xt be an ARI(p, d) model with simple reciprocal roots inside
or on the unit circle, hidden periodicity of order m for h unit roots and d−da
common roots with Sm(L) :
i) The SS process XT follows the ARIMA(p∗, d∗, q∗) :

Φp∗(L
m)Ψd∗(L

m)XT = Θq∗(L
m)ET ,

where Φp∗(L
m) = Πp∗

1 (1− zmj L
m), Ψd∗(L

m) = Πd∗
1 (1− eimθjLm) with p∗ = p,

d∗ = d−h and q∗ = [p+d−h−(p+d)/m].
ii) The AS process Xa

T follows the ARIMA(p∗∗, d∗∗, q∗∗) :

Φa
p∗∗(L

m)Ψa
d∗∗(L

m)Xa
T = Θa

q∗∗(L
m)Ea

T ,

where Φa
p∗∗(L

m) = Πp∗∗
1 (1−zmj Lm),Ψa

d∗∗(L
m) = Πd∗∗

1 (1−eimθjLm) with p∗∗=p,
d∗∗=da-ha, and q∗∗=[p+ 1 + da − ha − (p+ 1 + da)/m].

Proof. See in the appendix.
The dynamic properties of aggregated models are determined by the recip-

rocal roots of the ARI lag polynomial. Thus, a neater description of the
aggregation effect is obtained from the aggregated reciprocal roots. From
lemma 1 the reciprocal roots of the aggregated models zmj are equal to the
reciprocal roots of the disaggregated model, zj, up to m, the length of the
sampling interval.
From DeMoivre’s theorem zmj can be decomposed as follows:

zm = |z|m eimθ. (2)
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Therefore, the effect of temporal aggregation on the reciprocal roots can be
decomposed into a effect on the modulus (|z|m) and a effect on the frequency
(eimθ). As m increases, the modulus of the roots inside the unit circle de-
creases, while the modulus of the unit roots is invariant. For large m, the
modulus of the stationary roots will be very close to zero and the unit root
properties will dominate the dynamics of the process. This will be reflected
in a simplification of the stationary part of the model, with smaller orders
than those predicted by the theoretical aggregated models p∗, p∗∗, q∗, and
q∗∗.
At the same time temporal aggregation changes the frequencies of most

of the roots. Concretely, the cycle of the aggregated root does not change
if the associated disaggregated root corresponds to a frequency not bigger
than the Nyquist frequency (θ ≤ π/m), while the cycle of the aggregated
root changes when the disaggregated root is placed at a frequency bigger
that the Nyquist frequency (θ > π/m) such that the aggregated cycle has a
longer period than the disaggregated cycle. In other words, a cycle smaller
than 2m t-periods does not really disappear with temporal aggregation but
appears at the aggregated process with a lower frequency. This is called the
aliasing effect in the spectral analysis literature (see Koopmans, 1974). The
aliasing can lead the practitioner to find spurious seasonal integration (see
Granger and Siklos, 1995). The frequency effect simplifies the aggregated
model through the AR component and for large m reduces the order of the
MA polynomial in comparison with the smallest m. The aggregation effect
on the reciprocal roots suggests than in practice the temporally aggregated
models may be simpler than ARIMA(p∗, d∗, q∗) (or ARIMA(p∗∗, d∗∗, q∗∗))
models.
Let us discuss the aggregation effect on a particular case of (1), a monthly

flexible SI(d0, ..., d6) process

(1− L)d0Π5k=1
£
(1− eiθkL)(1− e−iθkL)

¤dk (1 + L)d6xt = εt

with θk = kπ/6, dk = 0, 1 for all k, and εt is a stationary and invertible
ARMA process.
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Proposition 2 Let xt be a monthly SI(d0, ..., d6) process.
i) The bimonthly processes are XT˜SI(d

∗
0, d

∗
1, d

∗
2, d3)

(1− L2)d
∗
0(1− L2 + L4)d

∗
1(1 + L2 + L4)d

∗
2(1 + L2)d3XT = ET ,

and Xa
T˜SI(d0, d

∗
1, d2, d3)

(1− L2)d0(1− L2 + L4)d
∗
1(1 + L2 + L4)d

∗
2(1 + L2)d3Xa

T = Ea
T ,

where L2XT = XT−1, L2Xa
T = Xa

T−1, d
∗
0 = max{d0, d6}, d∗1 = max{d1, d5},

and d∗2 = max{d2, d4}.
ii) The quarterly processes are XT˜SI(d

∗
0, d

∗
1, d

∗
2)

(1− L3)d
∗
0(1 + L6)d

∗
1(1 + L3)d

∗
2XT = ET ,

and Xa
T˜SI(d0, d

∗
1, d

∗
2)

(1− L3)d0(1 + L6)d
∗
1(1 + L3)d

∗
2Xa

T = Ea
T ,

where L3XT = XT−1, L3Xa
T = Xa

T−1, d
∗
0 = max{d0, d4}, d∗1 = max{d1, d3, d5},

and d∗2 = max{d2, d6}.
iii) The semi-annual processes are XT˜SI(d

∗
0, d

∗
1)

(1− L6)d
∗
0(1 + L6)d

∗
1XT = ET ,

and Xa
T˜SI(d0, d

∗
1)

(1− L6)d0(1 + L6)d
∗
1Xa

T = Ea
T ,

where L6XT = XT−1, L6Xa
T = Xa

T−1, d
∗
0 = max{d0, d2, d4, d6}, and d∗1 =

max{d1, d3, d5}.

Proof. See in the appendix.6

As seen in proposition 2, the orders of integration of the seasonal frequen-
cies in the aggregated model d∗1, ...d

∗
S/(2m) (m = 2, 3, 6) depend on various

orders of seasonal integration of the disaggregated model, and this depen-
dency is the same for both schemes of aggregation.7 ,8 Specifically, the order

6See the expression of the error terms ET and Ea
T in the appendix.

7The Monte Carlo results of Granger and Siklos (1995) are in contradiction to this
common effect. The poor performance of the seasonal unit root tests can explain this
situation.

8The only exception is the π-frequency unit root at the systematically sampled bi-
monthly process that depends only on the monthly π/2-frequency unit for both types of
aggregation.
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of integration at a particular ‘aggregated’ frequency depends on the order of
integration of the disaggregated component that generates the same cycle and
on the orders of integration of the m− 1 disaggregated components affected
by the aliasing. All orders of seasonal integration are at most one because of
the hidden periodicity effect. For example, the quarterly π/2-frequency unit
root is linked to the monthly unit roots π/6, π/2, and 5π/6. The monthly
π/6 unit root generates the same cycle as the quarterly π/2 unit root, while
the aliasing effect turns the monthly unit roots π/2 and 5π/6 into a quarterly
π/2 unit root. Then, the quarterly model is affected by the seasonal aliasing
problem when the monthly model does not contain the π/6-frequency unit
root but contains a unit root at π/2 or 5π/6. The seasonal aliasing problem
is common for both aggregation schemes because the summation filter does
not cancel the roots affected by seasonal aliasing.
The differential effect for the aggregation schemes takes place at the zero-

frequency d∗0. In the case of systematic sampling the zero-frequency compo-
nent is linked to the monthly zero-frequency and other monthly seasonal unit
roots, while for average sampling the aggregated zero-frequency is only linked
to the disaggregated zero-frequency d0, because the summation filter Sm(L)
eliminates all unit roots affected by the zero-frequency aliasing. For exam-
ple, the monthly 2π/3 unit root turns into a zero-frequency unit root after
systematic sampling to a quarterly process, and into a covariance stationary
component when the process is quarterly averaged.
The aliasing effect obscures the seasonal unit root findings and allows

extending the conclusions when a seasonal unit root is rejected with aggre-
gated data. For example, the non-rejection of a quarterly π/2-frequency unit
root does not guarantee that the monthly process has a unit root at the π/6
frequency. However, the rejection of the quarterly π/2 unit root implies the
rejection of the monthly unit roots π/6, π/2 and 5π/6.
Let us consider the temporal aggregation of a quarterly flexible SI(d0, d1, d2)

process (1 − L)d0(1 + L2)d1(1 + L)d2xt = εt, where εt is defined as in the
monthly case.

Corollary 3 Let xt be a quarterly SI(d0, d1, d2) process.
The semi-annual processes are XT˜SI(d

∗
0, d1)

(1− L2)d
∗
0(1 + L2)d1XT = ET ,

and Xa
T˜SI(d0, d1)

(1− L2)d0(1 + L2)d1Xa
T = Ea

T ,
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where L2XT = XT−1, L2Xa
T = Xa

T−1, and d
∗
0 = max{d0, d2}.

Note from this corollary that the aggregation of quarterly SI processes
is not affected by seasonal aliasing because the semi-annual π-unit root is
only linked to the quarterly π/2-unit root. However, as in the monthly case,
zero-frequency aliasing can occur with the systematic sampling of quarterly
series. For example, zero-frequency integration of the SS annual process
depends on d0, d1, d2. Obviously, zero-frequency aliasing does not occur with
average sampling, and therefore the average sampling from a quarterly series
is not affected by the aliasing problem.
Table 1 presents the relationship between the seasonal frequencies of

monthly, bimonthly, quarterly, semi-annual and yearly models. The single
line separates the non aliased frequencies from the aliased frequencies below.
As discussed in the preceding paragraphs, seasonal aliasing can occur when
monthly or bimonthly series are temporally aggregated. For example, if a
monthly series does not contain the π/6 and π/3 unit roots and contains the
5π/6 and π unit roots, then the quarterly series will show the same behavior
as if the monthly process contained the unit roots at frequencies π/6 and
π/3.

Table 1: Monthly Seasonal Cycles and Sampling Interval
Month Bimonth Quarter Half-year Year
ω P 1 2ω P 2 3ω P 3 6ω P 6 12ω P 12

0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞
π/6 12 π/3 12 π/2 12 π 12 2π ∞
π/3 6 2π/3 6 π 6 2π ∞ 4π ∞
π/2 4 π 4 3π/2 12 3π 12 6π ∞
2π/3 3 4π/3 6 2π ∞ 4π ∞ 8π ∞
5π/6 2.4 5π/3 12 5π/2 12 5π 12 10π ∞
π 2 2π ∞ 3π 6 6π ∞ 12π ∞
7π/6 2.4 7π/3 12 7π/2 12 7π 12 14π ∞
4π/3 3 8π/3 6 4π 6 8π ∞ 16π ∞
3π/2 4 3π 4 9π/2 12 9π 12 18π ∞
5π/3 6 10π/3 6 5π ∞ 10π ∞ 20π ∞
11π/6 12 11π/3 12 11π/2 12 11π 12 22π ∞

P 1: Monthly period in months; P 2: Bimonthly period in months; P 3:
Quarterly period in months; P 6: Semi-annual period in months; P 12:
Annual period in months
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To summarize, when seasonal unit root tests are applied to systematically
sampled series, it is possible to obtain spurious integration at all the frequen-
cies, while if these tests are applied to average sampled series it is possible
to obtain a spurious seasonal integration but not spurious zero-frequency in-
tegration. The temporal aggregation of monthly time series is potentially
affected by both types of aliasing while the aggregation of quarterly series is
only affected by zero-frequency aliasing.

3 Testing for all Seasonal Unit Roots With a
Standard Unit Root Test

The common practice when testing for seasonal unit roots is testing for inte-
gration at the zero-frequency, at the [S/2]− 1 harmonic frequencies, and at
the Nyquist frequency π/∆t with data measured at one sampling interval.
Standard unit root tests apply in the case of the zero and the Nyquist fre-
quency, which are real unit roots, while for the harmonic frequencies, a joint
test is necessary because the presence of a pair of conjugate complex roots
(Hylleberg et al., 1990).
Recently, Burridge and Taylor (2001a) have shown how the complex unit

root test displays a shift in the limiting distribution in the presence of cer-
tain types of periodic heteroscedasticity, a common property of some eco-
nomic time series,9 while the real unit root tests are unaffected. To solve
this problem, Burridge and Taylor (2001a) propose an involved procedure to
size-correct the test. A simpler solution is proposed in the following lines.
The aggregation theory developed in the preceding section implies that any
complex unit root test at a particular sampling interval has its real unit root
test counterpart with proper temporally aggregated data. The unit roots at
frequencies π/m correspond to the Nyquist frequency with sampled data of
order m, so it is possible to interpret these unit roots in terms of cycles with
a length defined at the sampling interval m. As seen in table 1, a monthly
π−frequency unit root is a unit root with a period of two months, a monthly
π/2 unit root behaves as a unit root with a period of two bimonths, a monthly
π/3 unit root behaves as a unit root with a period of two quarters, and a
monthly π/6 unit root behaves as a unit root with a period of two half-years.
The monthly unit roots 2π/3 and 5π/6 are more difficult to interpret in terms

9Many references are given in Burridge and Taylor’s paper.
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of the sampling interval since they generate periods of 2.4 and 3 months re-
spectively. In a similar way a quarterly π-frequency unit root is a unit root
with a period of two quarters, and a quarterly π/2-unit root is a unit root
with a period of two half-years.
On the basis of the relationship between the seasonal unit roots at dif-

ferent sampling intervals, if one tests for a seasonal complex unit root at the
longest sampling interval the seasonal cycle is observable without aliasing the
test can be performed at the Nyquist frequency. Otherwise, if the seasonal
cycle is tested with data measured at some narrower sampling interval then
the seasonal root is allocated at an harmonic frequency as a pair of complex
conjugate unit roots. In the next subsections we describe how to apply this
approach to test for quarterly unit roots and we discuss the problems to
extend the procedure to the monthly case.

3.1 Testing for Quarterly Seasonal Unit Roots

The standard quarterly HEGY approach without deterministic terms or tran-
sient dynamics is based on the auxiliar regression

xt − xt−4 = π0x0,t−1 + πα1x
α
1,t−1 + πβ1x

β
1,t−1 + π2x2,t−1 + εt, (3)

where x0,t ≡ xt+xt−1+xt−2+xt−3, xα1,t ≡ −xt−1+xt−3, x
β
1,t ≡ xt−xt−2, and

x2,t ≡ xt− xt−1+ xt−2− xt−3 are asymptotically uncorrelated (see Hylleberg
et al., 1990). The HEGY procedure tests for the roots 1 and -1 with a t-test
of πj = 0 against πj < 0 (j = 0, 2), and tests for the complex conjugate pair
±i with a F -test for πα1 = πβ1 = 0.

10 All these statistics have non standard
distributions related to the Dickey-Fuller distribution.11

From the orthogonality of the HEGY regressors, there is no efficiency gain
by testing for particular unit roots using all the HEGY regression or only by

10This can be done alternatively by a sequential t−test first for πβ1=0 against πβ1 6= 0
and then, if the null is accepted, for πα1 = 0 against π

α
1 < 0. However, the joint test is pre-

ferred because its better properties, specially in the presence of periodic heteroscedasticy
(see Burridge and Taylor, 2001a), and higher order correlation (see Burridge and Taylor,
2001b).
11Another hypothesis of interest are, the null of all seasonal unit roots against some

stationary seasonal roots and the null of all unit roots against some stationary roots.
These hypothesis can be tested with F -tests (see Ghysels et al., 1994). Finally, the null
of all unit roots against all stationary roots, can be tested using the individual tests (see
Ghysels and Osborn, 2001).
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using the regressors of interest. This property can be used together with our
aggregation results to propose an alternative way to test for seasonal complex
unit roots through the Nyquist frequency of semi-annual data. Concretely,
the quarterly complex unit roots ±i can be tested with a t-test for π1 = 0 vs
π1 < 0 at the semi-annual regression

∆4XT = π1X1,T−1 +ET , (4)

where XT = x2T , X1,T = XT −XT−1, L2XT = XT−1 and π1 = πα1 . From (3),
ET=π

β
1x2T−1 + ε2T is serially uncorrelated and asymptotically uncorrelated

with X1,T−1.12,13 This procedure can be applied to HEGY-type tests (see
Hylleberg et al., 1990; Breitung and Franses, 1998; and Smith and Taylor,
1998, 1999).
The preceding approach has assumed that εt is i.i.d. However, in practice

it is necessary to deal with the transient dynamics, because the misspecifica-
tion of the transient dynamics will affect seriously the behavior of the HEGY
test. There are different approaches to deal with transient dynamics. The
standard approach is to specify a finite order AR component to the short-run
dynamics and test for seasonal unit roots in the augmented regression (see
Hylleberg et al., 1990; Smith and Taylor, 1998, 1999):

φ(L)∆4xt = π0x0,t−1 + πα1x
α
1,t−1 + πβ1x

β
1,t−1 + π2x2,t−1 + εt.

This procedure is not suited for our approach since there is an important loss
of valuable information for the inference on the semi-annual short-run dy-
namics due to systematic sampling (see Wei, 1989). A second approach is to
treat non-parametrically the short-run dynamics (see Breitung and Franses,
1998). However, the estimation of the long-run variance is affected by the
same problem than the standard HEGY approach since the long-run vari-
ance is essentially a short-run parameter. A third approach is proposed by
Psaradakis (1997) consisting on prewhitening the time series before to ap-
ply the HEGY test. The prewhitening approach is the best option for our
12We could use alternatively AS semi-annual series Xa

T = xa2T that is not affected by
seasonal aliasing at this frequency. However, the summation filter is not necessary in
this case because a π-frequency unit root at semi-annual series is only linked to the π/2-
frequency unit root at the quarterly series. Moreover, from lemma 1, average sampling
introduces a MA component higher-order than systematic sampling does, such that the
semi-annual auxiliar regression would require a longer augmentation for AS series than for
SS series.
13Franses and Hobijn (1997) provide critical values for the semi-annual HEGY test.
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approach since the transient dynamics are estimated with quarterly time se-
ries. Then, including transient dynamics in the model, our approach can be
applied in three steps:

1. Prewhitening. Filter the quarterly time series xt from short-run dynam-
ics (yt = φ(L)xt). Specify the augmentation under the null by selecting
the truncation lag with sequential testing (see Ng and Perron, 1995).14

2. Quarterly Real Unit Root Tests. Test for unit roots at the zero and π
frequency at the filtered quarterly series yt.

3. Quarterly π Unit Root Test. Test for a unit root at the π frequency at
the semi-annual systematically sampled filtered series YT = y2T .

3.2 Testing for Monthly Seasonal Unit Roots

The monthly HEGY test is developed by Beaulieu and Miron (1993) and
Taylor (1998). Let us denote by yt, a monthly time series filtered from short-
run dynamics without deterministic terms. Then the auxiliar regression for
the monthly HEGY test reads:

∆12yt = π0y0,t−1 + Σ51(π
α
j y

α
j,t−1 + πβj y

β
j,t−1) + π6y6,t−1 + εt,

where y0,t, yαj,t, y
β
j,t, and y6,t are given in Smith and Taylor (1999).

As in the quarterly case, the seasonal complex unit roots can be tested
with different real unit root tests applied to aggregated data. The monthly
π/2 unit root can be tested with a t-test for π3=0 vs π3 < 0 at the bimonthly
regression:

∆12YT = π3Y3,T−1 +ET ,

where YT = y2T , Y3,T=YT − YT−1 + YT−2 − YT−3 + YT−4 − YT−6, and L2YT =
YT−1. The monthly π/3 unit root can be tested with a t-test for π2=0 vs
π2 < 0 at the quarterly regression

∆12Y
f
T = π2Y

f
2,T−1 +ET ,

14This truncation lag estimator appears to be the best method in Psaradakis’ Monte
Carlo. However, a deeper analysis of the choice of prewhitening method for the HEGY
test should be done.
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where Y f
T =y3T + y3T−1, Y

f
2,T=Y

f
T − Y f

T−1 + Y f
T−2 − Y f

T−3, and L3Y f
T = Y f

T−1.
In this case, it is necessary to remove the π-frequency unit root from the
monthly series before systematic sampling to avoid the possibility of aliasing
at the quarterly π-frequency.15 The monthly π/6 unit root can be tested
with a t-test for π1=0 vs π1 < 0 at the semi-annual regression

Y f
T − Y f

T−2 = π1Y
f
1,T−1 +ET ,

where Y f
T =y6T+

√
3y6T−1+2y6T−2+

√
3y6T−3+y6T−4, Y

f
1,T=Y

f
T −Y f

T−1, and L
6Y f

T =

Y f
T−1. The remaining harmonic frequencies 2π/3 and 5π/6 can also be tested
with real unit root tests. However, in this case there is an important reduc-
tion of relevant cycles with temporal aggregation, such that it is likely that
the aggregated tests will have worse properties than those of the standard
approach.16

4 Monte Carlo experiment

In this section, we analyze the size and power of the semi-annual test for the
π-frequency unit root (t21) in comparison with the quarterly joint F -test for
the π/2-frequency unit root (F 1

1 ). We also provide the quarterly t-test for a
unit root a the zero (t10) and π (t12) frequencies to compare the properties of
the t-test at the different sampling intervals. We consider similar generating
mechanisms as those considered in other simulation studies (see Ghysels et
al., 1994; Burridge and Taylor, 2001a) to consider some particular features,
like near cancellation or periodic heteroscedasticy, that are likely to affect
the HEGY test.
The general DGP is given by

ϕ(L)xt = θ(L)σsεt, t = 1, ..., T,

where ϕ(L) ∈ {1−L4;1− 0.41L4; 1− 0.52L4; 1− 0.66L4; 1− 0.82L4}, θ(L) ∈
{1;1+0.64L2}, σ =(σ1, σ2, σ3, σ4)∈{(1,1,1,1);(5,1,1,1);(5,5,1,1);(5,1,5,1)}, and
εt˜iidN(0,1). The different AR polynomials ϕ(L) allow us to compare the
empirical power, the different MA polynomials θ(L) allow to analyze the em-
pirical size when there is a near cancellation of the complex unit root, while

15Note that the needed filter is different from the summation filter S3(L).
16Critical values for all these tests are provided by Franses and Hobijn (1997).
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the different variances of the errors σs allow to compare the effects of periodic
heteroscedasticy on the finite sample distribution.
The quarterly statistics are computed without deterministic terms. We

consider no augmentation for almost all DGPs with the exception of a half-
year lag for the near cancellation DGP (∆4xt = 1 + 0.64L

2εt) for both the
quarterly and semi-annual tests. 10,000 repetitions of the experiment are
used to estimate the size and power of the different statistics based on the 5%
level. The critical values were generated empirically with 50,000 replications.
The experiment is run with three different sample sizes N = {10, 20, 30}.
Table 2 provides the empirical size for different DGPs where we pay at-

tention to the near cancellation of the complex unit root and the presence
of periodic heteroscedasticity. First of all, let us consider the near cancella-
tion of the complex unit root (xt= xt−4+εt+0.64εt−2). As seen in the table,
all statistics are size biased, particularly those whose test for the complex
unit root with quarterly series (F 1

1 ) or with semi-annual series (t
2
1). The

semi-annual test presents a slightly bigger bias than the quarterly test, and
therefore the near cancellation problem is not solved by using our approach.
A different situation is found when we consider periodic heteroscedasticity.
In this case, the limiting distribution of the HEGY statistics associated to
the harmonic frequencies may display a shift while the statistics associated
to real unit roots are unaffected (see Burridge and Taylor, 2001a). These
authors propose a laborious procedure to solve the bad performance of the
F test. Our simulations results suggest that our method can be consider as
an alternative method to overcome the problem. As seen in the table, while
the quarterly F -test is biased for the cases σ = (5,1, 1, 1) and σ = (5, 1, 5, 1),
the semi-annual statistic is not affected by the different variances of the error
term.
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Table 2: Empirical size of HEGY statistics

xt= xt−4+εt+0.64εt−2 xt= xt−4+σsεt, σ1= 5
N t10 F 1

1 t12 t21 t10 F 1
1 t12 t21

10 0.108 0.125 0.103 0.166 0.048 0.067 0.045 0.049
20 0.087 0.121 0.084 0.175 0.046 0.060 0.048 0.049
30 0.080 0.118 0.080 0.172 0.048 0.056 0.050 0.047

xt= xt−4+σsεt, σ1= σ2 = 5 xt= xt−4+σsεt, σ1= σ3 = 5
N t10 F 1

1 t12 t21 t10 F 1
1 t12 t21

10 0.051 0.054 0.048 0.044 0.053 0.067 0.051 0.047
20 0.047 0.051 0.050 0.053 0.048 0.063 0.049 0.052
30 0.049 0.050 0.053 0.050 0.051 0.067 0.049 0.046

Note: t10: quarterly t-test for a unit root a the zero-frequency; F 1
1 :

quarterly F -test for a unit root a the π/2-frequency; t12: quarterly t-
test for a unit root a the π-frequency; t21: semi-annual t-test for a unit
root a the π-frequency. N : span of the sample measured in years.

If we compare the empirical power of the statistics in table 3, we appre-
ciate how the semi-annual test displays a similar power than the quarterly
t-statistics, a power that is slightly smaller than the F -test. However, the
power difference decreases with the sample size.

Table 3: Empirical power of HEGY statistics

xt= 0.410xt-4+εt xt= 0.522xt-4+εt
N t10 F 1

1 t12 t21 t10 F 1
1 t12 t21

10 0.634 0.811 0.616 0.590 0.463 0.630 0.454 0.437
20 0.973 0.999 0.979 0.960 0.878 0.984 0.891 0.860
30 0.999 1.000 1.000 0.998 0.992 1.000 0.993 0.988

xt= 0.656xt−4+εt xt= 0.815xt−4+εt
N t10 F 1

1 t12 t21 t10 F 1
1 t12 t21

10 0.280 0.367 0.271 0.270 0.134 0.154 0.135 0.132
20 0.634 0.849 0.640 0.612 0.259 0.372 0.267 0.257
30 0.890 0.986 0.894 0.875 0.429 0.632 0.434 0.429

See Note of Table 2.
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5 Conclusion

We have discussed the relationship between seasonal unit roots at different
sampling interval, focusing on monthly and quarterly seasonal unit roots.
We have shown how the aliasing affects both the zero-frequency unit root
and the seasonal unit roots of temporally aggregated models, such that mis-
leading conclusions on the presence of unit roots can be obtained with tem-
porally aggregated time series. The aggregation theory allows us to design a
HEGY-type test for complex unit roots through real unit roots of properly
aggregated time series. Obviously, the method implies an important loss of
valuable information for the short-run dynamics such that it is necessary to
prewhiten the quarterly series, but it does not imply a loss of information for
the seasonal cycles of interest since the number of relevant seasonal cycles
are invariant with the data transformations applied. A very simple Monte
Carlo experiment shows how the usefulness of the alternative approach when
the data presents certain types of periodic heteroscedasticity, as long as the
sample is big enough. The proposed procedure is better suited for the quar-
terly case than for the monthly case and can be extend to more powerful
HEGY-type tests (see Smith and Taylor, 1999). In addition, our further re-
search will be oriented to Canova and Hansen (1995)’s type tests and seasonal
cointegration analysis.
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Appendix
Proof of Lemma 1. Equation (1) can be written in terms of the reciprocal
roots of the AR polynomial:

Πp
1(1− zjL)Π

d
1(1− eiθjL)xt = εt, (5)

Then, let us multiply both sides of (5) by the lag polynomialΠp
1(1−zmj Lm)Πd

1(1−
eimθjLm)/Πp

1(1− zjL)Π
d
1(1− eiθjL) to obtain the model:

Πp
1(1− zmj L

m)Πd
1(1− eimθjLm)xt =

Πp
1(1− zmj L

m)Πd
1(1− eimθjLm)

Πp
1(1− zjL)Πd

1(1− eiθjL)
εt. (6)

Model (6) has the convenient property for our purpose that the lags of the
AR operator are observable at a longer sampling interval m∆t. Note that
when some of the roots are on the unit circle model (6) is non invertible.
For example, the unit root process xt = xt−1 + εt can be written as model
xt = xt−m + εt + · · ·+ εt−m+1.
Let us consider the summed process xat = Sm(L)xt, that from (1) reads:

φp(L)ϕd(L)x
a
t = Sm(L)εt. (7)

The summation polynomial Sm(L) contains m− 1 unit roots:

Sm(L) =

(
(1 + L)Σ

m/2−1
j=1 (1− ei2jπ/mL)(1− e−i2jπ/mL), m even

Σ
[m/2]
j=1 (1− ei2jπ/mL)(1− e−i2jπ/mL). m odd

(8)

Some of these roots can be present at the AR unit root component ϕd(L).
Then, suppose that ϕd(L) and Sm(L) have d − da ≥ 0 common unit roots
α(L), and let us rewrite the summed process as follows:

φq(L)ϕ
a
da(L)x

a
t = Sa

m(L)εt, (9)
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an ARI(p, da) process, where ϕd(L) = ϕa
da(L)α(L), and Sm(L) = Sa

m(L)α(L).
Then, as in the preceding case, we multiply (9) by Πp

1(1 − zmj L
m)Πda

1 (1 −
eimθjLm)/Πp

1(1− zjL)Π
da

1 (1− eiθjL) and obtain the model

Πp
1(1−zmj Lm)Πda

1 (1−eimθjLm)xat =
Πp
1(1− zmj L

m)Πda

1 (1− eimθjLm)

Πp
1(1− zjL)Πda

1 (1− eiθjL)
Sa
m(L)εt.

(10)
with all the AR lags multiples of m.
Let us consider a model with hidden periodicity of order m due to h θj-

frequency unit roots (2 ≤ h ≤ m) such that eiθj = eimθj = eiθ
∗
for j = 1, ..., h.

To simplify the exposition we assume that the model only has unit roots and
is given by:

Πd−h
1 (1− eiθjL)Πd

d−h+1(1− eiθjL)xt = εt. (11)

Let us multiply (11) by Πd−h
1

1−eimθjLm

1−eiθjL
(1−eiθ∗Lm)h

Πd
d−h+1(1−eiθjL)

, such that the disaggre-

gated model reads

Πd−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)hxt = Πd−h

1

1− eimθjLm

1− eiθjL

(1− eiθ
∗
Lm)h

Πd
d−h+1(1− eiθjL)

εt.

Then, when h < m AR and MA polynomial have the common term (1 −
eiθ

∗
Lm)h−1, such that the model simplifies to:

Πd−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)xt = Πd−h

1

1− eimθjLm

1− eiθjL

1− eiθ
∗
Lm

Πd
d−h+1(1− eiθjL)

εt.

(12)
When h = m, Πd

d−h+1(1− eiθjL) = 1− eiθ
∗
Lm, and (12) reduces to:

Πd−h
1

¡
1− eimθjLm

¢
(1− eiθ

∗
Lm)xt = Πd−h

1

1− eimθjLm

1− eiθjL
εt. (13)

It is straightforward to extend this proof to the case of different groups
of hidden roots.
Proof of Proposition 2. From lemma 1 and Niemi (1984, Theorem 1),
the temporally aggregated models are always invertible because the aggregate
MA component does not contain in any case the unit root component (1−
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eimθkLm). The error terms of the biannual processes are

ET =

·
1− L2

(1− L)d0(1 + L)d6

¸d∗0 · 1− L2 + L4

(1−√3L+ L2)d1(1 +
√
3L+ L2)d5

¸d∗1
·

1 + L2 + L4

(1− L+ L2)d2(1 + L+ L2)d4

¸d∗2
ε2T ,

Ea
T = S2(L)

·
1− L2

(1− L)d0(1 + L)d6

¸d0 · 1− L2 + L4

(1−√3L+ L2)d1(1 +
√
3L+ L2)d5

¸d∗1
·

1 + L2 + L4

(1− L+ L2)d2(1 + L+ L2)d4

¸d∗2
ε2T ,

where d∗0 = max{d0, d6}, d∗1 = max{d1, d5}, and d∗2 = max{d2, d4}. The error
terms of the quarterly processes are

ET =

·
1− L3

(1− L)d0(1 + L+ L2)d4

¸d∗0 · 1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1
·

1 + L3

(1− L+ L2)d2(1 + L)d6

¸d∗2
ε3T ,

Ea
T = S3(L)

·
1− L3

(1− L)d0(1 + L+ L2)d4

¸d∗0
·

1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1 · 1 + L3

(1− L+ L2)d2(1 + L)d6

¸d∗2
ε3T ,

where d∗0 = max{d0, d4}, d∗1 = max{d1, d3, d5}, and d∗2 = max{d2, d6}. The
error terms of the semi-annual processes are

ET =

·
1− L6

(1− L)d0(1− L+ L2)d2(1 + L+ L2)d4(1 + L)d6

¸d∗0
·

1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1
,

Ea
T = S6(L)

·
1− L6

(1− L)d0(1− L+ L2)d2(1 + L+ L2)d4(1 + L)d6

¸d0
·

1 + L6

(1−√3L+ L2)d1(1 + L2)d3(1 +
√
3L+ L2)d5

¸d∗1
d∗0 = max{d0, d2, d4, d6}, and d∗1 = max{d1, d3, d5}.

20



Working Paper

2003-03: Michael Svarer and Mette Verner, Do Children Stabilize Mar-
riages?

2003-04: René Kirkegaard and Per Baltzer Overgaard, Buy-Out Prices in
Online Auctions: Multi-Unit Demand.

2003-05: Peter Skott, Distributional consequences of neutral shocks to
economic activity in a model with efficiency wages and over-
education.

2003-06: Peter Skott, Fairness as a source of hysteresis in employment and
relative wages.

2003-07: Roberto Dell’Anno, Estimating the Shadow Economy in Italy: a
Structural Equation approach.

2003-08: Manfred J. Holler and Peter Skott: The Importance of setting the
agenda.

2003-09: Niels Haldrup: Empirical analysis of price data in the delineation
of the relevant geographical market in competition analysis.

2003-10: Niels Haldrup and Morten Ø. Nielsen: Estimation of Fractional
Integration in the Presence of Data Noise.

2003-11: Michael Svarer, Michael Rosholm and Jacob Roland Munch:
Rent Control and Unemployment Duration.

2003-12: Morten Spange: International Spill-over Effects of Labour Mar-
ket Rigidities.

2003-13: Kræn Blume Jensen, Mette Ejrnæs, Helena Skyt Nielsen and
Allan Würtz: Self-Employment among Immigrants: A Last Re-
sort?

2003-14: Tue Görgens, Martin Paldam and Allan Würtz: How does Public
Regulation affect Growth?

2003-15: Jakob Roland Munch, Michael Rosholm and Michael Svarer:
Are Home Owners Really More Unemployed?

2003-16: Gabriel Pons Rotger: Testing for Seasonal Unit Roots with
Temporally Aggregated Time Series.


