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Estimation of Fractional Integration in the Presence of Data Noise

NIELS HALDRUP AND MORTEN (JRREGAARD NIELSEN*
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ABSTRACT. The paper presents a comparative study on the performance
of commonly used estimators of the fractional order of integration when data
is contaminated by noise. In particular, measurement errors, additive outliers,
temporary change outliers, and structural change outliers are addressed. It
occurs that when the sample size is not too large, as is frequently the case for
macroeconomic data, then non-persistent noise will generally bias the estima-
tors of the memory parameter downwards. On the other hand, relatively more
persistent noise like temporary change outliers and structural changes can have
the opposite effect and thus bias the fractional parameter upwards. Surpris-
ingly, with respect to the relative performance of the various estimators, the
parametric conditional maximum likelihood estimator with modelling of the
short run dynamics clearly outperforms the semiparametric estimators in the
presence of noise that is not too persistent.

KEYWORDS: Fractional integration, long memory, outliers, measurement errors,

structural change
JEL CrAssIrFicATION: C2, C13, C22

1. INTRODUCTION

The past decade or so has witnessed an increasing interest in fractionally integrated
processes as a convenient way of describing the long memory properties of many
time series, see e.g. Sowell (1992a), and Baillie (1996) for a review. There is now a
broad range of applications in finance, see e.g. Andersen et al. (2001) and Andersen
et al. (2003), in macroeconomics, e.g. Diebold and Rudebusch (1989), Crato and
Rothman (1994), Hassler and Wolters (1995), and Gil-Alana and Robinson (1997),
and in electoral studies, see e.g. Box-Steffensmeir and Smith (1996), Davidson et al.
(1997), and Dolado et al. (2003).

The dominating feature of fractionally integrated processes is that the autocor-
relation function dies out very slowly at a hyperbolic rate, thus suggesting distant
observations to be highly correlated. When the focus is on the analysis of financial
time series loads of high-quality data will typically be available at a high sampling
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frequency and often also the span of data is relatively long. On the other hand, al-
though macroeconomic time series being analyzed for fractional integration and long
memory typically cover a wide span of data sampled annually or quarterly there are
good reasons to believe that the data quality is much more questionable compared
to financial data.

The purpose of the present paper is to provide a comparative study of the implica-
tions of noisy data (measurement errors, outliers, and structural breaks) for sample
sizes typically dealt with in the analysis of macroeconomic data, on a number of
commonly used estimators of the fractional integration parameter. Our conjecture
is that measurement errors and outliers that appear to be temporary will generally
tend to bias the parameter of fractional integration downwards whereas outliers that
are more permanent like e.g. structural shifts may tend to bias the fractional pa-
rameters upwards. Non-linearities can frequently be approximated by multiple level
shift models and hence a derived conjecture is that long memory can be caused by
the presence of non-linearities of the time series.

There is already some work done in the literature to examine these questions. For
instance, Chong and Liu (1999) consider the properties of an estimator based on the
partial autocorrelation function when data is measured with noise, but their study
is only concerned with biases for a particular estimator which is only little used in
the literature. For their estimator a downward bias is found. A similar conclusion is
drawn by Maynard and Phillips (2001) with reference to an empirical study of various
persistence measures of the forward premium. In Bos et al. (1999) an empirical study
of G7 inflation rates together with simulations indicate that if the underlying series
have level shifts, then the evidence of long memory and fractional integration can be
spuriously exaggerated. Work by Granger and Ding (1996) and Diebold and Inoue
(2001) also indicate that non-linear models, e.g. regime switching models, can give
rise to processes being fractionally integrated.

In the present paper we consider a model setup allowing for a range of different
outlier and measurement error components which can be temporary as well as persis-
tent. The biases of fractional d estimators for various parametric and semiparametric
estimators which are rather popular in applied work are examined in a Monte Carlo
simulation study. The estimators considered are the fully parametric maximum like-
lihood estimators of Sowell (1992b) and Tanaka (1999) and the semiparametric esti-
mators of Geweke and Porter-Hudak (1993), Kunsch (1987), and Robinson (1995a,b).
It occurs that different kinds of noise may affect fractional integration inference dif-
ferently and also the type of estimation method may have different properties. One
general, and perhaps surprising, finding is that the conditional maximum likelihood
estimator of Tanaka (1999) clearly ranks as the best, i.e. having the smallest biases,
when the short run dynamics is being modelled and the noise and outliers tend not
to be too persistent. For more persistent outliers and structural changes there is no
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clear pattern concerning which estimator to use; overall, the biases are positive and
can be rather large in these cases. Amongst the semiparametric estimators the choice
of a relatively low bandwidth parameter tends to bias estimators less when noise is
not too persistent.

The paper is organized as follows. In section 2 we present the experimental design
of the long memory models under scrutiny, estimation methods are described in sec-
tion 3 followed by a discussion of the simulation results. The final section concludes.

2. THE DESIGN OF A FRACTIONAL INTEGRATION WITH NOISE PROCESS
Consider the univariate fractionally integrated process

(1-L)%, = &, t=1,2.. (1)
Y = O, tSO, (2)

where ¢, is distributed as 4.7.d.(0,02) and (1 — L)? is the fractional integration filter.
y; is a latent process which cannot be observed due to data contamination. Instead,
we observe the series z; defined as

2 =Y + V¢ (3)

with v; being the error term contaminating y;. In particular, we consider the noise
mechanism

vy = Oy + 1y, (4)

(1—-alL)
where 1, ~ i.7.d(0, 0727) is a measurement error and J, is a Bernoulli variable which
can take either of the values 1 or -1 with a specified probability p/2. Otherwise, the
value of 0; equals zero. The first term in (4) is a general outlier component where we
assume |a| < 1, with L being the lag-operator. If « = 0, 66, is a noise term generated
by irregularly observed additive outliers (AO). The parameter 6 is the magnitude of
the outliers. Hence AQ’s are characterized by some non-repetitive events which occur
irregularly and are unaffected by the dynamics of the y; process. A different kind of
outliers occur when « is non-zero and less than unity. In this situation the outliers
also appear irregularly but tend to be persistent although eventually their effect will
die out given the assumption || < 1. We will refer to such outliers as temporary
change (TC) outliers following Chen and Liu (1993). Finally, by letting o = 1 the
outliers have a permanent effect and the v; component will consist of the sum of all
past outlier shocks to the process. In this case the series contaminating y; will behave
as a series with structural level shifts that can be both positive and negative.

As can be seen, the design of the model is such that we can control the impact
on the various estimators when the frequency, the (relative) magnitude, and the
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persistence of the outliers changes. Also, the noise resulting from measurement errors
can be controlled via the variance (inverse) signal-to-noise ratio (o, /0.)>.

In fact, our model' can cover a vast range of different contamination problems
which potentially will have different effects on the degree of long memory in the ob-
served time series z;. Looking at some extreme situations will illuminate this. For
instance, assuming that the measurement error component is very large, i.e. the (in-
verse) signal-to-noise ratio (o, /0.)” is large, then obviously the noise component will
have a huge impact on the observed series even though the long memory component
y; will still dominate asymptotically as long as d > 0. For a finite stretch of data the
series may thus appear to have a lower memory parameter than indicated by d. The
question is of course how a potential bias will depend upon the signal-to-noise ratio
for a given sample size and for a range of different estimation methods. A similar
situation is expected when e.g. o = 0, the parameter @ is relatively large, and/or the
probability of outlier occurences is large. If instead, we allow the parameter o tending
to one in the limit a rather different situation will occur. In this case there will be
frequent level shifts in the noise component and hence in the observed series. If the
parameter d is relatively small we will thus expect an upward bias in the estimated
d due to the persistence of the jump process. Bos et al. (1999) already report some
results in support of spuriously finding fractional integration in the presence of time
series with level shifts. It is also worth mentioning that in many cases a non-linear
component of a process can be arbitrarily well approximated by level shift and jump
processes and hence the question we want to ask relates to the topic of how structural
level breaks and non-linearities may potentially affect the behaviour of estimators of
fractionally integrated processes.

In Figures 1 and 2 some simulated series are displayed to give an idea of the
processes we have in mind and to support the above intuition. Figure 1 compares y;
and z for d = 0.45, § = 0, and a signal-to-noise ratio (0, /0.)* = 3 for a sample of
200 obsevations. Obviously, the levels of the latent and the observed processes move
together but clearly the high frequency element of the observed process plays a larger
role than in the latent variable. In Figure 2 the adverse result seems apparent. In this
case y; and z; are graphed for # = 5,p = .05, = 0.99, d = 0.45, and (07,/05)2 = 0.
As seen, when a (large) discrete level shift appears in the series it is likely to be
generated by an outlier which subsequently will die out very slowly. The decay of
the outlier will naturally depend upon the persistence parameter « : the larger o the
stronger low frequency dominance of the series.

One way of clarifying the signifcance of data noise is by interpretation of the power
spectrum. It is easily shown that the power spectrum of the latent process can be

'In a different context, the present model setup for outliers and noise is similar to Franses and
Haldrup (1994) and Haldrup, Montanes, and Sanso (2003).
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d=0.45_T=200
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Figure 1: Fractional integration with measurement error: Observed and latent process
simulated for d = 0.45, § = 0, and a signal to noise ratio (0, /0.)” = 3.
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Figure 2: Fractional integration and persistent tempory change outlier: Observed
and latent process simulated for = 5,p = .05, = 0.99, d = 0.45, and (0,,/0.)* = 0.
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Figure 3: The spectrum f,(\) = f,(\) + f,()\) and its components f,()), (thin line),
and f,(\), (medium line), of the process used to generate Figure 1.

written as
fy(N) =1 =exp(iX) |7 f(N),

where f.(\) = 02/27 is the spectrum of ¢, whereas the spectrum of the contamination
part reads

o2 2) .
_ n 2 _
fo(A) = o + o (1+a® —2acos(N))
Thus, for the observed series
2 gl 0 1
—1— A 2% L T PPy 2
f-(\) =| exp(iM) | o + o + . (1+a acos(A))

Around the origin the spectrum can be approximated as

f-(A) = )\_2‘10—?—1-0—727 + L for || < 1 and for A — 0 (5)
: 2n 27 27(l — «)?
2 2 92
f-(\) = )\*M;—;—l-;—; + )\*22—7]: for « = 1 and for A — 0. (6)

As seen from (5), the high frequency variability will become relatively more domi-
nant as the (inverse) signal-to-noise ratio O'% /o2, the magnitude of outliers, 0, and/or
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Figure 4: The spectrum f,(\) = f,(\) + f,()\) and its components f,()), (thin line),
and f,(\), (medium line), of the process used to generate Figure 2.

the probability of outliers, p, increases. On the other hand, as « tends to unity and
thus gives rise to persistent outliers (or structural shifts) the lower end of the fre-
quency band of the power spectrum of the observed series tends to be dominated by
the contamination term for d < 1 as can be seen from (6). Our intuition is thus, that
as long as noise is moderate and temporary the low frequency component is affected
little by noise unless, of course, the variance o2 is relatively small. If o2 is relatively
small the low frequency element will tend to reduce the spectral density around the
origin relative to the higher frequencies. On the other hand the peakedness of the
power spectrum around the origin will tend to increase as « tends to unity and thus
tending to bias the integration parameter upwards relative to the non-contaminated
series.

In Figures 3 and 4 these features are displayed by plots of the relevant spectra
underlying the processes simulated in Figures 1 and 2.

3. ESTIMATORS OF FRACTIONALLY INTEGRATED PROCESSES
We consider four commonly employed estimators for fractionally integrated processes.
Two fully parametric maximum likelihood estimators due to Sowell (1992b) and
Tanaka (1999) and two semiparametric estimators by Geweke and Porter-Hudak
(1983), Kunsch (1987), and Robinson (1995a,b).
The data generating process (DGP) is the univariate ARFIMA(p,d,q) model
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which is given by (1)-(2) where ¢, is a stationary and invertible ARMA (p, q) process,
¢ (L)e, = 0 (L) &, where & is 7d(0, 0?). The parametric estimators are based on the
likelihood function of the ARFIMA(p, d,q) model with or without the initialization
(2).

First, ignoring the initialization in (2), the definition (1) of fractional integration
is valid for d < 1/2 and is denoted a type I fractional process by Marinucci and
Robinson (1999). This leads to the maximum likelihood objective function

T 1
LE (d, ¢,9,0'2) = —Eln |Q| - §Y/Q_1K

where Y = (y1,...,yr), ¢ and 0 are the parameters of ¢ (L) and 0 (L), and  is the
variance matrix of Y, which is a complicated function of d and the remaining para-
meters of the model, see Sowell (1992b). We call the estimator CZEML = argmax Lg
the exact maximum likelihood (EML) estimator. Even though we generate the data
according to the DGP (1)-(2) which is defined for any d, the EML estimator is valid
only when d < 1/2. Thus, in the Monte Carlo study we employ the EML estimator
only when this restriction is satisfied by the DGP under consideration.

Second, imposing the initialization (2), the definition (1)-(2) is valid for any value
of d and is a type II fractional process in the terminology of Marinucci and Robinson
(1999). The objective function corresponding to this DGP considered by Tanaka

(1999) is
Le (d, ¢,0) = —gln{z (%( — L)dyt> }

t=1

and we call the estimator CZCML = argmax Lo the conditional maximum likelihood
(CML) estimator. Maximizing L¢ is equivalent to minimizing the usual (conditional)
sum of squares and hence this estimator is also referred to as the CSS estimator by
some authors.

Both the EML and the CML estimators are v/T-consistent and asymptotically
normal. We shall not give the asymptotic normal distributions here, nor the condi-
tions under which they are derived, but instead refer the reader to Sowell (1992b)
and Tanaka (1999). Note also that both estimators are asymptotically efficient in the
classical sense when the model is correctly specified.

The semiparametric estimators are based on the power spectrum around the ori-
gin, i.e.

2
FOO =222 for - 0. (7)

2
One of the two commonly used semiparametric estimators is the log-periodogram

or Geweke and Porter-Hudak (GPH) estimator introduced by Geweke and Porter-
Hudak (1983) and analyzed in detail by Robinson (1995a). Taking logs in (7) and
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inserting sample quantities we get the approximate regression relationship
In (I ()j)) =c+ —2dIn()\;) + error, (8)

where c is a constant term, \; = 27j /T are the Fourier frequencies, and the quantity
I(\) = 25 ‘ZtT:l(yt — y)ei“‘2 is the periodogram of y;. The estimator dgpy is
defined as the OLS estimator in the regression (8) using j = 1, ..., m, where m = m (T")
is a bandwidth number which tends to infinity as T — oo. Note that the estimator is
invariant to non-zero means since j = 0 is left out of the regression. Under suitable
regularity conditions, including y; being Gaussian and a restriction on the bandwidth,
Robinson (1995a) derived the asymptotically normal limit distribution for depr when
d € (—1/2,1/2) is in the stationary and invertible range. Recently, Kim and Phillips
(1999) demonstrated that, for the model in (1)-(2), the range of consistency is d €
(—1/2,1] and the range of asymptotic normality is d € (—1/2,3/4).

The other semiparametric estimator we consider is the Gaussian semiparametric
(GSP) estimator (or local Whittle estimator) which is attractive because of its nice
asymptotic properties, the very mild assumptions underlying it, and the likelihood
interpretation. The estimator CZGS p is defined as the maximizer of the (local Whittle
likelihood) function

1 m )\Qd
d) = —— In (gA;2) + =1 () ¢ 9
0 -3 )+ 2o | ©
Like the GPH estimator, this estimator is invariant to non-zero means since j = 0 is

absent from the summation. One drawback compared to log-periodogram estimation
is that numerical optimization is needed. However, this estimator does not require the

Gaussianity condition and Robinson (1995b) showed that /m(dgsp—d) 4N (0,1/4).
This is an extremely simple asymptotic distribution facilitating easy asymptotic in-
ference. The ranges of consistency and asymptotic normality for the model (1)-(2)
have been shown by Phillips and Shimotsu (2003) to be the same as those of the GPH
estimator.

Many variants of the GPH and the GSP estimators have appeared in the literature,
extending the range of consistency and asymptotic normality or reducing the order of
the asymptotic bias. However, we shall not consider those here and generally expect
them to behave in a similar manner as the original GPH and GSP estimators.

The drawback for the semiparametric approach is that only \/m-consistency is
achieved in comparison to \/T-consistency (and efficiency) in the parametric case.
Thus, the semiparametric approach is much less efficient than the parametric one
since it requires at least m/T — 0. However, the semiparametric estimators are
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robust to short run dynamics since they use only information from the periodogram
ordinates in the vicinity of the origin.

Hence, we expect that in our setup with noisy data, the semiparametric estimators
will outperform the parametric ones whenever the noise contaminates the higher
frequencies only. Indeed, the semiparametric estimators should be asymptotically
unaffected by such noise.

4. MONTE CARLO FINDINGS
For our simulation study we apply the four common estimators described above.
Following the semiparametric approach we apply the GPH and GSP estimators with
bandwidths equal to 10 and 20, which are given in parenthesis, e.g. GPH(10) denotes
the GPH estimator with bandwidth equal to 10. When the bandwidth is small we
expect more robustness to the presence of (temporary) noise at the cost of a higher
variability of the estimate. The fully parametric EML and CML estimators are both
applied with no short run dynamics in the estimation procedure, denoted by (0,d,0),
and with one AR and one MA term estimated, denoted (1,d,1). Thus, the (0,d,0)
estimators are correctly specified according to the latent unobserved process whereas
the (1,d,1) estimators overfit the latent process. The additional AR and MA terms are
expected to pick up some of the contamination from the noise term, v;, and therefore
the (1,d,1) estimators are expected to be less affected by the presence of the noise in
the observed series. The EML estimator is only reported for situations with the true
d being less than one half because this estimator by construction cannot exceed this
value.
The series generated in the simulation study follows the scheme:

2t = Yt U

(1-L)Y%y, = g fort=12..T (10)
y = 0 fort <0
er ~ N(0,02=1)

for a range of values of d. The design of v; is described below in the discussion of
the separate experiments. For all cases a sample of 7" = 100 observations was used.
This is considered to be a typical sample size in many macroeconomic studies, e.g. 25
years of quarterly observations. The Ox programing language, see Doornik (2001),
was used in the simulation study with 1,000 replications in each experiment
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Figure 5: Simple Measurement Errors

4.1. Simple Measurement Errors. For the simple measurement error model
we have

Vg = Ty
e ~ N(07J127>

Figure 5 displays the biases of the estimators for the (inverse) signal-to-noise ratio
(02/02) (noise ratio in the sequel) for the latent process y; with fractional integration
orders d = {0, 0.25,0.40,0.75}.

For d = 0 the observed process is clearly a sum of two white noise processes.
In this case it is seen that biases are relatively minor. For the remaining values
of d, biases are generally found to be negative and to increase with the order of
integration, and obviously the biases tend to increase for all estimators when the
noise ratio increases. For d = 0.75 a pattern concerning the relative performance of
the single estimators is revealed. The CML(0,d,0) is seen to have the largest biases.
For instance, when the noise ratio equals 5 the bias is approximately —0.4 which is
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Figure 6: Additive Outliers

huge given the true value of d. However, by permitting the CML estimator to allow
for short run dynamics, i.e. by considering the CML(1,d,1) estimator, biases are
reduced significantly (around —0.2 in the above example). In fact, this parametric
estimator turns out to perform the best amongst the range of estimators considered.
Although the semiparametric estimators are generally performing worse than the
CML(1,d,1) there is a clear indication that the GPH and GSP estimators with a
low bandwidth, e.g. m = 10, have relatively lower biases compared to the higher
bandwidth estimators.

4.2. Additive Outliers. The noise component of the additive outlier model reads
U = 95t7

where the Bernoulli variable d; takes the values of plus or minus one with probability
2.5% and a zero value with probability 95%. In Figure 6 biases are displayed as a
function of the size of the outliers, §. Overall, the conclusions are similar to the case
of measurement errors: There are hardly any biases for d = 0, and for other values
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Figure 7: Structural Changes

of d biases tend to be negative and to increase with 6. For a large value of d, e.g.
d = 0.75, the CML(1,d,1) performs the best and CML(0,d,0) the worst and with
the semiparametric estimators with a low bandwidth having relatively lower biases
compared to the higher bandwidth ones. Interestingly, for intermediate values of d and
for relatively small values of 6, the EML(1,d,1) appears to be rather strongly biased
compared to the remaining estimators. For instance, for d = 0.4 the EML(1,d,1)
estimator has an approximate bias of —0.2 when 6 is in the range of 0 to 4. In this
range the remaining estimators have hardly any bias.

4.3.
by

Structural Changes.

0

Ut

L,

(1—al)

The structural change model of data noise is given

Ot
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where the y; series is perturbed with a value of 66, = 41, each with a probability
p/2, which is displayed for increasing values of p along the horizontal axis of Figure
7. Since @ = 1 the contamination part has a persistent effect, i.e. v, = Z;Zl 0o,
as opposed to the previous cases being scrutinized. In this case the v; component
behaves as a level shift process. When d is large the persistence of the latent process
appears to dominate the persistence of the noise component whereby biases of all
estimators appear to be negligible. On the other hand, when the degree of long
memory is smaller the strong zero frequency contamination of the y; process will, as
expected, induce heavy positive biases of the estimators.

The relative ranking of the estimators with respect to their biases appear to be
much similar for various values of d. The largest biases are found for the CML(1,d,1)
estimator followed by the bandwidth 10 and 20 semiparametric estimators, respec-
tively. The fact that the bandwidth 20 estimators have smaller biases than the band-
width 10 estimators follows our intuition given that the bandwidth 10 estimators are
more heavily concentrated around the origin where the contamination component has
its major dominance. At first sight, the EML estimator is found to be the superior es-
timator in this case regardless of its short run specification. It is important to notice,
however, that because the EML estimator cannot allow estimates of d exceeding 0.5,
there will be a limit concerning the observed biases of this estimator for increasing
values of d in comparison with other estimators. This feature can give rise to an
unfair advantage of the EML estimator.

4.4. Temporary Change Outliers. The contamination component in a model
with temporary change outliers is described as

0

(1— aL)5t

vy =
with 60, = +5, each with probability 2.5%. In Figure 8 biases are displayed for
increasing values of the persistence parameter o along the horizontal axis. Note that
the extreme value of a = 0 corresponds to the case of additive outliers, whereas o = 1
corresponds to a level shift (or structural change). For the intermediate values of «
the shocks have a temporary effect. The observed biases are thus expected to be
described as a convex combination of the situations previously described, i.e. when «
is low (high) biases are expected to be similar to those of Figure 6 (Figure 7). Note
that the biases for the two extreme cases tend to be of opposite direction. It is thus
of interest to analyze which values of the persistence parameter o that tend to create
a zero frequency concentration dominating that of the unobserved process.

As visualized from Figure 8, biases generally tend to be negative for small values of
a but eventually become positive as « increases. For a large value of the long memory
parameter d biases are seen to be rather similar for all estimators and overall the bias
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Figure 8: Temporary Change Outliers

tends to be negative, thus indicating that the noise component is dominated by the
unobserved series. For small values of d there is a stronger degree of dispersion as
the the a parameter increases. The EML(1,d,1) will generally be negatively biased
for all values of o which is in contrast to the remaining estimators where a strong
positive bias is observed for larger values of a. This reflects the results from the
"structural change" case where the EML estimators appeared to perform the best,
even though the limitations of these estimators in terms of their area of definition
should be recognized.

From Figure 8 it can also be seen that there is no unique ranking of the estimators.
The range of biases is very broad, however, and depends a lot on the parameter values
of the design.

4.5. Unit Root Case. In Figure 9 we display the biases of the estimators for
the case where d = 1 in the latent process (10), that is, the y; series contains a unit
root. Fach of the previous cases are examined for this special situation. Because
the EML estimator does not allow for a value of d exceeding 0.5, we do not consider
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Figure 9: Unit Root Case

this estimator in the present case. The design of each graph corresponds to the
models previously described and hence we allow the noise ratio, the size of outliers,
the probability of structural shifts, and the persistence of temporary changes to vary
according to the model considered.

Both for the case of measurement errors and additive outliers the CML(1,d,1) is
the least biased estimator and the CML(0,d,0) is the most biased. In between, the
semiparametric estimators can be ranked with the bandwidth 10 estimators having
smaller biases than the bandwidth 20 estimators. This is in accordance with the
previous findings.

When a unit root is present and the series is contaminated by persistent level
shifts, i.e. the lower left graph, there are hardly any biases to be found. This is not
surprising given that the contamination component itself resemples a random walk,
though not a Gaussian random walk.

For temporary change outliers, i.e. the last graph of Figure 9, no clear ranking of
the estimators can be given. Generally, the biases are negative since the contamina-
tion component is less persistent than the latent unit root process in this case.
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These findings complement the analysis of Bos et al. (1999) who argue that G7
inflation rates are estimated as fractionally integrated processes even though the series
may be short memory with level shifts. Our results suggest that fractional integration
may also be observed if the inflation rate series are unit root processes contaminated
by measurement erorrs, additive outliers, or temporary change outliers.

5. CONCLUDING REMARKS

In this paper we have examined the finite sample performance of a range of com-
mon estimators of fractional integration when the potentially fractionally integrated
processes are contaminated by data noise. This analysis is important given the wide
application of fractional integration estimators to macroeconomic data where signif-
icant data contamination is likely to be present. In general, huge biases may occur
but the direction of the biases depends upon the type of the noise component and the
degree of persistence of both the latent and the noise processes. It appears that the
parametric conditional maximum likelihood estimator allowing for short run dynam-
ics performs the best in many situations when noise is not too persistent. For both
semiparametric estimators, i.e. the Geweke-Porter-Hudak and the Gaussian semi-
parametric estimators, the choice of a low bandwidth appeared to be more robust to
non-persistent noise. For noise and outliers being relatively more persistent no clear
ranking of the estimators is revealed.

Our results suggest that more work needs to be done in this field in the develop-
ment of estimation methods that are robust to noise and outliers in time series. Some
initial work along these lines has already been developed by Sun and Phillips (2003)
in a recent paper. Also, our findings call for more research on the development of
tests and estimators to discriminate fractionally integrated processes from time series
with structural changes and/or non-linearities.
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