
Empirical analysis of price data in the
delineation of the relevant geographical market

in competition analysis

Niels Haldrup

Working Paper No. 2003-09

DEPARTMENT OF ECONOMICS

Working Paper

ISSN 1396-2426

UNIVERSITY OF AARHUS C DENMARK



INSTITUT FOR ØKONOMI
AFDELING FOR NATIONALØKONOMI - AARHUS UNIVERSITET - BYGNING 322

8000  AARHUS C -  F 89 42 11 33 - TELEFAX 86 13 63 34

WORKING PAPER

Empirical analysis of price data in the
delineation of the relevant geographical market

in competition analysis

Niels Haldrup

Working Paper No. 2003-09

DEPARTMENT OF ECONOMICS
SCHOOL OF ECONOMICS AND MANAGEMENT - UNIVERSITY OF AARHUS - BUILDING 350

8000  AARHUS C - DENMARK F +45 89 42 11 33 - TELEFAX +45 86 13 63 34



Empirical analysis of price data in the
delineation of the relevant geographical market

in competition analysis

Niels Haldrup∗

Department of Economics
University of Aarhus

3. July 2003

Abstract

This paper reviews a number of modern as well as classical economet-
ric techniques suitable for empirically determining whether commodities
in physically separated markets belong to the same geographical market.
Even though the tools presented generalize to the delineation of the rele-
vant product market our main focus is on the geographical delineation of
markets. The analyses rely entirely on the use of price data of different
types in an attempt to operationalize the so-called SSNIP methodology for
price comparisons. In particular, the stationarity versus non-stationarity
of price data appears important because otherwise spurious results can
potentially occur. Both bivariate and multivariate price comparisons will
be discussed. We also consider situations with data observations covering
a relatively long period and where it is likely that structural changes have
occurred in the sample period whereby the degree of market integration
is likely to have changed. New techniques to deal with such recursive
features will be suggested. For the methods presented a discussion of the
practical problems and concerns facing the model builder are addressed.
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1 Introduction
The purpose of this document is to present a number of modern as well as
classical econometric techniques that are suitable for empirically determining
whether commodities in physically separated markets belong to the same geo-
graphical market. Although the techniques presented in many cases generalize
to the delineation of of the relevant product market our main focus is on the
geographical delineation of markets. Thus, delineation will generally refer to
geographical markets although in some situations, where appropriate, the joint
delineation of the relevant product and geographical markets will be considered.
The analyses rely entirely on the use of price data of different types in an

attempt to operationalize the so-called SSNIP methodology for price compar-
isons. The statistical and econometric analysis of real data can be rather ad-
vanced when data is of a quality for which such methods can be used. But the
complexity of the techniques is not an argument for not adopting such methods.
However, we also acknowledge the fact that in some cases data availability will
be scarce and in these cases somewhat more pragmatic approaches need to be
taken. In such cases the cost is likely to be that no robust inferences can be
drawn which is adequate for documentation in competition cases.
This document argues for the importance of appropriately analyzing price

data with the focus of delineating the relevant geographical market. In partic-
ular, the stationarity versus non-stationarity of price data appears important
because otherwise spurious results can occur in the sense that the conclusions
drawn from the statistical analysis can be misleading. Also, we consider the
situation that when data observations cover a relatively long period, then it is
likely that structural changes have occured in the sample period whereby the
degree of market integration has changed. New techniques to deal with such
recursive features will be discussed.
In presenting the various methods it will of course be impossible to give

a complete characterization of the techniques, but appropriate references to
the relevant literature will be given where appropriate. Instead, priority is
given to presenting the techniques in a relatively non-technical and intuitive
fashion where the practical applicability of the methods will be stressed. For
each method presented a section is dedicated to a discussion of the practical
problems and concerns the model builder should be aware of when analyzing
the price data.

1.1 Making the SSNIP methodology operational as a de-
vice for market delineation

1.1.1 The SSNIP methodology and price tests

Our approach to market delineation builds on three fundamental pillars:

• A well-structured guiding framework,
• a careful quantitative documentation and
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• a consistent and intuitive story to tell.

We find that quantitative documentation is extremely important. If an an-
alyst has postulated a relevant market and cannot deduce a behaviour that
can be observed in the market and eventually verified in the available data, we
would be very reluctant to give much credit to the conclusions about the rele-
vant market. Quantitative documentation is the trademark of a good anti-trust
analyst.
In this report we document a large number of econometric tests based on

price behaviour. We will refer to these tests as price tests. We are well aware
of the criticism of price tests, but we have nevertheless the pragmatic position
that price tests are the most feasible and relevant tools for market delineation.
However, we don’t believe that a price test is the test for market delineation
and we don’t believe that the result of a price test is credible on its own unless
it fits into a consistent and intuitive story or can be confirmed by other studies
or observations.
The guiding framework we apply is the SNIPP-methodology. We find that

the SSNIP-methodology is a convenient and attractive framework for thinking
about market definition, although the methodology is not immediately opera-
tional. We are — like others - not aware of any serious alternative to applying
the SSNIP-methodology and in our view, the only alternative to the SSNIP-
methodology is inconsistency and lack of transparency.

The SSNIP-methodology is a systematic method to identify
substitutability between products and can be used to define a num-
ber of dimensions of the relevant market. SSNIP is an acronym for
Small, Significant, Non-transitory Increase in Prices. The point of
departure for the SSNIP-methodology is a thought experiment along
the following lines: We want to test whether two products belong to
the same market (that being a product or a geographical market).
In our mind we speculate whether it is possible to let one of the pro-
ducers increase profits by raising prices (Increase in Prices) by 5-10
percent (small, but significant) for a period not shorter than twelve
months (non-transitory). If the two products are substitutable, we
will expect the second product to capture market shares and reduce
the profitability of price increases of the first product. If the second
product raises market share sufficiently to render the initial price
increase unprofitable, we will say that the two products belong to
the same relevant market. If the two products are not substitutable,
the second product will not be able to increase market shares and in
this constrain the behaviour of the first producer. In this case, we
will say that the two products belong to different markets.
In particular, when the focus of attention is on products traded

in different countries, the SSNIP methodology amounts to asking
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whether sufficient arbitrage and substitutability exist across the dif-
ferent regions for these to belong to the same market and hence
delineating what is considered the relevant geographical market.

We are aware that the concept of an anti-trust market as defined by the
SSNIP-methodology is different from the concept of an economic market as
defined, for example, by Stigler and Sherwin (1985): “A market for a good is the
area within which the price of a good tends to uniformity, allowance being made
for transportation costs”. Both Werden and Froeb (1993) and Sleuwagen et al
(1999, 2001) have good discussions of the differences, but we tend to disagree
with the rather bombastic conclusion of Sleuwagen et al (2001), that “. . . the
delineation of an economic market is completely different from the delineation
of an anti-trust market”. Even though we realize that the market concepts
are different, we will maintain that much useful information can be extracted
from analyses based on the economic market concept, that is relevant for the
anti-trust market and that cannot be extracted in any other way.
We are also aware of a large number of concrete criticisms raised against

price tests. We agree with some of them, we disagree with others and the rest
are irrelevant in the sense that they are so general that they are valid for any
kind of empirical analysis, be it residual demand analysis or price tests. While
they may important to keep in mind when interpreting results, they are hardly
damaging for price correlation tests as such
Werden and Froeb (1993) argue that price correlation test cannot be applied

when prices are non-stationary. This is correct, but it does not invalidate the
idea of comparing price trends, but just requires you to use other econometric
techniques, namely co-integration techniques and stationarity analysis.
They also argue that normally pair-wise comparison of prices is applied,

leaving out the possibility that a set of goods may be substitutes with the
candidate good even though each single good is not sufficiently substitutable.
It is correct that pair-wise comparisons are widely used, but as shown in this
report there are several techniques available for simultaneous comparison.
Finally, they argue that price tests often have to rely on data extrapolated

outside their original range and that one relies on historical data that in some
cases may not adequately reflect the markets under scrutiny. While these crit-
icisms are correct, they are hardly relevant only for price tests. We prefer to
interpret these comments as an urge to be cautious and modest when interpret-
ing the results from any kind of empirical analysis.
It is also true that price correlation tests can reach erroneous conclusions

if there is spurious correlation in the data originating from common factors
unrelated to competitive forces. However, as we shall argue, statistical and
econometric techniques exist which can isolate such common factors and hence
avoid this criticism.
Sleuwagen et al also (2001) argue that co-integration methods cannot be

used if price series are stationary and are without unit roots. This is correct,
but it is no problem. Co-integration methods are the appropriate tools whenever
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series are non-stationary, correlation methods the appropriate tools whenever
series are stationary. Notwithstanding, price adjustment schemes in the form
of error correction models are equally valid for stationary and non-stationary
price processes, and hence such models are equally useful in describing price
dependencies and feed-back mechanisms in price adjustment across products
and regions.
Bishop and Walker (1996) argue that price correlation methods are less ap-

plicable for comparing prices between countries whenever exchange rates are
volatile. This is probably correct, but seems hardly relevant in a Europe with
little exchange rate volatility for most of the nineties (for most of the countries)
and is certainly of no relevance in Euro-land. Again, it is also plausible that the
same reservations may apply for any analysis that involves prices from different
countries, be it residual demand analysis or price correlation tests.
Furthermore, Werden and Froeb (1993) argue that there is nothing else but

arbitrary guidelines for determining whether a high price correlation is sufficient
to declare that two markets are integrated or not. This is correct, but we believe
— and show in this report - that in some cases it is possible to obtain some non-
arbitrary guidance by benchmarking correlations between candidate markets on
correlations between markets for which we are convinced that they are either
not integrated or very well integrated.
Finally, Werden and Froeb (1993) as well as Sleuwaegen (1999) argue that

a high price correlation between two market areas is neither a necessary, nor
a sufficient condition for the two market areas being integrated in the sense
of an anti-trust market. Werden and Froeb (1993) develop a small theoretical
model and prove that under specific circumstances it is possible to have high
correlations between prices only under circumstances where the two markets
are not integrated in the SSNIP-sense and vice versa. We will not question
this line of argument and acknowledges that the use of price correlation tests
implies a risk of making type I-errors (rejecting market delineation when it
truely exists) and type II-errors (accepting market delineation when in fact it is
absent). However, any statistical test is due to these fallacies but naturally we
want to use tests that make these error types small. In this case we need two
ask the following two questions: 1) Are there any other analytical method that
is superior and equally feasible? and 2) Does price correlation work in practice
even though we realize that it may fail in theory?.
The answer to the first question is probably no. There exist superior analyt-

ical methods, as residual demand analysis, that in most cases remain hopelessly
infeasible because of their huge data requirements. And there exist more feasi-
ble methods, as price level comparisons and trade flows that are very feasible,
but certainly not superior to price correlation tests.
The answer to the other question is unknown, even though it is highly rele-

vant. It may be that price correlation tests in theory are not a reliable predictor
of the delineation of the relevant market, but it may be that for the majority of
parameter outcomes that can be observed in real life, this observation is just a
theoretical oddity that can be dismissed for any practical application. We don’t
know the answer.
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1.1.2 Price correlations, absolute, and relative price convergence

The SSNIP methodology is indeed a thought experiment and hence there is a
need to make the notion operational. Although, potentially there exist several
ways of operationalizing the concept, the present set up focuses on the price-
behaviour of given products across a range of countries. The idea is thus to
define products to belong to the same geographical markets when arbitrage
and substitutabity will ensure that prices tend to move together in a particular
fashion.
In price correlation analysis a maintained assumption is that prices either

have or have not converged within a given sample period and hence indicating
that the commodities belong or do not belong to the same geographical market.
More precisely we say that two price series for separate geographical regions have
converged, and hence belong to the same geographical market, if the difference
between them is stable in a way we are going to define. If the initial observations
are unimportant, the stability requires that the difference between the series is
stationary for the entire sample period. When the mean of the price difference
is zero the prices are in a state of absolute convergence whereas a non-zero mean
indicates relative convergence in the sense that convergence exists but the gap
is not completely filled. The latter possibility may occur if e.g. increasing costs
of convergence or possible barriers to absolute price convergence exist. Testing
stability of price differences can thus be considered an efficient tool for the
delineation of the relevant geographical market and we shall make intensive use
of this approach.
It is of importance to note here that absolute convergence is not considered

necessary for commodities to belong to the same geographical market. Rather
it is of importance for market delineation to see whether the price behaviour of
one commodity transmits to other commodities across borders; this is satisfied
even for the weaker notion of relative price convergence. This notion is closer to
the SSNIP methodolgy than requiring absolute price convergence in the sense
of (almost) identical prices across regions. It is the co-movement of prices (in
the sense of relative convergence) rather than the law of one price that is of
importance in market delineation. However, this does not preclude that absolute
convergence is an equally interesting notion to analyze. This is a stronger notion,
but it is not strictly required for market delineation.
In the analysis of price correlations we stress the importance of discriminat-

ing between price processes being either stationary or non-stationary. Making
this distinction is essential in properly and validly analyzing the price data. This
is discussed in section 2. Subsequently, in section 3 price correlation analysis
for the pairwise comparison of price data is provided for stationary and non-
stationary data, respectively. For stationary data the (classical) methods of
correlation analysis are presented whilst for non-stationary data the notion of
co-integration of price data is presented. Looking at data pairwisely is always
extremely useful, but the analysis is limited by the fact that it can only be
judged whether particular goods considered in pairs can be considered belong-
ing to the same geographical market. Extensions to the more general case with
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multiple price processes are given in section 4 where the particular hypotheses
to be tested in the market delineation discussion is attached a particular weight.

1.1.3 Price convergence as an evolving process

The operationalization of the SSNIP notion is complicated by the fact that for
real data and for data covering a sufficiently long span of time periods, several
years for instance, it is likely that gradual changes of the degree of market
integration have taken place. For instance, it can occur that markets happen
not to be integrated initially in the sample period whereas later changes have
taken place due to reforms in institutional settings, transaction costs may have
been lowered, changes may have occurred in the exchange rate regime, and so
on. These are factors which potentially could have caused an increased degree of
market integration and possibly a common geographical market for the products
could be established.
Price correlation analysis will be inadequate in this case because the conver-

gence can be considered a process evolving over time. Econometric techniques
to deal with the convergence problem will be discussed in section 5.

1.2 Data considerations

This section serves to clarify the types of data we will be dealing with. Some
notation and appropriate data transformations will be presented.

1.2.1 Types of data

In general three types of data will be available: Time series, cross section, and
panel data. For the analysis at hand panel data is most relevant since prices
across a range of countries exist for a number of time periods. Typically we
have pit indicating the price of a given commodity i (or a commodity of region
i) measured at time t, where the indeces are i = 1, 2, ..., q and t = 1, 2, ...., T.
That is, we ahve for instance q regions and T time periods.
The single price variables pit can be considered a time series whereas the

stacked process

pt =


p1t
p2t
...
pqt


can be considered a panel. In the analysis of the delineation of the relevant
geographical market having observations entirely on the cross section dimension
will not be useful for empirical analysis.
Pairwise price differences between the single countries or regions, country i

and country j, say, are defined

dijt = pit − pjt.
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These price series are time series.
It appears important for the analysis of the data to consider the frequency s

of the data observed. Typically the frequency will be annual, quarterly, monthly,
daily, or even hourly. Each type of frequency generates problems that need to
be appropriately dealt with in practice. In particular, for price comparisons and
the calculation of price correlations it becomes of importance to appropriately
remove common co-movements of the data which is the result of a common cycli-
cal pattern rather than an intrinsic common element in the price movements.
How to deal with these difficulties will be discussed accordingly.
It needs to be stressed that for competition analysis it is preferable to deal

with as high a frequency of observations as possible. Not only will this provide
more sample points, but it is also in (relative) high frequency data that price
correlation patterns are most easily identified.

1.2.2 Data transformations

Sometimes it will be useful to transform the data before analysis. For instance,
rather than looking at the price levels, we may want to consider the price changes
of the single time series (for each country):

∆pit = pit − pit−1

where ∆ = 1−L is the difference operator and L is the lag operator defined as
Lkpt = pt−k.
It is also frequently of value to consider the log transformed data ln pit

whereby the differenced log series

∆ ln pit = ln pit − ln pit−1 ≈ pit − pit−1
pit−1

approximately measures the growth rate of the series, i.e. price inflation.
Note that price differences in log transformed data amounts to considering

the log transformed ratio of the price series:

ln pit − ln pjt = ln pit
pjt

Whether one should use log or non-log transformed data is frequently a matter
of taste. One advantage of using the log transformed data is firstly, that the
changes in the series become scale invariant and will measure the growth rate
of the series, secondly, it is frequently found that the statistical specification
of log-transformed data appears to be better compared to the non-transformed
data. Finally, using log transformed data becomes most attractive when price
indeces rather than the original prices series are available. The reason is that
the scaling factor associated with the indexation becomes a constant term which
will have no influence on the price correlations.
After section 2 in this document the notation pit can mean either the log-

transformed data or the original series. The methods equally apply to both
types of data.
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1.2.3 Exchange rates

When comparing prices across regions it is necessary to account for changes
in the exchange rates and to make the price comparisons denominated in the
same currency. Hence pit should be compared with prices pjteijt where eijt is
the exchange rate of currency i to currency j measured at time t. In logs, the
comparison1 is made of ln pit and the variable ln p∗jt = (ln pjt − ln eijt) .

1.2.4 Absolute and relative convergence in price comparisons

Sometimes it is of interest to distinguish between the notions of absolute and
relative convergence of price series. If we continue addressing log-transformed
data we will say that pit and p∗jt have converged in absolute terms if

lim
T→∞

E(ln pit − ln p∗jt) = 0

In other words, for T →∞ the law of one price will apply. On the other hand,
if

lim
T→∞

E(ln pit − ln p∗jt) = α

for α 6= 0 we would say that pit has converged relative to p∗jt.
Observe that if pit and pjt are price indeces then the price levels are affected

in the comparisons. Hence it does not make sense to consider a potential ab-
solute convergence amongst the prices in the above sense. The two price series
will deviate by a quantity α reflecting the indexation and hence only relative
convergence can be analyzed from index data.
Asking whether prices have converged relatively can also be undertaken by

addressing the co-variation of price-changes ∆ ln pit,∆ ln p∗jt, say. This compar-
ison can be made both when the series are price indeces and raw price series.

2 Univariate time series analysis of price levels,
growth rates, and price differences

2.1 Why are the univariate price characteristics impor-
tant in price analysis? - A requirement for market
delineation

By the univariate characteristics of a price series we primarily focus on the
property of the price level being either stationary or non-stationary. When
prices are stationary it means that the time process will fluctuate around some
well defined mean although the swings around the mean can tend to be rather
persistent in time. As a contrast, a non-stationary time series is a time series

1For notational simplicity, we assume from section 2 and on-wards that prices pit and pjt
are denominated in the same currency.
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which does not have a well-defined mean to which it will eventually return. One
example of a nonstationary time series is a random walk with drift which reads

pt = pt−1 + µ+ εt

The parameter µ measures the drift of the process whereas εt are the shocks
to the price series, that is, µ+ εt measures the change in the prices from time
period t− 1 to time period t. The price level can be written as

pt = p0 + µt+
tX

j=1

εj (1)

whereby it can be seen that prices will have a linear trend plus an accumulative
term reflecting all historical shocks to the process. The latter component is
frequently being referred to as a stochastic trend. In contrast, a stationary
price process will not have a stochastic trend in its levels representation. A
typical way of writing a so-called trend stationary process is by

pt = αtp0 + µt+
tX

j=1

αjεt−j , α < 1. (2)

As can be seen the non-stationary process results when α = 1 in (2). In this
case we say that prices pt have a unit root.
In describing the univariate characteristics of price data most price series can

be described either in terms of the process (1) or the process (2) and hence for
empirical analysis it is of interest to test whether the one or the other description
is to be preferred. The reason for this is that when the focus of attention is
on price behaviour amongst many price series, then a necessary condition for
two price series to co-vary is that the underlying series both need to be either
stationary or non-stationary. When price levels are non stationary in the sense
described above, we say the series is integrated of order one2, I(1), that is, when
α = 1 in (2). An I(1) process therefore has a unit root. When the price level
is stationary, α < 1, we say the series is integrated of order zero, I(0). A first
(necessary, though not sufficient) test of whether prices comove in a systematic
way (i.e. such that the underlying markets can be considered belonging to the
same geographical market), is that both series are integrated of the same order.
That is, the series are both stationary or both nonstationary. The property
generalizes to situations with multiple price series:

A necessary requirement for market delineation
A necessary (but not sufficient) requirement for commodities
belonging to the same geographical market is that the price
level of each series is integrated of the same order.

2Observe that statistical notion of integration should not be confused with the economic
notion of market integration.
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Figure 1: Examples of non-stationary, I(1) price processes.

In figures 1 and 2 examples of non-stationary, I(1), and stationary, I(0), price
processes are displayed. In both cases it is assumed that µ = 0 such that there is
no deterministic trend in the series. As can be seen the two price series behave
fundamentally differently. The intuition is thus, that a first test of whether
commodities belong to the same geographical market is that prices behave "in a
similar fashion". This question can be accomplished empirically by testing the
order of integration of the single price series.

2.2 Test for the order of integration

As argued in the previous section, it is of crucial importance to test whether
the single price level series are integrated of the same order. One particular
test, the Dickey-Fuller test3, DF, and its generalization, the Augmented Dickey
Fuller test, ADF, seem to be most popular in applied work.

2.2.1 The ADF test

The DF test is based on a test of whether α = 1 in the model (2), against the
alternative α < 1. Under the null hypothesis the price level is thus integrated
of order one, whereas under the alternative prices are integrated of order zero.
In its most simple form the test can be conducted by estimating by OLS the
model:

∆pt = (bα− 1)pt−1 + bvt (3)

3Due to Dickey and Fuller (1979). See also Fuller (1976) and the text books Hamilton
(1994), and Maddala and Kim (1998).
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Figure 2: Examples of stationary, I(0), price processes

where bα− 1 is the estimated parameter. Under the null hypothesis the t−ratio,
tbα−1, follows a distribution known as the Dickey-Fuller distribution. The dis-
tribution is tabulated in Fuller (1976), but in practical applications the finite
sample critical values in McKinnon (1991) are recommended. It should be noted
in particular, that the t−statistic does not follow a t−distribution.
Uncritical use of the simple regression model (3) should be warned against

because in most cases the assumptions underlying the simple model, c.f. later,
will not be satisfied. Instead, the augmented Dickey-Fuller regression with de-
terministics should be conducted. The auxiliary regressions read:

∆pt = (eα− 1)pt−1 + em0 +
kX

j=1

eγj∆pt−j + evt (4)

∆pt = (bα− 1)pt−1 + bm0 + bm1t+
kX

j=1

bγj∆pt−j + bvt (5)

which also include an intercept and an intercept plus a time trend in addition to
an appropriate number of lags of the differenced series. The t−statistic, teα−1,
from the regression (4) or the t−statistic, tbα−1, from the regression (5) is again
used for testing whether α = 1. The critical values of the test can also be found
in McKinnon (1991). However, note that the relevant critical values should
reflect whether only an intercept or intercept and trend have been included in
the auxiliary regression.
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2.2.2 Practical problems and concerns

There are a large number of pitfalls in unit root testing. Below a list of the prob-
lems and concerns is given, and suggestions of how to deal with the difficulties
are presented.

Should a trend be included in the ADF-regressions ? It is always rec-
ommended to include at least an intercept in DF regressions. The reason for
including a time trend is to obtain a test that is powerful against the possibility
of stationarity around a time trend.

• For the analysis of the price level (or log price level) it is always rec-
ommended to include a time trend, that is, the regression (5) should be
used.

• For the analysis of the price changes or log differences (growth rates) of
prices, it is recommended at least to include a constant term, that is an
analogue of regression (4) should be used.

Observe that when the focus is on the price differences, the ADF-test can
be conducted for the series p∗t = pt − pt−1 in place of pt in the regressions (4)
and (5). In this case the hypothesis being tested for the price level is that of
I(2) against I(1). When the series have been log-transformed it therefore means
that the growth rates (price inflation) is tested to be nonstationary I(1) against
the alternative that the price inflation is stationary, I(0).
It should also be mentioned in the choice between a model with or without

trend it is not legitimate to use the t−test of the trend regressor and test via a
t−distribution whether the coefficient is zero or non-zero. The choice of which
deterministics to include is given a priori.

Lagged differences. It is of crucial importance that the ADF regressions
(with or without trend) have residuals with no remaining autocorrelation. In
other words, it is important that the ”right” value of k is selected. Autocor-
relation in the residuals will invalidate the tests. On the other hand, having
too many lags in the auxiliary regressions will give a test with very bad prop-
erties. The recommendation is thus to include sufficiently many lags of ∆pt in
the auxiliary model in order to remove all residual autocorrelation. Following
the general-to-specific testing principle, insignificant lags are next removed but
only if removal of a particular lag does not result in residual autocorrelation. It
is fully legitimate to remove insignificant intermediate parameters. Note that a
standard t−distribution with an appropriate number of degrees of freedom can
be used to select which lagged differences to include in the model, - but only
the lagged differences.
In checking for residual autocorrelation it is not valid to use a Durbin Watson

test due to the presence of lagged differences and levels. Instead an LM-type
test, a Box-Pierce test, or a Ljung Box test should be used.
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Whereas residual autocorrelation will invalidate the ADF tests, it should be
noted that heteroscedasticity does not invalidate the test, and hence no action
needs to be taken in this respect.

Seasonality and frequency of observations. One type of residual autocor-
relation that may occur is that of seasonality. Depending upon the frequency
of observations hourly, daily, weekly, monthly, or bi-annual seasonal dummy
variables can be used in the auxiliary regressions. In fact, the use of seasonal
dummy variables will frequently reduce the number of lagged differences needed
in the regressions. For instance, if the frequency of observations is equal to q
(q = 4 :quarterly data, q = 12 : monthly data), the auxiliary regression with a
time trend will take the form

∆pt = (bα− 1)pt−1 + q−1X
j=1

bδjDjt + bm0 + bm1t+
kX

j=1

bγj∆pt−j + bvt
where Djt takes the value 1 in season j and is zero otherwise.

Outliers, missing values, and irregularly spaced observations. Outly-
ing, aberrant, and abrupt observations can sometimes invalidate the DF tests.
If the analyst suspects certain observations to be due to such anomalies it is
recommended to include dummy variables in the auxiliary models in order to
exclude the effect of their influence.
It is also frequently seen that data observations are missing or irregularly

spaced. There are a number of ways to deal with this problem. In Ryan and
Giles (1998), drawing on work by Shin and Shakar (1994), it is recommended
simply to ignore the missing observations and to abstract from "holes" in the
sampling data.

Small samples. It is always preferable to have long data series compared to
short data series. However, in competition cases it is frequently of interest to
compare price movements at short horizons for a relatively high frequency of
data, e.g. monthly, and often data will not be available except for a few years.
In general, increasing the frequency of observations can only partially compen-
sate for a short span of data. The reason is that new problems, e.g. seasonality
problems and outliers, are more likely to arise when the frequency of observa-
tions increases. After all, it is extremely important when higher frequencies of
data are analyzed that the seasonality issue is carefully dealt with.
The guideline for the minimum number of observations to be used in the

present kind of data analysis lies around 30 observations. When dealing with
samples of this size it is recommended to use appropriate small sample critical
values for hypothesis testing, see McKinnon (1991).
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2.3 Test of stationarity: The KPSS test

The augmented Dickey-Fuller unit root tests are designed to test the null of no-
stationarity against the null of stationarity. Sometimes it may appear adequate
to reverse the hypotheses by testing the null of stationarity against the alterna-
tive of non-stationarity. For instance, in delineating the relevant geographical
market it may sometimes seem more relevant to test the null of stationarity of
price differences or relative prices, and thus delineating a common geographical
market, against non-stationarity of price differences, i.e. the hypothesis of no
common market. The so-called KPSS-test suggested by Kwiatkowski, Phillips,
Schmidt, and Shin (1992) has been derived for this purpose. In Forni (2002)
it has been advocated for the use of stationarity tests in market delineation.
After all, our suggestion is to consider both types of tests in order to obtain
some common evidence for the relevant hypotheses of interest. Hence the tests
should be considered complementary rather than substitutes.
The KPSS test is constructed along the following lines. Assume the price

series can be represented as

pt = δt+ ζt + εt

where εt is stationary whilst ζt is a random walk component given by

ζt = ζt−1 + ut, ut ∼ i.i.d(0, σ2u)

The null hypothesis of stationarity can be formulated as a test on the variance
of the random walk component, that is under the hypothesis

H0 : σ
2
u = 0

the random walk part of the price process is absent. The KPSS test statistic
reads:

KPSS = T−2
TX
t=1

S2t /s
2(l) (6)

where

s2(l) = T−1
TX
t=1

e2t + 2T
−1

lX
τ=1

wτl

TX
t=τ+1

etet−τ

St =
tX

i=1

ei t = 1, 2, ...., T

wτl = 1− τ

l + 1

and et are the residuals from a regression of pt onto a constant (and possibly a
time trend). The function wτl is a weight function. This can take different forms
but the one reported above, known as a Bartlett window, is most frequently
used in empirical applications. The expression s2(l) is a variance estimator
accounting for the fact that serial correlation will typically exist in the series of
interest.
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2.3.1 Practical problems and concerns

The asymptotic distribution of the KPSS test statistic given in (6) is reported
in Kwiatkowski et al (1992) for two cases: with demeaned data, i.e. when et are
residuals from a regression of pt on a constant, and for detrended data, that is,
when et are residuals from a regression on both a constant and a time trend.
The time trend case is considered when the price series is judged to have a
deterministic trend.
No finite sample critical values are available which can be problematic if only

a limited number of observations are available as the test can be shown to be
somewhat size distorted in finite samples. Hence the test should be used with
caution in small samples.
In practice, the truncation number l is chosen by the analyst. There are no

clear directions concerning the choice of this value except that l should grow
with the number of data points available. A practical advice is however to try
different values of l. When the frequency of the data is s, e.g. s = 12 for
monthly data, it is recommended at least to calculate the test for l = s.

3 Pairwise comparision of price data
In order for price comparisons to make sense it is essential that the price series
to be compared are of the same order of integration, c.f. the first requirement
for market integration. If the price series under scrutiny are of different orders
of integration there is no way that the underlying markets can belong to the
same geographical market. On the other hand, if the price series are in fact
integrated of the same order this does not imply market integration, but it is
necessary for market integration.
In this section pairwise price comparisons are described for two situations:

• When the price levels are both stationary, I(0).
• When the price levels are both non-stationary, I(1).

Initially, only contemporaneous correlations are addressed, that is the dy-
namic aspect of price movements is abstracted from. However, the dynamic
aspect is rather important in practical situations and hence a subsequent sec-
tion is dedicated to tools designed for the dynamical considerations in price
movements.

3.1 Contemporaneous correlation analysis of stationary
price series

3.1.1 Simple correlation vs partial correlation

A frequent tool for analyzing the co-movement of two stationary price series is
to consider the simpel correlation coefficient.
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Consider two price series p1t, and p2t for which a total of T observations are
available. The simple correlation is calculated as

ρ12 =

PT
t=1(p1t − p1)(p2t − p2)qPT

t=1(p1t − p1)
2
PT

t=1(p2t − p2)
2

, p1 =
1

T

TX
t=1

p1t, p2 =
1

T

TX
t=1

p2t

The correlation coefficient is a scale invariant measure lying in the interval
−1 ≤ ρ12 ≤ 1. The closer ρ12 is to 1, the higher (contemporaneous) associa-
tion exists between the two price series. There is no generally agreed level or
threshold which defines whether series are moving sufficiently together for the
single commodity markets to belong to the same geographical market. After
all, the simple correlation of two price series should be treated with much care
due to the potential risk of measuring a spurious relationship between the se-
ries. A high degree of correlation between two price series can occur because
intrinsically the two price series do co-move. However, a high degree of corre-
lation can also arise as a result of a both series correlating with one or several
other factors. For instance, a high (simple) correlation can occur as a result of
a common seasonal pattern in the series without the single series being directly
related to each other. Also, the general price level of the implied markets can
tend to co-move or the commodity price is much sensitive to a production input
being externally priced. In practice we would like to correct for the influence of
such factors.
Assume that the factors we would like to correct for are the variables x1t, x2t,

..., xkt. These variables could for instance be seasonal dummy variables if we
want to correct for seasonal effects. Correcting p1t, p2t for the influence of these
factors is made by least squares regression:

p1t = bβ10 + kX
j=1

bβ1jxjt + p∗1t (7)

p2t = bβ20 + kX
j=1

bβ2jxjt + p∗2t (8)

The series p∗1t and p∗2t are the regression residuals and can be interpreted as
p1t and p2t corrected for the influence of x1t, x2t, ..., xkt. The partial correla-
tion coefficient is defined as the correlation between the adjusted series and
(because the mean of the corrected series is zero) reads:

ρ12|x1,x2,...,xk =
PT

t=1 p
∗
1tp
∗
2tqPT

t=1 p
∗
1t
2
PT

t=1 p
∗
2t
2

.

If the correlation between p1t and p2t is spurious it is typically seen as
the simple correlation ρ12 being relatively large whereas the partial correlation
ρ12|x1,x2,...,xk is relatively small. In general, however, the partial correlation co-
efficient can be either smaller or bigger than the simpel correlation coefficient
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and the coefficients may not even have the same sign even though one would
expect this in most cases analyzing price data.

3.1.2 Practical problems and concerns

When is correlation high ? - the use of benchmark correlations. In
the analysis of delineation of the relevant geographical market of a given com-
modity it is always recommended to base calculations on the partial correlation
coefficients for the reasons just given. It remains, however, to determine when
a partial correlation is sufficiently high for single markets or products to belong
to the same geographical market. Generally, we will be reluctant to put forth
a threshold for correlations being "high". However, in some cases we suggest
using threshold correlations by comparing estimated correlations with those oc-
curing between markets where we are convinced that either no integration or
very well integration exists. Although such a procedure is not a test we believe
that such an approach is preferable to the use of ad-hoc correlation thresholds
in product and geographical market delineation.

The order of Integration and the law of one price in absolute and rel-
ative terms. As previously mentioned, calculation of the above correlation
quantitities only makes sense when the underlying price level series are station-
ary, I(0). When the series are I(1), calculation of the quantities will result in
spuriously high correlation coefficients even though the series appear not to be
significantly correlated and hence inference can be very misleading. Notwith-
standing, when price levels are indeed I(1) or I(0) it still makes sense (and it
is perfectly valid statistically) to calculate the partial correlation coefficients of
the price changes, e.g. correlations of the transformed series ∆p1t = p1t− p1t−1
and ∆p2t = p2t − p2t−1. If p1t, p2t are log-transformed the correlation of the
growth rates (or price inflation) of the series will thus be calculated. In this
situation the economic interpretation of the correlations differ because it is the
price changes rather than the price levels that potentially will correlate. In this
situation it is a relative rather than an absolute version of the law of one price
being tested. A "high" correlation of price changes across commodities for dif-
ferent geographical regions still indicates that these comove and hence suggests
products to belong to the same geographical market.

Only contemporaneous effects. Partial correlation analysis should be con-
sidered one way of extracting information from price data and only information
associated with the contemporaneous correlations can be calculated. The dy-
namical aspects of standard simpel and partial price correlations are thus being
abstracted from. Price dynamics of price levels and price changes will subse-
quently be discussed.
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3.2 Dynamical correlation analysis of stationary price se-
ries

3.2.1 Granger causality tests

Price levels as well as price changes can be correlated over time in the sense that
there need not be any immediate effect from one price to another. One way of
formalizing whether there is a time lag effect in price dynamics is by virtue of
a Granger causality test, see Granger (1969) and Granger and Newbold (1986).
Granger causality or noncausality is concerned with the question of whether
lagged values of p2t do or do not improve on the explanation of p1t obtainable
from only lagged values of p1t itself and vice versa. In other words, the Granger
causality test helps in identifying the channels through which the price series
interact dynamically.
The idea behind the Granger test is the following. Consider two price series

p1t, p2t both being I(0). For instance, the price levels can themselves be I(0).
Alternatively we can focus on the price changes of I(1) price levels series, that is
∆p1t and ∆p2t, which are then I(0) by their construction. Assuming the price
levels are addressed, the model underlying the Granger test reads:

p1t = α10 +
kX

j=1

α1jp1t−j +
kX

j=1

β1jp2t−j + ε1t (9)

p2t = α20 +
kX

j=1

α2jp2t−j +
kX

j=1

β2jp1t−j + ε2t (10)

The following possibilities exist:

a) When β1j = 0 for all values j = 1, .., k then p2 does not Granger cause p1

b) When β1j 6= 0 for some j = 1, .., k then p2 does Granger cause p1

Similarly,

c) When β2j = 0 for all values j = 1, .., k then p1 does not Granger cause p2

d) When β2j 6= 0 for some j = 1, .., k then p1 does Granger cause p2.

Obviously, nothing excludes that causality or non-causality can be in both
directions. An easy way of testing whether one price series does not Granger
cause the other price series is by testing via a standard F−test the hypotheses
given in a and c above. The test can be easily conducted from any econometrics
soft-ware package doing linear regression analysis. When the null hypothesis
underlying a particular model is rejected then there is Granger causality from
one variable to the other.
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3.2.2 Practical problems and concerns

Selecting the truncation parameter ”k”. A practical problem concerns
the choice of ”k”, the truncation parameter, in the auxiliary regressions (9)
and (10) when conducting the Granger test. In practice, it is often seen that
results are reported for different values of k. It is important though, that the
results reported for any particular choice of k is based on a regression with no
residual autocorrelation. Again, the Durbin-Watson test adopted for testing
autocorrelation cannot be used due to the presence of a lagged left hand side
variable, and instead LM type of tests are recommended.

Correcting for external effects. The above procedure suffers from the same
potential problem as underlying standard correlation analysis discussed in sec-
tion 3.1.1. That is, a dynamic correlation can result as a consequence of ”third”
factors such as the general price level effects, seasonality, dependency upon
prices of product inputs etc. In order to avoid this difficulty the price series
need to be adjusted for such external factor influences. This can be accom-
plished by prior correction of the series as in (7) and (8) (possibly by allowing
some x variables to be lagged values) and conducting the auxiliary regressions
(9) and (10) with the series p∗1t and p∗2t in place of p1t and p2t. In fact, such
a procedure is always recommended. In many case it is also desirable to ac-
count for other price series than just p1t and p2t. Further elaboration on this
multivariable case is discussed in section 4.1.3.

A crude measure of dynamic correlation. The significance of the F−test
of Granger noncausality indicates the strength of the dynamic influence (or
causality) amongst the series, if any. In practice, however, it can be difficult from
the F−test to judge the degree of causality amongst the price processes. For
instance, there can be causality from one price to another, but the association
amongst the series need not be sufficiently strong for considering the respective
markets to belong to a common geographical market. A crude measure of the
dynamic association can be obtained according to the following lines.
Assume for instance that the F−test for Granger non-causality in the model

(9) rejects. Hence there is an indication that some correlation exists. We would
like to know how much of the variation in prices p1t can be explained solely in
terms of the lagged values of p2t, that is, the lagged prices p2t−1, p2t−2, ..., p2t−k.
In so doing we regress each of the variables p1t, p2t−1, p2t−2, ..., and, p2t−k on
a constant, as well as p1t−1, p1t−2, ..., p1t−k. For each of these series we save the
residuals which subsequently constitute new ’corrected’ series. Denote these
adjusted series ep1t, ep2t−1, ep2t−2, ..., and, ep2t−k. Next, ep1t is regressed on a con-
stant and the other adjusted series ep2t−1, ep2t−2, ..., and, ep2t−k. The coefficient of
determiniation R2 from this regression measures how large a fraction of the vari-
ation in prices p1t can be explained by the lagged prices p2t−1, p2t−2, ...., p2t−k
after correcting for the influence inherited in the dynamics of the price series
p1t itself. The larger the value of R2 the stronger dynamic adjustment exists
across markets.
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Of course, when external effects, (see above), are suspected, it is recom-
mended to use the series p∗1t and p

∗
2t in place of p1t and p2t in the above analysis.

Granger non-causality and absence of contemporaneous correlation.
Frequently it will be of interest to examine whether jointly there is no contem-
poraneous or dynamic dependency across two price series. If a statistical test
concludes the absense of such a dependency the two markets are separate and
cannot be part of a common geographical market. The test considers jointly
the possibility of Granger non-causality and absence of contemporaneous cor-
relation. The test can be constructed as a variant of the Granger non-causality
test by augmenting equation (9), say, with the regressor p2t and testing by an
F−test the jointly nullity of all parameters associated with contemporaneous
and lagged values of p2t. A difficulty with this test is, however, that it assumes
no joint determination of prices, i.e. one of hte price series needs to be exoge-
nously determined. This can be a practical problem because we would frequently
assume endogeneity of both prices. In these cases the "crude" version of the
Granger causality test, with no contemporaneous variables, is recommendable.

3.2.3 Error Correction Models for stationary variables

Error correction models are typically used in describing the dynamics of co-
integrated time series and we will address this topic later in this report. How-
ever, for stationary processes it is equally valid to model the dynamic adjustment
processes by error correcting behaviour. Essentially the estimated models cor-
responds to reformulated Granger-causality test type auxiliary regressions, but
the advantage is that an attractive interpretation of the estimation results can
be given.
The idea is to explain price changes in terms of lagged values of the price

changes as well as the lagged value of the price gap between prices p1t and p2t,
that is (p1t−1 − p2t−1) . That is, regressions of the form:

∆p1t = m1 + α1 (p1t−1 − p2t−1) +
kX

j=1

γ11j∆p1t−j +
kX

j=1

γ12j∆p2t−j + ε1t

∆p2t = m2 + α2 (p1t−1 − p2t−1) +
kX

j=1

γ21j∆p1t−j +
kX

j=1

γ22j∆p2t−j + ε2t

are conducted. These equations can be estimated by ordinary least squares,
making sure that the value of k is selected to make the residuals behave nicely.
For error correction to take place we expect α1 to be negative and α2 to be
positive. Hence, if a positive (or negative) price gap is observed in the previous
period, then p1t and p2t adjust in order to partially fill the gap. For the two
commodities to be long to the same market we thus expect at least one of α1
and α2 to be non-zero (with the expected sign). Testing the nullity of one the
α-coefficients can be undertaken by a standard t-test.
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3.2.4 Impulse response analysis

In the previous subsections we have defined Granger-causality from p2t to p1t
and vice versa. In principle, the definition involves all the variables of the system
(in this case two) which can be considered a concern when a larger system is
suspect to generate the interaction amongst the price series. In applied work
it is often of interest to know the response of one variable to an impulse in
another variable. Of course, if there is a reaction of one variable to an impulse
in another variable we may call the latter causal for the former. This kind of of
impulse response analysis is often called multiplier analysis, see e.g. Luthkepohl
(1990). For instance, in a system consisting of two stationary price series the
dynamic effect of an increase in one price on the behaviour of the other price
series seems highly relevant.

3.2.5 Practical problems and concerns

It can be tempting to conduct impulse response analysis in the implementa-
tion of the SSNIP test as sketched above. However, the practical experience
with impulse response analysis is that these are sensititive to a number factors
which are critical for the evaluation of such models. There are several problems
with the interpretation of estimated impulse response functions. Firstly, the
estimated impulse responses appear to be very sensitive to the variables that
are included in the model. Focusing on just two variables will generally not
be sufficient to trace out the adjustment dynamics and even when extending
the information set to several variables (as discussed in the next sections) the
estimated impulse responses can vary dramatically and often there is no clear
guide as to which variables to select. Secondly, even when a "correct" system
is specified the estimated impulse responses will depend upon the ordering of
the variabels in the model. This is naturally a serious critique because there is
nothing guiding us towards which variables to include - and in which order - of
a model. And finally, the identification of the shocks to be analyzed is itself a
critical problem where no guidance seems available.
The overall conclusion is thus, despite its theoretical appeal, that impulse

response analysis of price date is not appropriate for the delineation of the
relevant geographical market. The critique applies both to stationary and non-
stationary variables in "small" as well as in "big" models.

3.3 Correlation analysis of non-stationary price series:
Cointegration

So far we have examined data analysis of stationary, or I(0), price series. In
particular, we have noted that when time series are I(1), standard methods
are inadequate (unless their differences are being analyzed) since it is likely
that spurious relationships amongst the processes will result by use of such
methods. It occurs that in order to meaningfully identify relationships between
price series that are integrated of order one, I(1), the series need to share a
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common stochastic trend. When integrated time series have the same stochastic
trend we say the series are co-integrated.
In the following the properties of co-integrated processes will be discussed

for the situation where just two price series are analyzed. In section 4.2 we
extend the analysis to the situation with multiple (>2) price processes.

3.3.1 Cointegration analysis of pairwise (bivariate) price data

Assume we have two price series p1t and p2t which are both integrated of order
one. Univariate representations of the series (abstracting from deterministic
components) can thus be stated as follows:

p1t = p10 +
tX

j=1

ε1j

p2t = p20 +
tX

j=1

ε2j

The single price series exhibit a stochastically trending behaviour, each with
the (stochastic) trends

Pt
j=1 ε1j and

Pt
j=1 ε2j , respectively. For the underlying

commodities to belong to the same geographical market, we require that the
prices co-move in the sense that the stochastic trends vanish when a particular
linear combination of the data series is considered. It is natural in the present
context to consider the linear combination defining the price gap p1t − p2t. If it
occurs that the price differential does not contain a stochastic trend it means
that there is a common stochastic trend element in p1t and p2t and hence the
series tend to move together. Technically, the series are said to be co-integrated.
The single price series have a stochastic trend when viewed in isolation but when
looked at together the trend appears to be the same. This means that the price
gap can be given the representation:

p1t − p2t = αt(p10 − p20) +
tX

j=1

αjvt−j , α < 1.

which is thus a stationary, I(0), process. In figure 3 two co-integrated price
series are displayed together with the price differential. As can be seen the
single series exhibit a non-stationary pattern whilst the difference between the
two is stationary.
This suggests a natural testing procedure: First, the single series are tested

to have a unit root, i.e. the series are tested to be integrated of order one. If
both series cannot be rejected to be I(1), the price differential is subsequently
tested to be I(1). If this latter hypothesis is rejected it means that p1t and p2t
are co-integrated. These tests can be conducted by the ADF tests presented in
section 2.2. We say that the series are co-integrated with co-integration vector
(1,−1) because the linear combination:

(p1t, p2t)

µ
1
−1

¶
= p1t − p2t
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Figure 3: Example of two cointegrated I(1) price series together with their
difference, the price gap.

is stationary, I(0).
When the focus of the analysis is on market delineation, testing cointegration

vectors to have the above form appears the most natural because it indicates
that there is a one-to-one correspondence between the price movements. More
generally, however, price series can still co-move without the cointegration vector
taking the form (1,−1). In general, the quasi-difference p1t− bp2t can be I(0) in
which case the series cointegrate with cointegration vector (1,−b).
In this situation there is still a lot of information in terms of the co-movement

amongst the series, but there is no one-to-one association between the series in
this case. After all, if the series do cointegrate, it is always of interest to examine
whether the cointegration vector takes the particular form (1,−1),because this
relationship will have a nice interpretation in terms of the price gap.
Testing for cointegration when the cointegration vector is not given as a one

minus one relationship needs to be undertaken by using an alternative proce-
dure. A frequently used method is the Engle-Granger test procedure, Engle and
Granger (1987).

3.3.2 The Engle-Granger test for cointegration

Assume again, that p1t and p2t are both I(1) which has been concluded by
prior testing. When testing whether the two series cointegrate with a general
cointegration vector a commonly used procedure is to conduct the auxiliary
regression

p1t = a+ bp2t + vt
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and test whether the residual series vt is integrated of order zero. When this
occurs the series cointegrate with cointegration vector (1,−b).
The testing of the order of integration can be accomplished by use of the

ADF test discussed in section 2.2 and accounting for the practical problems and
concerns associated with that discussion. However, the critical values of the
Dickey-Fuller t-test statistic cannot be used in the present situation because the
(potential) cointegration vector has been estimated. Instead the critical values
associated with cointegration regressions reported in McKinnon (1991) need to
be used. The procedure is frequently referred to as the Engle-Granger two-step
procedure for obvious reasons.

3.3.3 The Johansen procedure for the analysis of cointegration

The Engle-Granger procedure can be considered a single equation procedure for
the testing of cointegration. In this sense it has certain limitations if in fact
the system of price series is generated simultaneously. An improved inference
and estimation procedure can be used by taking a systems approach to cointe-
gration analysis. This appears to be relatively simple for the two variable case,
but when extending this to multiple price processes it occurs that the systems
approach will gain much additional insight into the complicated dynamic inter-
action existing in simultaneous multivariable price systems. Demonstrating the
nature of the cointegration model in the bivariate case will be very instructive
and highly adequate for much analysis of the pairwise movement of price series.
In this section the intuition behind the systems approach to cointegration

analysis (frequently referred to as the Johansen procedure, see Johansen (1988,
1991, 1995)) is briefly described. In section 4.2.4 a more elaborate and detail
discussion will be given for multiple price processes.
A common way of representing multilpe time series is by virtue of a vector

autoregressive (V AR) model. For two I(1) price series a V AR(1), for instance,
can be written:

p1t = m1 + δ11p1t−1 + δ12p2t−1 + ε1t

p2t = m2 + δ21p1t−1 + δ22p2t−1 + ε2t

where µ
ε1t
ε2t

¶
∼ N

µµ
0
0

¶
,

µ
σ21 σ12
σ12 σ22

¶¶
In this case p1t and p2t are determined simultaneously (the covariance between
the error terms is non-zero) and both price series depend upon the lagged value
of each of the two series. A compact way of writing this is:µ

p1t
p2t

¶
=

µ
m1

m2

¶
+

µ
δ11 δ12
δ21 δ22

¶µ
p1t−1
p2t−1

¶
+

µ
ε1t
ε2t

¶
or, using vector notation,

pt =m+ δpt−1 + εt.
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An equivalent way of writing the VAR(1) model is

∆pt =m+ Γpt−1 + εt

It occurs that if p1t and p2t are co-integrated, then the matrix Γ can be
written as the product of two matrices, i.e.

Γ = αβ0 =
µ

α11
α21

¶¡
1 −β21

¢
and the V AR model can thus be reparametrized asµ

p1t − p1t−1
p2t − p2t−1

¶
= ∆

µ
p1t
p2t

¶
= (11)µ

m1

m2

¶
+

µ
α11
α21

¶¡
1 −β21

¢µ p1t−1
p2t−1

¶
+

µ
ε1t
ε2t

¶
or

∆pt =m+αβ0pt−1 + εt (12)

This representation is frequently referred to as an error correction model. The
representation has the following characteristics.
Although pt = (p1t, p2t)

0 is I(1), the single terms in (11) and (12) are sta-
tionary I(0). ∆pt is so by definition, and β

0pt−1 is so because it represents the
cointegrating relation, that is, β0pt−1 = p1t−1 − β21p2t−1 is stationary.
Observe, that the cointegrating relation can be interpreted as an attractor

relation towards which the two series tend to be attracted. The attraction
between the prices exists because the products belong to, and hence delineate,
a common geographical market. Hence p1t and p2t adjust in such a way that in
equilibrium p1t = β21p2t. The variable p1 − β21p2t can thus be interpreted as
the deviation from equilibrium in period t. The dynamics of the model is such
that by virtue of the adjustment parameters in α, ( −1 < α11 < 0, 0 < α21 < 1),
a positive (negative) disequilibrium error causes ∆p1t to be negative (positive)
and ∆p2t to be positive (negative). In other words, the adjustment is such
that the price series move back on track over time in response to being out of
equilibrium. The dynamics of the model is illustrated in figure 4.
The actual adjustment and dynamic reaction of the price series in response

to shocks will naturally depend upon the parameters of the model. In particu-
lar, zero values of α11 or α21 contain valuable information about the dynamic
adjustment process. Assume for instance that a statistical test cannot reject
that α21 = 0 and that β21 = 1. In this case the price of commodity 1, p1t, is
governed by that of p2t :

∆

µ
p1t
p2t

¶
=

µ
m1

m2

¶
+

µ
α11
0

¶
(p1t−1 − p2t−1) +

µ
ε1t
ε2t

¶
In other words, prices in market 1 are determined by the prices in market
2. If the price gap was positive in the past period (and hence p1t was too
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Figure 4: Equilibrium correction towards the attractor in a bivariate cointe-
grated system.

high compared to its equilibrium level p2t) then market forces in a ”common”
integrated market will tend to reduce the price p1t in the subsequent period.
If α21 > 0 we would see both prices move in opposite directions towards each
other in order to eliminate the disequilibrium.
The statistical analysis of problems associated with the above model will

be thoroughly discussed in section 4.2.4. However, as can be seen from the
presentation the empirical problem concerns the question of whether Γ factorizes
as Γ = αβ0, and hence the price series appear to be cointegrated. It can be
shown that this problem corresponds to a kind of multivariate Dickey-Fuller test.
Next, it is of relevance to test hypotheses about the α and β parameters. In the
present context of questions in relation to market delineation, zero restrictions
on α coefficients and unit restrictions on the β coefficients appear especially
relevant.
It is of interest to note that when the price series cointegrate there will be

Granger-causality in at least one direction. This means that in (11) either α11
or α21 (or both) will be non-zero.

3.3.4 Practical problems and concerns

Many of the problems associated with univariate testing of the number of unit
roots equally apply in the context of pairwise comparison of I(1) series. In
particular, the considerations of which deterministics to employ when using
ADF tests on price differentials are of equal relevance. Also, the problems
associated with lag truncation, seasonality, and outlying observations equally
apply.
Historically, the Engle-Granger test has been much used in empirical appli-
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cations. However, despite its simplicity, theoretical studies indicate that the
procedure suffers from a number of caveats, especially due to simulataneity
problems, and for practical applications nowadays the Johansen procedure for
VAR models is preferable. A comprehensive treatment of this procedure, its
pros and cons, will be given in section 4.2.4.
An important property of cointegrated systems concerns the fact that when

price series are found to cointegrate, then this property is invariant to the infor-
mation set used in the study. This limits the need for extending the information
set when particular price series are compared even though the inclusion of sea-
sonal dummy variables and the appropriate number of lags in the truncation of
the VAR model is of relevance with respect to the statistical properties of the
cointegration techniques.

4 Analysis of multiple (>2) price series
So far it has been assumed that only two price series are compared. In many
cases such pairwise comparisions will be necessary due to limited data avail-
ability but pairwise comparisons is also of separate interest even when there is
access to many more price variables. If sufficient data observations are available
for multiple price series a careful analysis of the series is naturally called for. In
the following we will again distinguish between comparison of price series being
integrated of order zero or one. Price series being integrated of different orders
cannot be associated with commodities belonging to the same geographical and
product market, as we have previously argued.

4.1 Contemporaneous correlation analysis of stationary
price series

4.1.1 Simple and Partial Correlations

Simple and partial correlation, by their definition, are measures associated with
bivariate relations amongst series. However, the appropriate conditioning on
”third” variables relates the measures of association in a multivariate context.
These issues are already discussed in section 3.1.1. However, the previous dis-
cussion is altered when multiple price series are available by the fact that in
addition to correcting the price series p1t and p2t, for instance, for some exoge-
nous factors x1t, x2t, ...., xkt, further correction can be made by extending the
set of ”third” variables to include p3t, p4t, ..., pqt, i.e. some other price series.
In so doing, a high simple coefficient of correlation and a low partial coeffi-
cient of correlation will indicate that the price series may co-move due to their
co-movement with other price series or some exogenous variables. In fact, the
partial correlations can be calculated for a range of conditioning variables which
will thus help in identifying the possible groups of variables through which the
correlation structure will follow.
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4.1.2 Principal components and factor analysis

One of the difficulties concerning the estimation of simple and partial correlation
coefficients when multiple price series exist is that it can be hard to judge which
price series co-move considered as a group, and hence can be interpreted to
belong to the same underlying geographical market. Principal components and
factor analysis partially accounts for this problem because such an analysis will
provide an idea of the number of separate factors that generate the price data. If
there is just a single factor it may indicate the existence of a single geographical
market. If there are several factors one may consider the price series to be
governed in separate markets. The case of a single geographical market is clearly
of most practical interest in the conduction of principal components and factor
analysis because it is only in this case the common market can really be identified
unproblematically. When several markets are indicated to exist, it can be a hard
empirical problem to identify which commodities belong to the separate markets
and hence will be of little practical relevance. One concern regarding the use
of principal components and factor analysis is that there is no real testing of
the number of markets (factors) can be given. The problem is much like the
problem associated with the interpretation of correlation coefficients: When can
we judge that correlation is sufficiently high for market delineation to exist?
Note that principal components and factor analysis are only valid when all

of the single price series are integrated of zero and hence are stationary. For
I(1) series the analysis can be conducted for the price changes, e.g. the growth
rates when the price series are log transformed.

Principal components analysis. Principal components analysis, see e.g.
Johnson and Wichern (2002) concerns the problem of explaining the variance-
covariance structure in a set of multiple (price) series through a few linear
combinations of the original variables. The general objective is to 1) reduce
the variation in the data to a limited number of separate components and 2)
to interpret these. For the market delineation problem, the components can
be considered a partitioning of the price variability into a limited number of
separate origins with the interpretation of these belong to separate geographical
markets.
Although q price series are required to reproduce the total system variability,

often much of this variability can be accounted for by a small number, k, of
the principal components. If so, there is (almost) as much information in the
k components as there are in the original q price series. In a sense, the k
principal components can then replace the initial q price variables, and the
original data set, consisting of T observation points on q variables, is reduced
to one consisting of T observerations of k principal components. However, only
when a single component appears to represent the data is an interpretation in
terms of market delineation most useful.
Technically, the principal components can be calculated in the following way.

The principal components are (particular) linear combinations of the q price se-
ries p1t, p2t, ...., pqt and it occurs that these solely depend on the covariance
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(correlation) matrix of the price series. The calculation of the principal com-
ponents does not require that the data is normally distributed but it is needed
(approximately) when inference concerning the components need to be made.
Consider the following linear combinations of the price series:

F1 = l01P =l11p1 + l21p2 + ...+ lq1pq

F2 = l02P =l12p1 + l22p2 + ...+ lq2pq
...

Fq = l0qP =l1qp1 + l2qp2 + ...+ lqqpq

The variance of Fi is given as

V ar(Fi) = l0iΣli (13)

where Σ is the variance-covariance matrix of p1t, p2t, ..., pqt. The principal com-
ponents are those uncorrelated linear combinations F1, F2, ..., Fq whose variances
in (13) is as large as possible. The first principal component is the linear combi-
nation with the maximum variance, i.e. the linear combinations l1 maximizing
V ar(F1) = l01Σl1 subject to the normalization that l1 has unit length in the
following sense: l01l1 = 1.
The second principal component is given by the linear combinations F2 =

l02P =l12p1+l22p2+...+lq2pq that maximizes V ar(F2) = l02Σl2 subject to l
0
2l2 = 1

and Cov(F1, F2) = 0. In other words, the second principal component is that
linear combination which has the highest explanatory power but is uncorrelated
with the first principal component. The above procedure proceeds recursively
for the remaining principal components.
It occurs that the principal components can be found by calculating the

eigenvalue of the covariance matrix Σ associated with the price series. If the q
(ranked) eigenvalues are denoted

λ1 ≥ λ2 ≥ ... ≥ λq ≥ 0
then the linear combinations li defining the i’th principal component is given
by the associated eigenvector, which we can denote e0i = (e1i, e2i, ...eqi). Note
that if some elements in ei are equal to zero, then this suggests that the price
series associated with these entries are uncorrelated with the other components.
In practice, however, it can be difficult to identify such structures.
An important result is that the total variation of the price series can be

written as
qX

i=1

V ar(pit) = λ1 + λ2 + ...+ λq

and consequently, the proportion of the total variance explained by the kth
principal component is

λk
λ1 + λ2 + ...+ λq

, k = 1, 2, ..., q. (14)
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For instance, if most (80 or 90 %, say) of the total population variance can be
attributed to the first principal component, then this can be taken as indicative
of a high degree of co-movement amongst the price series. On the other hand, if
the first principal component is relatively small, it may indicate a lesser degree
of market integration. The practical problem lies in the determination of the
threshold for which market delineation can be assumed, unfortunately there is
little guidance in this respect from the statistical analysis but a choice of 80 or
90 % of the quantity (14) seems to be a pragmatic choice.
The above presentation has been in terms of population quantities, but sam-

ple equivalents can be straightforwardly defined.

Practical problems and concerns. The limitations of the principal com-
ponents analysis are several. First, as indicated there is no clear answer to the
question of when a component is sufficiently strong to justify market integra-
tion and hence the tool should be used as a pragmatic device, just like standard
correlation analysis. It is only when most of the statistical variation in the data
can be described by a single component that the application of the procedure
to market delineation is most useful. In practice, we expect some degree of
co-variation of prices, even when products do not belong to the same geograph-
ical market. Requiring the separate components to be orthorgonal (and hence
uncorrelated) seems to be a too strong requirement.
Also one should be aware that the scaling of the variables may matter (be-

cause the variances will change) and hence the principal components based on
the covariance matrix rather than on the correlation matrix need not be the
same. Such dependency of scaling is naturally critical. Hypothesis testing re-
garding the eigenvectors and hence the form of the principal components can
be made in principle, but normally rather many observations will be needed for
validity of the technique.
A final comment concerns the correction of the influence from exogenous

factors such as seasonality. A dominating first principal component can result
from the influence of a significant external factor and hence, in practical situ-
ations we would like to correct for this. Prior correction of the price series for
exogenous factors x1t, x2t, ... etc. can be made using the procedure described in
section 3.1.1.

Factor analysis. In principle, factor analysis can be considered a next step,
following extraction of principle components. The essential purpose of factor
analysis is to describe, if possible, the relationships amongst many variables in
terms of a few underlying, but unobservable, random quantities called factors.
Basically, the factor model is motivated by the following argument. Suppose
variables can be grouped by their correlations. That is, all variables within
a particular group are highly correlated among themselves but have relatively
small correlations with variables in a different group. It is conceivable that
each group of variables represents a single underlying construct, or factor, that
is responsible for the observed correlations. For example, price correlations in
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separate markets can constitute such separate factors and if just a single factor
is given, it can be interpreted as a justification for all the price series delineating
a single market for a particular good.
There are several ways to specify the factors. However, it seems natural to

build upon the outcome from the principal components analysis and making the
estimated m primary orthogonalized components represent the relevant factors.
The factor model can now be written as

p1 − µ1 = l11F1 + l12F2 + ...+ l1mFm + ε1 (15)

p2 − µ2 = l21F1 + l22F2 + ...+ l2mFm + ε2
...

pq − µq = lq1F1 + lq2F2 + ...+ lqmFm + εq

where µi are the means of each price series, and Fj , j = 1, 2, ...,m is the jth
price factor representing market j. εi , i = 1, 2, ...,m are price specific error
terms. Hence price variation is due to a factor specific component and a residual
component. Note, that in (15) m indicates the number of separate markets but
nothing is said concerning which price series belong to the separate markets.
This needs further testing. For instance, if m = 2 it may be of interest to
impose zero restrictions on the parameters lij (frequently referred to as the
factor loadings) in order to see whether particular price series are affected by
particular price factors. After all, the estimated values of the factor loadings
lij are indicative of the relative importance of the separate price factors in the
determiniation of prices of the goods of different origin. If it has been found
that m = 1, e.g. by principal components extraction, the interest in estimation
a model such as (15) lies in the determination of whether some li1 coefficients
can be tested to zero and thus indicating that the pith price is unaffected by
common price factors of the other commodities.

Practical problems and concerns. The literature on the estimation of
factor models and the choice of factor representing combinations of the data
is rather huge and it would take us too far to go into a further debate on
this issue. Here we just note that such models can be estimated, typically
by maximum likelihood methods. Much soft-ware implements these methods.
The real problem is to determine the number of factors in a multivariable price
process, and as it has been argued the testing device in this respect is not
well developed. Principal component analysis can be indicative of the number
of factors, and factor analysis can be useful in understanding the adjustment
mechanisms applying in such a model.
A strategy that can be considered in principal component and factor analysis

is the following: Perform a principal component analysis which is particularly
appropriate for a first pass through the data. Next, a maximum likelihood
estimation is made of a factor model with the primary principal components
given as the factors. The factor analysis solutions are next compared and it is
checked whether the factor loadings group in a systematic way across the price
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series. It can be useful to consider a different number of factors in the factor
analysis to check the robustness of the results.
A serious limitation of principal component and factor analysis concerns the

fact that no dynamics are allowed for in the specification. In many cases we
would expect dynamics to play an important role in the transmission of price
changes across and within separate geographical markets. To this problem we
next turn although the approach appears somewhat different.

4.1.3 Granger causality

Granger causality test. Tests for Granger-causality in the presence of mul-
tiple time series largely follows the test in the bivariate case except that now
the single price series are properly adjusted for the influence of lagged values of
"third" variables, c.f. the discussion above. That is, either the single price series
p1t and p2t are corrected for the influence of lagged values of p3t, p4t, ..., pqt (and
any other exogenous factors x1t, x2t, ...., xkt) and then using the residual series in
a standard Granger causality test regression. Alternatively, all the series upon
which the conditioning is made are included in the auxiliary regression. When
multiple price series are considered jointly the Granger test captures the pair-
wise dynamic interaction of the variables after appropriate conditioning upon
other price series. However, a joint test where lagged values of multiple price
series are tested via a standard F−test of linear restrictions is perfectly valid.
But in this case it cannot be identified directly whether one or the other price
series causes the price variable at hand. Only the joint causality can potentially
be identified.
Error correction models for stationary variables. In section 3.2.3 we

advocated for the use of error correction models for stationary processes as a
convenient framework for interpreting Granger causality in an attractive way.
This method can be easily extended to multiple series, i.e. by the allowance for
several price gaps in the estimation equations.

4.2 Cointegration analysis of multiple non-stationary price
series

In section 3.3.3 an introduction to the notion of cointegration in systems of
equations was given for the situation where two price series are compared. In
this section we assume that multiple (>2) price series are available and hence
we want to model the joint association amongst these series. We will also
relate the statistical properties of such systems to the economic interpretation
of the underlying commodities potentially belonging to a common geographical
market. The maintained assumption in the sequel is that the single price series
are integrated of order one which can be tested, of course, given the procedures
presented in section 2.
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4.2.1 Intuition behind cointegration analysis in systems

Assume we have q price series p1t, p2t, ...., pqt which are all integrated of order
one, I(1). When viewed in isolation each of these series can be characterized as
having a stochastic trend. However, like in the q = 2 case, it can occur that
the trends, or at least some of the trends, move very closely such that common
stochastic trends are shared amongst the series. When this happens some of
the series co-integrate whereby linear combinations (price gaps, for instance)
of the price series appear to be stationary. The number of stationary relations
existing between the q variables is denoted the cointegration rank and we denote
this number r. Each of the stationary relations can be interpreted as attractor
relations that are tied together via economic forces, for instance by the fact that
commodities belong to the same geographical market whereby price differences
are eliminated through arbitrage trading. It can be shown that for q variables
and r cointegration relations the number of common stochastic trends is given
by q − r. Assume for instance, that we have q = 3 price series, and it can
be found that r = 2. This means that q − r = 3 − 2 = 1 common stochastic
trend drives all of the three price series. In other words, the price trend in each
market is the same because the underlying commodities belong to the same
geographical market. Another example is when q = 4 and r = 2. In this case
there are two attractor relations and two common stochastic trends driving the
four price levels. A natural way of interpreting this possibility is that the four
prices delineate into two separate markets which are each driven by their own
price trends. If the price trends in the two markets were in fact co-moving in a
stationary sense it would mean that the markets were really a unified market,
and hence r would equal 3 rather than 2. In figures 4 and 5 the above two
situations are illustrated. Each figure displays the single series as well as the
stationary relations which are designed to be the relevant price differentials.
The above intuition suggests a natural outline for the empirical analysis of

attractor relations and market delineation for multiple price processes.

• Identify that the single series are integrated of order one
• By use of a statistical test, estimate the number r indicating the number
of attractor relations, and hence the number of separate markets. When
r is identified it means that q − r price trends drive the markets.

• Check whether the price differentials can represent the attractor relations,
i.e. is it such that pit − pjt for i 6= j for instance is one of the stationary
relations even though the single price processes are non-stationary.

In the sequel a thorough description of the empirical analysis of these prob-
lems will be given.
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Figure 5: Cointegrated series with q = 3, r = 2, and hence q − r = 1 common
stochastic trend.
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Figure 6: Cointegrated series with q = 4, r = 2, and hence q − r = 2 common
stochastic trend.

37



4.2.2 A formal definition of cointegration and error correction in
simultaneous price systems

To make the notation clear we define formally what is ment by cointegration in
a multivariable context. The original definition by Engle and Granger, (1987)
was made for general orders of integration. Here we assume the price series are
integrated of order one.

Definition of cointegration. We say that the q × 1 vector process Pt =
(p1t, p2t, ..., pqt)

0 is cointegrated of order 1,1 (Pt ∼ CI(1, 1)) if the single price
series in Pt ∼ I(1) whilst there exists a q×r matrix β such that β0Pt ∼ I(0).We
denote β the matrix of cointegration parameters/vectors and the total number
of stationary cointegrating relations equals r.

Cointegration dictates that although the single series are fluctuating wildly
according to unit root (integrated) processes, there exist some linear combi-
nations of the data where the stochastic variation is tied together due to e.g
the presence of some economic attractors (for instance, the market forces which
through arbitrage delineate a common geographical market).
The relations

β0Pt

are the cointegrating relations defining the attractor relations. The actual values
of β0Pt can be interpreted as the deviations from the "equilibrium relations".
Non-zero values therefore suggest that some kind of adjustment in the prices
can be expected to eliminate price differences for instance.
Assume that q = 3, and r = 2. In this case Pt = (p1t, p2t, p3t)

0 ∼ I(1) and
the cointegrating relations are given by:

β0Pt =

µ
1 β12 β13
β21 1 β23

¶ p1t
p2t
p3t


=

µ
p1t + β12p2t + β13p3t
β21p1t + p2t + β23p3t

¶
=

µ
z1t
z2t

¶
Suppose the parameter values are such that the system can be rewritten as

β0Pt =

µ
1 −1 0
0 1 −1

¶ p1t
p2t
p3t


=

µ
p1t − p2t
p2t − p3t

¶
=

µ
z1t
z2t

¶
whereby the stationary relations are given as the price differences. Observe
that two (r = 2) cointegrating relations exist: z1t and z2t, i.e. the economically
interesting attractor relations are the price gaps.
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Error Correction. An interpretation can be given as follows: If a positive
(negative) equilibrium error (price difference) is observed in the previous period
for the first relation, z1t−1 > 0, (z1t−1 < 0) then we expect that p1t decreases
(increases) in the subsequent period and that p2t increases (decreases) in the
subsequent period, i.e. the two series adjust in such a way that the gap p1t −
p2t tends to be eliminated in the following period. When such adjustment
mechanisms exist we say the model is error correcting.
In fact, when cointegration exists, it means that the dynamics of the model

can be represented as an error correction model. In the above example this can
be written as: ∆p1t

∆p2t
∆p3t

 =

 α11 α12
α21 α22
α31 α32

µ 1 −1 0
0 1 −1

¶ p1t−1
p2t−1
p3t−1

+
 ε1t

ε2t
ε3t


=

 α11 α12
α21 α22
α31 α32

µ p1t − p2t
p2t − p3t

¶
+

 ε1t
ε2t
ε3t

 (16)

where the α coefficients determine how much the single price series react in
response to price differences across the markets.
Observe, that in the above case there are q = 3 commodities and price

series. p1t and p2t are tied together and p2t and p3t are tied together. However,
considering the linear combination z1t+z2t = (p1t − p2t)+(p2t − p3t) = p1t−p3t
it is seen that p1t and p3t are also tied together in the sense that p1t − p3t is
stationary (because z1t and z2t are stationary). The result also follows naturally
because the three series are driven by q − r = 1 common stochastic trend. As
indicated in the example, each of the commodities can thus be considered to
belong to the same geographical market.

A general representation. In general, the Error Correction Model can be
written in the compact form:

∆Pt = αβ0Pt−1 +
kX

j=1

Γj∆Pt−j + εt (17)

where α and β are q×r matrices and Γj is q×q. The columns in β are denoted
the cointegration vectors. Note that in practice adjustments in terms of lagged
price changes are needed.
The empirical problem is

• Determine r, the number of cointegrating relations
• Put identifying restrictions onto β to interpret the cointegrating relations
economically, typically in terms of price differences

• Test restrictions on β and possibly test restrictions on α to see which
variables respond in reaction to disequilibrium
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4.2.3 Engle Granger test for cointegration - single equation approach

In section 3.3.2 the Engle-Granger two-step procedure was presented for the
case with q = 2. The procedure generalizes naturally to the case with q > 2.
However, because the procedure is only valid for a cointegration rank of r = 1 it
is suggested in the present context to apply the previously described method for
q = 2 for each pair of prices in turn. Similarly, the price differences pit−pjt, i 6=
j, can be tested for all combinations of the price series to have a unit root
according to the procedure outlined in section 3.3.1.
If all of the pairwise comparisons result in each of them being cointegrated,

then the number of cointegration relations is given as q − 1 and hence all price
series are governed by one common stochastic price trend and each commodity
will belong to the same market.
The Engle-Granger procedure is not an optimal procedure because all the

price series are not addressed simultaneously. The so-called Johansen procedure
is a joint procedure which addresses the joint interaction of the series. This is
a clear advantage although for practical purposes one should be aware that
increased data requirements in terms of sample observations are needed.

4.2.4 The Johansen procedure for systems of variables

The VAR model for I(1) variables. The starting point for the systems
analysis of cointegration is a VAR(k) model for the levels of the price series

Pt =m+A1Pt−1+A2Pt−2+.....AkPt−k+εt

where Pt = (p1t, p2t, ..., pqt) and Ai are q × q matrices with the parameters
associated with each lag of the price series, and m is a vector with the intercept
terms of each equation. It is assumed that the error term in the VAR model is
normally distributed with a covariance matrix Σ :

εt ∼ N(0,Σ)

If data is seaonally varying it can also be considered to include seasonal
dummy variables. Sometimes also a trend is included; we return to this com-
plexity later. A practical concern is to make sure that k is chosen such that the
errors in each equation have no autocorrelation and preferably are also normally
distributed.
After k has been determined the model is put on so-called error correction

model form (most computer packages will do this automatically):

∆Pt = ΠPt−1 +
k−1X
j=1

Γj∆Pt−j + εt (18)

Balancing requires that each side of the equality are integrated of the same order
even though both differences and levels appear in the equation. This gives rise to
a number of possibilities which determine the number of cointegrating relations
and thus the number of common stochastic price trends in the data.
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The Cointegrated VAR model for I(1) variables. It occurs that the coin-
tegration properties of the data are given by conditions concerning the matrix
Π. Technically we have to address (and estimate) the rank of the matrix. The
following possibilities arise:

a) Rank Π = q (full rank) ⇒ Pt is stationary, I(0).

b) Rank Π = 0 (zero rank) ⇒ ∆Pt is stationary, I(0), (or Pt is I(1)).

c) Rank Π = r < q (reduced rank) ⇒ ΠPt−1 is stationary I(0). In this case
there are r cointegrating relations and thus q − r separate price trends.

The case "c" is obviously most interesting because this is the situation where
attractor relations exist between the price levels and hence determine market
delineation.
The practical problem is thus to determine r. Technically this means that

an eigenvalue problem has to be solved because the rank of a matrix (Π in
this case) is determined by the number of non-zero eigenvalues of the matrix.
The associated empirical problem is to determine by some test the number of
eigenvalues equal to zero. This number corresponds to the number of common
stochastic trends amongst the price variables, that is q − r.
Assume now, that the rank of Π equals r (0 < r < q). In this case

Π = αβ0

where α, β are both q × r.
This yields the Error Correction Model formulation of the model in the case

of cointegration (17) which is rewritten here as

∆Pt = αβ0Pt−1+
k−1X
j=1

Γj∆Pt−j+εt.

The error correction model given in (16) is a special case of this general error
correction model formulation.

Test of Cointegration Rank. Testing the cointegration rank can be under-
taken by use of the so-called Johansen procedure. The procedure is implemented
in most modern econometric software such as PcGive, MicroFit, Eviews, and
TSP. We will not give a detailed description of the technicalities in the present
context but rather provide some practical advice and intuition in the implemen-
tation of the procedure. Stepwise, the procedure reads:

• Estimate the VAR model (18) for a given value of k, making sure that the
errors follow approximately a normal distribution. It is advisable to start
with a relatively big model (depending upon the number of observations)
and testing down the model until the design criteria are no longer satis-
fied. It is recommendable to have as simple a model as possible (in terms
of the choice of k), however, it is extremely important that no residual
autocorrelation is left in the residuals.
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• The model parameters are estimated by the Maximum Likelihood method.
The software implementing the Johansen cointegration analysis will next
estimate the eigenvalues of the Π matrix in (18) by so-called reduced
rank regression. The solution yields q estimated eigenvalues which can be
ranked such that:

1 > bλ1 > bλ2 > ...bλr > .... > bλq ≥ 0
• Associated with the eigenvalues are the q estimated eigenvectors

bv = (bv1, bv2, ...bvr...., bvq)
Now, because the rank of the Π-matrix is given by the number of non-zero
eigenvalues, the empirical problem is given by that of testing the q − r
smallest eigenvalues to equal zero:

1 > λ1 > λ2 > ...λr| {z }
r eigenvalues 6=0

> 0 = 0... = 0| {z }
q−r eigenvalues =0

• The test of the hypothesis that the q − r smallest eigenvalues equal zero,
that is: H0 : λr+1 = λr+2 = .... = λq = 0 can be conducted using the
Likelihood Ratio principle. The null hypothesis can also be written as:

H0 : rankΠ = r (r cointegration vectors and hence q − r common stochastic trends)

H0 : rankΠ > r (more than r cointegration vectors and hence less than q − r

common stochastic trends)

The LR-test statistic (the trace-test) reads:

−2LnLR = −T
qX

i=r+1

ln(1− bλi)
The distribution of the test statistic does not follow a χ2 distribution as LR
tests normally do. Instead the distribution follows a multivariate version
of the Dickey-Fuller distribution. The critical values are automatically
reported in most software implementing the Johansen procedure. The
testing procedure is sequential: First r = 0 is tested. If this is rejected
one proceeds to testing r = 1, and so forth, until the value of r for which
the test does not reject. This determines r, and hence the number of coin-
tegrating relations, (as well as the the number of price trends generating
the entire system of price series).

• Assume that r is now determined. Corresponding to the r largest eigen-
values the associated eigenvectors can be found. These correspond to
estimates of the cointegration parameters:bβ = (bv1, bv2, ...bvr).

• Estimates of α follow directly from the procedure.
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Testing hypothesis on α and β. After the number of cointegrating relations
r has been determined this is fixed for all subsequent analysis. Likelihood ratio
tests on α and β conditional on a fixed value of the cointegration rank are all χ2

distributed which of course eases hypothesis testing. When testing restrictions
on α and β it should be noted that only overidentifying restrictions of the
parameters can be tested.
Assume the restrictions to be tested look like:

H0 : α = α0

HA : α 6= α0

or

H0 : β = β0
HA : β 6= β0

The procedure for calculating the tests reads:

• For a fixed value of r, estimate the model without restrictions, and calcu-
late the eigenvalues: {bλ1, bλ2, ..., bλr), and the unrestricted likelihood value
lnL.

• For the same value of r, estimate the model with restrictions, and calcu-
late the restricted eigenvalues {bλ∗1, bλ∗2, ..., bλ∗r), and the restricted likelihood
value, lnL∗.

• The LR-test statistic now reads:

−2 lnLR = −2(lnL∗ − lnL) = T
rX

i=1

ln

Ã
(1− bλ∗i )
(1− bλi)

!
∼ χ2(df=#(overidentifying) restrictions)

• Most soft-ware automatically calculates the degrees of freedom.

The relevant hypotheses in the testing of market delineation. The
cointegration vectors are the columns in the β vector, and these span the so-
called cointegration space. This space is identified. However,the single cointe-
gration vectors are unidentified and further identifying restrictions are needed
in order to interpret and test the single cointegrating relations. In fact, this is
the usual identification problem in simultaneous equation models. Consider the
estimated β matrix for q = 5 and r = 3:

β =


1 β12 β13
β21 1 β23
β31 β32 1
β41 β42 β43
β51 β52 β53

 (19)
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In this (unidentified) model there are 3 cointegrating relations and 2 common
stochastic trends. However, we cannot interpret the single columns in (19)
because "they all look like the same". We need to impose some identifying re-
strictions on the parameters. Restrictions important for the market delineation
problem read as follows.
First note, that because q − r = 2 there are two separate price trends, and

hence two separate markets can potentially be identified. One set of restrictions
that will do so reads:

β =


1 β12 β13
β21 1 β23
β31 β32 1
β41 β42 β43
β51 β52 β53

 =


1 0 0
−1 1 0
0 −1 0
0 0 1
0 0 −1

 (20)

In this case there are r(q − r) = 6 overidentifying restrictions which for the 5
price series Pt = (p1t, p2t, ..., p5t)

0 determine the relations β0Pt :

p1t − p2t (21)

p2t − p3t

p4t − p5t

Hence, p1t, p2t, and p3t all move together and can be considered to delineate one
geographical market. The price series p4t and p5t also comove, but only together,
not along with the other price series p1t, p2t, and p3t. The given example with
segmented markets is a particular case of what Granger and Haldrup (1997)
coinede separate cointegration.
A situation where all commodities belong to the same geographical market

would require 1) that r = 4, (such that there is q− r = 5− 4 = 1 common price
trend) and the restricted β vector would read:

β =


1 β12 β13 β14
β21 1 β23 β24
β31 β32 1 β34
β41 β42 β43 1
β51 β52 β53 β54

 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 −1

 . (22)

Now there are r(q − r) = 4 overidentifying restrictions which for the 5 price
series Pt = (p1t, p2t, ..., p5t)

0 determine the relations β0Pt

p1t − p2t

p2t − p3t

p3t − p4t

p4t − p5t

Hence, in this example all the series co-move in pairs because there is just a single
common price trend. Observe, that one can take arbitrary linear combinations
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of the above price differentials, which will demonstrante that all pairs tend to
co-move. For instance (p1t − p2t)+(p2t − p3t) = p1t−p3t is a stationary relation
and hence p1t and p3t will co-move.
Observe, that much of the discussion in relation to the pairwise comparison of

price data equally apply in the present context. The advantage of a multivariate
analysis of the pairwise data, given that the data can be simplified in this fashion,
is that the grouping of multiple price series can be much better given.

Simplifying the model to look at price differences is attractive because there
is a straightforward interpretation of the (simplified) model in this case. When
one-minus-one attractors cannot be identified in the data it still makes sense
from a market delineation point of view to consider cointegrating relations of
the form pit − aijpjt. In general terms, a matrix of cointegration relations cor-
responsing to (22), for instance, can be described as

β =


1 β12 β13
β21 1 β23
β31 β32 1
β41 β42 β43
β51 β52 β53

 =


1 0 0
−a21 1 0
0 −a32 0
0 0 1
0 0 −a53


In this model the price series still co-move systematically constitute two separate
markets, but movements within the single markets is not one-to-one.

Joint delineation of product and geographical markets. A major ad-
vantage of the modelling framework just presented is that the relevant product
and geographical market can be delineated simultaneously. In most competion
cases market delineation is undertaken sequentially: First the relevant product
markets is determined, next the relevant geographical market is determined.
The foregoing procedure based on multivariate cointegration analysis has the
advantage that products and regions can be considered jointly. The testable im-
plications of a joint delineation of the relevant product and geographical market
amounts to testing of hypotheses and restrictions of parameters such as in (22)
and with the separate prices reflecting particular products in particular regions.
A limitation of such an analysis is, however, that only a limited number of prod-
ucts and regions can be modelled in order for the dimension of the system not
to explode and hence making the testing infeasible in practice.

Dynamic considerations in market delineation. Separate tests that can
be of interest in the delineation of the relevant geographical market concerns
the adjustment (or loading) parameters α. For instance, consider the situation
where the β matrix is given by (22). The adjustment matrix α will typically
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take the unrestricted form

α =


α11 α12 α13
α21 α22 α23
α31 α32 α33
α41 α42 α43
α51 α52 α53


where the single entries determine how each of the price series change in response
to the price differentials (21) being non-zero. For instance α11 tells (via the
error correction model(17)) how much p1t changes from the value in the previous
period when p1t−p2t 6= 0. The size of the α coefficients measure the speed of the
adjustment process. The imposition and statistical non-rejection of restrictions
on α will induce important structure concerning the dynamic adjustment in the
system. For instance, one could ask whether it is such that particular country
(or region) specific commodities are price leaders in the dynamic adjustment of
prices. Consider the following example:

α =


α11 α12 α13
α21 α22 α23
0 0 0
α41 α42 α43
0 0 0


In this case there are 6 zero restrictions on the α coefficients. These indicate
that when price differentials exist across the commodities of 5 different origins,
then the adjustments are in p1t, p2t, and p4t. If the restrictions on β are as given
in (20), then this means that p3t and p5t (which belong to separate markets)
do not reject in response to price differentials. However, the other prices do
adjust. In this sense the commodities associated with p3t and p5t can be treated
as exogenous and thus governing price adjustments of the other commodities.
In relation to the discussion of adjustment mechanisms it should also be

noted that cointegration and the existence of error correction models in such
cases is intimately related to the notion of Granger causality. In fact, through
the error correction model, cointegration implies Granger non-causality in at
least one direction thus meaning that there is at least one entry in the α matrix
which is non zero.

4.2.5 Obtaining consistent market delineation from different models

One problem with co-integration analysis of the type described above is that
the conclusions to be drawn may differ depending upon which price variables
are included in the VAR model. Such problems can occur for instance, due to
poor data quality,. Also, nothing guarantees that working with VAR models of
different orders, i.e. different values of q, will yield the same conclusion. Robust
inference occurs when market delineation is insensitive to and consistent with
different combinations of the variables included in the study. A procedure for
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robustifying the analysis is to estimate VAR models and conduct co-integration
analysis for models of an increasing complexity:

• First co-integrated analysis is undertaken for the pair-wise data, that is
for q = 2.

• Next, all possible combinations of the prices for 3-dimensional systems,
(q = 3), are considered.

• Next, 4-dimensional systems are addressed

and so forth. The analysis can be rather demanding in terms of the number of
systems that need to be scrutinized. However, one can hope that a consistent
pattern will emerges as to which countries segment into particular "groups".
From a pragmatic point of view one will expect that some countries or regions
are stronger associated than others, but at least the conclusions to be drawn
should be consistent with and reasonably robust to the information set being
used, i.e. the particular countries studied.

4.2.6 Practical problems and concerns

There is no doubt that when sufficiently many observation points are avail-
able and the price series appear to be non-stationary I(1), then the Johansen
procedure for the analysis of cointegration and common stochastic trends is a
very powerful tool and an intuitive way of implementing the SSNIP test in the
delineation of the relevant geographical market. However, as it has perhaps be-
come clear from the foregoing description of the procedure, an advanced insight
into the practical implementation of the technique is necessary. This is not an
argument for not using the method.
The Engle-Granger method seems less attractive for multivariable analysis

because the method presupposes that only a single cointegrating relation exists,
and this can frequently not be assumed a priori. Instead, a pairwise analysis of
the single series can be implemented by use of ADF-tests of the pairwise price
differences amongst the different price processes. Often the limitation of data
is itself a reason for using such a procedure.
There are a number of practical problems and concerns one should be aware

of when implementing the Johansen procedure. These will be summarized be-
low.

Lag truncation of the VAR. One of the major difficulties with the Johansen
procedure is that a rather large number of parameters need to be estimated in
the VAR model. This can be a practical problem if only observations for a
limited number of years, quarters, or months, are available. Hence, limiting the
number of lags is important. On the other hand, having too few lags in the
model will induce autocorrelation in the errors of the single relations. This is
equally serious because in this case the test of cointegration rank will become
invalid.
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Removal of autocorrelation by lag augmentation of the VAR is the most
important problem to solve when implementing the Johansen procedure. Studies
have shown that heteroscedasticity and deviation from the normality assumption
are less important for practical hypothesis testing about the cointegration rank.

Seasonality. When analyzing data exhibiting seasonal variation it is frequently
useful to include seasonal dummy variables in the VAR model (18). In fact, in
many cases the number of lags needed in the VAR to render the errors free from
autocorrelation can be reduced significantly by allowing for seasonal indicator
variables.

Deterministic components and the distinction between absolute and
relative price convergence. In addition to a constant and seasonal dummy
variables a trend can sometimes be included in the VAR. A comprehensive
discussion of the implication of doing so is rather advanced so here only an
intuitive explanation will be given.
Consider first the situation with a constant in the model. It occurs that the

constant will play different roles depending upon whether the model is looked
at in the stationary (cointegrating) directions or the non-stationary (common
stochastic trend) directions. The constant will have the dimension q. In the
r stationary directions this constant plays the role of a constant in the sense
that if this is non-zero, a relative rather than an absolute version of the law
of one price can be interpreted (in terms of the examples given in the previous
sections). However, in the non-stationary directions of which q − r exist, the
constant appears to become the drift of the processes. That is, a time trend in
addition to the stochastic trend components. In fact, such a linear trend in price
processes can be expected in most cases because it is an empirical regularity
that most price series appear to be positively deterministically trending over
long horizons. A test that is frequently of interest to conduct is that of testing
whether there is no constant in the stationary directions. In other words, the
testing of whether the price differences are stationary and have a zero mean.
Most soft-ware can implement this test directly. The situation with no constant
in the stationary directions will indicate absolute pairwise convergence of prices,
c.f. the discussion in section 1.1.
Now turning to the case where a trend is included in the VAR a similar

discussion can be made. In the r stationary directions the trend will produce a
trend in the attractor relations and a quadratic trend in the q−r non-stationary
directions. In relation to the market delineation problem, the possibility of a
trend in the stationary directions is not interesting and hopefully can be tested
to zero. Otherwise it would mean that the prices systematically trend away
from each other in the long run and hence naturally the underlying commodities
cannot belong to the same geographical market. On the other hand, it is not
unusual that price series tend to have a quadratic trend in their levels and hence
it is often of use to allow for this possibility in estimation.
Testing the above kinds of restrictions on the deterministic components can
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be undertaken rather easily in soft-ware implementing the Johansen procedure.
Conditional on the cointegration rank, the tests can be conducted by compar-
ing restricted and un-restricted model estimates and calculating the Likelihood
Ratio test which will follow a χ2 distribution with a number of restrictions cor-
responding to the number of overidentifying restrictions. Potentially, the test of
deterministic components can be calculated jointly with any other test on the
α and β parameters.

Outliers and aberrant observations. If outlying or aberrant observations
appear to be present in the model this needs to be appropriately accounted
for. Inclusion of impulse dummy variables does not cause any problems with
the statistical tests. On the other hand, step dummy variables will generally
cause the relevant distributions to change and hence this situation should be
avoided. Specialized computer software will be needed in this case and will not
be discussed in the present exposition.

4.3 A structural model multivariate stability test

A test of the joint stability of price differences can be made using a procedure for
structural models suggested by Nyblom and Harvey (2000), and which is a mul-
tivariate generalization of the KPSS test of Kwiatkowski et al (1992) described
in section 2.3. The test has similarities with the Johansen tests of cointegration
in the sense that the stability of price differences is being (jointly) tested given
that the single price series each exhibit stochastically trending behaviour. The
difference is, however, that in the present case the null hypothesis of stability
is being tested (rather than instability). This null hypothesis may seem more
adequate in some cases because what is desirable to test is that prices comove
and have converged, rather than they have not converged. The suggested test
should be considered complementary to cointegration tests.
Inititially, the model framework for the case of no serial correlation is given.

This is unlikely to occur in practice, but it will be instructive first to present this
simplified version of the test and then extend it to more appropriate situations.
The model can be considered consisting of q − 1 price differences dt = pit − pjt
which can be described as a multivariate random walk plus noise process:

dt = δ + µt+εt, εt ∼ Nid(0,Σε)

µt = µt−1+ηt, ηt ∼ Nid(0,Ση)

with

dt = (d1t, d2t, ....dq−1,t)0, δ = (δ1, δ2, ...., δq−1)0, and µt = (µ1t, µ2t, ...., µq−1,t)
0.

The vector δ is a potentially nonzero intercept vector whose elements vary
with the price pairs (measuring deviations from absolutely converged prices),
and µt is a random walk component for each of the price differences. Testing
stationarity amounts to testing the null of no random walk components in the
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price differences, i.e. the prices do not systematically deviate in the long run.
One way of operationalizing this hypothesis is by setting Ση = 0. Under the
alternative some of the price differences have unit roots. Rejection of the null
hypothesis will thus indicate that no common geographical market can possi-
bly characterize all of the products for which prices are available. This does not
imply, however, that subgroups cannot be considered belonging to the same geo-
graphical market, but then a model involving a fewer number of price differences
needs to be build and tested.
The test statistic takes the form

ξq−1 = trace
£
S−1C

¤
(23)

where S is an estimate of the so-called long-run error covariance matrix which
can be computed as

S = T−1
TX
t=1

(dt − d)(dt − d)0 with d = T−1
TX
t=1

dt

C = T−2
TX
j=1

"
jX

t=1

(dt − d)

#"
jX

t=1

(dt − d)

#0

The distribution of the Nyblom-Harvey test (23) is non-standard and has been
tabulated in Nyblom and Harvey (2000).
Assuming that the test cannot be rejected this can be taken as evidence of

prices having converged in relative terms. Absolute convergence would require
δ = 0. A likelihood ratio test of this hypothesis can be easily constructed by
estimating the model by use of the STAMP programming language, see Koop-
man et al. (2000). A more pragmatic test involves testing each of the means of
the price differences to equal zero. Logically, such a test should be conducted
after the Nyblom-Harvey test.

4.3.1 Practical Problems and concerns.

Serial correlation The most imporant practical problem in conducting the
test (23) is the fact that dt generally will contain a lot of serial correlation.
For the test to be useful in practice we thus need to allow for this feature. A
correction can be made parametrically in the following way. For each pair of
price differences, specify an autoregressive process on the form

αi(L)dit = δi + µit + εit

where the index i signifies the i’th price differences in the panel and αi(L) =
1−αi1L− ...−αipiL

pi is an autoregressive polynomial in the lag operator with
pi indicating the particular lags used in the i0th pair of price differences. Note
in particular, that the number of lags in each equation can be different. For the
test to have power it is necessary to estimate the autoregressive parameters such
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that these will be consistent under both the null and alternative hypothesis. In
so doing the model

αi(L)∆dit = (1− θiL)ζit (24)

can be estimated. αi(L) is as defined before, and ζit is distributed as iid(0, σ
2
ξi
).

Testing stationarity is now equivalent to testing whether θi = 1. Subsequently,
using standard soft-ware an ARMA(pi, 1) is fitted to ∆dit as in (24). Next, the
residual series

d∗it = dit − bαi(L)dit
is constructed and the Nyblom Harvey test is conducted for the corrected series
d∗t = (d

∗
1t, d

∗
2t, ....d

∗
q−1,t)

0.

5 Price convergence - a time series perspective

5.1 Some motivation and conceptual considerations

In the presentation of quantitative techniques so far, it has been assumed as a
benchmark that the various price series could be characterized as being stable
(or being in a steady state) in the sense that either prices have converged or,
alternatively, have not converged across separate geographical regions. How-
ever, when price data is available for longer periods it becomes relevant to ask
whether price behaviour can be considered an on-going evolving process towards
increased price convergence, when the initial state characterizes separate mar-
kets. The relevant question to ask is thus whether a stable state characterizes
prices and price differences or whether there is convergence towards a stable
state. In fact, a (non) stability test like a unit root test could reject convergence
even though the transient dynamics of price adjustment will indcate movement
towards a convergence state. In this section this possibility will be discussed in
more detail by presenting a class of structural time series models which appear
adequate to describe evolving price behaviour. The techniques to be discussed
rely on recent research by Harvey and Carvalho (2002). As we shall see, it is
possible to introduce a class of unobserved components models where latent
factors describing the convergence components can be estimated. It turns out
that the convergence components have error correction model features, as previ-
ously described, and hence will have an attractive interpretation. This provides
insight into historic behaviour of the price series as well as a coherent procedure
for the prediction of future observations and likely convergence properties of
prices. Also, this class of models will allow the analyst to ask relevant questions
concerning the speed of convergence and the size of the gap between converging
prices.
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5.2 Structural time series models of price differentials

5.2.1 A Simple Direct test of price convergence

The structural time series approach discussed in e.g. Harvey (1989) and Harvey
and Carvalho (2002) will show useful for the modelling of price convergence as a
process which evolves gradually over time. Assume we consider the price differ-
ence dt = pit− pjt between two price series for which observations are available
for t = 1, 2, ..., T. The price difference is assumed to consist of a stochastic trend
component, µt, as well as a cyclical (ψt) and an irregular (εt) component. That
is, the price difference can be written

dt = µt + ψt + εt, t = 1, ...., T (25)

εt ∼ Nid(0, σ2ε)

The trend, µt, is considered to receive shocks to both the level and the slope
and can be parameterized as

µt = µt−1 + βt−1 + ηt ηt ∼ Nid(0, σ2η)
βt = βt−1 + ςt ςt ∼ Nid(0, σ2ς )

The shocks εt, ηt, and ςt are the irregular, level and slope disturbances, re-
spectively. These are mutually independent - Nid(0, σ2) means normally and
independently distributed with zero mean and variance σ2.
Observe, that if both variances σ2η and σ2ς are zero, then the trend is deter-

ministic. When just σ2ς is zero, then the trend will evolve as a random walk
with the constant drift β.
The cyclical component ψt captures short run dynamics such as seasonal

and other cyclical variation and can be modelled in a number of ways. For
instance, an autoregressive specification can be used. Details will not be given
here, but can be found in e.g. Harvey (1989), Harvey and Carvalho (2002)
and Koopman et al. (2000). These references will also describe the details of
how to estimate a structural model such as (25). In broad terms, unobserved
components models can be estimated by the maximum likelihood method after
setting up the model in so-called state space form and using the Kalman filter.
It goes beyond the present presentation to describe these techniques. However,
the estimation procedure has been implemented in computer software such as
STAMP, see Koopman et al. (2000). In addition to delivering estimates of the
unknown parameters, STAMP will deliver estimates of the latent components.
In the present context the model can be interpreted as follows. Assume we

wish to look at the possible convergence of the price series without imposing
a particular mechanism for the convergence process. Then the price difference
dt is made up of the stochastic trend (level) component µt together with the
cyclical and irregular component. Simply estimating the smoothed trend com-
ponent µt will describe the time path of the price difference. This is particularly
relevant in situations where the data is flawed by noisy factors and hence the
unobserved components model suggests a way of extracting the signal associated
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with the convergence component of the price difference. A direct test of absolute
convergence can be calculated by comparing the estimate of µT , the terminal
value of the convergence component, with the estimated root mean square stan-
dard error (RMSE). This output is automatically delivered in STAMP. If a 95
% confidens interval, say, covers the value zero, this can be taken as evidence
that absolute convergence has occurred. If it occurs that µt stabilizes at a non-
zero value it can be taken as evidence that relative convergence has occured.
After all, the time path of µt will itself be very informative concerning the trend
towards absolute or relative convergence.
The above model can be extended in STAMP to situations with multiple

time series, N, such that joint tests of the absolute convergence hypothesis can
be conducted. In this case the hypothesis can be formulated as DµT = 0 where

Dµt =


1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
...

0 0 . . . 1 −1




µ1t
µ2t
...

µNt


That is, for each of the convergence components their terminal condition will
be zero. Harvey and Carvalho (2002) provide the details.
A limitation of the present set-up concerns the fact that convergence is

measured entirely in terms of descriptive properties. Also, the use of non-
stationary components to model convergence may seem counterintuitive because
once convergence has taken place the series is stationary. The next section
demonstrates how these limitations can be loosened.

5.2.2 Modelling the Transient Dynamics of price convergence

We have previously seen how an error correction model for cointegrated price
series can be used as a device for identifying common geographical markets.
Following a similar train of thought, the modelling of the transient dynamics
characterizing price convergence can be made. The difference is that in the
present context the error correction model is not constructed as a stable model
but rather as a model allowing for the evolving dynamics in a situation where
the initial value is somewhat away from zero. That is, if initially prices have
not converged, the subsequent adjustment process is addressed. Harvey and
Carvalho (2002) suggest the following model of (bivariate) price differences:

dt = α+ µt, t = 1, ...., T

µt = φµt−1 + ηt

with a fixed initial value µ0. When 0 < φ < 1, the price gap will narrow over
time. The equivalent error correction model for µt reads

∆dt = (φ− 1) dt−1 + δ + ηt
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where δ = α(1− φ). For data in logarithms, this shows that the growth rate in
in the current period is a negative fraction of the price gap after allowing for
the permanent difference which will reflect relative convergence in case δ 6= 0.
Of course, the above error correction model interpretation of convergence

can be extended to allow for a richer dynamic structure, i.e. with further lags
of the differenced series. It should be noted, however, that the above structure
presupposes cointegration in the sense we have previously defined it, and hence
assumes that a unit root is not present in dt. This would contradict the con-
vergence hypothesis. After all, the estimate of φ will indicate how fast price
adjustments take place towards convergence which can be either relative or ab-
solute depending upon the value of δ.

5.2.3 A Structural Unobserved Components ECM

The unobserved components method adds cycle and irregular components to
the error correction model and in so doing avoids mixing up the transitional
dynamics of the convergence process with that of short-term steady state dy-
namics, for instance seasonal variation. An especially attractive specification is
the following

dt = α+ µt + ψt + εt, t = 1, ..., T

with the smooth transitional dynamics:

µt = φµt−1 + βt−1
βt = φβt−1 + ςt.

(26)

and an appropriate choice of the cyclical factor component ψt .
Alternatively, (26) can be written in error correction form:

∆µt = (φ− 1)µt−1 + βt−1
∆βt = (φ− 1)βt−1 + ςt.

whereby it can be seen that in log transformed data there is a convergence
mechanism acting in both the level and the growth of price differences. Yet
another way of writing this is

∆µt = −(1− φ)2µt−1 + φ2∆µt−1 + ςt

This shows in a more direct fashion, that changes in the convergence component
not only depends on the gap itself, but also on the change in the previous
period. Hence changes take place more slowly and the convergence component
will thus evolve more smoothly. Again, the structural model can be estimated
by maximum likelihood by use of the model state space form and the Kalman
filter.
In theory it is possible to extend the above class of models to multiple

price process. Harvey and Carvalho (2002) suggest how this can be done. It
turns out, however, that estimation difficulties increase prohibitively with the
dimension of the system. After all, pairwise comparisons of price differences
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using the technology above is a useful device for clarifying any potential transient
dynamics in a convergence process. The hope is, that by conducting the analysis
pairwisely for multiple price differences a common pattern will develop as to
which groupings of regions exhibit convergence properties whereby a common
geograhical market can be delineated.

5.2.4 Practical problems and concerns

It is a clear advantage of the above procedures that a specification can be chosen
where no assumptions are made concerning the stationarity properties of the
single price series. What is of interest is to see whether a convergence component
can be extracted and thus indicating a particular trend of the simultaneous price
movements.
A general problem in relation to the estimation of unobserved components

models concerns the fact that the model structure is determined a priori and
a spectrum of different specifications exists. It is thus of importance to choose
a specification where the signals to be extracted reflect what one has in mind.
The models suggested in sections 5.2.1 and 5.2.3 have nice interpretations in
terms the transitional dynamics when moving from a non-convergence to a con-
vergence state. However, in order not to mix up this dynamics with short term
adjustments in the form of cyclical and seasonal variation, it is of importance
to appropriately choose a specification of ψt which captures these properties
in the data. In Harvey (1989) and Koopman et al. (2000) a range of models
to choose a specification of ψt are suggested. These are implemented in the
STAMP programming package.
Model specification testing is equally important in the modelling of structural

time series models. Once estimated, the fit of the model can be checked using
standard time series diagnostics such as tests for residual correlation etc.
A common problem existing in the estimation of structural models of the

above kind by use of maximum likelihood procedures, the state space form, and
the Kalman filter, concerns the fact that estimation convergence to achieve ML
estimates will sometimes fail. In these cases it is necessary to examine the initial
conditions used to start up the appropriate algorithm. This will be clear from
the programming software used for estimation. It turns out, that in certain
cases estimation and (statistical) convergence of parameter estimates can be
complicated by the fact that an identification problem exists. In these cases a
respecification of the model will often be useful.

6 References
Bishop, S. and Walker, M. (1996), Price correlation analysis: still a useful tool
for relevant market definition, Lexecon mimeo.
Dickey, D. and Fuller, W., 1979, Distribution of Estimators for Autoregres-

sive Time Sereis with a Unit Root, Journal of the American Statistical Associ-
ation, 74, 427-431.

55



Engle, R.F., and Granger, C.W.J., 1987, Cointegration and Error Correc-
tion: Representations, Estimation, and Testing. Econometrica, 55, 252-276.
Forni, M., 2002, Using Stationarity Tests in Antitrust Market Definition,

CEPR working paper 3236.
Fuller, W.A., 1976, Introduction to Statistical Time Series, New York: Wi-

ley.
Granger, C.W.J., 1969, Investigating the Causal Relations by Econometric

Models and Cross-spectral models, Econometrica, 37, 424-438.
Granger, C. W. J., and Haldrup, N., 1997, Separation in Cointegrated Sys-

tems and Persistent-Transitory Decompositions. Oxford Bulletin of Economics
and Statistics, 59, 449-463.
Granger, C.W.J., and Newbold, P., 1986, Forecasting Economic Time Series,

Academic Press, Orlando.
Hamilton, J. D., 1994, Time Series Analysis, Princeton University Press,

Princeton, NJ.
Harvey, A. 1989, Forecasting Structural Time Series Models and the Kalman

Filter. Cambridge: Cambridge University Press.
Harvey, A., and Carvalho, V., 2002, Models for Converging Economies,

Working paper, University of Cambridge.
Johansen, S., 1988,Statistical Analysis of Cointegration Vectors, Journal of

Economic Dynamics and Control, 12, 231-254.
Johansen, S., 1991, Estimation and Hypothesis Testing of Cointegration

Vectors in Gaussian Vector Autoregressive Models, Econometrica, 55, 251-276.
Johansen, S., 1995, Likelihood-based inference in cointegrated vector autore-

gressive models, Oxford University Press.
Johnson, R.A., and Wichern, D.W., 2002, Applied Multivariate Statistical

Analysis, Prentice Hall, New Jersey.
Koopman, S.J., Harvey, A.C., Doornik, J.A., and Shephard, N., 2000, STAMP

6.0 Structural Time Series Analyser: Modeller and Predictor, London: Timber-
lake Consultants Ltd.
Kwiatkowski, D., Phillips, P.C.B., Schimidt, P., and Shin, Y., 1992, Testing

the Null Hypothesis of Stationarity against the Alternative of a Unit Root.
Journal of Econometrics, 54, 159-178.
Lütkepohl, H., 1990,Introduction to Multiple Time Series Analysis, Springer

Verlag.
Maddala, G.S., and Kim, I-M., 1998,Unit Roots, Cointegration, and Stru-

tural Change, Cambridge University Press.
McKinnon, J.G., 1991, Critical values for Co-integration Tests, in R.F. Engle

and C.W.J. Granger (eds), Long-Run Economic Relationships, Oxford Univer-
sity Press, 267-276.
Nyblom, J., and Harvey, A., 2000, Tests of Common Trends, Econometric

Theory, 16, 176-199.
Ryan, K.F. Giles, D.E.A., 1998, Testing for Unit Roots in Economic Time

Series within Missing Observations. Working paper, University of Victoria.
Shin, D.W., and Sarkar, S. 1994, Unit Root Tests for ARIMA(0,1,q) Models

56



with Irregularly Observed Samples, Statistics and Probability Letters, 19, 188-
194.
Sleuwagen, L., De Voldere, I. and Schep, K., 1999, Relevant Market Delin-

eation with the use of Strategic Business Information, Katholieke Universiteit
Leuven, research report 9928.
Sleuwagen, L., De Voldere, I. Pennings, E., 2001, The Implications of Glob-

alization for the Definition of the Relevant Geographic Market in Competition
and Competitiveness Analysis, final report, January 2001.
Stigler , G.J., and Sherwin, R.A., 1985, The Etent of the Market. Journal

of Law and Economics, 28, 555-585.
Werden, G.J., and Froeb, L.M., 1993, Correlation, Causality, and all that

Jazz: The Inherent Shortcomings of Price Tests for Antitrust Market Delin-
eation, Review of Industrial Organization, 8, 329-354.

57



Working Paper

2002-15: Boriss Siliverstovs, Tom Engsted and Niels Haldrup, Long-run
forecasting in multicointegrated systems.

2002-16: Morten Ørregaard Nielsen, Local Empirical Spectral Measure of
Multivariate Processes with Long Range Dependence.

2002-17: Morten Ørregaard Nielsen, Semiparametric Estimation in Time
Series Regression with Long Range Dependence

2002-18: Morten Ørregaard Nielsen, Multivariate Lagrange Multiplier
Tests for Fractional Integration.

2002-19: Michael Svarer, Determinants of Divorce in Denmark.

2003-01: Helena Skyt Nielsen, Marianne Simonsen and Metter Verner,
Does the Gap in Family-Friendly Policies Drive the Family Gap?

2003-02: Torben M. Andersen, The Macroeconomic Policy Mix in a Mone-
tary Union with Flexible Inflation Targeting.

2003-03: Michael Svarer and Mette Verner, Do Children Stabilize Mar-
riages?

2003-04: René Kirkegaard and Per Baltzer Overgaard, Buy-Out Prices in
Online Auctions: Multi-Unit Demand.

2003-05: Peter Skott, Distributional consequences of neutral shocks to
economic activity in a model with efficiency wages and over-
education.

2003-06: Peter Skott, Fairness as a source of hysteresis in employment and
relative wages.

2003-07: Roberto Dell’Anno, Estimating the Shadow Economy in Italy: a
Structural Equation approach.

2003-08: Manfred J. Holler and Peter Skott: The Importance of setting the
agenda.

2003-09: Niels Haldrup: Empirical analysis of price data in the delineation
of the relevant geographical market in competition analysis.


