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Abstract

On many online auction sites it is now possible for a seller to
augment his auction with a maximum or buy-out price. The use of
this instrument has been justified in “one-shot” auctions by appeal
to impatience or risk aversion. Here we offer additional justification
by observing that trading on internet auctions is not of a “one-shot”
nature, but that market participants expect more transactions in the
future. This has important implications when bidders desire multiple
objects. Specifically, it is shown that an early seller has an incentive
to introduce a buy-out price, if similar products are offered later on by
other sellers. The buy-out price will increase revenue in the current
auction, but revenue in future auctions will decrease, as will the sum
of revenues. In contrast, if a single seller owns multiple units, overall
revenue will increase, if buyers anticipate the use of buy-out prices in
the future by this seller. In both cases, an optimally chosen buy-out
price introduces potential inefficiencies in the allocation.

*E-mail: rkirkegaard@econ.au.dk and povergaard@econ.au.dk. Re-
vised versions will be available at:
http://www.econ.au.dk/vip htm/povergaard/pbohome/pbohome.html
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1 Introduction
The presence of buy-out prices1 in online auctions has thus far been explained
by focusing on a single auction and assuming that individuals exhibit either
risk aversion or impatience.2 In this paper we take a somewhat broader view
of auction markets, realizing, in particular, that buyers and sellers alike are
aware of the fact that new products will be offered on the market in the
future. This will tend to depress revenue in today’s auctions, as buyers know
that close substitutes will be offered tomorrow. In this dynamic environment
we will show that there are at least two reasons to introduce buy-out prices,
even if agents are patient and risk neutral.
Buy-out prices or maximum prices in online auctions were noted by

Lucking-Reiley (2000) in his empirical overview of auction activities on the
Internet. Since (sell) auctions are ostensibly staged to illicit high prices in
situations where markets are thin and sellers are short on information about
the willingness-to-pay of potential buyers, such buy-out prices may appear
surprising. In fact, Lucking-Reiley explicitly posed this as a challenge to the-
orists. In addition, he quoted evidence to suggest that the exercise of posted
buy-out options is not uncommon in online auctions.3

Reynolds and Wooders (2002) provide some additional information on
the frequency of buy-out prices in Yahoo! and eBay auctions, though, not
on the frequency with which the option was exercised by some bidder. The
categories sampled on March 27, 2002, were automobiles, clothing, DVD
players, VCR’s, digital cameras and TV sets. A total of 1.248 auctioned items
were sampled from Yahoo!, of which 842 had a buy-out price posted by the
seller (roughly, 66%). In similar fashion, 31.142 auctioned items were sampled
from eBay, of which 12.480 had a buy-out price posted by the seller (roughly,

1Alternatively, this is often referred to as buy prices or maximum prices. In offline
settings, this phenomenon also has a certain affinity with “$xx or best offer”, where it is,
presumably, implicit that, if someone makes an offer of $xx, then the trade is finalized
immediately, while if someone makes a lower offer initially, then the seller will wait a while
to see if a better offer comes along. Also, a buy-out price has a certain similarity with a
massive jump bid intended to end an auction quickly.

2See, Budish and Takeyama (2001), Mathews (2002) and Reynolds andWooders (2002).
In future work we hope to return to the use of buy-out prices in auctions where sellers try
to respond to possible bidder collusion.

3He quotes the case of LabX (a lab equipment auction site), where buy-out options are
exercised by some bidder in 10% of the cases where they appear. Hence, buy-out prices
do more than just attract attention.
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40%). There is some variation across the categories of goods sampled, but the
frequency of buy-out prices never drops below 25% in the sample. Hence, in
these categories, at least, the appearance of buy-out prices is very frequent.
For eBay, Mathews (2002) presents some numbers on the frequency with

which buy-out options are exercised when offered.4 For two categories of
games (racing and sports) for Sony PS2, Mathews reports that on January
29 - 30, 2001, 210 items were on offer. A buy-out option was available on 124
items (59%), and it was exercised 34 times (27% of the times it was offered).
So, at least in these categories, the exercise frequency is high.
Formally, we analyze eBay’s version of a buy-out price, termed the Buy

It Now price. Here is how the Buy It Now price roughly works from the
seller’s viewpoint:5 “If a buyer is willing to meet your Buy It Now price
before the first bid comes in, your item sells instantly and your auction ends.
Or, if a bid comes in first, the Buy It Now option disappears. Then your
auction proceeds normally.” Hence, in eBay auctions, the buy-out price is
temporary.6

Throughout this paper we assume that potential buyers or bidders have
multi-unit demands, with diminishing marginal utility. With two objects for
sale and at least two bidders, it has been shown by Black and de Meza (1992)
that auction revenue will increase over time and that the auction outcome
is efficient under these assumptions. In particular, in a sequence of second-
price or English auctions, the seller offering his good today will not earn as
much as a competing seller offering a similar good tomorrow, that is, prices
are increasing.7

However, for the case with two individual sellers, we show that the first
seller can always increase his revenue by introducing a buy-out price. The

4He also presents aggregate numbers on the frequency with which buy-out prices are
offered at eBay. The reported range around 40% is roughly in line with the numbers
reported for specific categories by Reynolds and Wooders (2002).

5For more details on the eBay version and other versions of a buy-out price, see e.g.
Lucking-Reiley (2000), Budish and Takeyama (2001), Mathews (2002) and Reynolds and
Wooders (2002).

6For more details on the Buy It Now feature in eBay auctions the reader should consult
pages.ebay.com/help/sell/bin.html. eBay introduced this feature in January 2001.

7In fact, Black and de Meza (1992) were interested in what some have referred to as The
Declining Price Anomaly. Therefore, they went on to consider an option of the following
kind: the winner of the first item is given the option of buying the second item at the
same price. This, apparently, is observed in certain multi-unit auctions, and it is enough
to lead to a declining price path.
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revenue to the second seller is adversely affected, as is overall revenue. An
optimally chosen buy-out price in the first auction also introduces ineffi-
ciency, in the sense that a bidder who should have won no object wins one.
Our analysis is partial in the following sense. We consider a sequence of two
second-price (or English) auctions, allowing the first seller the possibility of
introducing a buy-out price without giving the second seller the opportunity
to respond in kind. Thus, we essentially show that an auction market with-
out buy-out prices is unstable, in the sense that current sellers will try to
force the auction site to (at least temporarily) allow buy-out prices.
Next, we consider the consequences of buy-out prices for a single seller

intending to sell two objects. We show that this seller can increase his total
expected revenue by augmenting the second auction with a buy-out price,
which depends on the outcome of the first auction. The buy-out price should
be set fairly low, thus allowing the winner of the first auction a dispropor-
tionately large chance of winning the second auction as well. Hence, the
sequence of auctions is inefficient, in the sense that one buyer may win two
objects when efficiency dictates he should only win one. In this case overall
revenue will increase. The reason is the same as that which induces a mo-
nopolist to offer quantity discounts that are detrimental to efficiency: buyers
with high demand contribute with higher marginal revenue on two objects
than buyers with low demand do on one object.
The rest of the paper is organized as follows. In Section 2 we set up

a simple model and present the results for the bench-mark case where a
sequence of two second-price auctions is staged. Then, Section 3 shows that
the first seller among a pack of competing sellers can increase his lot by
offering a buy-out price. Section 4 then examines the use of buy-out prices
by a single seller offering more than one good. Section 5 contains a few
concluding remarks. A selection of proofs is in the Appendix.

2 Model and Bench-Mark
In this section we first set up the model and then derive results for the
bench-mark case where a sequence of two second-price auctions is staged.
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2.1 Model

We assume that two objects are offered for sale sequentially,8 and that there
are two potential buyers on the market. Hence, the number of objects co-
incide with the number of buyers, this number being equal to two in order
to make the analysis manageable. Each buyer i, i = 1, 2, is characterized
by a type, vi, drawn from a continuously differentiable distribution function,
F (vi), without mass points. We assume that vi ∈ [v, v]. The value to bidder
i of the first unit purchased is vi, while the value of the second unit is kvi,
0 < k < 1. Hence, each bidder desires both units, but individual demands
are downward sloping.

2.2 Two straight second-price auctions

To keep the analysis simple, we have ignored reserve prices in the auctions. In
this setting, Black and de Meza (1992) were the first9 to solve for equilibrium
strategies in a sequence of two second-price (or English) auctions, under
more general assumptions than those considered here.10 Applied to our set
of assumptions, they find the following.

Proposition 1 (Black and de Meza (1992)) When there are two a pri-
ori symmetric agents in the game, the unique symmetric equilibrium is for
agent i to bid kvi in stage one, and bid vi in stage two if stage one was lost,
and kvi otherwise. The equilibrium outcome is efficient.

Thus, in the last round, a bidder simply bids his valuation of the remain-
ing object. This, however, depends on whether the bidder won or lost the
first object. In the first round, each bidder bids k times his valuation for the
first item won. Hence, the first object is sold for a price equal to k times
the lowest valuation, while the second object is sold for a price equal to the

8The two objects are considered homogenous by the bidders, or they are simply two
units of the same good.

9See also Katzman (1999).
10Black and de Meza explicitly consider sealed-bid auctions, while they also have an

informal discussion of English auctions. Throughout our formal analysis, we restrict at-
tention to a setting with two bidders, in which case second-price and English auctions are
equivalent. With more than two bidders this equivalence may break down. In the infor-
mal discussion immediately below, we comment on some key properties of second-price,
sealed-bid auctions with arbitrary numbers of bidders.
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maximum of k times the highest valuation and the lowest valuation. From
this, it follows immediately that the revenue of the first auction is lower than
the revenue of the second.
To see what is going on here, let us start by making a few general remarks

on second-price, sealed-bid auctions in the independent, private values case
with n bidders. We first note that in case of symmetric, increasing bidding
strategies, the fine details of any bidder’s bid function are only consequential
if there happens to be a competing bidder who has a valuation very close
to that of the bidder in question. Hence, in equilibrium a bidder’s strategy
is pinned down by an indifference relation: the bidder should be indifferent
between winning and losing, if his toughest competitor is identical to himself.
To proceed, let us take the perspective of bidder i and label his rivals j,
j = 1, 2, ...., n− 1. Now, i’s competitors have random valuations of the first
item denoted Yi with associated order-statistics Y[1] ≥ Y[2] ≥ .... ≥ Y[n−1].
Let i be male and all the rivals female.
In a one-shot, second-price auction bidder i essentially bids what he ex-

pects it to take to win the item, if he is the “top dog” - the high-valuation
bidder - and there is someone like him among the rivals. The relevant indif-
ference relation can be written as

just winningz }| {
vi − b(E(Y[1] | Y[1] = vi)) =

just losingz}|{
0

However, E(Y[1] | Y[1] = vi) = vi, and the optimal bid of i is given by

b(vi) = E(Y[1] | Y[1] = vi) = vi

Thus, we obtain the familiar result that it is optimal for bidder i to bid his
valuation.
In a sequence of two second-price auctions things are a little more compli-

cated. Consider the last round first. If i won the first item, his valuation of
the second item is v2i = kvi. Then, in the last round, bidder i’s indifference
relation is predicated on Y[1] = kvi (the toughest competitor is like him at
this stage). Thus, we can write

just winning secondz }| {
v2i − b2(E(Y[1] | Y[1] = v2i )) =

just losing secondz}|{
0

where b2(·) denotes the second-round bid. Substituting for v2i and noting
that E(Y[1] | Y[1] = kvi) = kvi, we obtain

b2(v2i ) = b2(kvi) = E(Y[1] | Y[1] = kvi) = kvi
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Similarly, if i lost the first item, his valuation of the second item is v2i =
vi. Then, in the last round, bidder i’s indifference relation is predicated on
max{kY[1], Y[2]} = vi (the toughest competitor is like him at this stage). We
can write this as

just winning secondz }| {
v2i − b2(E(max{kY[1], Y[2]} | max{kY[1], Y[2]} = v2i )) =

just losing secondz}|{
0

and we obtain

b2(v2i ) = b2(vi) = E(max{kY[1], Y[2]} | max{kY[1], Y[2]} = vi) = vi

The upshot is that bidder i should bid kvi in the last round if he won the
first and vi if he lost. This is just bidding one’s value in the last round.
More interestingly, consider the first round. We note that if i is the “top

dog” and there is someone like i in the pack of rivals, then they each win
one item in equilibrium.11 Hence, optimal bidding by i in the first round is
derived from an indifference between winning the first and the second item,
which (using the results already derived) we can write as

just winning first and losing secondz }| {
[vi − b1(vi)z }| {

b1(Y[1]) with Y[1] = vi

] + 0 =

just losing first and winning secondz }| {
0 + [vi −E(max{kY[1], Y[2]} | Y[1] = vi)]

Thus, in the first auction, bidder i should bid what he expects to have to
pay to win the second, if he just loses the first. That is, optimal bidding in
the first round is captured by

b1(vi) = E(max{kY[1], Y[2]} | Y[1] = vi) = E(max{kvi, Y[2]} | Y[1] = vi)

In the general case with n bidders, we conclude that bidder i should bid the
expectation of the maximum of k times his strongest rival’s valuation of the
11When strategies are symmetric and increasing, the first auction is won if the toughest

rival has a lower valuation, and lost if the toughest rival has a higher valuation. If the
toughest rival has the same valuation as the agent himself, there is a tie, and the winner
of the first auction is determined by chance. We argue that the agent must be indifferent
between winning and losing the first auction in this case. Assume, to the contrary, that
the agent prefers to win (lose) against an identical, strongest rival. Then, the agent should
bid more (less) aggressively at the outset to win (lose) with probability one (rather than
one half). This implies that the original strategies are not in equilibrium, unless the
indifference condition is satisfied.
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first item and his second strongest rival’s valuation of the first item predicated
on the strongest rival being identical to himself.
Finally, let us specialize to the two-bidder case. When n = 2, Y[2] is zero

by construction, and the optimal bid of i reduces to

b1(vi) = E(max{kY[1], Y[2]} | Y[1] = vi) = E(max{kY[1], 0} | Y[1] = vi) = kvi

as stated in the proposition above.
Our next result characterizes the expected revenues associated with the

equilibium strategies in Proposition 1.

Lemma 1 In two straight second-price auctions with two bidders, the ex-
pected revenues in the first and second auctions are, respectively,

ERSSP
1 = k

Z v

v

2x(1− F (x))f(x)dx (1)

and

ERSSP
2 =

Z max{v,kv}

v

2x(1− F (
x

k
))f(x)dx

+k

Z v

v

2x(F (x)− F (max{v, kx}))f(x)dx (2)

Proof. In the first auction, players bid k times their valuation, and the
price is equal to the lowest bid. Hence, expected revenue is k times the
expected value of the second highest valuation, which is just (1).
In the second auction there are two possible outcomes, depending on

whether the same or different bidders win the two objects. The first term
in (2) captures the possibility that the winner of the first object is also the
winner of the second. Since the loser of the first auction bids his valuation, x
say, and the winner bids k times her valuation, the price is precisely x when
one player has valuation x and the other has a valuation that exceeds x/k.
However, it is also possible that the runner up in the first auction becomes

the winner of the second, and this is the second term in (2). If the winner
of the first auction has valuation x, her bid will be kx in the second auction.
Hence, the price is kx in the second auction when one agent has type x, and
the other agent has a type that is lower than x, yet sufficiently high that the
bid submitted by this player exceeds kx.
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From this we note that ERSSP
1 → 0 and ERSSP

2 → 0 as k → 0. This,
however, is just a special version of Weber’s (1983) result that a sequence of
second-price (or English) auctions where bidders have unit demands yields
the same expected revenue to all sellers. With only two bidders and two
items for sale, the equilibrium revenue is zero to both sellers. It is impossible
to extract rent from buyers when there is no excess demand, recalling our
assumption of no reserve prices.12

Similarly, we note that ERSSP
1 → R v

v
2x(1 − F (x))f(x)dx = E(v[2]) and

ERSSP
2 → R v

v
2x(1 − F (x))f(x)dx = E(v[2]) as k → 1. E(v[2]) is just the

expectation of the lowest of the two independent randoms draws from F (v).
When k = 1, individual demands are horizontal, and the behavior in the
second auction is independent of the outcome of the first auction. The high
valuation bidder will win both objects at a price of v[2], and revenue is the
same in both auctions.

Example: The uniform case (v ∈ [0, 1])
To give a flavor of the results, let us consider the uniform case with

v ∈ [0, 1], that is, v = 0 and v = 1. Thus, f(v) = 1 and F (v) = v. In this
case, the expected revenues in the two auctions reduce to

ERSSP
1 = k

Z 1

0

2x(1− x)dx =
1

3
k

and

ERSSP
2 =

Z 1

0

2x(1− x

k
)dx+ k

Z v

v

2x(x− kx))dx

=
1

3
k +

1

3
k(1− k) = ERSSP

1 +
1

3
k(1− k)

We plot these expected revenues against k in Fig. 1, where ERSSP
2 is the

heavy line, while ERSSP
1 is thin.

12Our general argument above for the n bidder case captures further aspects of Weber’s
results. With k = 0, bidding in both the first and the second auction is ultimately based
purely on the expected second highest value among a bidder’s rivals, thus, on the third
order statistic v[3] of the n random valuations. From this it follows that expected revenue
is the same in the two auctions when k = 0 (unit demands).
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Fig. 1: Two straight second-price auctions

The ratio between expected revenues in the first and second auction, RR
(SSP ) =

ERSSP
1

ERSSP
2

= 1
2−k , is illustrated in Fig. 2. Note the discontinuity at

k = 0. When k = 0, both sellers earn nothing, that is, the same. However,
when k is small, but strictly positive, we observe that the winner of the first
auction is very unlikely also to be the winner of the second auction. Hence,
the expected revenue in the first auction is k times (the expected value of)
the second highest valuation, while the expected reveue in the second auction
is approximately k times (the expected value of) the highest valuation. For
the uniform case considered here, the ratio between the expected value of the
highest (2/3) and the expected value of the second highest valuation (1/3)
is exactly 1/2.

10.750.50.250

1

0.75

0.5

0.25

0

k

RR(SSP)

k

RR(SSP)

Fig. 2: The revenue-ratio in two SSP auctions

10



From this example it is immediate that the difference in expected revenues
is significant unless k is close to one (demands are near-horizontal). For
example, if k = 2

3
, then ERSSP

1 = 2
9
and ERSSP

2 = 8
27
, and it follows that the

(expected) first-auction revenue is only 75% of the second-auction revenue.
(End of example)

Given the increasing path of revenues over two straight second-price auc-
tions, it is clear that the first of two independent sellers has an incentive to
change the auction format.13 In this paper we shall first restrict attention to
the possible role of a buy-out price in the first auction when two independent
sellers are selling identical objects. The first seller is interested in shifting
revenues from the second to the first auction, while we shall also be inter-
ested in the consequences for efficiency and total revenue when the buy-out
price is set optimally by the first seller. Subsequently, we turn to the case
where there is a single seller who attempts to sell two identical objects in
a sequence of auctions. Absent discounting (impatience), this seller is only
interested in total expected revenue from the two auctions, while he is indif-
ferent as to whether renenues are increasing or decreasing over the sequence.
We show, however, that a suitably chosen buy-out price in the second auc-
tion, depending on the outcome of the first auction, can increase the total
expected revenue of a single seller at the potential expense of efficiency.
To ease the exposition, we make the following assumption in the remain-

der of the paper.

Assumption 1. kv > v

Essentially, this means that a priori there is uncertainty as to whether
an efficient mechanism would allocate both objects to the same buyer or one
object to each potential buyer. Hence, it is entirely possible that bidder
i’s valuation of a second object exceeds bidder j’s valuation the first object,
kvi > vj. Economically, this is the most interesting and challenging case. We
could alternatively refer to this as the case with overlap. In the alternative,
non-overlap case, kv < v, any efficient mechanism would allocate one object
to each potential buyer. In this case, a bidder who has already won one

13That is, short of moving to the last spot if possible. If selling-time is an endogenous
variable, the two symmetric sellers might conceivably be involved in a war of attrition to
become the last seller. This, however, is not the topic of this paper, and seller positions
in the auction sequence are assumed to be exogenous.
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object ceases to be an effective competitor for the second.14

Given Assumption 1, we note that (2) can be written as

ERSSP
2 =

Z kv

v

2x(1− F (
x

k
))f(x)dx+ k

Z v
k

v

2xF (x)f(x)dx

+k

Z v

v
k

2x(F (x)− F (kx))f(x)dx (3)

Below, two types of inefficiency will be identified. First, a mechanism may
allocate one object to a bidder who would have received no object in an
efficient mechanism. As we shall see this will be a feature of the mechanism
for the case with two independent sellers where the first seller sets an optimal
buy-out price. Likewise, a mechanism may allocate both objects to a bidder
who would only have received one object in an efficient mechanism. This
will arise in the case where a single seller sets a buy-out price in the second
auction which depends on the outcome of the first auction.

3 Competing Sellers
We now turn to the case where two different sellers each own one object
initially. We assume that the two objects are offered sequentially, and that
there are two potential buyers on the market. We allow the first seller to
stipulate a buy-out price of the eBay-variety (Buy It Now) and, thus, consider
the following augmented game:

1 Seller 1 announces a buy-out price, B. At this stage bidders can submit
a bid of B or refrain from bidding. The object is sold at the price B if
at least one bidder bids B. If both bidders bid B, one bidder is picked
at random to win. If no one bids B, a normal second-price auction is
staged. The price can exceed B in this event.

2 Seller 2 auctions off the second item, using a second-price auction.

14Thus, Assumption 1 is pretty innocuous. However, it allows us to economize on
notation in the formal analysis below. For completeness, we have included Appendix B,
which shows that all the results in Section 3 below hold with minor modifications when
Assumption 1 is not met. The interested reader should consult Appendix B when the
results in Section 3 have been derived.
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Thus, in stage 1 of this game, the bidders first have to decide whether to
take the buy-out price B or leave it. If one or more bidders take the buy-out
price, the first auction ends, and the winner pays B. If no one takes the
buy-out price, the first stage continues to a standard second-price auction.
The second stage simply consists of a standard second-price auction.
We first derive the relationship between the level of B and the valuations

of bidders who will take this buy-out price. Then we look at the relationship
between the buy-out price and the expected revenues to the two sellers, in-
cluding how they are ranked. Finally, we determine the optimal buy-out price
for the first seller. Recall that Assumption 1 is assumed to hold throughout.

3.1 General results

We will look for a symmetric equilibrium in this augmented game in which
bidders with valuations above some level bv take the buy-out price B in stage
1, while bidders with valuations below bv do not. In the augmented game, it is
clear that if no bidder takes B, then it is common knowledge in equilibrium
that both bidders have a type below bv. That is, beliefs are symmetric, and the
logic of Proposition 1 (Black and de Meza (1992)) applies to the remainder
of stage 1 and to stage 2. Hence, in stage 1 bids will be kvi, where vi < bv,
i = 1, 2. Further, regardless of how the good is sold in stage 1, it is well
known that the bid in stage 2 will be kvi if bidder i won the first auction,
and vi otherwise. In the following we suppress the subscript when this can
be done without confusion.
In the equilibrium of the augmented game, a given value of B will induce

a set [bv, v] of bidder types to take the buy-out price B in stage 1. Changing
B will change bv. Hence, we can determine which bv to target, and chose B
accordingly. Thus, we write B(bv) as the value of B that induces bidder types
above bv to take B in a symmetric equilibrium. This allows us to state the
following result.

Proposition 2 Let m(bv) = min{v, bv
k
}, and let B(bv) be defined by

B(bv)(1+F (bv)) = bv(1−F (m(bv)))+Z m(bv)
v

kxf(x)dx+

Z bv
v

kxf(x)dx (4)

Then, it is an equilibrium for bidders with v ∈ [bv, v] to bid B(bv) in stage 1
and for bidders with v ∈ [v, bv) not to.
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Proof. See Appendix A.

It is easily seen that B(v) = kE(v). In addition, B(·) may not be
monotonic, implying that for a given value of B, there could be multiple
symmetric equilibria. As shown next, for any distribution and k ∈ (0, 1),
the first seller can strictly increase his revenue by offering a buy price that
will be accepted with positive probability. But first, we return briefly to the
example.

Example: The uniform case (v ∈ [0, 1])
To provide some perspective on the relationship between the buy-out

price, B, and the critical valuation, bv, let us first reconsider the example
above. In this case (4) can be written as

B(bv)(1 + bv) =
 k

³R 1
0
xdx+

R bv
0
xdx

´ bv ≥ k

k
³R 1

0
xdx+

R bv
0
xdx

´
− R 1bv

k
(kx− bv)dx bv ≤ k

which implies that

B(bv) = ( k
2(1+bv) (1 + bv2) bv ≥ k

k
2(1+bv) ¡(1 + bv2)− (1− bv

k
)2
¢ bv ≤ k

From this we note that B(bv) < k
2
, so that whatever cut-off valuation bv ∈

[v, v] = [0, 1] we try to implement, the implied buy-out price will always be
less than k times the unconditional expectation of the value of the first unit
won. In the special case referred to above where k = 2

3
, B(bv) reduces to

B(bv) = ( 1+bv2
3(1+bv) bv ≥ 2

3
(12−5bv)bv
12(1+bv) bv ≤ 2

3

Hence, if we want to implement a cut-off valuation of bv = 3
4
> 2

3
= k, the

buy-out price must be set as

B(
3

4
) =

1 +
¡
3
4

¢2
3(1 +

¡
3
4

¢
)
=
25

84
≈ 0.30

Similarly, if we want to implement a cut-off valuation of bv = 1
2
< 2

3
= k, the

buy-out price must be set as

B(
1

2
) =

(12− 5 · ¡1
2

¢
)
¡
1
2

¢
12(1 +

¡
1
2

¢
)

=
19

72
≈ 0.26
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(End of example)

Returning to the general case, we can state the following result on the
expected revenues in the two stages given some B(bv).
Proposition 3 The expected revenue in the first auction is

ER1(bv) = k(1− F (bv))Ãbv
k
(1− F (m(bv))) + Z m(bv)

bv xf(x)dx

!

+k

Z bv
v

2x(1− F (x))f(x)dx (5)

while the expected revenue in the second auction is

ER2(bv) =

Z km(bv)
v

2x(1− F (
x

k
))f(x)dx+

Z kv

km(bv) x(1− F (
x

k
))f(x)dx.

+k

Z bv
v

2x (F (x)− F (max{v, kx})) f(x)dx

+k

Z m(bv)
bv 2x (F (bv)− F (max{v, kx})) f(x)dx (6)

+k

Z m(bv)
bv x(1− F (bv))f(x)dx+ k

Z v

m(bv) x(1− F (kx))f(x)dx

Proof. For (5) see below, and for (6) see below and Appendix A.

We sketch the main arguments. First, consider the expected revenues in
the first auction. When at least one of the bidders has a valuation of at leastbv, the buy-out price is taken and the first seller receives B(bv). This event has
a probability 1−F 2(bv). In contrast, if both bidders have valuations less thanbv (i.e., max{vi, vj} < bv), the buy-out price is not taken, and the first stage
continues to a second-price auction where each bidder bids kvi according to
Proposition 1. Thus, the first seller receives k times min{vi, vj}. This event
has a probability F 2(bv). We conclude that the expected revenue to the first
seller given B(bv) can be written as

ER1(bv) = (1−F 2(bv))×B(bv)+F 2(bv)×kE(min{vi, vj} | max{vi, vj} < bv)
15



However, E(min{vi, vj} | max{vi, vj} < bv) is just the expected value of the
second-order statistic, v[2], given that the first-order statistic, v[1], is less
than bv. Denote the density of v[2] given v[1] < bv by h∗(v). Then h∗(v) =
2f(v)(F (bv)−F (v))

F 2(bv) and we can write

E(min{vi, vj} | max{vi, vj} < bv) = Z bv
v

vh∗(v)dv

=
1

F 2(bv)
Z bv
v

2v(F (bv)− F (v))f(v)dv

Hence, expected revenue in the first auction given B(bv) (or simply bv) can be
written as

ER1(bv) = (1− F 2(bv))×B(bv) + k

Z bv
v

2v(F (bv)− F (v))f(v)dv

= [B(bv)(1 + F (bv))](1− F (bv)) + k

Z bv
v

2v(F (bv)− F (v))f(v)dv

Inserting B(bv)(1 + F (bv)) from Proposition 1, we can write this as (5).
The derivation of the expected revenue in the second auction is slightly

more complicated, and we relegate the formal derivation of (6) to Appendix
A. However, in the second auction, the object will be bought either by the
winner of the first auction, or by the loser.
The first and second term in (6) capture revenue in the former case.

Assuming that the loser of stage 1 has valuation x, and bids x in stage 2, he
will lose the second auction if the other bidder’s bid exceeds x, which requires
that the rival has a valuation which is at least x/k. The first term in (6) then
accounts for the possibility that one bidder has a valuation below bv (and thus
does not accept B) and also below v/k (implying the existence of a bidder
type which has a higher marginal revenue on both units), and that the other
bidder has a very high valuation, allowing him to win both auctions. The
second term in (6) describes the case where both bidders accepted B, but
that the (random) loser has a valuation which is low relative to the winner.
This exhausts the possibilities that the winner is the same in both stages.
The remaining terms in (6) are relevant if the winner of stage 1 loses stage

2. Assuming this bidder has a valuation of x, say, the price in the second
auction will then be equal to the bid from this bidder, namely kx. The third
term in (6) is for cases where the winner of stage 1 did not accept the buy-out

16



price, and where the other bidder (who must have a lower valuation) submits
a bid higher than kx in stage 2. The fourth term in (6) is relevant when the
winner of the first auction bid B, but was the only one to do so. Furthermore,
the fifth term in (6) is for cases where both bidders bid B, but where the
(random) winner of stage 1 loses stage 2 because his valuation is so small
that he is certain to lose stage two given the fact that the other bidder has
a valuation higher than bv. Finally, the sixth term in (6) applies when both
bidders bid B, and the (random) winner of stage 1 has a valuation which is
low relative to the loser, allowing the latter to win stage 2. This exhausts
the possibilities that the loser of stage 1 wins stage 2.

Example: The uniform case (v ∈ [0, 1])
In the uniform example, (5) and (6) reduce to

ER1(bv) = ½ k
6
(3− 3bv + 3bv2 − bv3) bv ≥ k
1
6k
(6kbv − 3(1 + 2k − k2)bv2 + (3− k2)bv3) bv ≤ k

and

ER2(bv) = ½ k
6
(3− 2k + 3bv − 3bv2 + bv3) bv ≥ k
1
6k
((3− k)k2 + 3k(1− k)bv2 − (1− k2)bv3) bv ≤ k

For the special case considered above, where k = 2
3
, the expected revenues

can be written as

ER1(bv) = ½ 1
9
(3− 3bv + 3bv2 − bv3) bv ≥ 2

3
1
36
(36bv − 51bv2 + 23bv3) bv ≤ 2

3

and

ER2(bv) = ½ 1
27
(5 + 9bv − 9bv2 + 3bv3) bv ≥ 2

3
1
108
(28 + 18bv2 − 15bv3) bv ≤ 2

3

Hence, if the buy-out price has been chosen to implement the cut-off valuationbv = 3
4
> 2

3
= k, that is, B ≈ 0.3, the expected revenues are ER1(

3
4
) =

43
192
≈ 0.22 and ER2(

3
4
) = 509

1728
≈ 0.29, and the ratio of expected revenues is

ER1(
3
4
)

ER2(
3
4
)
= 387

509
≈ 0.76.

Similarly, if the buy-out price has been chosen to implement the cut-off
valuation bv = 1

2
< 2

3
= k, that is B ≈ 0.26, the expected revenues are

ER1(
1
2
) = 65

288
≈ 0.23 and ER2(

1
2
) = 245

864
≈ 0.28, and the ratio of expected

revenues is ER1(
1
2
)

ER2(
1
2
)
= 39

49
≈ 0.80.
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When pitted against the first auction revenues in two straight second-price
auctions, we notice how the first seller can raise his revenue by introducing a
buy-out price. In the next subsection we determine the optimal level of the
cut-off valuation and, hence, the buy-out price to see when the buy-out price
can have a significant effect on the revenues. (End of example)

To end this subsection we can state two more results.

Lemma 2 (Monotonicity) (i) ER2(bv) is strictly increasing for bv ∈ [v, v).
(ii) ER1(bv) + ER2(bv) is strictly increasing for bv ∈ [v, kv), and constant forbv ∈ [kv, v].
Proof. See Appendix A.

The fact that ER2(bv) is increasing can easily be understood by the fol-
lowing two observations. First, if the first auction is won by the bidder with
the lowest valuation (because both bidders bid the buy-out price B, and
the low-valuation bidder is randomly picked as winner of the first object),
the revenue to the second seller will be very low, indeed, namely k times
the second highest valuation. Secondly, the larger the cut-off valuation bv,
the lower is the probability that the first auction is won by the bidder with
the lowest valuation. Hence, as bv increases, it becomes increasingly unlikely
that the buy-out price in first auction changes the identity of its winner and,
therefore, the price in the second auction.
The second part of (ii) in Lemma 2 can be explained by appeal to the

Revenue Equivalence Theorem, which states that two mechanisms that result
in the same allocation must also give rise to the same overall revenue.15 Now,
the buy-out price changes the identity of the winner of the first auction only
if both bidders accept the buy-out price and the random winner happens to
be the low-valuation bidder. Assuming they both accept the buy-out price,
we note that if the buy-out price is such that bv ∈ [kv, v], the (random)
loser of the first auction must necessarily win the second. To see this, we
note that the valuation of the first-auction loser and, hence, his bid in the
second auction must be at least bv. This, in turn, exceeds the rival bid in
the second auction which is at most kv. Thus, when both bidders have
valuations above bv, with bv ∈ [kv, v], each bidder will win precisely one unit.
However, the same is true if there is no buy-out price. If both bidder have
valuations in the interval [kv, v], the bidder with the highest valuation wins

15See e.g. Klemperer (1999).
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the first auction, and the other bidder wins the second. In conclusion, whenbv ∈ [kv, v] the buy-out price might change the order in which bidders win,
but not the final allocation. Consequently, overall revenue is the same with
and without a buy-out price.
In contrast, for low values of bv, bv ∈ [v, kv), the presence of a buy-out

price might change the final allocation and therefore also overall revenue. In
the next subsection we discuss the consequences of this in greater detail.

Proposition 4 (Increasing prices) ER2(bv) > ER1(bv), ∀bv ∈ [v, v].
Proof. See Appendix A.

As remarked in relation to Proposition 1 (Black and de Meza), revenue is
strictly increasing over the auction sequence when there is no buy-out price.
Indeed, revenue increases with probability one in the case without a buy-out
price. However, the result in Proposition 4 is only for expected revenues. It
is entirely possible that actual, observed revenues decrease when there is a
strictly positive buy-out price. For example, if one bidder has a valuationbv > 0 and the other v = 0, revenue in stage 1 is B(bv) > 0, while revenue in
stage 2 is 0. The upshot of Proposition 4 is that the first seller can increase
expected revenue by introducing a buy-out price, but will not be able “to
level the playing field”.

3.2 The optimal buy-out price

Now, we move on to determine the optimal buy-out price from the perspective
of the first seller. Our main result can be stated as follows.

Proposition 5 (i) For k < 1 the optimal value of bv is strictly lower than
kv. Consequently, the sequence of auctions is inefficient when the first seller
chooses the buy-out price optimally. (ii) For k = 1, bv = v is optimal.

Proof. See Appendix A.

This result follows more or less directly from Lemma 2. Since the sum
of revenues is the same for all bv ∈ [kv, v], and revenue to the second seller
is globally, strictly increasing, it follows that bv = kv dominates all higher
cut-off values from the perspective of the first seller. Further, at bv = kv
the derivative of ER1(bv) is strictly negative, and it always pays for the first
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seller to lower the cut-off valuation below bv by a suitable choice of the buy-
out price B. The consequences for efficiency are immediate: It pays for
the first seller to set the buy-out price, B, at such a level that the final
allocation is inefficient with strictly positive probability. The optimal first-
auction buy-out price is set such that the low-valuation bidder wins the first
object with positive probability when he would have won no object in an
efficient mechanism.
In the special case where k = 1, the behavior in the second auction

is independent of the outcome of the first auction. Therefore, stage 1 is
essentially equivalent to a one-shot auction. Thus, the last part of Proposition
5 shows that buy-out prices lower revenue in such auctions when buyers are
risk neutral.16

Example: The uniform case (v ∈ [0, 1])
To provide some perspective on the last proposition, we reconsider the

uniform case. From Proposition 5 we know that bv < kv = k, for any k ∈
(0, 1). The expected revenue to the first seller when bv < k is given by

ER1(bv) = 1

6k
((3− k2)bv3 − 3(1 + 2k − k2)bv2 + 6kbv)

while the expected revenue to the second seller is

ER2(bv) = 1

6k
(−(1− k2)bv3 + 3k(1− k)bv2 + (3− k)k2)

Maximizing ER1(bv) with respect to bv gives the optimal cut-off valuation from
the perspective of the first seller

v∗ =
1 + 2k − k2

3− k2
− ((1 + 2k − k2)2 − 2k(3− k2))

1/2

3− k2
< k = kv

and the associated, optimal buy-out price, B(v∗) is given by

B(v∗) =
k

2(1 + v∗)

µ
(1 + (v∗)2)− (1− v∗

k
)2
¶

16For specific distributions, this result has already been noted by Budish and Takeyama
(2001), Mathews (2002) and Reynolds and Wooders (2002). We show that this is a gen-
eral property whenever the distribution function is continuously differentiable. Thus, the
generality of our argument also reveals that “ironing of marginal revenue” cannot explain
the use of buy-out prices in this case (for more on this, see below).
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We can substitute v∗ into the revenue expressions, and Fig. 3 illustrates how
ER1(v

∗) (thin) and ER2(v
∗) (heavy) vary with k.

10.750.50.250

0.4

0.3

0.2

0.1

k

ER

k

ER

Fig. 3: Revenues in auction with buy-out

The ratio between the expected revenues given an optimally chosen buy-
out price, RR(BO) = ER1(v∗)

ER2(v∗)
, is illustrated in the following figure

10.750.50.250

1.25

1

0.75

0.5

0.25

k

RR(BO)

k

RR(BO)

Fig. 4: Revenue Ratio in Auction with Buy-out

We can compare with the case of two straight second-price auctions il-
lustrated in Fig. 1 and Fig. 2. In Fig. 5 we merge the information in Fig.
1 and Fig. 3. The dashed lines are for two straight second-price auctions,
while the solid lines are for the case where the first seller chooses the buy-out
price to implement v∗.
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ER
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ER

Fig. 5: Comparison of auction revenues

Fig. 6 merges the information from Fig. 2 and Fig. 4, and the thin line
is for two straight second-price auctions, while the heavy line is associated
with an optimal buy-out price.
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Fig. 6: Revenue Ratios

Finally, in Fig. 7 we plot the percentage gain to the first seller from
an optimally chosen buy-out compared to the straight second-price auction,
G(BO) =

ER1(v∗)−ERSSP
1

ERSSP
1

.

10.750.50.250

0.5

0.375

0.25

0.125

0

k

G(BO)

k

G(BO)

Fig. 7: Percentage gain from buy-out price

The last three figures essentially illustrate that the value from the per-
spective of the first seller of introducing a buy-out price is substantial when
the individual demand functions are relatively steep (k small). When de-
mands are steep, and there are only two bidders, the competition for the
first object will be weak. It follows that the first seller has a strong incentive
to try to improve his position in this case by introducing a suitably chosen
buy-out price. The following table captures central features of the example
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in an alternative way.

k ERSSP
1 v∗ B(v∗) ER1(v

∗) G(BO)
0.01 0.00333 0.00995 0.00495 0.00495 0.49
0.10 0.03333 0.09549 0.04597 0.04558 0.37
0.25 0.08333 0.22618 0.10623 0.10176 0.22
0.50 0.16667 0.43308 0.20404 0.17931 0.08
0.75 0.25000 0.66667 0.32222 0.25309 0.01

Recall that in this example revenue equivalence and efficiency is lost whenbv is set below k = kv. Hence, a comparison of the first and third column
is indicative of the inefficiency when bv is set optimally. For example, when
k = kv = 0.5 the optimal bv is aproximately 0.43, which implies that there is
a small, but “non-trivial”, probability that the final allocation is inefficient.
(End of example)

In the next section, we assume that the two objects are owned by a single
seller and show that a buy-out price in the last auction is beneficial to this
seller. Before proceeding, however, it is of some value to examine more closely
why overall revenue declines when a buy-out price is offered by the first of
two sellers.
As mentioned, the Revenue Equivalence Theorem reveals that if two

mechanisms yield the same allocation, expected revenue in the two mech-
anisms must also be the same. Since the outcome of the bench-mark model
is efficient, it follows that introducing a buy-out price changes revenue if and
only if17 the resulting allocation is inefficient.
For instance, introducing a buy-out price in the first auction produces the

following kind of inefficiency: an agent may win one item when he would have
won none without the buy-out price. In the next section, a buy-out price in
the second auction will be shown to cause another type of inefficiency: an
agent may win two units, when he would have won exactly one without a
buy-out price. In the latter case, an agent who would have won one unit in
an efficient auction risks not winning one at all, and in this sense the type of
inefficiency studied in the next section is the opposite of that studied in this
section.
17This assumes that an agent of type v is indifferent between the two mechanisms. We

will return to this point momentarily.
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To understand the consequences of these different kinds of inefficiencies,
it is useful to exploit the similarities between monopoly pricing and auc-
tions18. When a monopolist faces agents with multi-unit demands, it is
well known that the optimal pricing schedule generally involves quantity dis-
counts. These discounts enable the monopolist to sell several units to agents
with high marginal revenue on all units, without at the same time selling to
agents with low marginal revenue on some units. Whether agents have unit
or multi-unit demands, it is well understood that the key ingredient in the
monopolist’s optimization problem is marginal revenue.
Now, the expression for what amounts to marginal revenue of a bidder

with valuation v in an auction is

J(v) = v − 1− F (v)

f(v)

for the first unit, and it can easily be shown that marginal revenue is kJ(v)
for the second unit19. The expected revenue to the seller is then

E

"
2X

i=1

¡
q1i (v1, v2)J(vi) + q2i (v1, v2)kJ(vi)

¢#− 2EU(v, v) (7)

where qji (v1, v2) is the probability that agent i wins at least j units, given
that the two agents are of type v1 and v2, respectively. The last term is the
expected rent obtained by an agent of type v in the mechanism. (7) is the
counterpart of the revenue for a monopolist, who earns the area under the
marginal revenue curve.
Clearly, if EU(v, v) is the same in two different mechanisms, and if these

mechanisms implement the same allocation, (i.e., the same qji (v1, v2)), ex-
pected revenue must be the same. This is the Revenue Equivalence Theorem.
We are now equipped to provide an alternative proof of why overall rev-

enue declines when a buy-out price is optimally chosen by the first seller.

18These similarities were first pointed out by Bulow and Roberts (1989) for auctions
with unit demand, see also Bulow and Klemperer (1996) and Klemperer (1999). Maskin
and Riley (1989) draw parallels between auctions with multi-unit demand and non-linear
pricing. For more on the latter, see also Kirkegaard (2002).
19For a derivation of J(v), see Myerson (1981) or Bulow and Roberts (1989). Since

willingness-to-pay for a second unit is k times that for the first unit, it is unsurprising
that marginal revenue of the second unit is k times marginal revenue of the first unit, see
Kirkegaard (2002).
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Given that kv > bv > v, the allocation changes as a consequence of the buy-
out price if the winner of stage 1 would not have won a unit at all in the
efficient allocation. If the winner of stage 1 has valuation v this happens if
v < kv, and the rival bidder has valuation x ∈ ( v

k
, v). In this case it can be

shown thatZ v

v
k

kJ(x)
f(x)

1− F (v
k
)
dx− J(v) = v − J(v) > 0

That is, given the event that the allocation has changed, the marginal revenue
lost (which in expectation is the first term20) exceeds the marginal revenue
gained. Hence, overall revenue decreases as the first term in (7) consequently
declines, and the second term is unchanged. It is not profitable to allow an
agent to win one unit too often, compared to the efficient allocation.
We have already argued that when k = 1, stage 1 is equivalent to a

one-shot auction. In one-shot auctions, revenue is clearly maximized by al-
locating the object to the agent with the highest marginal revenue. When
the agent with the highest valuation is also the agent with the highest J(v),
i.e. when J(v) is increasing in v, this is accomplished with an efficient mech-
anism. However, when J(v) is not monotonic, it is impossible to always give
the object to the agent with the highest marginal revenue. The reason is
that the auctioneer must respect the incentive compatibility constraint when
designing his mechanism. To satisfy this constraint, it is necessary that the
probability of winning the object is non-decreasing in the valuation.
In the cases where J(v) is non-monotonic, the rules of the optimal mech-

anism21 ensures that the probability of winning is constant over a subset of
valuations. That is, agents with different valuations have the same proba-
bility of winning, and therefore contributes marginally the same to revenue.
Hence, the optimal mechanism is said to “iron” the marginal revenue curve.

20That this is equal to v can be understood by the following argument. First, if bidder
1 has valuation v and faces bidder 2 with valuation x ∈ ( vk , v), then the exact value of x
does not influence the allocation in either auction format. Second, imagine the buy-out
price has been introduced, and that bidder 1 won the first auction, but it is known that
x ∈ ( vk , v). Third, imagine the seller wants to revert the allocation back to the original
allocation, and he therefore asks bidder 2 to pay an amount, p, to get the good. Whether
or not bidder 2 accepts or rejects, he will win the second auction. Hence, if he accepts
p his marginal gain is kx. Thus, if p = v, bidder 2 is willing to accept p regardless of x.
However, if p > v, there is positive probability that bidder 2 will not accept. Consequently,
the seller can extract precisely v from bidder 2 to ignore the buy-out price.
21See Myerson (1981) or Bulow and Roberts (1989).
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Now, we observe that the buy-out price is a crude way of ironing the marginal
revenue curve, since all agents with valuation above bv has the same proba-
bility of winning in a one-shot auction. It is crude because the interval on
which marginal revenue is ironed in an optimal mechanism is always interior,
whereas the buy-out price also bundles valuations close to and including v
with lower valuations.
Since buy-out prices offer some (excessive) ironing, it is perhaps not ob-

vious whether or not buy-out prices can increase revenue when J(v) is non-
monotonic and k = 1. However, our model is sufficiently general to encom-
pass these situations, and we can therefore conclude that buy-out prices are
counterproductive even when some ironing is called for, precisely because the
ironing is too crude.22

We conclude, quite generally, that overall revenue is adversely affected by
the buy-out price, if the inefficiency is of the form that an agent wins one
unit more often than is efficient. In the next section, however, we show that
it is possible to increase revenue by introducing another form of inefficiency.

4 One Seller

In the following, we assume that the same seller owns both objects, and that
they are sold sequentially. Above we established that total revenue decreases
if a buy-out price is offered in the first auction, because an undesirable kind of
inefficiency was generated. However, in the following we show that a buy-out
price in the second auction produces a different type of inefficiency, one which
is desirable for the seller. To this end, we consider the following augmented
game:

1 The first object is sold using a second-price auction. The closing price
is observed.

2 The seller announces a buy-out price, B, for the second object. The
object is sold at the price B if at least one bidder bids B. If both

22As an aside, we note that we are not aware of any papers on auctions (or monopoly)
showing that “ironing” may be counterproductive, if it is too crude in the sense of this
paper. Among the related papers the model of Budish and Takeyama (2001) is discrete,
while Reynolds and Wooders (2002) assume uniformly distributed valuations. Ironing
is not an issue in either of these specifications. Mathews (2002) also assumes uniform
distributions, but he remarks that his results holds for any distribution, though without
referring to ironing.
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bidders bid B, one bidder is picked at random to win. If no one bids
B, a normal second-price auction is staged. The price can exceed B in
this event.

In line with much of the literature on mechanism design, we will accord
the seller a powerful ability to pre-commit to a particular auction design.
To illustrate, suppose the first auction is conducted, and the closing price
is observed. Hence, if bidding strategies in the first auction are strictly in-
creasing, the valuation of the loser, v, is revealed. Contingent on this v, a
buy-out price for the second auction, B(v), is set. We assume throughout,
and this is where commitment matters, that the relation between v and B,
that is, B(v), is firmly understood by bidders at the outset. Thus, the seller
can credibly announce B(v) before the first auction.23

Given this set-up, our basic argument can be outlined as follows. Assume
that the bidding strategy in the first auction is strictly increasing, and that
the closing price, p, is observed. Since the latter is determined by the bidding
strategy of the runner-up, the valuation of this agent, v, can be deduced.
Then, in the second stage, a buy-out price is offered, which is contingent on
v. Assuming that the buy-out price, B, is close to v, it is not desirable for
the loser of stage 1 to accept it. However, if B is lower than v, the winner
of stage 1 will accept it, if his willingness-to-pay exceeds the buy-out price.
The reason is that if he does not, a second-price auction ensues, in which he
knows the loser of stage 1 will be willing to compete for the object until the
price reaches v > B. Consequently, the winner of stage 1 also wins stage 2
if his valuation is at least B, although he would win less often in an efficient
auction, namely when his valuation is above v.
To see why this might increase revenue, observe that it is common for a

monopolist to offer quantity discounts. These discounts introduce the same
kind of inefficiency as that described above. If p is the price of one unit and
p+B the price of two units, an agent may be willing to pay more than B for
one unit, but less than p. In this case, he will obviously buy nothing. On the
other hand, a buyer willing to pay at least p for one unit and an additional
B for a second unit will purchase two units. Clearly, it would be efficient
for these two buyers to share the two units. By introducing the inefficiency,
however, the monopolist is able to sell to the agent with highest marginal
revenue on the incremental unit.
23For more on this, see below.
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To close the argument, we need to understand why this kind of ineffi-
ciency favors agents with high marginal revenue. The first observation is
that kJ(v) > J(kv), implying that the agent with the highest possible valua-
tion should win two units, even when faced with a competitor with valuation
slightly higher than kv, and even though this is inefficient.
Hence, inefficiency “at the top” is always desirable from the point of

view of revenue generation. Often, however, inefficiency is also desirable
at all other levels. Assume for the rest of the section that the following
monotonicity condition is satisfied.

Assumption 2. 1−F (v)
f(v)

is decreasing in v.

This increasing hazard rate24 condition implies (but is not implied by)
an increasing J(·) function (i.e., decreasing marginal revenues in the more
familiar context). A consequence of this is that, for kv ≥ v,

k
1− F (v)

f(v)
<
1− F (kv)

f(kv)
⇐⇒ kJ(v) > J(kv)

such that a bidder with valuation v should win two units when faced by a
rival with a valuation in a neighborhood of kv.
Thus, the seller would like to design an auction such that a bidder with

valuation v ∈ [ v
k
, v] wins two units when faced by a rival with valuation close

to kv, i.e. he wins two units more often than is efficient. As argued in the
beginning of this section, this can be accomplished by using a buy-out price
in the second auction.
To elaborate, if v is the revealed valuation of the stage 1 loser, we consider

a commonly known function B(v) which gives the resulting buy-out price in
stage 2. That is, B(v) is known before the first auction commences. The
buy-out price is assumed to satisfy B(v) ≤ v for all v. We will then look for
a discriminating equilibrium, defined as follows.

Definition 1 A discriminating equilibrium consists of a symmetric bidding
strategy in stage 1, which is strictly increasing in bidder valuation, and the
following strategy in stage 2. Given that B(v) is the buy-out price in stage 2,
the winner of stage 1 bids B(v) in stage 2 if and only if his marginal utility

24The hazard rate is h(v) = f(v)
1−F (v) . An increasing hazard rate is equivalent to log-

concavity of 1 − F (v) . See Bagnoli and Bergstrom (1989) for an extensive treatment of
log-concave distributions.
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of the second unit exceeds B(v), while the loser of stage 1 never bids B(v).
Bidder i, i = 1, 2, bids his marginal utility in stage 2, if the buy-out price
was not accepted by anyone.

Inspection of Definition 1 reveals that the existence of a discriminating
equilibrium necessitates that v > 0. To see this, assume to the contrary that
v = 0, and consider the incentives of a bidder with a valuation slightly above
0. By following the equilibrium strategy, it is very unlikely that such a bidder
will win either auction. Rather, it is preferable for such an agent to bid 0 in
the first auction, and then accept the buy-out price (of zero) in the second
auction. Since the competing agent will also want to buy the good in the
second auction at the buy-out price, the low-valuation agent wins the second
auction with a significant probability of 0.5
On the other hand, if v > 0 and B(v) is close to v, an agent with a

valuation close to v prefers not to accept B if he lost stage 1, even if he
deviated in the first auction. The reason is that there is a mass of types for
which kv < B, implying that the low valuation agent wins the second auction
with significant probability and pays significantly less than his own valuation
when following the equilibrium strategy. This is preferable to accepting the
buy-out price and winning with an even larger probability, provided that the
buy-out price is large relative to the valuation.
These arguments capture the key qualitative difference between cases with

v = 0 and v > 0. When v = 0, a bidder with valuation v does not contribute
to the competition for any of the units since v < kv, ∀v > v.25 In contrast,
when v > 0, even a bidder with the lowest possible valuation, v, contributes
to the competition, since there is a range of v such that kv < v.26

If the first auction was won by bidder 1, say, the winner of the second stage
changes as a consequence of the buy-out price if and only if B(v2) < kv1 < v2.
In this case, bidder 1 also wins the second item, resulting in the desired
inefficiency. The seller seeks to construct a B(v) function which has the
following properties.

Assumption 3. Define B(v) on [v, v], and assume that

25A bidder with valuation v could never be expected to win even in the competition for
the second item. This is easily checked against the results of Section 2.
26In this case, a bidder with valuation v could reasonably win the second unit. Again,

this can easily be checked against Section 2.
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(i) B(v) ∈ (kv, v), ∀v ∈ (v, kv), B(v) = v otherwise27. B(v) is everywhere
continuous, and it is continuously differentiable with 0 < B0(v) < ∞,
∀v ∈ [v, v]\{kv}

(ii) kJ(x) > J(v), ∀x ≥ 1
k
B(v)

(iii) The function b(v) is strictly increasing28, where

b(v) =

(
kv + (v −B(v))

f( 1
k
B(v))

f(v)
1
k
B0(v) for v ∈ [v, kv)

kv for v ∈ [kv, v]

We will show below that the function b(v) is the bidding strategy in stage
1 of a discriminating equilibrium. If the loser of stage 1 is revealed to be of
type v ∈ [v, kv), the buy-out price in stage 2 is B(v) < kv, and it is accepted
with strictly positive probability. However, if the loser is of a higher type,
B(v) exceeds kv, and there is therefore zero probability that the winner of
stage 1 accepts it. Note that the ability to precommit to the auction design
is formally important, as the design is not time consistent. Once stage 2 is
reached, it is no longer in the seller’s interest to offer the buy-out price, since
this will decrease revenue in stage 2.
Before stating the result of this section, we observe that the second term

of (7) is unchanged. This is because a bidder with valuation v will lose stage
1 in both auction formats, and since B(v) = v the presence of the buy-
out price in stage 2 will not affect the probability of such a bidder winning
(which will be F ( v

k
)) or the price paid in that event29. Furthermore, while we

argued that inefficiency at the top is always desirable, we explicitly assumed
that B(kv) = kv, implying that there is no inefficiency at the top. This
part of Assumption 3 is made solely to simplify the proof of the following
Proposition.

Proposition 6 (i) Any discriminating equilibrium satisfying Assumption 3
is strictly revenue superior to the equilibrium of a sequence of second-price

27If the agent who loses stage 1 deviated to an action that is not played by any type in
equilibrium, this is taken to signal that v = v.
28b(v) is continuous, given part (i) of Assumption 3.
29In fact, this is why this assumption has been imposed. We could let B(v) < v, which

would decrease the second term in (7) and hence increase revenue further. However, we
seek the stronger result that it is the change in allocation (i.e. the inefficiency) that drives
revenue up. Thus, we keep the second term the same over the two auction formats.
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auctions with no buy-out price. (ii) A discriminating equilibrium satisfying
Assumption 3 exists whenever v ≥ kE(v). In such an equilibrium, the bidding
strategy in stage 1 is given by b(v).

Proof. (i) The proof is based on inspection of (7). As mentioned above,
the second term is unchanged. However, the first term in (7) is higher when
the buy-out price is introduced. To see this, observe that if the allocation
changes, the winner of stage 1 must have a type that exceeds B

k
. By the

second part of Assumption 3, the marginal revenue of the second unit to this
bidder is higher than the marginal revenue of the first unit to the losing bid-
der. Hence, for every realization of (v1, v2), the term inside the expectations
operator in (7) is no lower, but possible higher, than without the buy price.
For a proof of the second part of the proposition, see Appendix A.

The condition in the second part of Proposition 6 is required to eliminate
any incentive to bid low in stage 1, and then bid B in stage 2 if stage 1 was
lost. As can be seen by the second part of the Proposition, the presence of a
buy-out price in stage two increases bids in stage 1, since b(v) ≥ kv. Thus,
revenue in stage 1 increases. The sum of revenues in the two stages also
increases, despite the fact that revenue in stage 2 decreases.
We also observe that Assumption 1 implies that k is not too small, while

the condition in (ii) of the proposition implies that k is not too great either,

that is, k ∈
³
v
v
, v
E(v)

i
.30 As an example, the assumptions are satisfied for the

uniform distribution on [1, 2] with k ∈ (1
2
, 2
3
).

Finally, we note that the conclusion that a discriminating auction (second-
round buy-out) may increase overall revenue of the seller is related to a
further result in Black and de Meza (1992). They show, by an example, that
an option offered to the first-round winner of buying the second object at the
first-round price may increase overall revenue above the level of two straight
second-price auctions. Despite the one-sided nature of the option suggested
by Black and de Meza it, presumably, trades on the same type of inefficiency
as in this section. That is, the winner of the first round wins more often than
is efficient.
30Note that these are sufficient conditions.
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5 Concluding Remarks
In this paper we sought to explain the use of buy-out prices by observing
that online auction markets are dynamic, with players knowing that goods
not presently on the market are likely to be offered in the future. It was
shown that there is an incentive for current sellers to offer a buy-out price
that is accepted with positive probability. Furthermore, we showed that
a sophisticated seller with several units can increase the sum of revenues
by introducing a buy-out price in later auctions which is contingent on the
outcome of earlier auctions.

33



References
Bagnoli, M., and T. Bergstrom, 1989, Log-Concave Probability and Its Ap-
plications, draft, University of Michigan.

Black, J., and D. de Meza, 1992, Systematic Price Differences Between Suc-
cessive Auctions Are No Anomaly, Journal of Economics and Management
Strategy 1: 607-628.

Budish, E., and L. Takeyama, 2001, Buy Prices in Online Auctions: Irra-
tionality on the Internet?, Economics Letters 73: 325-333.

Bulow, J., and P. Klemperer, 1996, Auctions vs. Negotiations, American
Economic Review 86: 180-194.

Bulow, J., and J. Roberts, 1989, The Simple Economics of Optimal Auctions,
Journal of Political Economy 97: 1060-1090.

Katzman, B., 1999, A Two Stage Sequential Auction with Multi-Unit De-
mands, Journal of Economic Theory 86: 77-99.

Kirkegaard, R., 2002, Inefficiency and Nonlinear Pricing in the Optimal
Multi-unit Auction, draft, University of Aarhus.

Klemperer, P., 1999, Auction Theory: A Guide to the Literature, Journal of
Economic Surveys 13: 227-286.

Lucking-Reiley, D., 2000, Auctions on the Internet: What’s Being Auctioned
and How, Journal of Industrial Economics 48: 227-252.

Maskin, E., and J. Riley, 1989, Optimal Multi-Unit Auctions, in F. Hahn
(ed.), The Economics of Missing Markets, Information and Games, Oxford
University Press, UK: Oxford.

Mathews, T., 2002, Buyout Options in Internet Auction Markets, unpub-
lished Ph.D. thesis, SUNY, Stony Brook.

Myerson, R., 1981, Optimal Auction Design, Mathematics of Operations Re-
search 6: 58-73.

Reynolds, S., and J. Wooders, 2002, Ascending Bid Auctions with a Buy-Now
Price, draft, University of Arizona, Tucson.

Weber, R., 1983, Multiple-Object Auctions, in R. Engelbrecht-Wiggans, M.
Shubik and R. Stark (eds.), Auctions, Bidding and Contracting: Uses and
Theory, New York University Press, NY: New York.

34



Appendix A
Proof of Proposition 2. Consider a bidder with valuation v ≥ bv. By

bidding B in stage 1, his expected payoff in the two stages is

EU(B, v) =

Z bv
v

(v −B)f(x)dx+

Z min{bv,max{v,kv}}
v

(kv − x)f(x)dx

+

Z v

bv
1

2
(v −B)f(x)dx+

Z min{v, v
k
}

bv
1

2
(v − kx)f(x)dx

+

Z max{bv,kv}
bv

1

2
(kv − x)f(x)dx

where the five terms capture all the possible outcomes as follows. First, the
bidder wins stage 1 at a price of B with probability one, if the competitor
refrains from accepting B, i.e. has valuation below bv. Second, with proba-
bility one, the bidder wins stage 2 at a price equal to the valuation of his
rival, if this rival did not accept B in stage 1(she has a valuation below bv),
and if her bid, or valuation, (which exceeds v) is at most kv. Third, the
first auction is won with probability 0.5 if the opponent also bids B, i.e. if
she has a valuation above bv. Fourth, if the player lost stage 1 because the
other player also bid B, the second stage is won at a price equal to the rival’s
bid if this bid is not too high. Finally, if both players bid B in stage 1 and
the player in question won, we deduce that the competitor’s valuation is at
least bv, implying that the second auction is also won if the rival’s valuation is
nevertheless so low that the winner of stage 1 will submit a higher bid than
the loser.
If the bidder, instead, does not bid B, the first unit will be sold at a

second-price auction, if the buy-out price is not accepted by the rival either.
The best response in this subgame is easily shown to be to outbid the other
bidder (the bidder in question is willing to bid kv, whereas the other bidder
is known to be willing to bid at most kbv, if she did not bid B right away).
Hence, by not bidding B, expected payoff is

EU(NB, v) =

Z bv
v

(v − kx)f(x)dx+

Z min{bv,max{v,kv}}
v

(kv − x)f(x)dx

+

Z min{v, v
k
}

bv (v − kx)f(x)dx
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Letting B(bv) be the buy-out price at which type bv is indifferent between
these two strategies yields (4). In general, for v ≥ bv,

EU(B, v)−EU(NB, v)

=

Z bv
v

(kx−B)f(x)dx+

Z v

bv
1

2
(v −B)f(x)dx (8)

−
Z min{v, v

k
}

bv
1

2
(v − kx)f(x)dx+

Z max{bv,kv}
bv

1

2
(kv − x)f(x)dx

the derivative of which is
1

2

h
1− F (bv)− ³F (min{v, v

k
}− F (bv)´+ k (F (max{bv, kv})− F (bv))i ≥ 0

Since EU(B, bv)−EU(NB, bv) = 0 by construction, it follows that EU(B, v)−
EU(NB, v) ≥ 0 for all v ≥ bv. Hence, players with high valuations have no
incentive to deviate from the equilibrium strategy.
For agents of type v < bv, the equilibrium strategy of not bidding B

followed by bidding kv in stage 1 if the opponent did not bid B either, yields
the following

EU(NB, v) =

Z v

v

(v − kx)f(x)dx+

Z max{v,kv}

v

(kv − x)f(x)dx

+

Z min{v, v
k
}

v

(v − kx)f(x)dx

By bidding B, the expected payoff is

EU(B, v) =

Z bv
v

(v −B)f(x)dx+

Z max{v,kv}

v

(kv − x)f(x)dx

+

Z v

bv
1

2
(v −B)f(x)dx+

Z max{bv,min{v, v
k
}}

bv
1

2
(v − kx)f(x)dx

We observe that

EU(NB, v)− EU(B, v)

=

Z v

v

(v − kx)f(x)dx+

Z min{v, v
k
}

v

(v − kx)f(x)dx−
Z bv
v

(v −B)f(x)dx

−
Z v

bv
1

2
(v −B)f(x)dx−

Z max{bv,min{v, v
k
}}

bv
1

2
(v − kx)f(x)dx (9)
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and that this is equal to the negative of (8) when v = bv, i.e. the expression
is equal to zero in this case. The derivative of (9) is

F (min{v, v
k
})− 1

2

³
1 + F (max{bv,min{v, v

k
}}
´
< 0

implying that EU(NB, v)−EU(B, v) > 0 for all v < bv. Thus, low valuation
bidders have no incentive to deviate either. This completes the proof of
Proposition 2.

Proof of Proposition 3. If EP2(v|bv) denotes the expected payment
in stage 2 of a bidder with valuation v when the cut-off valuation is bv, the
expected revenue in stage 2 is

ER2(bv) = 2 Z v

v

EP2(v|bv)f(v)dv
From the expressions of expected payoff given in the proof of Proposition 2,
it follows that

EP2(v|bv) = Z max{v,kv}

v

xf(x)dx+

Z min{v, v
k
}

v

kxf(x)dx

for v < bv, and
EP2(v|bv) =

Z min{bv,max{v,kv}}
v

xf(x)dx+

Z min{v, v
k
}

bv
1

2
kxf(x)dx

+

Z max{bv,kv}
bv

1

2
xf(x)dx

otherwise. Hence,

ER2(bv) = 2

Z bv
v

(

Z max{v,kv}

v

xf(x)dx+

Z min{v, v
k
}

v

kxf(x)dx)f(v)dv

+2

Z v

bv (
Z min{bv,max{v,kv}}
v

xf(x)dx+

Z min{v, v
k
}

bv
1

2
kxf(x)dx

+

Z max{bv,kv}
bv

1

2
xf(x)dx)f(v)dv
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The next step is to change the order of integration of each of the five
terms. The first term,

T 1 = 2

Z bv
v

Z max{v,kv}

v

xf(x)f(v)dxdv

is obviously zero if v ≥ kbv. Otherwise, it is straightforward to change the
order of integration to get

T 1v<kbv = 2
Z kbv
v

Z bv
x
k

xf(x)f(v)dvdx

Consequently, for any bv,
T 1 = 2

Z max{v,kbv}
v

Z bv
x
k

xf(x)f(v)dvdx

= 2

Z max{v,kbv}
v

xf(x)(F (bv)− F (
x

k
))dx

Turning to the second term,

T 2 = 2

Z bv
v

Z min{v, v
k
}

v

kxf(x)f(v)dxdv

= 2

Z min{kv,bv}
v

Z v
k

v

kxf(x)f(v)dxdv + 2

Z bv
min{kv,bv}

Z v

v

kxf(x)f(v)dxdv

where the last term is zero if bv < kv. In this case, changing the order of
integration yields

T 2bv<kv = 2
Z v

k

v

Z min{x,bv}
v

kxf(x)f(v)dvdx+2

Z bv
k

v
k

Z min{x,bv}
kx

kxf(x)f(v)dvdx

while for bv ≥ kv,

T 2bv≥kv = 2
Z v

k

v

Z min{x,bv}
v

kxf(x)f(v)dvdx+2

Z v

v
k

Z min{x,bv}
kx

kxf(x)f(v)dvdx
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It follows that we can write this term, for all v, as

T 2 = 2

Z v
k

v

Z min{x,bv}
v

kxf(x)f(v)dvdx

+2

Z m(bv)
v
k

Z min{x,bv}
kx

kxf(x)f(v)dvdx

= 2

Z m(bv)
v

Z min{x,bv}
max{v,kx}

kxf(x)f(v)dvdx

= 2

Z bv
v

kxf(x)(F (x)− F (max{v, kx}))dx

+2

Z m(bv)
bv kxf(x)(F (bv)− F (max{v, kx}))dx

Changing the order of integration of the third term, we find that

T 3 = 2

Z max{v,kbv}
v

Z v

bv xf(x)f(v)dvdx+ 2

Z min{bv,kv}
max{v,kbv}

Z v

x
k

xf(x)f(v)dvdx

= 2

Z max{v,kbv}
v

xf(x)(1− F (bv))dx+ 2 Z min{bv,kv}
max{v,kbv} xf(x)(1− F (

x

k
))dx

The fourth term can be rewritten as

T 4 =

Z m(bv)
bv

Z v

bv kxf(x)f(v)dvdx+

Z v

m(bv)
Z v

kx

kxf(x)f(v)dvdx

=

Z m(bv)
bv kxf(x)(1− F (bv))dx+ Z v

m(bv) kxf(x)(1− F (kx))dx

while the fifth and final term is equal to

T 5 =

Z kv

min{bv,kv}
Z v

x
k

xf(x)f(v)dvdx

=

Z kv

min{bv,kv} xf(x)(1− F (
x

k
))dx

Summing and rearranging the five terms and noting thatmin{bv, kv} = km(bv)
produce (6). This ends the proof of Proposition 3.
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Proof of Lemma 2. (i) The function m(bv) is differentiable everywhere
except at bv = kv. Hence, for all bv 6= kv, the derivative of (6) is

ER02(bv) = km(bv)f(km(bv))(1− F (m(bv)))m0(bv)k
+

Z m(bv)
bv kxf(x)dxf(bv)− kbvf(bv)(1− F (bv))

+2km(bv)f(m(bv))(F (bv)− F (km(bv)))m0(bv)
Since the last term is always zero, the derivative can be written as

ER02(bv)
=

(
f(bv)³(bv − kbv)(1− F ( bv

k
)) +

R bv
kbv k(x− bv)f(x)dx´ bv < kv

f(bv) R vbv k(x− bv)f(x)dx bv > kv
(10)

which is strictly positive for all bv < v. Note also that when bv converges to kv,
ER02(bv) converges to the same from the left and the right. That is, ER02(bv)
is continuously differentiable, and strictly increasing.
(ii) Again, the function m(bv) is differentiable everywhere except at bv =

kv. Thus, for all bv 6= kv, the derivative of (5) is

ER01(bv) = −f(bv)Ãbv(1− F (m(bv))) + Z m(bv)
bv kxf(x)dx

!
+(1− F (bv)) (1− F (m(bv)) + kbvf(bv))
+(1− F (bv))f(m(bv))m0(bv)(km(bv)− bv)

Once more, the last term is always zero. Rewriting yields

ER01(bv) = −f(bv)Z m(bv)
bv k(x− bv)f(x)dx

−f(bv)(1− F (m(bv)))µbv − 1− F (bv)
f(bv) − kbv¶

or

ER01(bv)
=


−f(bv)³R bv

kbv k(x− bv)f(x)dx+ (1− F ( bv
k
))
³bv − 1−F (bv)

f(bv) − kbv´´ bv< kv

−f(bv) R vbv k(x−bv)f(x)dx bv> kv

(11)
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As before, when bv converges to kv, ER01(bv) converges to the same from the left
and from the right, and it follows that ER1(bv) is continuously differentiable.
From (10) and (11), we conclude that the derivative of ER1(bv) + ER2(bv) is

ER01(bv) + ER02(bv) = ½ (1− F ( 1
k
bv))(1− F (bv)) > 0 bv < kv

0 bv ≥ kv

This completes the proof of Lemma 2.

Proof of Proposition 4. Assuming that bv < kv, (5) and (6) imply

ER2(bv)− ER1(bv)
= 2

Z bv
v

xf(x)(1− F (
x

k
))dx+ 2

Z bv
v

kxf(x) (F (x)− F (max{v, kx})) dx

+2

Z bv
k

bv kxf(x) (F (bv)− F (max{v, kx})) dx−2
Z bv
v

kxf(x)(1−F (x))dx

+

Z v

bv
k

kxf(x)(1− F (kx))dx+

Z kv

bv xf(x)(1− F (
x

k
))dx

− (1 − F (bv))bv(1 − F (
bv
k
))

Alternatively, we can write this as

ER2(bv)− ER1(bv) = A(bv) +B(bv)
where

A(bv)
= 2

Z bv
v

xf(x)(1− F (
x

k
))dx+ 2

Z bv
v

kxf(x) (F (x)− F (max{v, kx})) dx

+2

Z bv
k

bv kxf(x) (F (bv)− F (max{v, kx})) dx− 2
Z bv
v

kxf(x)(1− F (x))dx

and

B(bv)
=

Z v

bv
k

kxf(x)(1− F (kx))dx+

Z kv

bv xf(x)(1− F (
x

k
))dx

−(1− F (bv))bv(1− F (
bv
k
))
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Observing that A(v) = 0 and

A0(bv) = 2f(bv)Ã(bv − kbv)(1− F (
bv
k
)) +

Z bv
k

bv k(x− bv)f(x)dx! = 2ER02(bv) > 0
we conclude that A(bv) > 0, for all bv ∈ (v, kv]. Furthermore, B(kv) = 0 and

B0(bv) = −(1− F (bv))(1− F (
bv
k
)) = −(ER01(bv) + ER02(bv)) < 0

implies that B(bv) > 0, for all bv ∈ [v, kv). It follows that ER2(bv)−ER1(bv) >
0, for all bv ∈ [v, kv]. Finally, Lemma 2 ensures that ER2(bv) − ER1(bv) > 0
on bv ∈ (kv, v] as well, since ER2(bv) increases and ER1(bv) decreases on this
interval. This ends the proof of Proposition 4.

Proof of Proposition 5. In the proof of Lemma 2 it was established
that ER1(bv) is continuously differentiable. From (11) we see specifically that

ER01(bv) = −f(bv) Z v

bv k(x− bv)f(x)dx, for bv ∈ [kv, v]
Clearly, this is negative, and strictly so for all bv ∈ [kv, v). It follows that the
optimal value of bv must be strictly lower than kv. The sequence of auctions is
inefficient since a bidder with valuation bv < kv faced by a rival with valuation
v wins stage 1 with probability 0.5. The efficient outcome in this case is for
the bidder with valuation v to win both.
However, when k = 1, (11) reduces to (1 − F (bv))2 ≥ 0. It follows that

when k = 1, the optimal value of bv is v. This completes the proof of Propo-
sition 5.

Proof of Proposition 6. To prove the second part of Proposition 6,
we start with the following preliminary remarks.
(i) First observe that the assumption v ≥ kE(v) impliesZ v

z

(z − kx)f(x)dx ≥ 0, ∀z ∈ [v, kv] (12)

To see this, note that the derivative with respect to z is

f(z)

·
−(1− k)z +

1− F (z)

f(z)

¸
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where the term is square brackets is decreasing in z (by Assumption 2).
Hence, once the slope of (12) becomes negative, it remains negative. Conse-
quently, (12) is minimized at one of the end-points. Clearly, (12) is positive
at z = kv, and v ≥ kE(v) ensures that it is non-negative at v.
(ii) It is easily seen to be a dominant strategy to bid marginal utility

in stage 2, if the buy-out price was not accepted. Consider a bidder with
valution z, who played his equilibrium strategy in stage 1, but lost. Then,
the buy-out price in stage 2 is B(z). To have a discriminating equilibrium,
we require thatZ B(z)

k

z

(z−kx)f(x)dx ≥ (z−B(z))[F (B(z)
k
)−F (z)+ 1

2
(1−F (B(z)

k
))] (13)

In other words, the bidder should prefer rejecting the buy-out price to ac-
cepting it. Notice that the right-hand-side can be made arbitrarily small
(and the left-hand-side strictly positive) by letting B(z)→ z, implying that
there exists B(·) functions such that (13) is indeed satisfied.
(iii) Let b(v) be the candidate for the equilibrium bidding strategy in

stage 1, and assume it is strictly increasing. Since the buy-out price is at
least v, it is convenient to define B−1(x) = v if x ≤ v. Then, if a bidder with
valuation v decides to bid b(z) in stage 1, expected payoff is

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z min{B−1(kv),z}

v

(kv −B(x))f(x)dx

+max

(Z max{z,min{B(z)
k

, v
k
,v}}

z

(v − kx)f(x)dx, (14)

(v −B(z))[F (min{B(z)
k

, v})− F (z) +
1

2
(1− F (min{B(z)

k
, v}))]

¾
The first term adresses the possibility that the first auction is won. If the
bidder won stage 1, it is optimal to accept the buy-out price in stage 2 if and
only if it is lower than kv, and this is the second term. However, if stage
1 is lost, the bidder may or may not prefer rejecting B(z) to accepting it.
Given that the rival follows the equilibrium strategy, this is captured by the
third term. We can now show why it is necessary that b(v) takes the form
described in Assumption 3.
Consider first v < kv, and examine the properties of (14) for z close to v.
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Given (13) is satisfied, and kv < B(z) < v with z ≈ v, (14) becomes

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z B−1(kv)

v

(kv −B(x))f(x)dx

+

Z B(z)
k

z

(v − kx)f(x)dx

The first order condition is then satisfied if and only if b(v) is as stated in
Assumption 3. Observe that as B(v) −→ v, b(v) −→ kv.
When v, z > kv, B(z) = z, implying that (13) is satisfied. Then, for all

z > kv, (14) becomes

EU(z, v) =

Z kv

v

(v − b(x))f(x)dx+

Z z

kv

(v − b(x))f(x)dx

+

Z kv

v

(kv −B(x))f(x)dx+

Z v

z

(v − kx)f(x)dx

Clearly, this is independent of z if b(x) = kx for all x ≥ kv, implying there
is no incentive to bid b(z) rather than b(v).

We have now shown there is no incentive to make small, local deviations.
In the following we rule out sizeable deviations as well. Recall that we let
v denote the valuation of the bidder, whereas z denotes the valuation the
bidder pretends to have by bidding b(z). Assume, for now, that b(v) is
strictly increasing.

(a) B(z) ≥ v. We have already shown that if v ≥ kv, then it does not pay
to deviate to a z = B(z) > v. Hence, we concentrate on v < kv, and observe
that it is a dominant strategy in stage 2 not to accept B(z) if stage 1 was
lost. Thus,

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z B−1(kv)

v

(kv −B(x))f(x)dx

+

Z max{z, v
k
}

z

(v − kx)f(x)dx

The derivative w.r.t. z is

EU 0
z(z, v) =

½
(v − kz − (b(z)− kz))f(z) ≤ 0 if z > v

k

(kz − b(z))f(z) ≤ 0 if z < v
k
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implying that this type of deviation is unprofitable, since it is preferable to
lower z from its level of z ≥ B−1(v) ≥ v.

(b) z > v ≥ B(z). This is possible only if z, v ∈ (v, kv). If a bidder with
valuation v loses stage 1 with a bid of b(z), he will elect not to accept B(z)
in stage 2 ifZ B(z)

k

z

(v−kx)f(x)dx ≥ (v−B(z))[F (B(z)
k
)−F (z)+ 1

2
(1−F (B(z)

k
))] (15)

Assuming that B(z) is sufficiently close to z to satisfy (13), and noting that
the right-hand-side of (15) increases faster in v than the left-hand-side, it
follows that the inequality remains satisfied for any v < z. The bidder is
better of not accepting B(z) in stage 2 if stage 1 was lost. Hence, expected
payoff is

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z B−1(kv)

v

(kv −B(x))f(x)dx

+

Z B(z)
k

z

(v − kx)f(x)dx

and the derivative is

EU 0
z(z, v) = (v − b(z))f(z) + (v −B(z))f(

B(z)

k
)
B0(z)
k
− (v − kz)f(z)

= f(z)

"
(v −B(z))

f(B(z)
k
)

f(z)

B0(z)
k

+ kz − b(z)

#

= (v − z)f(
B(z)

k
)
B0(z)
k

< 0

Thus, this type of deviation is unprofitable too, as it pays to lower z from its
high level.

(c) v ≥ z ≥ B(z). If stage 1 was lost, the bidder can choose to either accept
or reject B(z) in stage 2.
(c1) v ≥ z ≥ B(z), reject B(z) if stage 1 was lost. Expected payoff is

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z min{B−1(kv),z}

v

(kv −B(x))f(x)dx

+

Z min{B(z)
k

,v}

z

(v − kx)f(x)dx
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Since the second term is non-decreasing in z, the derivative w.r.t. z can be
bounded below,

EU 0
z(z, v) ≥

½
0 if B(z) ≥ kv

(v − z)f(B(z)
k
)B

0(z)
k
≥ 0 if B(z) < kv

as b(z) = kz when B(z) ≥ kv. Hence, this type of deviation is not profitable
either.
(c2) v ≥ z ≥ B(z), accept B(z) if stage 1 was lost. We observe that

if B(z) ≥ kv, the winner of stage 1 will not accept B(z). Then, the loser
of stage 1 should not accept B(z) either. Since v ≥ B(z) ≥ kv, the loser
of stage 1 is certain to win a second-price auction, and pay less than B(z).
Hence, in order for it to be a sensible strategy to accept B(z), we must as a
minimum require that B(z) < kv, or z < kv. Hence,

EU(z, v) =

Z z

v

(v − b(x))f(x)dx+

Z min{B−1(kv),z}

v

(kv −B(x))f(x)dx

+(v −B(z))[F (
B(z)

k
)− F (z) +

1

2
(1− F (

B(z)

k
))]

and it follows that

EU(v, v)−EU(z, v) ≥ D(z, v)

=

Z v

z

(v − b(x))f(x)dx+

Z min{B(v)
k

,v}

v

(v − kx)f(x)dx

−(v −B(z))[F (
B(z)

k
)− F (z) +

1

2
(1− F (

B(z)

k
))]

Now, if v ≥ kv, the facts that B(v) ≥ kv and b(x) = kx for x ≥ kv imply

D(z, v) =

Z v

z

(B(z)− b(x))f(x)dx+ (v −B(z))
1

2
(1− F (

B(z)

k
))

As the last term is positive and the first converges to (12) for B(x) −→ x,
D(z, v) > 0 for B(·) functions that are close to the 45 degree line.
Finally, if v < kv, D(z, v) is positive for z = v, by (13), i.e. by the fact

that it is optimal to reject the buy-out price in equilibrium. We wish to show
this is also the case for v > z and we thus differentiate w.r.t. v to get

D0
v(z, v) = F (

B(v)

k
)− 1

2
(1 + F (

B(z)

k
))
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Observing that D0
v(z, z) < 0, D

0
v(z, kv) > 0 and D

00
vv(z, v) > 0, it follows that

the minimum of D(z, v) over v ∈ (z, kv) is interior, and satisfies

F (
B(v)

k
) =

1

2
(1 + F (

B(z)

k
))

Hence, we conclude that

D(z, v) = v[F (
B(v)

k
)− F (z)− (1

2
(1 + F (

B(z)

k
))− F (z))]

−
Z v

z

b(x)f(x)dx−
Z B(v)

k

v

kxf(x)dx+B(z)[
1

2
(1 + F (

B(z)

k
))− F (z)]

≥ B(z)[F (
B(v)

k
)− F (z)]−

Z v

z

b(x)f(x)dx−
Z B(v)

k

v

kxf(x)dx

=

Z v

z

(B(z)− b(x))f(x)dx+

Z B(v)
k

v

(B(z)− kx)f(x)dx

>

Z kv

z

(B(z)− b(x))f(x)dx+

Z v

kv

(B(z)− kx)f(x)dx

where the last inequality follows from the fact the function preceding it is
decreasing in v, and v < kv. As B(x) −→ x, this converges to (12).

Hence, we conclude that if (12) is satisfied, there exists a B(·) function
close to the 45 degree line, for which there is no incentive to deviate, regard-
less of the bidder’s valuation.
It remains only to verify that b(v) is strictly increasing. However, it is

clear that for B(v)→ v (with B0(v) <∞) this must be the case as b(v)→ kv.
Since kJ(v) > J(kv), it follows that the second part of Assumption 3 is
satisfied as well, for B(v)→ v. This completes the proof of Proposition 6.
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Appendix B
In this appendix we show that all results of Section 3 hold with minor

modifications when Assumption 1 is not met.
Observe first that Proposition 2 and ER1(bv) in Proposition 3 hold even

when Assumption 1 is not satisfied. Consequently, the derivative of ER1(bv)
is

ER01(bv) = −f(bv) Z m(bv)
bv k(x− bv)f(x)dx

−f(bv)(1− F (m(bv)))µbv − 1− F (bv)
f(bv) − kbv¶

= −f(bv) Z v

bv k(x− bv)f(x)dx ≤ 0
since m(bv) = v. This immediately implies that the optimal value of bv is v,
and the buy-out price is thus accepted with probability 1.
Furthermore, since kv ≤ v, it is clear that whoever loses stage 1 will win

stage 2 with probability 1, regardless of bv. Hence, by theRevenue Equivalence
Theorem, overall revenue is the same31 regardless of bv. Since ER1(bv) is
decreasing in bv, it follows that ER2(bv) is increasing in bv (the equivalent of
Lemma 2).
In addition, since the optimal value of bv is v, the highest possible revenue

to the first seller is ER1(v) = B(v) = kE(v). In stage 2, the loser of stage
1 will win. Defining v(j) as the j0th highest valuation, the expected revenue
is ER2(v) = 0.5kE(v(1)) + 0.5kE(v(2)), since any given player wins stage 1
with probability 0.5. This can be rewritten as

ER2(v) = 0.5kE(v(1)) + 0.5kE(v(2))

= 0.5kE(v(1)) + 0.5k
¡
2E(v)−E(v(1))

¢
= kE(v)

= ER1(v)

Hence, in what seller 1 considers optimum, he earns the same as seller 2.
Since the sum of revenues is constant, it follows that for any bv > v, seller 1
will be worse off than seller 2, and we have the equivalent of Proposition 4.

31It is easily seen that an agent of type v is indifferent between the auction formats.
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