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Abstract

We consider a local Whittle analysis of a stationary fractionally cointegrated model.

A two step estimator, equivalent to the local Whittle QMLE, is proposed to jointly esti-

mate the integration orders of the regressors, the integration order of the errors, and the

cointegration vector. The estimator is semiparametric in the sense that it employs local

assumptions on the joint spectral density matrix of the regressors and the errors near the

zero frequency. We show that, for the entire stationary region of the integration orders,

the estimator is asymptotically normal with block diagonal covariance matrix. Thus, the

estimates of the integration orders are asymptotically independent of the estimate of the

cointegration vector. Furthermore, our estimator of the cointegrating vector is asymptoti-

cally normal for a wider range of integration orders than the narrow band frequency domain

least squares estimator, and is superior with respect to asymptotic variance. An application

to financial volatility series is offered.
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1 Introduction

In this paper we are concerned with the joint estimation of the integration orders and the

cointegrating vector in stationary fractionally cointegrated models. Suppose we observe the

p-vector zt = (yt, x
0
t)
0, which is integrated of order d ∈ (0, 1/2), denoted zt ∈ I (d). For a

precise statement, zt ∈ I (d) if

(1− L)d zt = εt, (1)

where εt ∈ I (0) and (1− L)d is defined by its binomial expansion

(1− L)d =
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)L
j , Γ (z) =

Z ∞

0
tz−1e−tdt, (2)

in the lag operator L (Lzt = zt−1). A process is labelled I (0) if it is covariance stationary and

has spectral density that is bounded and bounded away from zero at the origin.

A scalar-valued stochastic process generated by (1) has spectral density

f (λ) ∼ gλ−2d as λ→ 0+, (3)

where g is a constant and the symbol “∼” means that the ratio of the left- and right-hand
sides tends to one in the limit. Such a process is said to possess strong dependence or long

range dependence, since the autocorrelations decay at a hyperbolic rate in contrast to the much

faster exponential rate in the weak dependence case. The parameter d determines the memory

of the process. If d > −1/2, zt is invertible and admits a linear representation, and if d < 1/2
it is covariance stationary. If d = 1/2, the spectral density is bounded at the origin, and the

process has only weak dependence. Sometimes, zt is said to have intermediate memory, short

memory, and long memory when d < 0, d = 0, and d > 0, respectively.

Suppose further that zt = (yt, x0t)
0 satisfies the regression model

yt = β0xt + et, (4)

where the error term is integrated of a smaller order de < d, i.e. et ∈ I (de). A much studied

special case is the standard I (1) − I (0) cointegration model which arises when d = 1 and
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de = 0, see e.g. Watson (1994) for a review. When d and/or de are not integers the model is

called a fractional cointegration model following the original idea by Granger (1981). We call

the model (4) with 0 ≤ de < d < 1/2 a stationary fractionally cointegrated model, since it is

concerned with the long-run linear co-movement between two or more stationary fractionally

integrated processes. The properties of the model in the standard I (1) − I (0) cointegration

case are well known, see Watson (1994), but the fractional cointegration framework has been

examined only recently, see the short review in Robinson and Yajima (2002).

Since our model is stationary, a comparison with the standard time series regression model

with weakly dependent regressors is natural. The new complication is that, since the regressors

and the errors both have long memory, they are potentially correlated even at very long hori-

zons, thus rendering the OLS estimator inconsistent, see Robinson (1994) and Robinson and

Marinucci (1998). To deal with this issue, Robinson (1994) proposed a semiparametric narrow

band frequency domain least squares (FDLS) estimator that assumes only a multivariate gener-

alization of (3), and essentially performs OLS on a degenerating band of frequencies around the

origin. The consistency of the estimator in the stationary case is proved by Robinson (1994),

and Christensen and Nielsen (2001) show that its asymptotic distribution is normal when the

collective memory of the regressors and the error term is less than 1/2, i.e. when d+ de < 1/2.

In contrast, Robinson and Marinucci (1998) consider several cases where the regressors are frac-

tionally integrated and nonstationary, and show that the limiting distributions for the FDLS

estimator are then functionals of fractional Brownian motion.

Throughout this paper, we shall be concerned with the case d ∈ (0, 1/2). This interval
is relevant for many applications in finance, e.g. stock market trading volume (Lobato and

Velasco (2000)), exchange rate volatility (Andersen, Bollerslev, Diebold and Labys (2001)),

stock return volatility (Andersen, Bollerslev, Diebold and Ebens (2001) and Christensen and

Nielsen (2001)), and spot prices for crude oil (Robinson and Yajima (2002)). In particular, it

is the relevant region for the volatility processes we study below in our empirical application.

Many estimators of the memory parameter d and the scale parameter g have been suggested
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in the literature. A semiparametric approach has been developed by Geweke and Porter-Hudak

(1983), Robinson (1994, 1995a, 1995b), Lobato and Robinson (1996), and Lobato (1999), among

others. The semiparametric estimators of the memory parameter assume only the model (3)

for the spectral density, and use a degenerating part of the periodogram around the origin

to estimate the model. This approach has the advantage of being invariant to any short-

and medium-term dynamics (as well as mean terms since the zero frequency is usually left

out). In particular, a local Whittle QMLE approach based on the maximization of a local

Whittle approximation to the likelihood, see our equation (7), has been developed by Robinson

(1995a) (who called it a Gaussian semiparametric estimator) and Lobato (1999) to estimate the

integration orders of univariate and multivariate stationary fractionally integrated time series,

respectively. Of course, a fully parametric approach is more efficient, using the entire sample,

but is inconsistent if the parametric model is specified incorrectly, e.g. if the lag-structure of

the short-term dynamics is misspecified.

The methods described above are combined by Marinucci and Robinson (2001) and Chris-

tensen and Nielsen (2001), who suggest conducting a fractional cointegration analysis in several

steps. First, the integration orders of the raw data is estimated by, e.g., the local Whittle

QMLE. Secondly, the narrow band FDLS estimator for the cointegrating vector is calculated,

and finally the integration order of the residuals is estimated assuming that the approach is

equally valid for residuals. Hypothesis testing is then conducted on de as if et were observed,

and on β as if de (which enters in the limiting distribution of the FDLS estimator) were known.

Although this may indeed be a valid course of action, see Hassler, Marmol and Velasco (2000)

and Velasco (2001), a joint estimation method for the integration orders and the cointegration

vector would be preferable.

We propose a simple joint semiparametric two step estimator of the integration orders and

the cointegration vector in (4), which is equivalent to the local Whittle QMLE. Similarly to

the narrow band FDLS estimator for the cointegration vector and the local Whittle QMLE of

the integration orders, our estimator employs local assumptions on the joint spectral density
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matrix of the regressors and the errors near the zero frequency. It turns out that the limiting

distribution of our estimator has a block diagonal covariance matrix, so that the estimates of

the integration orders are asymptotically uncorrelated with the estimates of the cointegration

vector. Thus, the limiting distribution of the estimates of the integration orders equals that

derived by Lobato (1999), and in particular, it is unaffected by the fact that it is based in part

on residuals. In contrast to the FDLS estimator, we show that our estimator is asymptotically

normal for the entire parameter space, i.e. 0 ≤ de < d < 1/2, thus avoiding the condition d+

de < 1/2 required by the FDLS estimator for asymptotic normality. We also demonstrate that

our estimator, in addition to being applicable for a wider range of integration orders, has smaller

asymptotic variance than the FDLS estimator when the latter is asymptotically normal. A

similar approach to ours is considered by Velasco (2001) for bivariate nonstationary fractionally

cointegrated processes, and similar results for the asymptotic distribution are reached using

data tapering, following Lobato and Velasco (2000). However, his results are limited to a

bivariate model, and require tapering and an additional user chosen bandwidth parameter to

trim out the very first Fourier frequencies as in Robinson (1995b).

Following the semiparametric approach outlined above, our estimator enjoys the extremely

general treatment of the short-term dynamics that has made the log-periodogram and local

Whittle estimators popular among practitioners. In particular, the short-term dynamics does

not even need to be specified, since only a degenerating band of frequencies around the origin is

used. In contrast, for a parametric estimator to be consistent we would have to specify correctly

the short-run dynamics of the model, employing e.g. a vector fractional ARIMA specification

as in Dueker and Startz (1998). The obvious cost for this robustness is that the efficiency of

the semiparametric estimator relative to a correctly specified parametric estimator converges

to zero.

The stationary fractional cointegration model has many potential applications, especially

in finance. Many financial time series, like the volatility of stock returns and exchange rates,

have been found to be well described by stationary fractionally integrated processes, see e.g.
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Andersen, Bollerslev, Diebold and Ebens (2001), Andersen, Bollerslev, Diebold and Labys

(2001), and Christensen and Nielsen (2001). Our model then applies if it is assumed that this

is a common trend between two or more such processes, which would seem like a plausible

assumption especially if the underlying assets are traded on the same market (exchange rate

or stock market).

To illustrate our new procedure, we offer an application to the relation between the volatility

implied by option prices and the volatility subsequently realized in the stock market. The

unbiasedness hypothesis in the option market implies a slope coefficient of unity in the implied-

realized volatility relation, but the ordinary regression estimate is less than one-half. However,

we conduct a stationary fractional cointegration analysis, and find that the volatility series

are well described as being stationary fractionally cointegrated with d approximately 0.45

and de insignificantly different from zero. When accounting for the possibility of stationary

fractional cointegration, the estimated slope coefficient is insignificantly different from unity,

thus supporting long-run unbiasedness of implied volatility as a forecaster of realized volatility.

The paper is organized as follows. In the next section we present the model and set up the

local Whittle likelihood and the assumptions necessary to prove our main result. In section

3 we state our main result on the asymptotic distribution of the joint semiparametric two

step estimator, and compare this to the local Whittle QMLE of d and the narrow band FDLS

estimator of β. Section 4 presents the empirical application to the implied-realized volatility

relation, and section 5 concludes. The proof of the main theorem is provided in two appendices.

2 Stationary Fractional Cointegration Model

Let us now generalize the simple model described above. In particular, suppose the spectral

density matrix of the p-vector wt = (x
0
t, et)

0 is

f (λ) = Λ−1GΛ−1 as λ→ 0+, (5)
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where Λ = diag(λd1 , ..., λdp), da ∈ ∆ = {x| 0 ≤ x ≤ ∆1, 0 < ∆1 < 1/2}, a = 1, ..., p, and G

is a p × p real symmetric matrix. Equation (5) is the natural multivariate extension of (3),

including multivariate fractional ARIMA models as a special case, and is also considered in

previous work by e.g. Robinson (1995b), Lobato (1999), and Robinson and Yajima (2002).

Thus, the elements of the vector xt can be integrated of different orders, i.e. xat ∈ I (da). This

implies, by (4), that yt ∈ I(max1≤a≤p−1 da), such that the conceptual requirement that at least

two of the variables in (yt, x0t)
0 must be integrated of the same order is automatically satisfied.

Notice that dp is now the integration order of the error term, i.e. et ∈ I (dp).

We collect the parameters of interest in the (2p− 1)-vector θ = ¡d1, ..., dp, β0¢0. The Whittle
approximation to the (negative) likelihood is (see Lobato (1999))

W (θ,G) =

Z π

−π

¡
log |f (λ)|+ tr £f−1 (λ)Re (I (λ))¤¢ dλ,

where I (λ) = (2πn)−1
¯̄Pn

t=1wte
itλ
¯̄2
is the periodogram matrix of wt at frequency λ. In the

spirit of the semiparametric approach, we prefer the discrete local version of the likelihood

W̄ (θ,G) =
1

m

mX
j=1

¡
log |f (λj)|+ tr

£
f−1 (λj)Re (I (λj))

¤¢
(6)

evaluated at the Fourier frequencies λj = 2πj/n, j = 1, ...,m. We let the bandwidth parameter

m = m (n) tend to infinity to gather information, but at a slower rate than n to remain in a

neighborhood of λ = 0. Note that the zero frequency has been left out of the summation in (6)

to render the estimation invariant to mean terms. An integral version of (6) could also have

been considered, but it would not share this property and it would be computationally more

burdensome.

The local Whittle estimator of (θ,G) is defined as

(θ̂, Ĝ) = argmin
θ,G

W̄ (θ,G)

over a compact subset of ∆p × Rp2+p−1. We concentrate G out of the likelihood by setting

Ĝ (θ) = m−1
Pm

j=1Λj Re(I (λj))Λj , and write the concentrated likelihood as

L (θ) = log
¯̄̄
Ĝ (θ)

¯̄̄
− 2 (

Pp
a=1 da)

m

mX
j=1

log λj (7)
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apart from constants. The local Whittle estimator of the parameter of interest, θ, can then be

defined in terms of the concentrated likelihood as

θ̂ = argmin
θ∈Θ

L (θ) , (8)

where the minimization is carried out over Θ, a compact subset of ∆p ×Rp−1.

We propose the following simple two step estimator (TSE) for the integration orders and

the cointegrating vector,

θ̂
(2)
= θ̂

(1) −
µ
∂2L (θ)

∂θ∂θ0

¯̄̄̄
θ̂
(1)

¶−1µ
∂L (θ)

∂θ

¯̄̄̄
θ̂
(1)

¶
, (9)

where θ̂
(1)
is a consistent initial estimator, e.g. the local Whittle QMLE of Robinson (1995a)

and Lobato (1999) combined with the narrow band FDLS estimator of Robinson (1994), Robin-

son and Marinucci (1998), and Christensen and Nielsen (2001). We could iterate (9) until

convergence for higher order gains, but that does not change the first order asymptotics. It is

well known that the TSE has the same asymptotic distribution as the QMLE, but we prefer

the TSE for its simplicity.

To prove our main result we assume, with obvious implications for yt, the following condi-

tions on wt = (x
0
t, et)

0, the bandwidth, and the initial estimates.

Assumption 1 The spectral density matrix of wt given in (5) with typical element fab (λ), the

cross spectral density between wat and wbt, satisfies¯̄̄
fab (λ)− gabλ

−da−db
¯̄̄
= O

³
λα−da−db

´
as λ→ 0+, a, b = 1, ..., p,

for some α ∈ (0, 2]. The matrix G satisfies gap = gpa = 0 for a = 1, ..., p − 1, and the leading
(p− 1)× (p− 1) submatrix of G, denoted Ḡ, is positive definite.

Assumption 2 wt is a linear process, wt = µ +
P∞

j=0Ajεt−j, with square summable coeffi-

cient matrices,
P∞

j=0 kAjk2 < ∞. The innovations satisfy, almost surely, E (εt| Ft−1) = 0,

E (εtε
0
t| Ft−1) = Ip, and the matrices µ3 = E (εt ⊗ εtε

0
t| Ft−1) and µ4 = E (εtε

0
t ⊗ εtε

0
t| Ft−1)

are nonstochastic, finite, and do not depend on t, where Ft = σ ({εs, s ≤ t}).
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Assumption 3 As λ→ 0+,

dAa (λ)

dλ
= O

¡
λ−1 kAa (λ)k

¢
, a = 1, ..., p,

where Aa (λ) is the a0th row of A (λ) =
P∞

j=0Aje
ijλ.

Assumption 4 The bandwidth parameter m = m (n) satisfies

1

m
+

m1+2α (logm)2

n2α
→ 0 as n→∞.

Assumption 5 The initial estimates θ̂
(1)
are consistent, and in particular satisfy

d̂(1)a − da = Op

³
m−1/2

´
for a = 1, ..., p,

β̂
(1)
a − βa = Op

³
m−1/2λda−dpm

´
for a = 1, ..., p− 1.

The first part of Assumption 1 specializes (5) by imposing smoothness conditions on the

spectral density matrix of wt commonly employed in the literature. They are satisfied with

α = 2 if, for instance, wt is a vector fractional ARIMA process. The condition that Ḡ be

positive definite is a no multicollinearity or no cointegration condition within the components

of xt. The condition that gap = gpa = 0, for a = 1, ..., p − 1, is new compared to previous

research, and ensures that the coherence between the regressors and the error process is of

smaller order at the origin. The condition can be thought of as a local-to-zero version of the

usual orthogonality condition from least squares theory, and is needed, for instance, to show

that the estimation of dp is unaffected by the fact that it is based in part on estimated residuals.

Assumptions 2 and 3 follow Robinson (1995a) and Lobato (1999) in imposing a linear

structure on wt with square summable coefficients and martingale difference innovations with

finite fourth moments. Assumption 2 is satisfied, for instance, if εt is an i.i.d. process with

finite fourth moments. Under Assumption 2 we can write the spectral density matrix of wt as

f (λ) =
1

2π
A (λ)A∗ (λ) , (10)

where the asterisk is complex conjugation combined with transposition.
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Assumption 4 restricts the expansion rate of the bandwidth parameter m = m (n). The

bandwidth is required to tend to infinity for consistency, but at a slower rate than n to remain

in a neighborhood of the origin, where we have some knowledge of the form of the spectral

density. When α is high, (5) is a better approximation to (10) as λ → 0+, and hence (by the

second term of Assumption 4) a higher expansion rate of the bandwidth can be chosen. The

weakest constraint is implied by α = 2, in which case the condition is m = o(n4/5).

Finally, Assumption 5 states the required rates of convergence of the initial estimates. It is

satisfied, for instance, if the integration orders are estimated by the local Whittle QMLE or the

log-periodogram method (see Robinson (1995a, 1995b) and Lobato (1999) for the estimation

of d for observed data, and Hassler et al. (2000) and Velasco (2001) for estimation of d for

residuals) and the cointegration vector by the FDLS estimator (see Christensen and Nielsen

(2001)), but other estimators would also satisfy this assumption.

3 Main Result

We are now ready to state our main result.

Theorem 1 Let θ0 denote the true value of the parameter vector θ, and suppose θ0 belongs to

the interior of the parameter space, Θ. Under 0 ≤ dp < da < 1/2, for a = 1, ..., p− 1, (4), and
Assumptions 1-5

√
mdiag

³
Ip, λ

dp
m Λ̄

−1
m

´³
θ̂
(2) − θ0

´
D→ N

¡
0,Ω−1

¢
, (11)

with

Ω =

 E 0

0 F

 , (12)

E = 2
¡
Ip +G¯G−1

¢
, (13)

Fab =
2gab

gpp (1− da − db + 2dp)
a, b = 1, ..., p− 1, (14)
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where ¯ denotes the Hadamard product and Λ̄m is the leading (p− 1) × (p− 1) submatrix of
Λm = diag(λ

da
m , ..., λ

dp
m ).

Proof. The asymptotic distribution of the TSE is the same as that of the QMLE, which

is given by (11) if we can show the following. The score is such that

√
mdiag

³
Ip, λ

−dp
m Λ̄m

´ ∂L (θ0)

∂θ
D→ N (0,Ω) , (15)

and the Hessian satisfies

diag
³
Ip, λ

−dp
m Λ̄m

´ ∂2L(θ̃)

∂θ∂θ0
diag

³
Ip, λ

−dp
m Λ̄m

´
p→ Ω (16)

for all θ̃ such that k θ̃ − θ0 k≤k θ̂(1) − θ0 k. Notice that Ω is positive definite by Assumption 1
and the fact that the Hadamard product of two positive definite matrices is positive definite.

We prove (15) in appendix A, where parts of this proof follow Lobato (1999) in applying the

martingale difference array approximation technique by Robinson (1995a). (16) is proven in

appendix B.

Some comments on our result are in order. Velasco (2001) reaches a result very similar

to our Theorem 1 in his nonstationary setup, using tapered periodograms to account for the

nonstationarity, following the approach of Lobato and Velasco (2000). However, his results are

limited to a bivariate model, and require tapering and an additional user chosen bandwidth

parameter (say l) to trim out the first l Fourier frequencies as in Robinson (1995b).

The asymptotic distribution in (11) is block diagonal, such that the estimates of the inte-

gration orders are asymptotically uncorrelated with the estimate of the cointegration vector. In

particular, the asymptotic distribution of the estimators of the integration orders is unaffected

by the fact that they are based in part on residuals. This is due to the local orthogonality con-

dition in Assumption 1, which ensures that the effect of the estimation of β on the estimation

of the integration orders is negligible. A discussion of the efficiency gains of the multivariate es-

timator of the integration orders over the univariate local Whittle QMLEs in Robinson (1995a)

can be found in Lobato (1999, p. 136).
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Let us have a closer look at the asymptotic distribution in the simple two variable case.

Suppose we observe two time series yt and xt both integrated of order d < 1/2, and that the

error term is known to be integrated of order de < d. Then the asymptotic distribution (11) of

β̂ in Theorem 1 reduces to

√
mλde−dm

³
β̂
(2) − β0

´
D→ N

µ
0,
ge (1− 2d+ 2de)

2gx

¶
,

where gx and ge are the elements of G, which is a diagonal 2 × 2 matrix. Thus, the variance
depends on the signal-to-noise ratio gx/ge.

We compare our estimator of the cointegration vector with the narrow band FDLS given

by

β̂FDLS =

 1

m

mX
j=1

Re (Ixx (λj))

−1 1
m

mX
j=1

Re (Ixy (λj)) , (17)

and asymptotically distributed according to

√
mλde−dm

³
β̂FDLS − β0

´
D→ N

Ã
0,

ge (1− 2d)2
2gx (1− 2d− 2de)

!

in the two variable case with d + de < 1/2, see Christensen and Nielsen (2001). We note

immediately that the convergence rates are the same, and in particular, they are very close to
√
n for relevant parameter values. For instance, when m = O

¡
n0.6

¢
and d − de = 0.4, which

are values close to those in the empirical application below, we get that β̂
(2)
is n0.46-consistent.

The asymptotic relative efficiency of β̂
(2)
with respect to β̂FDLS is

V (β̂FDLS)

V (β̂)
=

(1− 2d)2
(1− 2d)2 − 4d2e

,

which equals unity if and only if de = 0, and exceeds unity otherwise. Thus, our estimator is

more efficient and applies for a wider range of (d, de) than the FDLS estimator.

The unknown parameters appearing in the asymptotic distribution (11) can be replaced by

consistent estimates. In particular, the matrix of coherencies at the zero frequency, G, can be

estimated by Ĝ(θ̂
(2)
), which is consistent by Lobato (1999, p. 136). Its asymptotic distribution
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could also be derived by application of the delta-method, see Robinson (1995a) and Lobato

and Velasco (2000).

Based on Theorem 1 it is straightforward to construct Wald tests of hypotheses that involve

both the integration orders and the cointegration vector. For instance, the linear restrictions

H0 : Rθ = r can be tested by

W =
³
Rθ̂ − r

´0 ¡
RΩ−1R0

¢−1 ³
Rθ̂ − r

´
D→ χ2q (18)

under the null, where q is the number of linearly independent restrictions. Some hypotheses

of general interest in this framework are (i) the components of xt are integrated of the same

order, θ1 = ... = θp−1, (ii) the errors have no long memory, θp = 0, (iii) xkt is not present in

the cointegrating relation, θp+k = 0, or combinations of these.

4 Empirical Application

In this section we conduct an actual stationary fractional cointegration analysis of the relation

between the volatility implied by option prices, and the subsequent realized return volatility of

the underlying asset, following Christensen and Nielsen (2001).

If option market participants are rational and markets are efficient, the price of a financial

option should reflect all publicly available information including information about future return

volatility of the underlying asset. Given an observation on the price of an option, the implied

volatility σIV may be determined by inverting the option pricing formula with respect to σIV ,

and if this is done every period t a time series σIV,t results. Each implied volatility σIV,t

may now be considered as the market’s forecast of the actually realized return volatility of the

underlying asset. Here, realized volatility is simply the sample standard deviation σRV,t of the

realized return from t to t + 1. In practice, we work with the log volatilities, since they are

close to Gaussian, see Andersen, Bollerslev, Diebold and Ebens (2001).

Christensen and Prabhala (1998) considered the regression specification

yt = α+ βxt + et, (19)
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where yt = lnσRV,t and xt = lnσIV,t are the log volatilities, and α and β are intercept and

slope coefficients. The unbiasedness hypothesis for option markets implies a β-coefficient of

unity. A monthly sampling frequency was employed for xt and yt. The underlying asset was

the S&P100 stock market index, and yt was calculated from daily returns, see Christensen

and Prabhala (1998) for the details. Basic OLS regression in (19) produced a β-estimate that

was significantly greater than zero and less than unity (Christensen and Prabhala (1998) also

presented results without the log transform and the difference was negligible).

Inferences from OLS may be erroneous if xt and yt are fractionally cointegrated, which is

exactly what would be expected under the unbiasedness hypothesis. Thus, if xt=Et (yt) with

Et (·) denoting conditional expectation as of time t, then β is unity and et is serially uncorre-

lated. For a detailed description of the implied-realized volatility relation and its implications,

see Christensen and Prabhala (1998). If volatility is fractionally integrated, as empirical liter-

ature suggests (Andersen, Bollerslev, Diebold and Ebens (2001) and Christensen and Nielsen

(2001) find fractional integration with d around 0.35−0.45), whereas the forecasting error et in
(19) possesses only short memory, then xt and yt are fractionally cointegrated. This is in fact

what the empirical results in Christensen and Nielsen (2001) and our empirical results below

indicate. In particular, Christensen and Nielsen (2001) considered a fractional cointegration

analysis of (19), using first the univariate local Whittle estimator of Robinson (1995a) to esti-

mate the integration orders of the raw data, then the narrow band FDLS estimator to estimate

β, and finally the local Whittle estimator to estimate the integration order of the errors. It was

found that accounting for the possibility of stationary fractional cointegration greatly improves

the results, and in most cases produces β-estimates that are insignificantly different from unity.

The data we use are the same as those investigated by Christensen and Nielsen (2001),

and are weekly data covering the period January 1, 1988, to December 31, 1995, resulting

in n = 417 observations. The final data series are based on high-frequency data from the

Berkeley Options Data Base (BODB), see the BODB User’s Guide for a description. From

the high-frequency options data, a 5-minute return series for the underlying S&P500 index
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is constructed for the period 9:00 AM to 3:00 PM each trading day. This results in a series

of 147,022 observations. From this 5-minute return series we form the realized volatility σRV,t

over each one-week interval by taking the sample standard deviation of the 5-minute annualized

returns in week t.

The implied volatilities are backed out from the Monday 10:00 AM quote, for the call of

shortest maturity and closest to the money, using the standard option pricing formula corrected

for dividends. This results in a weekly implied volatility series σ̃IV,t with different times to

maturity since the options expire monthly. We convert this heterogeneous series to another

weekly series σIV,t, that may be associated with the series σRV,t of realized volatilities covering

homogeneous nonoverlapping weekly intervals by the formula

σ2IV,t−i =
1

di − di−1

¡
di · σ̃2IV,t−i − di−1 · σ̃2IV,t−i+1

¢
, (20)

where di is the number of days until expiration of σ̃IV,t−i, starting with σIV,t = σ̃IV,t for t

corresponding to a one-week option and then applying the recursion (20). This is of course

an approximation for implied volatilities, as opposed to realized volatilities where it is an

identity. However, the approximation is a high-frequency measurement error, and consequently

our semiparametric approach should be robust towards it. For the complete details of the

construction of the data set and summary statistics, see Christensen and Nielsen (2001).

In Tables 1-3 we report the results of our stationary fractional cointegration analysis for

bandwidths m = n0.5 = 20, m = n0.55 = 27, and m = n0.6 = 37, respectively.

The first column in each table shows the initial estimates. For the integration orders d and

de we choose Robinson’s (1995a) univariate local Whittle estimates using the same bandwidth

parameter as for the TSE. To estimate β we choose the FDLS estimator and, following Robinson

and Marinucci (1998) and Marinucci and Robinson (2001), we use a lower bandwidth for the

FDLS estimator, and in particular the bandwidth m = 5 was used. The results are robust to

changes in this bandwidth parameter, at least up to about 15, see also Christensen and Nielsen

(2001). The initial estimates are comparable to those found by Christensen and Nielsen (2001),

and in particular the series seem to be stationary (d < 1/2) and the errors are close to I (0).
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The initial estimate of β is 0.866, which is well above the 0.3 − 0.4 that are typical for OLS
estimates of β, see Christensen and Prabhala (1998) and Christensen and Nielsen (2001), but

still suggests that implied volatility is a biased forecast of realized volatility.

Tables 1-3 about here

In the next two columns we report the TSE (9) and the standard error of each parameter,

respectively. The standard errors are calculated using our new distribution theory as the square

root of the diagonal elements of the covariance matrix in Theorem 1. For d the estimates are

virtually unchanged compared to the initial estimates of approximately 0.45, which is in line

with previous evidence, see Andersen, Bollerslev, Diebold and Ebens (2001) and Christensen

and Nielsen (2001). Turning to the estimation of the parameters of primary interest, de and β,

we find much smaller point estimates of de, ranging from 0.04 to 0.07 compared to the initial

estimates of 0.08 to 0.10, and much larger estimates of β ranging from 1.12 to 1.19 depending

on the bandwidth, but the estimates of β are insignificantly different from unity.

The results so far are consistent with the notion that realized and implied volatility are well

described as stationary but fractionally integrated series, and that they tend to move together

in the sense that the errors in (19) have less memory. The interesting question is how closely

they move together and whether the errors are in fact only weakly dependent. To answer

this question, the fourth column shows the Wald test statistic (18) of the joint hypothesis

that de = 0 and β = 1, which is asymptotically distributed as a χ2 random variable with 2

degrees of freedom (the 5% and 1% critical values are 5.99 and 9.21, respectively). The test

does not reject for any choice of bandwidth, suggesting that implied and realized volatility can

indeed be described by a stationary fractionally cointegrated relation with unit coefficient and

only weakly dependent errors. Thus, the results indicate that all long memory properties in

volatility are common features for implied and realized volatility.

The remaining columns in Tables 1-3 presents the estimates, standard errors, and Wald

test statistic when (9) is iterated until convergence to five decimal places. These results do not
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differ greatly from the results for the TSE. The estimates of d are virtually unchanged compared

to the TSE. For the integration order of the errors, the estimates are less than 0.0001 for all

bandwidths, obviously strongly in favor of the hypothesis of weakly dependent errors. The

estimates of β are closer to unity now, ranging from 1.01 to 1.05 and leaving the possibility of

a unit coefficient highly likely. Consequently, the Wald statistics for the converged estimates

are insignificant for all choices of bandwidth.

Thus, similarly to Andersen, Bollerslev, Diebold and Ebens (2001) and Christensen and

Nielsen (2001), we find that the volatility series are well described as stationary fractionally

integrated series. From the residual analysis we cannot reject that implied and realized volatility

indeed are stationary fractionally cointegrated. That is, the residuals are of lower order of

fractional integration than the volatility series themselves, de < d. In fact, our results are

consistent with the even stronger relation that de = 0. Under long-run unbiasedness, we would

expect the series to follow each other closely resulting in a unit β-coefficient, which is also

supported by our analysis. Hence, the relation between implied and realized volatility indeed

appears to be one of stationary fractional cointegration.

5 Conclusion

We consider a local Whittle analysis of a stationary fractionally cointegrated model. In par-

ticular, we propose a two step estimator, which is equivalent to the local Whittle QMLE, to

jointly estimate the integration orders of the regressors, the integration order of the errors,

and the cointegration vector. The estimator is semiparametric in the sense that it employs

local assumptions on the joint spectral density matrix of the regressors and the errors near the

zero frequency, following the approach by Robinson (1995a) and Lobato (1999) for estimating

the integration orders. By using a degenerating part of the periodogram near the origin, the

approach is invariant to short-run dynamics, which would have to be specified correctly in a

parametric procedure.
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In our stationary fractionally integrated case, we show that the two step estimator is as-

ymptotically normal with block diagonal covariance matrix for the entire stationary region of

the integration orders. Thus, the estimates of the integration orders are asymptotically un-

correlated with the estimate of the cointegration vector. Furthermore, our estimator of the

cointegration vector is asymptotically normal for a wider range of integration orders than the

narrow band frequency domain least squares estimator of Robinson (1994), analyzed by Robin-

son and Marinucci (1998), Marinucci and Robinson (2001), and Christensen and Nielsen (2001),

and is superior with respect to asymptotic variance when the latter is normal.

To demonstrate the feasibility of our methodology in practice, we have offered an application

to financial volatility series. The unbiasedness hypothesis of option markets implies a coeffi-

cient of unity in the implied-realized volatility relation, but the ordinary regression estimate

is less than one-half. We show that implied and realized volatility are well described as being

stationary fractionally cointegrated. When accounting for this, our estimates of this coefficient

are more than twice as large as before and insignificantly different from unity. Furthermore,

we are unable to reject the joint hypothesis of weak dependence of the error process and unit

coefficient in any of our specifications. This demonstrates that useful long-run relations can be

derived even among stationary series.
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Appendix A: Limit of the Score

Applying the Cramér-Wold device we need to show that

η0
√
mdiag

³
Ip, λ

−dp
m Λ̄m

´ ∂L (θ0)

∂θ
D→ N

¡
0, η0Ωη

¢
(21)

for any non-null vector η. The derivatives with respect to da and βa are

∂L (θ0)

∂da
=

2

m

mX
j=1

νj Re
³
gaΛjIwa (λj)λ

da
j − 1

´
, (22)

∂L (θ0)

∂βa
= − 2

m

mX
j=1

λ
dp
j Re (g

pΛjIwa (λj)) , (23)

where (22) is the same as in Lobato (1999), νj = log j −m−1
Pm

j=1 log j, g
a is the a0th row

of G−1 and Iwa (λ) is the cross-periodogram between wt and wat. In both (22) and (23) we

replaced Ĝ (θ0) by G since °°°Ĝ (θ0)−G
°°° = Op

³
m−1/2

´
, (24)

see Lobato (1999).

The part of the left-hand side of (21) corresponding to (23) is

−
p−1X
a=1

ηa+pλ
da−dp
m

2√
m

mX
j=1

λ
dp
j Re (g

pΛjIwa (λj))

= −
p−1X
a=1

ηa+pλ
da−dp
m

2√
m

mX
j=1

λ
dp
j Re (g

pΛj (Iwa (λj)−A (λj)J (λj)A
∗
a (λj))) (25)

−
p−1X
a=1

ηa+pλ
da−dp
m

2√
m

mX
j=1

λ
dp
j Re (g

pΛjA (λj)J (λj)A
∗
a (λj)) , (26)

where J (λ) is the periodogram of εt and Aa (λ) is the a0th row of A (λ). By (C.2) of Lobato

(1999), which is implied by our assumptions,

(25) = Op

Ã
p−1X
a=1

1√
m

µ
m1/3 (logm)2/3 + logm+

√
m

n1/4

¶!

= Op

Ã
(logm)2/3

m1/6
+
logm√

m
+

1

n1/4

!
p→ 0.
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Write (26) as

−
p−1X
a=1

ηa+pλ
da−dp
m

2√
m

mX
j=1

λ
dp
j Re

gpΛjA (λj)
1

2πn

¯̄̄̄
¯
nX
t=1

εte
itλj

¯̄̄̄
¯
2

A∗a (λj)


= −

p−1X
a=1

ηa+pλ
da−dp
m

1

π
√
m

mX
j=1

λ
dp
j Re (g

pΛjA (λj)A
∗
a (λj)) (27)

−
p−1X
a=1

ηa+pλ
da−dp
m

1

π
√
m

mX
j=1

λ
dp
j Re

Ã
gpΛjA (λj)

Ã
1

n

nX
t=1

εtε
0
t − Ip

!
A∗a (λj)

!
(28)

−
p−1X
a=1

ηa+pλ
da−dp
m

2√
m

mX
j=1

λ
dp
j Re

gpΛjA (λj)
1

2πn

nX
t=1

X
s6=t

εtε
0
se

i(t−s)λjA∗a (λj)

 . (29)

By definition of f (λ), see (10), and using Assumption 1

(27) = max
1≤a≤p−1

O

 1√
m
λ
da−dp
m

mX
j=1

λ
2dp
j fpa (λj)


= max

1≤a≤p−1
O

 1√
m
λ
da−dp
m

mX
j=1

λ
α−da+dp
j

 ,

which is O
¡
n−2αm1+2α

¢ → 0 by Assumption 4. For equation (28), note that εtε0t − Ip is a

martingale difference sequence with respect to Ft implying that n−1
Pn

t=1 εtε
0
t−Ip = Op(n

−1/2).

Thus,

(28) = max
1≤a≤p−1

Op

 1√
m
λ
da−dp
m

mX
j=1

λ
2dp
j

1√
n
fpa (λj)


= max

1≤a≤p−1
Op

 1√
nm

λ
da−dp
m

mX
j=1

λ
α−da+dp
j


= Op

³
λ1/2+αm

´
.

We are left with (29), which we rewrite as

nX
t=1

ε0t
t−1X
s=1

p−1X
a=1

ηa+p
πn
√
m
λ
da−dp
m

mX
j=1

λ
dp
j Re

³
A0 (λj)Λjgp0ei(t−s)λj Āa (λj)

´
εs.

The corresponding term for (22), derived by Lobato (1999, p. 141), is given by

nX
t=1

ε0t
t−1X
s=1

p−1X
a=1

ηa
πn
√
m

mX
j=1

λdaj νj Re
³
A0 (λj)Λjga0ei(t−s)λj Āa (λj)

´
εs.

20



Thus, (21) has the same asymptotic distribution as
Pn

t=1 ε
0
t

Pt−1
s=1 ct−s,nεs, where we define

ctn =
1

πn
√
m

mX
j=1

(θj1 + θj2) cos (tλj) ,

θj1 = νj

pX
a=1

λdaj ηaRe
¡
A0 (λj)Λjga0Āa (λj) +A0a (λj) g

aΛjĀ (λj)
¢
,

θj2 = −λdpj
p−1X
a=1

ηa+pλ
da−dp
m Re

¡
A0 (λj)Λjgp0Āa (λj) +A0a (λj) g

pΛjĀ (λj)
¢
.

Notice that, by construction, kθj1k = O (1) and kθj2k = O
³
max1≤a≤p−1 (m/j)da−dp

´
.

Since ztn = ε0t
Pt−1

s=1 ct−s,nεs is a martingale difference array with respect to Ft = σ ({εs, s ≤ t}),
we can apply the CLT for martingale difference arrays if (see Hall and Heyde (1980, chp. 3.2))

nX
t=1

E
¡
z2tn
¯̄Ft−1

¢− 2p−1X
a=1

2p−1X
b=1

ηaηbΩab
p→ 0, (30)

nX
t=1

E
¡
z2tn1 (|ztn| > δ)

¢→ 0 for all δ > 0. (31)

A sufficient condition for (31) is
nX
t=1

E
¡
z4tn
¢→ 0. (32)

First, to show (30),

nX
t=1

E
¡
z2tn
¯̄Ft−1

¢
=

nX
t=1

E

Ã
t−1X
s=1

t−1X
r=1

ε0sc
0
t−s,nεtε

0
tct−r,nεr

¯̄̄̄
¯Ft−1

!

=
nX
t=1

t−1X
s=1

ε0sc
0
t−s,nct−s,nεs (33)

+
nX
t=1

t−1X
s=1

X
r 6=s

ε0sc
0
t−s,nct−r,nεr. (34)

The term (34) has mean zero and variance

O

n

Ã
nX

s=1

kcsnk2
!2
+

nX
t=3

t−1X
u=2

Ã
u−1X
s=1

kcu−s,nk2
u−1X
s=1

kct−s,nk2
! (35)

by (D.10) and (D.11) of Lobato (1999). It is immediate that kcsnk = O
³
(n
√
m)

−1Pm
j=1 kθj1 + θj2k

´
=

O
¡
n−1m1/2 logm

¢
, using that sup−1≤α≤C

¯̄̄
m−α−1 (logm)−1

Pm
j=1 j

α
¯̄̄
= O (1) for C ∈ (1,∞).
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Another bound is

kcsnk = O

 1

n
√
m

mX
j=1

kθj1 + θj2k |cos (sλj)|


= O

mda−dp−1/2

n

mX
j=1

jdp−da |cos (sλj)|


= O

Ã
mda−dp−1/2

n

³
m1+2dp−2da

´1/2 ³n
s

´1/2!

= O

µ
1√
ns

¶
,

where the third line follows by the Cauchy-Schwartz Inequality and the relation
Pk

j=1 |cos (sλj)|2 ≤Pk
j=1 |cos (sλj)| = O (n/s). This bound is better when s > n/m. Thus,

nX
s=1

kcsnk2 = O

[n/m]X
s=1

m (logm)2

n2
+

nX
s=[n/m]+1

1

ns


= O

Ã
(logm)2

n
+
logn

n

!
,

implying that the first term of (35) is O
¡
n−1 log2 n

¢
. The second term of (35) is

O

n

Ã
nX

s=1

kcsnk2
![n/2]X

s=1

s kcsnk2
 ,

following the analysis in Lobato (1999, p. 151) and Robinson (1995a, p. 1646-1647). A third

bound for kcsnk is

kcsnk = O

mda−dp−1/2

n

mX
j=1

|cos (sλj)|


= O

Ã
mda−dp−1/2

s

!
,

using the above relations. Applying this bound, we find that

[n/2]X
s=1

s kcsnk2 = O

[n/2]X
s=1

m2da−2dp−1

s


= O

³
m2da−2dp−1 logn

´
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and (35) = O
¡
n−1(logn)2 +m2da−2dp−1(logn)2

¢
.

We still need to show that the mean of (33) is asymptotically equal to
P2p−1

a=1

P2p−1
b=1 ηaηbΩab.

Thus,

E (33) =
nX
t=1

t−1X
s=1

E tr
¡
c0t−s,nct−s,nεsε

0
s

¢
=

nX
t=1

t−1X
s=1

tr
¡
c0t−s,nct−s,n

¢
by Assumption 2. Rewrite this expression as

nX
t=1

t−1X
s=1

mX
j=1

mX
j0=1

1

π2n2m
tr
¡¡
θ0j1 + θj2

¢ ¡
θ0j01 + θj02

¢¢
cos ((t− s)λj) cos

¡
(t− s)λj0

¢
=

nX
t=1

t−1X
s=1

mX
j=1

1

π2n2m
tr
¡
θ0j1θj1

¢
cos2 ((t− s)λj) (36)

+
nX
t=1

t−1X
s=1

mX
j=1

1

π2n2m
tr
¡
θ0j2θj2

¢
cos2 ((t− s)λj) (37)

+
nX
t=1

t−1X
s=1

mX
j=1

1

π2n2m
2 tr

¡
θ0j1θj2

¢
cos2 ((t− s)λj) (38)

+
nX
t=1

t−1X
s=1

mX
j=1

mX
j0 6=j

1

π2n2m
tr
¡
θ0j1θj01

¢
cos ((t− s)λj) cos

¡
(t− s)λj0

¢
(39)

+
nX
t=1

t−1X
s=1

mX
j=1

mX
j0 6=j

1

π2n2m
tr
¡
θ0j2θj02

¢
cos ((t− s)λj) cos

¡
(t− s)λj0

¢
(40)

+
nX
t=1

t−1X
s=1

mX
j=1

mX
j0 6=j

1

π2n2m
2 tr

¡
θ0j1θj02

¢
cos ((t− s)λj) cos

¡
(t− s)λj0

¢
. (41)

It was shown by Lobato (1999) that (36) is asymptotically equal to
Pp

a=1

Pp
b=1 ηaηbEab and

that (39) is asymptotically negligible. We consider the remaining terms in turn. First,

(40) = max
1≤a≤p−1

O

 nX
t=1

t−1X
s=1

mX
j=1

mX
j0 6=j

1

n2m

µ
m

j

¶da−dp µm
j0

¶da−dp
cos ((t− s)λj) cos

¡
(t− s)λj0

¢
and, using that

Pn
t=1

Pt−1
s=1 cos ((t− s)λj) cos

¡
(t− s)λj0

¢
= −n/2 for λj 6= λj0 , we can bound

(40) by max1≤a≤p−1O
³
(nm)−1m2da−2dpPm

j=1 j
dp−daPm

j0 6=j j
0dp−da

´
= O (m/n). Similarly,

(41) is also O (m/n).
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For the covariance term in (38) we notice that

tr

µ
1

4π2
θ0j1θj2

¶
= −νj

pX
a=1

p−1X
b=1

ηaηb+pλ
db−dp
m λ

da+dp
j

×
·
tr

µ
1

4π2
Re
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aΛjĀ (λj)
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4π2
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1
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4π2
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¡
A0 (λj)Λjga0Āa (λj)

¢
Re
¡
A0b (λj) g

pΛjĀ (λj)
¢¶¸

and, using the definition of f (λ) and Assumption 1, this is easily shown to be o (1). E.g., the

first term in square brackets is tr (fab (λj) gaΛjf (λj)Λjgp0) = O
³
λ−da−dbj gaλαj

´
= O

³
λα−da−dbj

´
using that gap = 0 for a = 1, ..., p−1. This implies that (38) is o (1) since

Pn−1
t=1

Pn−t
s=1 cos

2 (sλj) =

(n− 1)2 /4.
Now let us examine tr(θ0j2θj2) appearing in (37),
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+tr

Ã
p−1X
a=1

p−1X
b=1

ηa+pηb+p
λ
da+db−2dp
m λ

2dp
j

4π2
Re
¡
A0a (λj) g
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a=1
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b=1
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λ
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m λ
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j

4π2
Re
¡
A0 (λj)ΛjgpĀa (λj)

¢
Re
¡
A0b (λj) g

pΛjĀ (λj)
¢!

.

By definition of f (λ), the first term is asymptotically equal to
Pp−1

a=1

Pp−1
b=1 ηa+pηb+pλ

2dp
j fba (λj)×

gpΛjf (λj)Λjg
p0 =

Pp−1
a=1

Pp−1
b=1 ηa+pηb+pλ

2dp−da−db
j gbag

−1
pp , the fourth to

Pp−1
a=1

Pp−1
b=1 ηa+pηb+pλ

2dp−da−db
j gabg

−1
pp ,

and the second and third terms to zero using Assumption 1. Hence, (37) is asymptotically equal

to
nX
t=1

t−1X
s=1

mX
j=1

p−1X
a=1

p−1X
b=1

ηa+pηb+p
4λ

da+db−2dp
m λ

2dp−da−db
j

n2m

(gab + gba)

gpp
cos2 ((t− s)λj) . (42)
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We can approximate the Riemann sum appearing in (42) by an integral, viz.

2π

n

mX
j=1

λ
2dp−da−db
j ∼

Z λm

0
λ2dp−da−dbdλ =

λ
1−da−db+2dp
m

1− da − db + 2dp
,

where the symbol ”∼” means that the ratio of the left- and right-hand sides tends to one.

Using this approximation we get that

(42) ∼
p−1X
a=1

p−1X
b=1

ηa+pηb+p

Ã
nX
t=1

t−1X
s=1

cos2 ((t− s)λj)

!
2λ

da+db−2dp
m

πnm

gab + gba
gpp

λ
1−da−db+2dp
m

1− da − db + 2dp

=

p−1X
a=1

p−1X
b=1

ηa+pηb+p
2gab

gpp (1− da − db + 2dp)
,

since
Pn−1

t=1

Pn−t
s=1 cos

2 (sλj) = (n− 1)2 /4, and we have shown (30).
Thus, we need to show (32),

nX
t=1

E
¡
z4tn
¢
=

nX
t=1

E

t−1X
s=1

ε0sct−s,nεtε
0
t

t−1X
r=1

ct−r,nεr
t−1X
p=1

ε0pct−p,nεtε
0
t

t−1X
q=1

ct−q,nεq


≤ C

Ã
nX
t=1

tr

Ã
t−1X
s=1

c0t−s,nct−s,nc
0
t−s,nct−s,n

!
+

nX
t=1

tr

Ã
t−1X
s=1

c0t−s,n
t−1X
r=1

ct−r,nc0t−r,nct−s,n

!!

for some constant C > 0 by Assumption 2. This expression can be bounded byO
³
n
¡Pn

t=1

°°c2tn°°¢2´ =
O
¡
n−1(logn)2

¢
, and we are done.

Appendix B: Limit of the Hessian

We prove that

∂2L(θ̃)

∂da∂db

p→ Eab, (43)

λ
db−dp
m

∂2L(θ̃)

∂da∂βb

p→ 0, (44)

λ
da+db−2dp
m

∂2L(θ̃)

∂βa∂βb

p→ Fab, (45)

for all θ̃ such that k θ̃ − θ0 k≤k θ̂(1) − θ0 k.
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First, we will need to strengthen the approximation (24) to G by showing that°°°Ĝ(θ̃)− Ĝ (θ0)
°°° = Op

µ
logn√
m

¶
. (46)

The proof for the leading (p− 1) × (p− 1) block is given in Lobato (1999, pp. 145-148).

Consider now, for a = 1, ..., p− 1,

ĝap(θ̃)− ĝap (θ0) =
1

m

mX
j=1

³
λ
d̃a+d̃p
j Ĩap (λj)− λ

da+dp
j Iap (λj)

´
,

where Ĩap (λ) is the cross-periodogram between ẽt = yt − β̃
0
xt and xat. Noting that Ĩap (λ) −

Iap (λ) = (β − β̃)0Ixa (λ), we can rewrite this as

ĝap(θ̃)− ĝap (θ0) =
1

m

mX
j=1

λ
d̃a+d̃p
j (β − β̃)0Ixa (λj) +

1

m

mX
j=1

³
λ
d̃a+d̃p
j − λ

da+dp
j

´
Iap (λj) . (47)

The first term on the right-hand side can be bounded as

1

m

mX
j=1

λ
d̃a+d̃p
j

p−1X
b=1

(βb − β̃b)Iba (λj) ≤
1

m

µ
max
1≤j≤m

λ
d̃a+d̃p−da−dp
j

¶ mX
j=1

λ
da+dp
j

p−1X
b=1

(βb − β̃b)Iba (λj)

= Op

³
m−1/2

´
,

using max1≤j≤m λ
d̃a+d̃p−da−dp
j = Op (1) and Assumption 5. The second term on the right-hand

side of (47) is

Op

 1

m

µ
max
1≤j≤m

λ
d̃a+d̃p−da−dp
j − 1

¶ mX
j=1

λ
da+dp
j Iap (λj)

 = Op

µ
logn√
m

¶

by Assumption 5 and the above analysis. The (p, p)0th element of (46) follows in the exact

same way by application of the Cauchy-Schwartz Inequality.

In view of (46), (43) follows from Lobato (1999). For (44) and (45) it can be shown that

λ
db−dp
m

Ã
∂2L(θ̃)

∂da∂βb
− ∂2L (θ0)

∂da∂βb

!
p→ 0, (48)

λ
da+db−2dp
m

Ã
∂2L(θ̃)

∂βa∂βb
− ∂2L (θ0)
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!
p→ 0, (49)
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by proceeding component by component with the same methods that we applied to show (46).

We show next that

λ
da+db−2dp
m

∂2L (θ0)

∂βa∂βb

p→ Fab. (50)

The left-hand side of (50) is asymptotically equal to

λ
da+db−2dp
m

2

m
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 (51)
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2
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Λj0G−1ΛjIwa (λj)

(52)
by (24), with 0p−1 and Op−1 denoting a (p− 1)-vector of zeros and a (p− 1)× (p− 1) matrix
of zeros, respectively. The first of these terms is

(51) = λ
da+db−2dp
m

2

m
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∗
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where the first term is op (1) by the same arguments as for (25) in appendix A. The second

term is

λ
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m
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m
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λ
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2πn
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by Assumption 2 and the same arguments as for (27)− (28) in appendix A.
By definition of f (λ) we get that

(53) = λ
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2
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j gppRe (fab (λj)) + op (1)

and, applying the integral approximation from appendix A, this expression is asymptotically

equal to
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n
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Z λm

0
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³
gabλ
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´
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2gab
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Next, rewrite (52) as

−λda+db−2dpm
2

m

mX
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j
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m
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λ
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λ−daj


applying the same type of analysis as in appendix A. The last expression is seen to be

O(λda+dbm ) = o (1) .

To complete the proof, we need to show that

λ
db−dp
m

∂2L (θ0)

∂da∂βb

p→ 0, (54)

which implies (44) in view of (48). The left-hand side of (54) is asymptotically equal to

λ
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m

2
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by (24). The first of these terms is asymptotically negligible by the same arguments as for (52),

and the second by those for (38). This completes the proof.
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Table 1: Application to Implied-Realized Volatility Relation m = 20

Parameter Initial Two Step Std. Error Wde=0,β=1 Converged Std. Error Wde=0,β=1

d̂ 0.4628 0.4772 0.1023 0.4630 0.1062

d̂e 0.1047 0.0655 0.1023 1.1062 < 0.0001 0.1062 0.0104

β̂ 0.8660 1.1173 0.1406 1.0098 0.0962

Table 2: Application to Implied-Realized Volatility Relation m = 27

Parameter Initial Two Step Std. Error Wde=0,β=1 Converged Std. Error Wde=0,β=1

d̂ 0.4807 0.4871 0.0851 0.4866 0.0891

d̂e 0.0840 0.0352 0.0851 3.7455 < 0.0001 0.0891 0.7913

β̂ 0.8660 1.1889 0.0999 1.0451 0.0507

Table 3: Application to Implied-Realized Volatility Relation m = 37

Parameter Initial Two Step Std. Error Wde=0,β=1 Converged Std. Error Wde=0,β=1

d̂ 0.4527 0.4668 0.0741 0.4526 0.0767

d̂e 0.0969 0.0666 0.0741 3.1547 < 0.0001 0.0767 0.1677

β̂ 0.8660 1.1423 0.0929 1.0267 0.0652
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