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Abstract

We propose a Lagrange Multiplier test of the null hypothesis of cointegration in fractionally

cointegrated models. The test statistic utilizes fully modified residuals to cancel the endogeneity

and serial correlation biases, and we show that standard asymptotic properties apply under the null

and under local alternatives. With i.i.d. Gaussian errors the asymptotic Gaussian power envelope

of all (unbiased) tests is achieved by the one-sided (two-sided) test. The finite sample properties

are illustrated by a Monte Carlo study. In an application to the dynamics among exchange rates

for seven major currencies against the US dollar, mixed evidence of the existence of a cointegrating

relation is found.
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1 INTRODUCTION

In this paper we propose a Lagrange Multiplier (LM) test of the null hypothesis of cointegration

in fractionally cointegrated models. In nonstationary and possibly cointegrated models, estimators and

test statistics are often found to have nonstandard distributional properties when the null is nested

in the autoregressive alternatives typically considered in the literature. In contrast, we show that by

embedding the model of interest in a general I(d) framework, the LM test statistic regains the standard

distributional properties and uniform optimality properties well known from simpler models.

The analysis of cointegration has been a very active area of research in the econometrics and time

series literature in the last 20 years, starting with the seminal contributions by Granger (1981) and Engle

& Granger (1987). Most of this work has considered the I (1) − I (0) type of cointegration in which

linear combinations of two or more I (1) variables are I (0). A process is labelled I (0) if it is covariance

stationary and has spectral density that is bounded and bounded away from zero at the origin, and I (1)

if the first differenced series is I (0) . If yt and xt are I (1), and hence in particular nonstationary (unit

root) processes, but there exists a process et which is I (0) and a fixed β such that

yt = β0xt + et, (1)

then yt and xt are said to be cointegrated. Thus, the nonstationary series move together in the sense

that a linear combination of them is stationary and a common stochastic trend is shared. Testing for

cointegration in this framework amounts to testing stationarity of the unobserved residual process et

against a unit root alternative, see e.g. Shin (1994), Jansson (2001), and the references therein.

The above notion of cointegration is based on the knife-edge distinction between I(1) and I(0)

processes. However, many economic and financial time series exhibit strong persistence without exactly

possessing unit roots, for some recent evidence see e.g. Diebold & Rudebusch (1989), Baillie & Bollerslev

(1994), Baillie (1996), Lobato & Velasco (2000), and Marinucci & Robinson (2001). This has led to the

consideration of the class of fractionally integrated processes, which is more general than I(1) and still

admits a criterion for linear co-movement of series. Thus, a process is fractionally integrated of order

d, denoted I(d), if its d’th difference is I (0). Here, d may be any real number, i.e. d = 0 or d = 1 are

special cases. For a precise statement, xt is I (d) if

∆dxt = utI (t ≥ 1) = u#t , (2)

or equivalently, inverting (2),

xt = ∆
−du#t , (3)
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defining u#t = utI (t ≥ 1), where ut is I (0), I (·) denotes the indicator function, and the fractional
difference operator ∆d = (1− L)

d is defined by its binomial expansion

(1− L)
d
=
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)L
j , Γ (z) =

Z ∞
0

tz−1e−tdt, (4)

in the lag operator L (Lxt = xt−1). With the definition (2) or (3), xt is a type II fractionally integrated

process, which is nonstationary for all d but asymptotically stationary for d < 1/2, see Marinucci

& Robinson (1999). Following the original idea by Granger (1981), a natural generalization of the

cointegration concept is to assume that the raw series are I (d) and that a certain linear combination is

I (d− b) , with d ≥ b positive real numbers. This is denoted CI (d, b).

To fix ideas, consider the simple system

∆d−b+θ ¡y1t − β0y2t
¢
= u#1t, (5)

∆dy2t = u#2t, (6)

where ut = (u1t, u02t)
0 is I (0). In this model yt is CI (d, b− θ) and the cointegration vector is given by¡

1,−β0¢. Clearly, this allows the study of co-movement among persistent series much more generally
than in the standard unit root based I (1) − I (0) cointegration framework. In the present paper, we

assume that d and b are known a priori and satisfy d ≥ b > 3/4.

We wish to test the hypothesis H0 : θ = 0, i.e. setting d = b = 1 can be seen as an alternative

to testing for stationarity of the residuals in (1). If the null hypothesis is changed slightly in this

setup, the properties of the process yt do not change as dramatically as in the standard cointegration

model in which the relation (1) is either perfectly cointegrating, i.e. CI (1, 1), or spurious. A notion of

near-cointegration does exist in the unit root based I (1) − I (0) cointegration literature, which offers

some smoothing of the gap between CI (1, 1) and spurious regression, e.g. Jansson & Haldrup (2001).

However, the test statistics in that framework still have nonstandard distributional properties.

We show that in our fractional integration framework much more desirable properties obtain than

in (1). Our test can be considered an extension of the univariate LM tests in Robinson (1991, 1994),

Agiakloglou & Newbold (1994), and Tanaka (1999), among others, who considered testing for a unit root

in a fractional integration framework, i.e. testing on the parameter d in (2) in the frequency and time

domains. They showed that their tests have standard asymptotic distributions and, under Gaussianity,

that their tests enjoy optimality properties. Simulations in Tanaka (1999) showed that, in finite samples,

the time domain tests are superior to Robinson’s (1994) frequency domain LM test with respect to both

size and power.
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Undoubtedly there exist Wald and likelihood ratio versions of our LM test, which have the same

asymptotic properties as our test even though their finite sample properties may differ. However,

we consider only the time domain LM test for fractional cointegration with the usual computational

motivation that the model only needs to be estimated under the null hypothesis. As we shall see below,

in the important special case d = b = 1 the computation of the LM test statistic does not require any

fractional differencing, and indeed all that is needed in this case are the residuals from a fully modified

regression which can be obtained from readily available computer software.

We show that the likelihood theory in the time domain is tractable and that the ML estimator of the

cointegrating vector β, which is required to compute the test statistic, reduces to a version of the fully

modified least squares estimator of Phillips & Hansen (1990) and Phillips (1991), see also Kim & Phillips

(2001) for a fractional cointegration version. We then show that the LM test can be calculated using

the residuals from the fully modified regression and establish the desirable distributional properties and

optimality properties of the test. In particular, the test statistic is consistent and asymptotically normal

or chi-squared distributed, and under the additional assumption of Gaussianity the test is locally most

powerful. Indeed, we show that in the special case with i.i.d. Gaussian errors, the asymptotic Gaussian

power envelope of all (unbiased) tests is achieved by the one-sided (two-sided) version of our test, i.e.

the one-sided (two-sided) test is uniformly most powerful among all (unbiased) tests. In a simulation

study we find that the finite sample rejection frequencies are reasonable but well below the asymptotic

local power for samples of size n = 200, and much closer to the asymptotic local power for n = 500.

Our new methodology is applied to the analysis of exchange rate dynamics following Baillie &

Bollerslev (1989, 1994). Previous studies have focused on the estimation of the cointegration vector and

the memory parameter of the equilibrium errors, but no formal testing of the hypothesis of fractional

cointegration has been done. We concentrate on testing for the presence of (fractional) cointegration

with various specifications of d and b. Our findings are not decisive, but we do find some evidence of

cointegration among a system of exchange rates for seven major currencies against the US Dollar. In

particular, we cannot reject (against fractional alternatives) that the exchange rates can be described

by a standard I(1) − I(0) cointegration model when the errors (i.e. u1t and u2t in (5) and (6) above)

are allowed to follow autoregressive processes of order one.

The remainder of the paper is laid out as follows. Section 2 sets up the model of fractional cointe-

gration. In section 3 we consider the estimation of the cointegrating vector, derive the LM test statistic,

and establish the desirable distributional properties. In section 4 we derive the asymptotic Gaussian

power envelopes for the one-sided and two-sided testing problems and show that they coincide with

the local asymptotic power functions of the one-sided and two-sided LM tests. Section 5 presents the
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results of the Monte Carlo study and in section 6 we provide the empirical application to exchange rate

dynamics. Section 7 offers some concluding remarks. All proofs are collected in the appendix.

2 A MODEL OF FRACTIONAL COINTEGRATION

Suppose we observe the K-vector time series {yt, t = 1, 2, ..., n}, which we partition as y1t (scalar)
and y2t ((K − 1)-vector). We consider a triangular model of fractional cointegration in the spirit of the
Phillips (1991) triangular system. Thus, let yt be generated by the fractionally cointegrated system

y1t = β0y2t + zt, t = 1, 2, ..., (7)

∆d−b+θzt = u#1t, t = 1, 2, ..., (8)

∆dy2t = u#2t, , t = 1, 2, ..., (9)

where zt is the (unobserved) deviation from the cointegrating relation and ut = (u1t, u
0
2t)

0 is an error

component. We allow the error components u1t and u2t to be contemporaneously correlated and possibly

weakly dependent, c.f. Assumption 1 below.

The system (7) − (9) generalizes the standard triangular cointegration model. The series share

fractionally integrated stochastic trends of orders I (d) and I (d− b), and the linear combination
¡
1,−β0¢

eliminates the most persistent one. Equation (7) can be regarded as an equilibrium relationship between

the I (d) components of yt. Under the null, θ = 0, the deviations from equilibrium constitute an I (d− b)

process, and when d = b the deviations are only weakly dependent, so this is a case of special interest.

The model could be extended to multidimensional cointegrating relationships as in Jeganathan (1999),

where the estimation of the cointegration rank and cointegrating vectors are of interest. However, most

empirical studies consider a single cointegrating relation among two or more variables, e.g. Cheung &

Lai (1993), Baillie & Bollerslev (1994), Dueker & Startz (1998), Marinucci & Robinson (2001), and Kim

& Phillips (2001). Thus, we consider only the case of a single cointegrating relationship in this paper

to keep focus on optimal testing of hypotheses on θ.

The model is assumed to satisfy the following assumption on the error process.

Assumption 1 We consider four typical specifications for the error component ut. In each case, the

innovations et = (e1t, e02t)
0 ∼ i.i.d. (0,Σ) with finite fourth moment and Σ is a positive definite matrix

which we partition conformably as

Σ =

 σ211 σ021

σ21 Σ22

 . (10)

0. ut ∼ i.i.d. or equivalently ut = et.
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1. u1t follows the stationary AR(p) process

g (L)u1t = e1t, t = 1, 2, ..., (11)

and u2t = e2t.

2. u1t = e1t, and u2t follows the (K − 1)-dimensional stationary VAR(p) process

G (L)u2t = e2t, t = 1, 2, .... (12)

3. ut follows the K-dimensional block diagonal stationary VAR(p) process

g (L)u1t = e1t, t = 1, 2, ..., (13)

G (L)u2t = e2t, t = 1, 2, .... (14)

In cases 2-4, g (z) and G (z) are lag polynomials of order p with coefficients gathered in γ1 and γ2,

respectively, and G (1) has full rank (no cointegration among the components of y2t).

In the following we write A (z) = diag (g (z) , G (z)) as shorthand for the lag polynomial in As-

sumption 1.3. It would be straightforward to extend Assumption 1.3 to A (L)ut = et, for a general

lag polynomial A (z) of order p, where A (1) has full rank. Applying the formulae in Hosking (1980),

the results in Lemma 1 and the following theorems could be extended to cover this more general case.

However, the structure imposed by Assumption 1.3 seems relevant and its interpretation is natural.

In our model the constants d and b are prespecified. In particular, we assume that d ≥ b > 3/4

such that the series are nonstationary and cointegration reduces the integration order by more than

3/4. Assuming that b is known a priori is natural as it effectively specifies the null for our LM test

and thus, according to the LM principle, there is no need to estimate b. If d is not known a priori it

can be estimated in a preliminary step as in, e.g., Cheung & Lai (1993), Baillie & Bollerslev (1994),

Marinucci & Robinson (2001), and Kim & Phillips (2001). Efficient procedures have been developed

to estimate d in fractionally integrated time series models, e.g. Sowell (1992) (exact ML) and Tanaka

(1999) (conditional ML).

Our objective is to test the hypothesis

H0 : θ = 0 (15)

against H1 : θ > 0 or H2 : θ 6= 0 in the model (7) − (9). In particular, d = b = 1 generates a standard

I(1)− I(0) cointegrated system under the null, so this is a test of the null of cointegration in the usual
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sense, but the fractional alternatives against which the test is directed are new. Thus, a test of (15)

can be considered an alternative to testing stationarity of the residuals in (1), which has been standard

in the literature, see e.g. Shin (1994), Jansson (2001), and the references therein. Another important

case, for d ≥ 1.25 and some small user-chosen ε > 0, is the one-sided test of (15) with b = d− 1/2 + ε,

i.e. d − b = 1/2 − ε, which is a test for the existence of an (asymptotically) stationary cointegrating

relation against the alternative that no stationary cointegrating relation exists (though a nonstationary

but mean-reverting cointegrating relation with 1/2 ≤ d− b < 1 may still exist). Finally, for d ≥ 1 and
some small user-chosen ε > 0, it is of interest to conduct a one-sided test of (15) with b = d− 1/4 + ε,

i.e. d− b = 1/4− ε, as a border case for square integrability of the spectral density of the equilibrium

errors and asymptotic normality of the autocovariances of the equilibrium errors, see e.g. Fox & Taqqu

(1986).

Choosing d = b = 1 also suggests applying a test of (15) as a valuable diagnostics tool in a standard

I (1)−I (0) cointegration analysis. In this context, rejecting (15) should be taken either as evidence of a
drastically misspecified dynamic structure or as a suggestion to employ an actual fractional cointegration

analysis. Thus, the test could be thought of as a general test for misspecification of the model. If, for

example, y1t and y2t are related by some complicated nonlinear filter and a linear model is imposed,

then it is plausible that long-range dependence could be introduced in the residuals as a result of this

misspecification.

3 TESTING FRACTIONAL COINTEGRATION

The log-likelihood function of the model (7)− (9) under Assumption 1.3 (the most general case) and
Gaussianity of the errors is

L (θ, β,Σ, γ) = −n
2
ln |Σ|− 1

2

nX
t=1

 g (L)∆d−b+θzt

G (L)∆dy2t

0

Σ−1

 g (L)∆d−b+θzt

G (L)∆dy2t

 (16)

bearing in mind the truncation in our definition of fractionally integrated processes, e.g. G (L)∆dy2t =

e#2t by (9) and (14). The log-likelihood in (16) is equal to the sum of the marginal log-likelihood

−n
2
ln |Σ22|− 1

2

nX
t=1

G (L)∆dy02tΣ
−1
22 G (L)∆

dy2t (17)

and the conditional log-likelihood

−n
2
lnσ21.2 −

1

2σ21.2

nX
t=1

¡
g (L)∆d−b+θ ¡y1t − β0y2t

¢− σ021Σ
−1
22 G (L)∆

dy2t
¢2
, (18)
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where σ21.2 = σ211− σ021Σ
−1
22 σ21 is the variance of e1.2t = e1t− σ021Σ

−1
22 e2t, which is e1t centered about its

mean conditional on e2t. The asymptotic results derived later impose only Assumption 1 on the error

process. Gaussianity is not necessary for most of our results and is used only to choose a likelihood

function and to derive optimality properties.

From the conditional likelihood (18), the MLE of β under the null, θ = 0, is recognized to be the

NLS estimator in the augmented regression

∆d−by1t = β0∆d−by2t + (g (L)− 1)∆d−b ¡y1t − β0y2t
¢
+ c0G (L)∆dy2t + e1.2t, (19)

see Phillips & Loretan (1991) for a discussion of the equivalent estimator in the standard I (1) − I (0)

cointegration framework. Presumably, the lagged equilibrium errors in (19) could be replaced by leaded

∆dy2t, as demonstrated by Saikkonen (1991) in the standard cointegration framework, and the resulting

regression could be estimated by OLS.

Under Assumption 1.2 where g (z) = 1, i.e. when there is no autoregressive term in the equilibrium

errors, the estimation of (19) reduces to OLS on

∆d−by1t = β0∆d−by2t +
pX

k=0

ck∆
dy2t−k + e1.2t. (20)

This simplification is even stronger under Assumption 1.0 where p = 0 in (20) and the lagged fraction-

ally differenced y2t disappear. The simplification (20) is especially useful in many applications where

cointegration is a result of rational expectations theory, i.e. that deviations from equilibrium in time t

should be unpredictable based on information up to time t − 1, which in our framework implies d = b

and g (z) = 1.

Equivalently, (20) is OLS in the (infeasible) regression

∆d−by∗1t = β0∆d−by2t + e1.2t, (21)

where y∗1t = y1t − σ021Σ
−1
22

Pp
k=0∆

by2t−k. This is the fully modified least squares method of Phillips &

Hansen (1990) and Phillips (1991), which was developed for fractional cointegration by Kim & Phillips

(2001). In contrast to our restrictions on d and b, Kim & Phillips (2001) require 2d − b > 1, d ≥ 1 in
their fully modified method and further that b ≥ 1 in the likelihood analysis of their model. Thus, Kim
& Phillips (2001) limit the strength of the cointegrating relation by bounding b < 2d − 1 from above,

and in particular they exclude the CI (1, 1) case. We assume at least b > 3/4 in our analysis, since

our estimation problem under the null has been transformed into a regression between I (b) processes

with I(0) errors, (19)− (20). Thus the necessity of at least b > 1/2 becomes clear, since otherwise the

estimator of β becomes inconsistent as demonstrated by e.g. Marinucci & Robinson (2001, p. 231).
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Note that if OLS is applied to (7) directly, which has often been the case in the literature, see e.g.

Cheung & Lai (1993) or Baillie & Bollerslev (1994), it introduces a bias unless σ21 = 0 and g (z) = 1.

Indeed, if σ21 = 0 and g (z) = 1 hold, y2t is strictly exogenous and inference on θ (and estimation of the

parameter β) will depend only on the part of the likelihood attributed to (7). In particular, the MLE

of β reduces to OLS on (7) and we can apply the univariate methods of Robinson (1994) and Tanaka

(1999). This is not the case when σ21 6= 0 or g (z) 6= 1 because of the well known endogeneity and serial
correlation biases, see e.g. Phillips (1991).

Returning to the full model, the normalized score statistic is found by differentiating (16) or (18)

with respect to θ and evaluating the resulting expression under the null,

Sn =
1√
n

∂L (θ, β,Σ, γ)

∂θ

¯̄̄̄
θ=0,β=β̂,Σ=Σ̂,γ=γ̂

=
−1√
nσ̂21.2

nX
t=1

³
ln (∆) (ĝ (L)∆d−b(y1t − β̂

0
y2t))

´³
ĝ (L)∆d−b(y1t − β̂

0
y2t)− ĉ0Ĝ (L)∆dy2t

´
,(22)

where ĝ (z) and Ĝ (z) are evaluated at γ̂1 and γ̂2, respectively. Using that ln (1− z) = −P∞j=1 j−1zj
and defining the fully modified residuals under θ = 0 as

ê1.2t = ĝ (L)∆d−b(y1t − β̂
0
y2t)− ĉ0Ĝ (L)∆dy2t (23)

and

ê1t = ĝ (L)∆d−b(y1t − β̂
0
y2t), (24)

the score can be written more compactly as

Sn =
1√
nσ̂21.2

nX
t=1

t−1X
j=1

j−1ê1t−j ê1.2t

=

√
n

σ̂21.2

n−1X
j=1

j−1
³
Ĉ11 (j)− ĉ0Ĉ21 (j)

´

=
√
n
n−1X
j=1

j−1e01Σ̂
−1Ĉ (j) e1, (25)

where Ĉab (j) = n−1
Pn

t=j+1 êatê
0
bt−j is the estimated sample autocovariance function, e1 = (1, 00)0 is

the selection vector, and we used that σ−21.2 = Σ
11 and −σ−21.2σ021Σ−122 = Σ12, where Σab is the (a, b)’th

block of Σ−1 for a, b = 1, 2.

The asymptotic distribution of the score statistic Sn under the null (15) is considered next.

Theorem 3.1 Suppose d ≥ b > 3/4 in the model (7) − (9) and let Sn be defined by (25). Under

H0 : θ = 0 and Assumption 1.0,

Sn
D→ N

µ
0,
π2

6

σ211
σ21.2

¶
. (26)
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Under H0 : θ = 0 and Assumption 1.i, Sn is asymptotically Gaussian with mean zero and variance

π2

6

σ211
σ21.2

− vec ¡Σ−1e1e01ΣΦ0i1, .,Σ−1e1e01ΣΦ0ip¢0Hi

× ¡H 0
i

¡
Γi ⊗ Σ−1

¢
Hi

¢−1
H 0
i vec

¡
Σ−1e1e01ΣΦ

0
i1, .,Σ

−1e1e01ΣΦ
0
ip

¢
(27)

for i = 1, 2, 3. Here, Γi is the covariance matrix of (u0t, ..., u0t−p+1)
0, Φil =

P∞
j=l j

−1Ψi,j−l, Ψi,k is the

k0th term in the Wold representation of ut normalized such that Ψi,0 = IK , and Hi =
¡
∂a01/∂γi, ..., ∂a

0
p/∂γi

¢0
,

where aj = vecAj are the coefficients in the autoregressive representation A (L)ut = et.

In the simple bivariate VAR(1) example also considered in the appendix, the variance equations (27)

reduce to

π2

6

σ211
σ21.2

− vec ¡Σ−1e1e01ΣΦ0i1¢0Hi

¡
H 0
i

¡
Σ−1 ⊗ Γi

¢
Hi

¢−1
H 0
i vec

¡
Σ−1e1e01ΣΦ

0
i1

¢
, i = 1, 2, 3,

where Γi = E (utu
0
t) can be estimated by n

−1Pn
t=1 ûtû

0
t and the particular Φi1 and Hi for this example

are given in the appendix.

The Fisher information for θ, which is derived in the next theorem, illustrates the standard nature

of our testing problem.

Theorem 3.2 Let the assumptions of Theorem 3.1 be satisfied and assume that {et} is Gaussian. Under
Assumption 1.0 the Fisher information for θ is

I0 = − lim
n→∞E

µ
1

n

∂2L (θ, β,Σ)

∂θ∂θ0

¶
=

π2

6

σ211
σ21.2

, (28)

and under Assumption 1.i, i=1,2,3, the Fisher information for θ is

Ii =
π2

6

σ211
σ21.2

− vec ¡Σ−1e1e01ΣΦ0i1, .,Σ−1e1e01ΣΦ0ip¢0Hi

× ¡H 0
i

¡
Γi ⊗ Σ−1

¢
Hi

¢−1
H 0
i vec

¡
Σ−1e1e01ΣΦ

0
i1, .,Σ

−1e1e01ΣΦ
0
ip

¢
. (29)

To assess the local power properties of the test, we derive the asymptotic distribution under the

sequence of local alternatives θ1n = δ/
√
n.

Theorem 3.3 Under the assumptions of Theorem 3.1 and θ = δ/
√
n,

Sn
D→ N (δIi, Ii) (30)

as n→∞, where Ii is defined in Theorem 3.2.
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Consider again briefly the special case where it is known that σ21 = 0. In that case the score (25)

and the distributions in Theorem 3.3 coincide with the ones obtained by Tanaka (1999). That is, we can

apply the test of Tanaka (1999) to the residuals in (24), and Tanaka’s (1999) i.i.d. result obtains under

Assumptions 1.0 and 1.2 and his result for autocorrelated errors obtains under Assumptions 1.1 and 1.3.

Thus, when σ21 = 0, our test has the same functional form and distribution as Tanaka’s (1999) test,

which is based on more information (β known), and therefore our test shares the asymptotic optimality

properties of that test when σ21 = 0.

In practice, to construct an approximate size α test of H0 against H1 : θ > 0 under Assumption 1.i,

we compute the statistic

LMi1 =
1√Ii

Sn
D→ N

³
δ
p
Ii, 1

´
(31)

under θ = δ/
√
n as n→∞, and compare it to the 100 (1− α)% point of the standard normal distribu-

tion. To test against the two-sided alternative H2 : θ 6= 0 under Assumption 1.i, at approximate size α,
we compute

LMi2 = LM2
i1

D→ χ21
¡
δ2Ii

¢
(32)

under θ = δ/
√
n as n→∞, and compare it to the 100 (1− α)% point of the central χ21 distribution.

A useful feature of the asymptotic distributions (31) and (32) is that they are free of the parameters d

and b. Since d and b are assumed known a priori, their effect is neutralized by suitable differencing. This

shows that simple asymptotic inference about θ can be carried out for any choice of d and b satisfying

d ≥ b > 3/4.

The calculation of the tests may seem to be quite involved as p gets large because of the covariance

matrices Φ and Γ. However, for a given parameter value γ we can calculate Φ and Γ (and thus the tests)

simply by finding the coefficients in the Wold representation of ût, then directly evaluate the sums in

Φ, and set Γ equal to the sample covariance matrix of (û0t, ..., û0t−p+1)0. Another possibility is to employ

the following numerical approximation to the one-sided test,

dLM i1 = −
√
n

nX
t=1

ê1.2t
∂ê1t
∂θ

,vuut nX
t=1

µ
∂ê1t
∂θ

¶2 nX
t=1

ê21.2t

¯̄̄̄
¯̄
H0

, (33)

which follows by noting that ∂ê1t/∂θ = −
Pt−1

j=1 j
−1ê1t−j and comparing with (25) and (31).

From Theorem 3.3, we can easily calculate the asymptotic local power functions of the one-sided and

two-sided tests (31)− (32). This is stated as a corollary.
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Corollary 3.1 Under the assumptions of Theorem 3.3 it holds that, under θ = δ/
√
n,

P (LMi1 > Z1−α) → Φ
³
Zα + |δ|

p
Ii
´
, (34)

P
¡
LMi2 > χ21,1−α

¢ → 1− Fλi
¡
χ21,1−α

¢
, (35)

where Z1−α and χ21,1−α are the 100 (1− α)% points of the standard normal and central χ21 distributions,

respectively, and Φ and Fλi are the distribution functions of the standard normal distribution and the

noncentral χ21 distribution with noncentrality parameter λi = δ2Ii.

Figure 1 shows asymptotic local power functions for d = b = 1 and a variety of first order autoregres-

sive specifications and contemporaneous correlation structures. When the correlation is low (left-hand

side panels) only the autoregressive term in the equilibrium error (8) has a significant effect. In fact, if

the errors are contemporaneously uncorrelated, i.e. σ21 = 0, the power functions for cases 1.0 and 1.2

coincide and the power functions for cases 1.1 and 1.3 coincide. With highly correlated errors (right-hand

side panels) the autocorrelation in ∆dy2t spills over and has some effect on the power function, though

still not as much as the autoregressive term in the equilibrium error. This is well known from standard

cointegration analysis. Since the regressors y2t are already heavily trended it makes little difference if

the innovations to the stochastic trend are weakly autocorrelated.

Figure 1 about here

It follows from Corollary 3.1 and Theorem 3.2 that the power functions of the tests depend on the

covariance matrix of the underlying innovations et, such that the power depends on the extent of the

endogeneity of the regressors y2t. In particular, under Assumptions 1.0 and 1.1 any correlation between

y2t and zt is exploited by the test to increase power, c.f. equation (28) and Figure 1 (compare the

starred lines in the left-hand and right-hand side panels). Note that in case 1.2 the power may increase

or decrease with correlated errors. Comparing the solid line in the left-hand and right-hand side panels

the power increases when correlation is increased from .6 to .9. However, comparing the starred and

solid lines in the upper left-hand side panel shows that in case 1.2 power is decreased with correlation .6

compared to the uncorrelated case. Thus, when correlation is high the first term in I2, which increases
power as correlation increases, dominates the second term, which decreases power due to the spill-over

of the autocorrelation via the contemporaneous correlation.

In general the ability of the test to exploit the correlation stands in contrast to the standard I (1)−
I (0) framework where the power functions and power envelopes do not depend on Σ, see Jansson &

Haldrup (2001) and Jansson (2001). The dependence on Σ is due to the fact that β can be assumed to
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be known in the derivation of power functions and power envelopes in our fractional setup. That is not

the case in the standard I (1)− I (0) framework and thus the standard cointegration tests are unable to

exploit the correlation between y2t and zt to gain power.

As a first optimality result, it follows immediately from Theorems 3.2 and 3.3 that the two-sided

test is locally most powerful (LMP) and we state this as a corollary.

Corollary 3.2 Under the assumptions of Theorem 3.3 and the additional assumption of Gaussianity,

the two-sided test statistic (32) is locally most powerful in the sense that the noncentrality parameter is

maximal.

Next, we show that much stronger optimality results than the LMP property of Corollary 3.2 can

be obtained for the problem of testing (15) when the errors are assumed to be i.i.d. Gaussian.

4 ASYMPTOTIC GAUSSIAN POWER ENVELOPES

In this section, we derive the asymptotic Gaussian power envelopes for the one-sided and two-sided

testing problems and proceed to show, following Elliott, Rothenberg & Stock (1996) and Tanaka (1999),

that the one-sided test is uniformly most powerful (UMP) and, following Nielsen (2001), that the two-

sided test is uniformly most powerful unbiased (UMPU).

Assume that the data generating process is (7) − (9) with ut independent, normally distributed, β

and Σ known, and true parameter value θ0n = c/
√
n for some fixed c > 0. The test of H0 : θ = 0 against

the local alternative H1 : θ1n = δ/
√
n for some fixed δ > 0 is a test of a simple null against a simple

alternative. The Neyman-Pearson Lemma, e.g. Lehmann (1986, chapter 3), states that the test that

rejects the null when

Mn = n

Pn
t=1 ũ

2
1.2nt −

Pn
t=1 û

2
1.2ntPn

t=1 ũ
2
1.2nt

(36)

becomes large is most powerful. Here, ũ1.2nt and û1.2nt are the residuals (with β and Σ known) under H0

and H1 respectively. The next theorem derives the limiting distribution of Mn under local alternatives.

Theorem 4.1 Let Mn denote the test statistic (36) in the model generated by θ0n = c/
√
n (c > 0 is

a fixed scalar). Then, under the sequence of local alternatives θ1n = δ/
√
n (δ > 0 is a fixed scalar), it

holds that

Mn
D→M (c, δ) = 2δ

p
I0Z + δ (2c− δ)I0

as n→∞, where Z is a standard normal variable.
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Let the power of Mn be given by π (c, δ) = P (M (c, δ) > cα (δ)) under H1n when θ0n is true, where

the critical value cα (δ) is determined by P (M (0, δ) > cα (δ)) = α. Then the power envelope of all

one-sided tests is given by Π (δ) = π (δ, δ), and a test whose power attains the power envelope for all

points δ is UMP.

To find a test statistic that applies against two-sided alternatives we invoke the principle of unbi-

asedness, see Lehmann (1986, chapter 4), to construct a most powerful unbiased test. Unbiasedness

requires that the power of the test does not fall below the nominal significance level for any point in the

alternative. A test whose power attains the power envelope for all points δ is UMPU.

The following theorem derives the asymptotic Gaussian power envelopes of the one-sided and two-

sided testing problems, and shows that these envelopes are achieved by our tests.

Theorem 4.2 The one-sided asymptotic Gaussian power envelope for all tests of size α of H0 : θ = 0

against H1 : θ1n = δ/
√
n (δ a fixed scalar) is given by (34) and the two-sided asymptotic Gaussian power

envelope for all unbiased tests of size α is given by (35). Thus, the one-sided LM test (31) is uniformly

most powerful (UMP) and the two-sided LM test (32) is uniformly most powerful among all unbiased

tests (UMPU).

This result is in stark contrast to the results in the standard I (1) − I (0) cointegration literature.

Tests that enjoy optimality properties have been derived in that framework by e.g. Shin (1994) and

Jansson (2001) whose tests are LMP and point optimal, respectively, i.e. tests that have maximal

power against a single prespecified point in the alternative. However, our criterion is against all possible

alternatives.

5 FINITE SAMPLE PERFORMANCE

The local power functions and power envelopes derived above are asymptotic results, and in this

section we examine by Monte Carlo experiments whether these asymptotic approximations carry over

to finite samples.

The model we have chosen for the simulation study is a bivariate system with d = b = 1, i.e.

∆θ (y1t − y2t) = u#1t, (37)

∆y2t = u#2t, (38)

which is a standard cointegrated model under the null. We consider several specifications for the error

process corresponding to each case in Assumption 1 and let et be bivariate normal with variances
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normalized to unity and with contemporaneous correlation 0 or .6. The parameter values for the

autoregressive coefficients correspond to those in the upper panels in Figure 1, i.e. γ1 = .2 and γ2 = .5.

All calculations were made in Ox v3.00 (Doornik (2001)) including the Arfima package v1.01 (Doornik

& Ooms (2001)). Throughout, we fix the nominal size (type I error) at .05 and the number of replications

at 1, 000. We consider the sample sizes n = 200 and n = 500. The first is typical for macroeconomic

time series, and the latter (or even larger) for financial time series.

We concentrate on comparing the finite sample performance of the one-sided LM test (reported as

LM) with the asymptotic local power, but also report results for the size corrected LM test (reported as

LMsc). The properties of the estimator of the cointegrating vector β in a similar model were examined

by Kim & Phillips (2001), who found that even in samples as small as n = 100 the performance of the

estimator is very good with respect to bias and variance.

Tables 1-4 show the simulated rejection frequencies of the test statistics (LM and LMsc) for different

assumptions on the autocorrelation structure of the errors (as in Figure 1) corresponding to each case

outlined in Assumption 1. For comparison, the asymptotic local power, which is equal to the power

envelope under Assumption 1.0 by Theorem 4.2, has been calculated from Corollary 3.1 for the same

parameter values and is reported under the heading ’Envelope’. The first three columns of each ta-

ble give the results for contemporaneously uncorrelated errors, whereas in the last three columns the

contemporaneous correlation between the errors is .6.

Tables 1-4 about here

First, consider the case where the cointegrating errors u1t are i.i.d. and u2t are either i.i.d. (Table 1) or

follow an AR(1) (Table 3). In these two cases the finite sample rejection frequencies are quite close to the

asymptotic local power, even for the small sample size n = 200, and especially with contemporaneously

uncorrelated errors. In Table 3 the effect of G (z) spills over via the correlation and slightly degrades

the size and power compared to the uncorrelated case where there is no spill-over. The insignificance of

the specification of u2t is well known from standard cointegration analysis, and is due to the fact that

y2t is already highly trended and making the innovations to this I (d) process weakly dependent does

not add significantly to this trend.

When u1t is allowed to be autocorrelated as in Tables 2 and 4, where u1t follows an AR(1) process,

we know from Corollary 3.1 and Figure 1 that the power of the test degrades and consequently the

asymptotic local power functions are much lower than in Tables 1 and 3. The finite sample rejection

frequencies reflect this behavior and are well below the asymptotic power for n = 200 and also somewhat

below the asymptotic power for n = 500.
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Comparing the middle and right-hand side panels in Tables 1, 2, and 4 shows that the test takes

advantage of the correlation between the underlying errors, and the improvement in power when the

errors are correlated (right-hand side panels) is evident. The ability of the test to exploit this correla-

tion to increase power even in finite samples is remarkable and contrasts the inability of conventional

cointegration tests to exploit this correlation even asymptotically, see Jansson & Haldrup (2001) and

Jansson (2001).

In general, the finite sample power functions for samples of size n = 200 are reasonable, but well

below the asymptotic local power. For samples of size n = 500 they are close to the asymptotic local

power functions, especially in the absence of an autoregressive term in the equilibrium errors. Thus, one

would expect very good performance of the tests in financial applications where samples are often many

times larger. In such cases the power loss resulting from the estimation of a rich autocorrelation structure

would also be of less importance. The sample size in our empirical application below is n = 336, so for

the application we expect the performance of the tests to lie between the two cases considered in the

present simulation study.

6 EXCHANGE RATE DYNAMICS

The analysis of exchange rate dynamics and potential (fractional) cointegrating relations between

exchange rates for different currencies has attracted much attention recently. Baillie & Bollerslev (1989)

find evidence of one cointegrating relation between seven different (log) spot exchange rates using con-

ventional cointegration methods. This is challenged by Diebold, Gardeazabal & Yilmaz (1994) who

show that the inclusion of an intercept changes the conclusion for the Baillie & Bollerslev (1989) data

set. This finding is further supported in an analysis of a different data set covering a longer span of

time in Diebold et al. (1994).

In the article by Baillie & Bollerslev (1994) it is argued that the failure of conventional cointegration

tests to find evidence of cointegration in the Baillie & Bollerslev (1989) exchange rate data is due to

the presence of fractional cointegration. Thus, they estimate the cointegration vector by OLS following

Cheung & Lai (1993) and fit a simple fractionally integrated white noise model to the residuals. It

is concluded that the exchange rates can be described by a CI(1, .11) relationship (in our notation).

However, their estimate of the integration order of the equilibrium errors (.89) may well be upwards

biased since relevant short-run dynamics may have been left out. This is indeed what is concluded by

Kim & Phillips (2001) who employ their fractional fully modified estimation procedure to a different
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data set covering a longer time span but the same exchange rates. They find that the equilibrium errors

are best described by an ARFIMA(1,d,0) process with d = .33.

All the above studies concentrate on the estimation of the cointegration vector and the memory

parameter of the equilibrium errors, but no formal testing of the hypothesis of fractional cointegration is

attempted. We take the opposite view and concentrate on testing for the presence of (i) standard I(1)−
I(0) cointegration against fractional alternatives, (ii) CI(d̂, d̂) cointegration, where d̂ is a preliminary

estimate of d, and (iii) fractional cointegration with equilibrium errors that are integrated of order less

than one-quarter. We apply our tests to a system of log exchange rates for the currencies of the following

seven countries, (West) Germany, United Kingdom, Japan, Canada, France, Italy, and Switzerland

against the US Dollar. The same currencies are examined in the studies cited above. However, where

Baillie & Bollerslev (1989, 1994) and Diebold et al. (1994) consider daily observations covering 1 March

1980 to 28 January 1985 and Kim & Phillips (2001) consider quarterly observations from 1957 through

1997, our data set is comprised of monthly averages of noon (EST) buying rates and runs from January

1974 through December 2001 for a total of n = 336 observations. Thus, our data set, which is extracted

from the Federal Reserve Board of Governors G.5 release, covers only the period of the current flexible

exchange rate regime, but a much longer span of time than the Baillie & Bollerslev (1989) data set. A

long time span has generally been found to be important in detecting long-run relations.

Table 5 about here

Table 5 presents the fractional integration analysis of the data set. The first two rows are the

estimates of the fractional integration orders estimated by the conditional ML technique (CMLE) in

Tanaka (1999) with lag orders p = 0 and p = 1. The standard errors reported in parenthesis are

calculated as
√
6/π when p = 0 and ω−1 when p = 1, where ω2 = π2/6− ¡1− a2

¢
a−1 (ln (1− a))2 and

a is the estimated AR coefficient, see Tanaka (1999). As a robustness check we also report the Gaussian

semiparametric (GSP) estimates of Robinson (1995) with two different bandwidths in the final two

rows. The standard errors of these estimates are 1/ (2
√
m), see Robinson (1995). The final column gives

estimates of a common integration order, computed simply as an average of the estimated integration

orders for each exchange rate, which we use in our fractional cointegration analysis.

The estimates clearly show that the exchange rates can be well described as I (1) processes. The

CMLE estimates are insignificantly different from unity except CAN with p = 0, but that estimate may

be upwards biased if relevant short-run dynamics is left out of the estimation. Thus, when p = 1 the

CAN estimate is insignificantly different from unity. The GSP estimates are all insignificantly different

from unity except FRA with m = 67. Hence, the results of Table 5 support the overwhelming evidence
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in the previous literature that exchange rates are I(1). E.g. Baillie & Bollerslev (1989) conduct unit

root tests of the I(1) hypothesis against the I(0) alternative and Baillie (1996) provides evidence from

fractional models.

Table 6 about here

In Table 6 the results of the one-sided LM test (31) on the exchange rate data are presented. We

consider all the different specifications outlined in Assumption 1 (with p = 1 in cases 1.1-1.3), and test

three different hypotheses. Based on the evidence in Table 5 and the previous literature, we specify

d = b = 1 in the first hypothesis corresponding to the standard I (1)− I (0) model as discussed above.

Secondly, we use the estimated common integration order d̂c for d and b (i.e. we set d = b = d̂c). Under

Assumptions 1.0 and 1.1 we use the estimates from Table 5 with p = 0 for d̂c, and under Assumptions

1.2 and 1.3 we use the estimates with p = 1. The third hypothesis, d = 1, b = .76, is that there exists a

cointegrating relation which is integrated of order less than one-quarter (using ε = .01).

The results we obtain are mixed. Under Assumptions 1.0 and 1.2 all the tests reject strongly.

However, when allowance is made for an autoregressive specification in the cointegrating relation, i.e.

under Assumptions 1.1 and 1.3, the tests do not reject the third hypothesis (the third test under

Assumption 1.3 has negative estimated Fisher information and is replaced by the approximation (33)),

thus supporting a dynamic specification of the cointegrating relation. Indeed, under Assumption 1.3

none of the tests are significant. In the cases with an estimated autoregressive term in the equilibrium

errors, the estimates of the autoregressive parameter (not reported in the table) are between .83 and

.99, where .99 is the boundary we have chosen when implementing the tests to ensure stationarity of

g (z). Hence, there appears to be persistence in the cointegrating relation, but the results of Table 6

suggest that it could be only short memory.

7 CONCLUSION

We have proposed and examined a time domain LM test for the null of cointegration in a fractionally

cointegrated model with the usual computational motivation. In the important case where the null

hypothesis is that of standard I (1)− I (0) cointegration, but the test is against fractional alternatives,

the calculation of the LM test statistic does not require any fractional differencing and can be based on

residuals from readily available computer software.

The likelihood theory in the time domain is tractable and the ML estimation of the cointegration

vector β reduces to a version of the fully modified least squares estimator. Thus, the LM test statistic
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utilizes fully modified residuals to cancel the endogeneity and serial correlation biases. The test statistic

is shown to have standard distributional properties under the null and under local alternatives, such

that inference can be drawn from the normal and chi-squared distributions.

In the special case with i.i.d. Gaussian errors, the asymptotic Gaussian power envelope of all tests

is achieved by the one-sided version of our test, and the asymptotic Gaussian power envelope of all

unbiased tests is achieved by the two-sided version of our test. Thus, with i.i.d. Gaussian errors, the

one-sided (two-sided) version of our test is uniformly most powerful among all (unbiased) tests.

The empirical relevance of our test is established by Monte Carlo experiments, which show that finite

sample rejection frequencies are reasonable for samples of size n = 200 and close to the asymptotic local

power for n = 500.

Finally, we have applied our methodology to the analysis of exchange rate dynamics in a system

of exchange rates for seven major currencies against the US Dollar. We have focused on testing for

the presence of (fractional) cointegration, rather than the estimation of any particular model, but the

evidence is mixed.

ACKNOWLEDGEMENTS

This paper has benefitted from comments by Niels Haldrup, Michael Jansson, Peter Phillips, Katsumi

Shimotsu, seminar participants at the University of Aarhus and Yale University, and two anonymous

referees. It was completed while the author was visiting Yale University and the Cowles Foundation,

their hospitality is gratefully acknowledged.

APPENDIX: PROOFS

Before we prove the theorems we need a lemma. Define the sample autocovariance and residual

autocovariance functions

C (j) =
1

n

nX
t=j+1

ete
0
t−j and Ĉ (j) =

1

n

nX
t=j+1

êtê
0
t−j ,

where the êt are estimated residuals of a VAR(p) process. We consider the asymptotic distribution

of a particular linear combination of the residual autocovariances in each of the four cases outlined in

Assumption 1.

Lemma 1 Let êt be the estimated residuals of the K-dimensional VAR(p) process A (L)ut = et, where

et is i.i.d. (0,Σ) with finite fourth moments and A (z) has the structural parameterization in Assumption
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1.i. Then

√
n
n−1X
j=1

j−1 vecC (j) D→ N (0,Ω0)

√
n
n−1X
j=1

j−1 vec Ĉ (j) D→ N (0,Ωi)

as n→∞, where

Ω0 =
π2

6
Σ⊗ Σ,

Ωi =
π2

6
Σ⊗ Σ− ¡ΣΦ0i1 ⊗ IK , ...,ΣΦ

0
ip ⊗ IK

¢
Hi

¡
H 0
i

¡
Γi ⊗ Σ−1

¢
Hi

¢−1
H 0
i

¡
ΣΦ0i1 ⊗ IK , ...,ΣΦ

0
ip ⊗ IK

¢0
,

for i = 1, 2, 3. Here, Γi is the covariance matrix of (u0t, ..., u0t−p+1)0, Φil =
P∞

j=l j
−1Ψi,j−l, Ψi,k is the

k0th term in the Wold representation of ut normalized such that Ψi,0 = IK , and Hi =
¡
∂a01/∂γi, ..., ∂a

0
p/∂γi

¢0
,

where aj = vecAj are the coefficients in the autoregressive representation A (L)ut = et.

Proof. For a fixedm > p define theK2m-vectors Cm = vec(C (1) , ..., C (m))
0 and Ĉm = vec(Ĉ (1) , ..., Ĉ (m))

0.

Consider first case 1.0, where ut is i.i.d. and C (j) is observable. It is well known that in this case

√
nCm

D→ N (0, Im ⊗ Σ⊗ Σ)

and thus
√
n

mX
j=1

j−1 vecC (j) D→ N

0, mX
j=1

j−2Σ⊗ Σ
 .

The desired result for case 1.0 now follows by application of Bernstein’s Lemma, see e.g. Hall & Heyde

(1980, pp. 191-192).

For the remaining three cases we employ a result of Ahn (1988) on the asymptotic distribution of

the residual autocovariances of a VAR(p) process under structural parameterization. Consider case

1.2. Define the matrix H2 =
¡
∂a01/∂γ2, ..., ∂a0p/∂γ2

¢0
, where aj = vecAj are the coefficients in the

autoregressive representation A (L)ut = et and γ2 is the vector of coefficients in G (z). In this setup,

Ahn (1988) showed that (in our notation)

√
nĈm

D→ N
³
0, Im ⊗ Σ⊗ Σ−GmH2

¡
H 0
2

¡
Γ⊗ Σ−1¢H2

¢−1
H 0
2G

0
m

´
,

where

G0m =


Σ⊗ IK Ψ1Σ⊗ IK · · · · · · · · · Ψm−1Σ⊗ IK

0
. . .

...
...

. . .
. . .

...

0 · · · 0 Σ⊗ IK · · · Ψm−pΣ⊗ IK

 .
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Consequently,
√
n

mX
j=1

j−1 vec Ĉ (j) D→ N
³
0,Ω

(m)
2

´
,

where Ω(m)2 is a truncated version of Ω2, i.e. with π2/6 replaced by
Pm

j=1 j
−2 and Φil replaced by Φ

(m)
il ,

which is truncated at m. Again, we can apply Bernstein’s Lemma to replace the truncated sums by

their limits. For cases 1.1 and 1.3 the same results hold, except that Hi, Φil, and Γi are different as

indicated by the subscript i.

As a simple example consider a bivariate VAR(1) system with g (z) = 1− γ1z and G (z) = 1− γ2z.

The Hi matrices are H1 = (1, 0, 0, 0)
0, H2 = (0, 0, 0, 1)

0, and H3 = (H1,H2) and the covariance equations

simplify to

Ωi =
π2

6
Σ⊗ Σ− (ΣΦ0i1 ⊗ IK)Hi

¡
H 0
i

¡
Σ−1 ⊗ Γi

¢
Hi

¢−1
H 0
i (ΣΦi1 ⊗ IK) , i = 1, 2, 3,

where Φ11 = diag (φ1, 1), Φ21 = diag (1, φ2), Φ31 = diag (φ1, φ2), φi = −γ−1i ln (1− γi), i = 1, 2, and

Γi = E (utu
0
t) can be estimated by n

−1Pn
t=1 ûtû

0
t.

Proof of Theorem 3.1. Suppose first that β is known. Using that vec (A)0 vec (B) = tr (A0B)

and by application of Lemma 1, the score statistic is

Sn =
√
n
n−1X
j=1

j−1 vec
¡
Σ−1e1e01

¢0
vec

³
Ĉ (j)

´
D→ N

³
0, vec

¡
Σ−1e1e01

¢0
Ωi vec

¡
Σ−1e1e01

¢´
,

where the Ωi are defined in Lemma 1. The variance equations (26) and (27) follow immediately from

Lemma 1, e.g. in case 1.0 with i.i.d. errors the variance is

vec
¡
Σ−1e1e01

¢0 π2
6
(Σ⊗ Σ) vec ¡Σ−1e1e01¢ =

π2

6
vec

¡
Σ−1e1e01

¢0
vec (e1e

0
1Σ)

=
π2

6
tr
¡
e1e

0
1Σ
−1e1e01Σ

¢
=

π2

6

σ211
σ21.2

.

Next, we show that estimating β does not influence the result. From e.g. Cheung & Lai (1993),

Marinucci & Robinson (2001), and Kim & Phillips (2001) we know that, since β̂ is estimated by OLS

between I (b) processes with I (0) errors, β̂ − β = Op(n
1−2b) when b ≤ 1 and β̂ − β = Op(n

−b) when

b > 1.
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For simplicity we consider only the case with i.i.d. errors in the remainder of the proof, i.e. ut = et,

the general case follows similarly. Consider the residual processes

ẑt = y1t − β̂
0
y2t = zt + (β − β̂)0y2t,

û1t = ∆d−bẑt = u1t +∆
d−b(β − β̂)0y2t,

û1.2t = u1.2t +∆
d−b(β − β̂)0y2t,

and define wt =
Pm

j=1 j
−1u1t−ju1.2t and ŵt =

Pm
j=1 j

−1û1t−j û1.2t. Then

1√
n

nX
t=1

(ŵt − wt) =
1√
n

nX
t=1

mX
j=1

j−1
³
(u1t−j +∆d−b(β − β̂)0y2t−j)(u1.2t +∆d−b(β − β̂)0y2t)− u1t−ju1.2t

´
=

1√
n

nX
t=1

mX
j=1

j−1
³
(∆d−b(β − β̂)0y2t−j)(∆d−b(β − β̂)0y2t)

+u1t−j∆d−b(β − β̂)0y2t + u1.2t∆
d−b(β − β̂)0y2t−j

´
= Op

 mX
j=1

j−1

 1√
n

nX
t=j+1

³
(β − β̂)0∆−bu2t−j

´³
(β − β̂)0∆−bu2t

´

+
1√
n

nX
t=j+1

u1t−j(β − β̂)0∆−bu2t +
1√
n

nX
t=j+1

u1.2t(β − β̂)0∆−bu2t−j

 .

When b ≤ 1 the first term is

Op

n3/2−4b
nX

t=j+1

(∆−bu2t−j)(∆−bu2t)0

 = Op(n
3/2−2b),

and when b > 1 it is Op

¡
n−1/2

¢
. Similarly, when b ≤ 1 the second and third terms are of orders

Op

³
n1/2−2b

Pn
t=j+1 u1t−j∆

−bu2t
´
= Op(n

1/2−b) and Op

³
n1/2−2b

Pn
t=j+1 u1.2t∆

−bu2t
´
= Op(n

1/2−b),

respectively, and when b > 1 they are both Op

¡
n−1/2

¢
. Since b > 3/4 by assumption, all these terms

are op (1) and we are done.

Proof of Theorem 3.2. As in the proof of Theorem 3.1 it can be shown that estimating β does

not affect the result, so we assume that β is known. The second derivative of the likelihood (18) is

∂2L (θ, β,Σ)

∂θ2
= − 1

σ21.2

nX
t=1

©
ln (1− L) ln (1− L)

¡
g (L)∆d−b+θ ¡y1t − β0y2t

¢¢ª
× ¡¡g (L)∆d−b+θ ¡y1t − β0y2t

¢− σ021Σ
−1
22 G (L)∆

dy2t
¢¢

− 1

σ21.2

nX
t=1

©
ln (1− L)

¡
g (L)∆d−b+θ ¡y1t − β0y2t

¢¢ª2
= − 1

σ21.2

nX
t=1

t−1X
j=1

t−j−1X
k=1

j−1k−1ê1t−j−kê1.2t − 1

σ21.2

nX
t=1

t−1X
j=1

t−1X
k=1

j−1k−1ê1t−j ê1t−k.(39)
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In the case with i.i.d. errors, et is observable and the contribution of the first term to the Fisher

information is zero by uncorrelatedness of et. The contribution of the second term is

E
1

nσ21.2

nX
t=1

t−1X
j=1

t−1X
k=1

j−1k−1e1t−je1t−k =
1

σ21.2

n−1X
j=1

j−2σ211

by uncorrelatedness of et, which proves the result for i.i.d. errors.

In the remaining cases, we need to take the estimation of the autoregressive parameters into account.

Again it can be shown that the first term of (39) is negligible. Since Ĉ (0) = Σ + Op(n
−1/2) and

σ−21.2 = e01Σ−1e1, the contribution of the second term is

E tr
1

n

nX
t=1

t−1X
j=1

t−1X
k=1

j−1k−1e1e01Σ
−1Ĉ (0)Σ−1ê1t−j ê1t−k

= E trn
n−1X
j=1

n−1X
k=1

j−1k−1e1e01Σ
−1Ĉ (j) e1e01Ĉ (k)

0
Σ−1

= En
n−1X
j=1

j−1e01Σ
−1Ĉ (j) e1

n−1X
k=1

k−1e01Σ
−1Ĉ (k) e1,

which is equal to vec
¡
Σ−1e1e01

¢0
Ωi vec

¡
Σ−1e1e01

¢
as n→∞ by Lemma 1 and Theorem 3.1.

Proof of Theorem 3.3. Let θ = δ/
√
n. First suppose β is known and define ê1nt = ĝ (L)∆d−bzt =

ĝ (L)∆−θe1t and ê2t = Ĝ (L)∆dy2t. By the Mean Value Theorem we obtain

ê1nt = ê1t +
δ√
n

t−1X
j=1

j−1ê1t−j + op(n
−1/2)

for all t = 1, ..., n. Thus, under θ = δ/
√
n,

Sn =
1

σ21.2
√
n

nX
t=1

t−1X
j=1

j−1ê1nt(ê1nt − σ021Σ
−1
22 ê2t)

=
1

σ21.2
√
n

nX
t=1

t−1X
j=1

j−1
Ã
ê1t−j +

δ√
n

t−j−1X
k=1

k−1ê1t−j−k

!Ã
ê1.2t +

δ√
n

t−1X
k=1

k−1ê1t−k

!
+ op (1)

=
√
n
n−1X
j=1

j−1e01Σ
−1Ĉ (j) e1 + δn

n−1X
j=1

j−1e01Σ
−1Ĉ (j) e1

n−1X
k=1

k−1e01Σ
−1Ĉ (k) e1 + op (1)

as in the proofs of Theorems 3.1 and 3.2. The result when β is known now follows from Lemma 1 and

the above theorems. When β is unknown we can apply the same arguments as in the proof of Theorem

3.1, along with elementary inequalities to the components due to ê1nt − ê1t, to show that the result is

unaffected.

Proof of Corollary 3.1. Follows immediately from Theorem 3.3.

23



Proof of Corollary 3.2. Follows immediately from (32) and Theorem 3.2.

Proof of Theorem 4.1. By the Mean Value Theorem we obtain

ũ1.2nt = u1t − σ021Σ
−1
22 u2t +

c√
n

t−1X
j=1

j−1u1t−j + op(n
−1/2)

û1.2nt = u1t − σ021Σ
−1
22 u2t +

c− δ√
n

t−1X
j=1

j−1u1t−j + op(n
−1/2)

for all t = 1, ..., n. Thus, we note that

1

n

nX
t=1

ũ21.2nt
P→ σ21.2 (40)

as n→∞. The numerator of Mn is

nX
t=1

ũ21.2nt −
nX
t=1

û21.2nt =
nX
t=1

c2

n

t−1X
j=1

j−2u21t−j −
nX
t=1

(c− δ)2

n

t−1X
j=1

j−2u21t−j

+2
nX
t=1

u1.2t
δ√
n

t−1X
j=1

j−1u1t−j + op (1)

= δ (2c− δ)
π2

6
σ211 + 2δ

r
π2

6
σ211σ

2
1.2Z + op (1) . (41)

Combining (40) and (41) we get the desired result.

Proof of Theorem 4.2. Consider the one-sided case with δ > 0 (the reverse case follows similarly).

The one-sided power envelope is

Π (δ) = P (M (δ, δ) > cα (δ))

= P
³
δ
³
2
p
I0Z + δI0

´
> cα (δ)

´
= P

µ
Z >

µ
cα (δ)

δ
− δI0

¶
/2
p
I0
¶
,

where cα (δ) satisfies

α = P (M (0, δ) > cα (δ))

= P

µ
Z >

µ
cα (δ)

δ
+ δI0

¶
/2
p
I0
¶

such that cα (δ) = 2δ
√I0Zα − δ2I0. Then

Π (δ) = P
³
Z >

³
2
p
I0Zα − 2δI0

´
/2
p
I0
´

= P
³
Z > Zα − δ

p
I0
´
.
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In the two-sided case we note that, since for varying c the family of distributions M (c, δ) is normal,

it satisfies the requirement that it be strictly totally positive of order 3 (STP3, see Lehmann (1986, p.

119)). Hence the power envelope of all unbiased tests of H0 : θ = 0 against H1 : θ1n = δ/
√
n is given

by Π2 (δ) = 1 − P (C1,α (δ) < M (δ, δ) < C2,α (δ)) (Lehmann (1986, p. 303)), where the constants are

determined by

P (C1,α (δ) < M (0, δ) < C2,α (δ)) = 1− α (42)
∂P (C1,α (δ) < M (c, δ) < C2,α (δ))

∂c

¯̄̄̄
c=0

= 0. (43)

Consider first (43) which implies that (φ (·) is the density function of the standard normal distribution)

φ

µ
C2,α (δ) + δ2I0

2δ
√I0

¶
= φ

µ
C1,α (δ) + δ2I0

2δ
√I0

¶
with the non-trivial solution C1,α (δ) = −C2,α (δ)− 2δ2I0. Now we can find the constants from (42),

1− α = P
¡−C2,α (δ)− 2δ2I0 < M (0, δ) < C2,α (δ)

¢
= P

µ
−C2,α (δ) + δ2I0

2δ
√I0

< Z <
C2,α (δ) + δ2I0

2δ
√I0

¶
,

where Z is a standard normal random variable. Thus, C2,α (δ) is the solution to Φ
¡¡
C2,α (δ) + δ2I0

¢
/2δ
√I0

¢
=

1 − α/2, which implies C2,α (δ) = 2δ
√I0Z1−α/2 − δ2I0, where Z1−α/2 is the 100 (1− α/2)% point of

the standard normal distribution.

The two-sided power envelope is then

Π2 (δ) = 1− P (C1,α (δ) < M (δ, δ) < C2,α (δ))

= 1− P
³
−2δ

p
I0Z1−α/2 − δ2I0 < 2δ
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I0Z + δ2I0 < 2δ
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´
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³
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Table 1: Finite Sample Rejection Frequencies Under Assumption 1.0
Uncorrelated Correlation .6

Sample Size θ Envelope LM LMsc Envelope LM LMsc
n = 200 0 0.050 0.024 0.050 0.050 0.031 0.050

0.05 0.230 0.172 0.247 0.305 0.222 0.275
0.10 0.567 0.468 0.573 0.733 0.585 0.643
0.15 0.859 0.755 0.828 0.960 0.867 0.886
0.20 0.976 0.913 0.949 0.998 0.976 0.985
0.25 0.998 0.986 0.993 1.000 0.996 0.998

n = 500 0 0.050 0.037 0.050 0.050 0.040 0.050
0.05 0.416 0.360 0.416 0.559 0.507 0.555
0.10 0.889 0.838 0.879 0.974 0.944 0.957
0.15 0.996 0.980 0.986 1.000 0.997 0.997
0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Finite Sample Rejection Frequencies Under Assumption 1.1
Uncorrelated Correlation .6

Sample Size θ Envelope LM LMsc Envelope LM LMsc
n = 200 0 0.050 0.022 0.050 0.050 0.024 0.050

0.05 0.121 0.060 0.117 0.146 0.075 0.109
0.10 0.243 0.116 0.195 0.323 0.136 0.197
0.15 0.412 0.191 0.289 0.553 0.229 0.305
0.20 0.600 0.270 0.383 0.766 0.330 0.415
0.25 0.766 0.348 0.455 0.906 0.397 0.469

n = 500 0 0.050 0.029 0.050 0.050 0.031 0.050
0.05 0.185 0.123 0.159 0.240 0.161 0.208
0.10 0.442 0.261 0.336 0.591 0.356 0.432
0.15 0.727 0.464 0.543 0.878 0.594 0.664
0.20 0.912 0.611 0.673 0.982 0.762 0.810
0.25 0.982 0.742 0.802 0.999 0.851 0.887

Table 3: Finite Sample Rejection Frequencies Under Assumption 1.2
Uncorrelated Correlation .6

Sample Size θ Envelope LM LMsc Envelope LM LMsc
n = 200 0 0.050 0.017 0.050 0.050 0.015 0.050

0.05 0.230 0.178 0.312 0.286 0.146 0.226
0.10 0.567 0.452 0.581 0.696 0.421 0.580
0.15 0.859 0.742 0.836 0.944 0.666 0.798
0.20 0.976 0.922 0.956 0.996 0.903 0.952
0.25 0.998 0.975 0.992 1.000 0.972 0.991

n = 500 0 0.050 0.035 0.050 0.050 0.023 0.050
0.05 0.416 0.378 0.436 0.524 0.308 0.444
0.10 0.889 0.819 0.850 0.961 0.809 0.880
0.15 0.996 0.987 0.993 1.000 0.983 0.995
0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4: Finite Sample Rejection Frequencies Under Assumption 1.3
Uncorrelated Correlation .6

Sample Size θ Envelope LM LMsc Envelope LM LMsc
n = 200 0 0.050 0.022 0.050 0.050 0.024 0.050

0.05 0.121 0.058 0.088 0.146 0.065 0.110
0.10 0.243 0.115 0.193 0.321 0.148 0.233
0.15 0.412 0.223 0.319 0.550 0.251 0.356
0.20 0.600 0.269 0.358 0.763 0.321 0.419
0.25 0.766 0.332 0.432 0.904 0.355 0.478

n = 500 0 0.050 0.029 0.050 0.050 0.027 0.050
0.05 0.185 0.122 0.177 0.238 0.148 0.239
0.10 0.442 0.287 0.385 0.588 0.368 0.496
0.15 0.727 0.483 0.598 0.876 0.599 0.722
0.20 0.912 0.621 0.727 0.982 0.764 0.847
0.25 0.982 0.734 0.805 0.999 0.836 0.889

Table 5: Estimates of Fractional Integration Orders

WG (y1t) CAN SW FRA ITA JAP UK d̂c = d̂
CMLE p = 0 1.0057

(0.0425)
1.1211∗∗
(0.0425)

0.9938
(0.0425)

1.0081
(0.0425)

1.0033
(0.0425)

0.9975
(0.0425)

1.0770
(0.0425)

1.0295

p = 1 0.9625
(0.0975)

1.0588
(0.0744)

0.9465
(0.1016)

0.9920
(0.0914)

1.0023
(0.1026)

0.9959
(0.0980)

1.0163
(0.0960)

0.9963

GSP m = 33 1.0428
(0.0870)

1.1311
(0.0870)

1.0197
(0.0870)

1.1141
(0.0870)

1.0857
(0.0870)

0.9696
(0.0870)

0.9837
(0.0870)

1.0495

m = 67 1.0847
(0.0611)

1.0406
(0.0611)

1.0662
(0.0611)

1.1338∗
(0.0611)

1.1029
(0.0611)

1.1185
(0.0611)

1.0725
(0.0611)

1.0885

Standard errors are given in parenthesis. One asterisk denotes significantly different from unity at 5%
level and two asterisks denote significantly different from unity at 1% level.

Table 6: One-sided LM Tests for Fractional Cointegration
LM01 LM11 LM21 LM31

d = b = 1 27.72∗∗ 3.509∗∗ 27.43∗∗ 0.7701

d = b = d̂c 27.82∗∗ 3.951∗∗ 27.31∗∗ 0.6280
d = 1, b = 0.76 24.92∗∗ −1.487 23.72∗∗ 0.0242†

One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level. A
dagger means the LM statistic did not compute and was replaced by the approximation dLM i1 in (33).
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Figure 1: Asymptotic local power functions calculated using Corollary 3.1 with d = b = 1 and first order
autoregressive specifications. The variances are normalized to unity, and the correlation is .6 and .9 in
the left-hand and right-hand side panels, respectively.
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