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Abstract

A computationally simple maximum likelihood procedure for multivariate fractionally integrated

time series models is introduced. This allows, e.g., efficient estimation of the memory parameters of

fractional models or efficient testing of the hypothesis that two or more series are integrated of the

same possibly fractional order. In particular, we show the existence of a local time domain maximum

likelihood estimator and its asymptotic normality, and under Gaussianity asymptotic efficiency. The

likelihood-based test statistics (Wald, likelihood ratio, and Lagrange multiplier) are derived and

shown to be asymptotically equivalent and chi-squared distributed under local alternatives, and

under Gaussianity locally most powerful. The finite sample properties of the likelihood ratio test

are evaluated by Monte Carlo experiments, which show that rejection frequencies are very close to

the asymptotic local power for samples as small as n = 100.
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1 Introduction

In this paper we propose a class of maximum likelihood estimators and tests in multivariate fractionally

integrated time series models. The development of multivariate procedures that account for contempo-

raneous effects between the elements of multiple time series is important for applied econometric work,

which, to a large extent, is multivariate in nature. However, previous literature has focused on univariate

models, see Robinson (1991, 1994), Agiakloglou & Newbold (1994), Beran (1995), Tanaka (1999), and

Nielsen (2001), among others.

With no simple procedures available to test or estimate the order of fractional integration for multiple

time series, applied researchers have been forced to conduct univariate analyses of the individual elements

of multiple time series. This is not only cumbersome, but ignores potentially important correlations

between the series which could be used to increase power and efficiency in a multivariate setting. The

present paper develops the required generalizations to multiple time series. Our generalizations of the

univariate procedures in some ways resemble the work of, e.g., Phillips & Durlauf (1986) and Choi &

Ahn (1999), who extend the autoregressive unit root and stationarity tests to multiple time series.

To fix ideas, suppose we observe the K-dimensional vector time series {yt, t = 1, 2, ..., n} generated
by the linear model

yt = βxt + ut, (1)

where {xt} is a q-vector of purely deterministic components and {ut} is an unobserved K-dimensional

error component. The generating mechanism of {ut} is

(1− L)
dk+θk ukt = ektI (t ≥ 1) , k = 1, ...,K, (2)

where I (·) denotes the indicator function, the fractional filter (1− z)
d is defined by the binomial expan-

sion

(1− z)
d
=
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)z
j , Γ (f) =

Z ∞
0

tf−1e−tdt,

and {et} is an I (0) process. Here, a process is I (0) if it is covariance stationary and has finite and

strictly positive spectral density at the origin. The process {ut} defined by (2) is well defined for all d, θ
and is sometimes called a type II fractionally integrated process, see Marinucci & Robinson (1999).

Two leading cases for the deterministic terms are xt = 1 and xt = (1, t)
0, which yields the models

ykt = βk0 + ukt and ykt = βk0 + βk1t + ukt, respectively, but other terms like seasonal dummies

or polynomial trends are also allowed for. As in Definition 2 of Robinson (1994) and Assumption 2

of Nielsen (2001), we require only that
Pn

t=1 x̃tx̃t
0 is positive definite for n sufficiently large, where

x̃kt = (1− L)dkxkt.
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In the remainder of the paper we may assume that {ut} is an observed process by the results
of Robinson (1994) and Nielsen (2001) who showed that estimating β by maximum likelihood or an

asymptotically equivalent method does not influence asymptotic inference on θ. In particular, β is

estimated by OLS of ỹt on x̃t, where ỹkt = (1− L)dkykt, i.e.

β̂ − β =

Ã
nX
t=1

etx̃
0
t

!Ã
nX
t=1

x̃tx̃
0
t

!−1
.

Then we construct the residual process ût = yt − β̂xt = ut + (β − β̂)xt, which we may treat as if we

observed {ut}, see Robinson (1994) and Nielsen (2001) for the details.
The errors {et} are initially assumed to be independently and identically distributed with mean zero

and positive definite covariance matrix Σ, i.i.d.(0,Σ), with finite fourth moments. In section 4 we relax

this assumption and let {et} follow a stationary vector autoregressive process of order p, VAR(p). Notice
that positive definiteness of Σ rules out cointegration among {ut} and thus also among {yt}.
We assume that the dk’s are prespecified and wish to test the hypothesis

H0 : θ = 0 (3)

against the alternatives H1 : θ 6= 0 or H2 : θ > 0 (when θ is one-dimensional).

In related work for the univariate model, Ling & Li (2001) merge the unit root in the autoregressive

polynomial for {et} and assume that the fractional difference parameter is in the stationary region. They
obtain standard asymptotics for the fractional difference parameter, but nonstandard Dickey-Fuller type

asymptotics for the estimate of the unit root, see also Phillips & Durlauf (1986), the Handbook of

Econometrics chapter by Watson (1994), and the references therein for an analysis of the multivariate

autoregressive unit root model. On the other hand, Robinson (1994), Beran (1995), Tanaka (1999), and

Nielsen (2001) all merge the unit root in the fractional difference parameter. Thus, some knowledge

about the dynamics of the process is assumed, since no unit root must be estimated in the autoregressive

polynomial, and hence avoiding the nonsmooth behavior of the model near these unit roots, which makes

it possible to obtain standard asymptotics. For the full discussion, see Ling & Li (2001, pp. 739-741).

Our tests are a multivariate version of the univariate tests in Robinson (1994), Tanaka (1999), and

Nielsen (2001), who considered testing for a unit root in a fractional integration framework, i.e. testing

the parameter θ in a univariate version of (2) in the frequency and time domains, respectively. They

have shown that Lagrange Multiplier (LM) or score tests within the univariate fractionally integrated

class have desirable power properties. The latter two also consider the estimation of the model under the

alternative and were thus able to derive the equivalent Wald (W) and likelihood ratio (LR) tests of the

fractional unit root hypothesis. They showed that their tests are asymptotically normal or chi-squared
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distributed and, under invariance conditions and Gaussianity, that the tests are locally most powerful

and indeed uniformly most powerful in case θ is scalar. Simulations showed that in finite samples the

time domain tests are superior to Robinson’s (1994) frequency domain LM test with respect to both

size and power.

As we shall see below their techniques generalize to our multivariate setup, allowing us to conduct

standard inference on the integration orders in the multivariate fractionally integrated time series model

(1) − (2). Some examples of interesting hypotheses that can be tested within this class of models are:
(i) The unit root hypothesis. The standard unit root hypothesis nested in a fractionally integrated

model is (3) with dk = 1 and can be considered an alternative to testing for a unit root nested in an

autoregressive framework as in Phillips & Durlauf (1986). (ii) Short memory. Using dk = 0 we can

test the hypothesis that the components of {ut} have only short memory, i.e. an alternative to the
multivariate autoregressive stationarity tests by Choi & Ahn (1999). (iii) I (2). The hypothesis that the

variables are jointly I (2) is (3) with dk = 2.

More importantly, our multivariate setup allows us to test whether two or more series are integrated

of the same (possibly fractional) order, with or without specifying what this common integration order

should be. Such a test is an important motivation for the current study.

The inferential procedures proposed and analyzed here are intended mainly for preliminary data

analysis. For instance, failing to reject (against fractional alternatives) the null of stationarity or I (0)-

ness would allow for standard causality, structural VAR, or impulse response analyses. Furthermore,

the estimation of the fractional integration parameter(s) would indicate the appropriate transformation

of the data in order to conduct such analyses, i.e. the required order of (fractional) differencing.

We establish the desirable distributional and optimality properties of the local time domain maximum

likelihood estimator (MLE) and related (LR, W, and LM) test statistics. We show that the likelihood

theory in the time domain is tractable and that desirable properties from standard statistical analysis

apply. In particular, there exists a local MLE which is asymptotically normal, and the test statistics

are asymptotically equivalent and chi-squared distributed under local alternatives. Under the additional

assumption of Gaussianity, the local MLE is asymptotically efficient in the sense that its variance attains

the Cramér-Rao lower bound, and the tests are asymptotically efficient in the Pitman sense, i.e. have

maximal noncentrality parameter and thus maximal asymptotic relative efficiency. In a simulation study

we examine the properties of the LR test in finite samples, and find that the size of the test is close

to the nominal level and that rejection frequencies are close to the asymptotic local power, even for

samples as small as n = 100.

The rest of the paper is laid out as follows. Next, we consider the simple case where θ is the same
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across equations, i.e. θk = θ, k = 1, ...,K, and in section 3 we move to the general case with a different

θk for each equation. Sections 2 and 3 assume i.i.d. errors. In section 4 we derive the analogues of the

results in sections 2 and 3, but allowing the errors to be generated by a VAR(p) process. In section 5 we

consider testing for a common unspecified integration order, both with i.i.d. and autocorrelated errors.

Section 6 presents the results of the simulation study and section 7 offers some concluding remarks.

Proofs are collected in appendix A while appendix B contains some technical lemmas.

2 Same θ Across Equations

This is the case where it is known that the integration orders are the same for all variables, and we wish

to estimate this common integration order or test if it is equal to some prespecified value, e.g. d = 1.

This could easily be generalized to different values for each dk, but that seems to be of little practical

interest without different θk’s as well, see section 3.

The Gaussian log-likelihood function is, apart from constants,

L (θ,Σ) = −n
2
ln |Σ|− 1

2

nX
t=1

e0tΣ
−1et. (4)

Note that the asymptotic results derived later only impose i.i.d. errors and not Gaussianity. We use

Gaussianity only to choose a likelihood function and later as a benchmark to derive efficiency results.

Concentrating L with respect to Σ we obtain

l (θ) = −n
2
ln |Σ (θ)| ,

where Σ (θ) = n−1
Pn

t=1((1− L)
d+θ

ut)((1− L)
d+θ

ut)
0. We equivalently consider the maximization of

g (θ) = −n
2
ln

·
1− 1

n

n |Σ (0)|− n |Σ (θ)|
|Σ (0)|

¸
. (5)

Thus, the MLE minimizes the conditional sum of squares function |Σ (θ)| and is computationally
very simple. In contrast, Hosoya (1996) considers a rather complicated exact frequency domain MLE

and derive the asymptotics based on the bracketing function approach.

First, assume that there exists a δ such that δ =
√
nθ, the existence of δ will be proven shortly. Then

we have the following.
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Theorem 2.1 Let g (θ) be given by (5). Then, under θ = δ/
√
n,

(i) g (θ)→d Ws (δ) =
δ

2

³
2
p
IsZ − Isδ

´
,

(ii)
∂g (θ)

∂δ
→d

∂Ws (δ)

∂δ
=
p
IsZ − Isδ,

(iii)
∂2g (θ)

∂δ2
→p −Is,

as n → ∞, where Is = π2K/6, Z is a standard normal random variable, and the subscript s denotes

same θ across equations.

Thus, we need to prove the existence of a local MLE θ̂ such that
√
nθ̂ = δ̂ = Op (1). Following

Sargan & Bhargava (1983) and Tanaka (1999) it suffices to show that

P

µ
∂g (δ1/

√
n)

∂δ
≥ 0

¶
≤ ε (6)

P

µ
∂g (δ2/

√
n)

∂δ
≤ 0

¶
≤ ε (7)

for any ε > 0, n ≥ n0 (n0 fixed) and for some δ1 > 0, δ2 < 0. It follows from Theorem 2.1 that

P

µ
∂g (δ1/

√
n)

∂δ
≥ 0

¶
→ P

µ
∂Ws (δ1)

∂δ
≥ 0

¶
= P

µ
∂Ws (δ1)

∂δ
−E

∂Ws (δ1)

∂δ
≥ −E∂Ws (δ1)

∂δ

¶

≤
V
³
∂Ws(δ1)

∂δ

´
³
E ∂Ws(δ1)

∂δ

´2
by Chebyshev’s inequality. In view of Theorem 2.1(ii) the last expression is 1/δ21Is, and similarly
P (∂g (δ2/

√
n) /∂δ ≤ 0) ≤ 1/δ22Is + o (1). Thus, (6) and (7) hold by appropriate choices of δ1, δ2, and

n0, and the existence of the local MLE θ̃ is ensured.

Theorem 2.2 There exists a local maximizer θ̂n of (5), which satisfies, as n→∞,
√
nθ̂n →d N

¡
0, I−1s

¢
, (8)

where Is is defined in Theorem 2.1. Under the additional assumption of Gaussianity of {et}, θ̂n is
asymptotically efficient in the sense that its asymptotic variance attains the Cramér-Rao lower bound.

The estimation of θ as considered in this paragraph is important prior to a fractional cointegration

analysis. Most procedures currently available to conduct such fractional cointegration analyses assume

a triangular structure and require a prespecified value of the common integration order of the right hand
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side variables, e.g. Jeganathan (1999), Breitung & Hassler (2002), and Nielsen (2002). Thus, suppose

the model is

(1− L)
d−b ¡

y1t − β0y2t
¢
= e1tI (t ≥ 1) ,

(1− L)d y2t = e2tI (t ≥ 1) ,

where Σ2, the contemporaneous covariance matrix of e2t, is assumed to be positive definite. I.e., the

components of y2t are assumed to be noncointegrated and integrated of the same order, d. Theorem

2.2 shows that an efficient estimate of this common integration order can be readily obtained using the

techniques in this section.

Next, we examine the properties of the classical LR, LM, and Wald test statistics. The LR test

statistic is

LR = 2
³
L(θ̂, Σ̂)− L(0, Σ̃)

´
, (9)

where Σ̂ = Σ(θ̂) and Σ̃ = Σ(0). The Wald test statistic based on Theorem 2.2 is

W = nθ̂
0Isθ̂, (10)

where Is defined in Theorem 2.1 is the normalized Fisher information under Gaussianity. Finally, based
on the normalized score statistic, see Tanaka (1999) and Breitung & Hassler (2002),

Sn =
1√
n

∂L (θ,Σ)

∂θ

¯̄̄̄
θ=0,Σ=Σ̃

= − 1√
n

nX
t=1

(ln (1− L) e0t) Σ̃
−1et

=
√
n
n−1X
j=1

j−1 tr
³
Σ̃−1C (j)

´
, (11)

where C (j) = n−1
Pn

t=j+1 ete
0
t−j , we can form the LM test statistic

LM = S0nI−1s Sn. (12)

Corresponding to Sn, whose distribution is easily derived from Theorem 2.1, we could also define

a one-sided Wald test, but they will make little sense in the next sections with multi-dimensional θ,

so we will not consider them here. When K = 1, i.e. when the observed time series is univariate,

the score statistic in (11) reduces to the univariate time domain score statistic, sn =
√
n
P

j j
−1ρ̂ (j),

where ρ̂ (j) is the j’th sample autocorrelation of {et}, see e.g. Tanaka (1999) or Nielsen (2001). In
parallel to its univariate counterpart, this test bears some resemblance to the multivariate portmanteau

statistic, P = n
P

j tr(Ĉ (j) Σ̂
−1Ĉ (j) Σ̂−1), Ĉ (j) = n−1

Pn
t=j+1 êtê

0
t−j , for checking the whiteness of

the residuals of a multivariate ARMA time series model, see e.g. Hosking (1980, p. 605).
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The derivative found above,
√
n
P

j j
−1 tr(Σ̂−1C (j)), is also derived by Breitung & Hassler (2002,

p. 171) for the model (2) with θk = θ, k = 1, ...,K. However, instead of examining the properties of

this derivative or the generalizations in the next sections, they consider a multivariate variant of the

fractional Dickey-Fuller test also considered by Dolado, Gonzalo & Mayoral (2002). They call it the

score statistic for testing H0 : θ = 0 and show that the corresponding quadratic form is chi-squared

with K2 degrees of freedom. However, their test is not equivalent to the multivariate LM test of (3), as

demonstrated for the univariate test by Breitung & Hassler (2002). Indeed, the main aim of Breitung

& Hassler (2002) is to construct a fractional trace statistic similar to Johansen (1988), just as the

Dickey-Fuller test generalizes to Johansen’s (1988) trace statistic.

In the following theorem we present the distribution of the test statistics under alternatives local to

the null, H1n : θ = δ/
√
n, where δ is a fixed scalar.

Theorem 2.3 Under θ = δ/
√
n, the LR, W, and LM test statistics defined by (9), (10), and (12) are

asymptotically equivalent and distributed as χ21
¡Isδ2¢, where Is is defined in Theorem 2.1. Under the

additional assumption of Gaussianity the tests are efficient in the Pitman sense.

Thus it is seen that standard statistical results apply in our model, unlike in the autoregressive unit

root models in e.g. Phillips & Durlauf (1986) and Choi & Ahn (1999). In particular, the equivalence

of the tests follows from the information matrix equality which holds in our case, contrary to AR-based

unit root models.

3 Different θ’s Across Equations

In this section we consider the full model in (1) − (2) where the θk are potentially different for each
equation. Thus, we no longer force the integration orders of the variables to be equal.

Again, we assume first that we are in a neighborhood of the true value, i.e. that there exists a

K-vector δ such that δ = θ
√
n. The function g (θ) is still given by (5), but θ is now a vector and Σ (θ)

is redefined accordingly. Then we have the following theorem, where ¯ denotes the Hadamard (see

appendix B or Magnus & Neudecker (1999)).
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Theorem 3.1 Let g (θ) be given by (5), where θ is now a K-vector. Then, under θ = δ/
√
n,

(i) g (θ)→d Wd (δ) =
δ0

2

³
2I1/2d Z − Idδ

´
,

(ii)
∂g (θ)

∂δ
→d

∂Wd (δ)

∂δ
= I1/2d Z − Idδ,

(iii)
∂2g (θ)

∂δ∂δ0
→p −Id,

as n→∞, where Id =
¡
Σ¯Σ−1¢π2/6, Z is a K-dimensional standard normal random vector, and the

subscript d denotes different θ’s across equations.

When θ is a vector of parameters we need to generalize the approach of Sargan & Bhargava (1983)

and Tanaka (1999) to prove the existence of a local MLE θ̂n such that
√
nθ̂n = δ̂ = Op (1). Let η be

a p × 1 direction vector, i.e. satisfying kηk = 1, where k·k is the Euclidean norm, and let δ = kδk η.
Generalizing the scalar approach by Sargan & Bhargava (1983) and Tanaka (1999), see also section 2

above, it suffices to show that

P

µ
η0
∂g (δ/

√
n)

∂δ
≥ 0

¶
≤ ε (13)

for any direction vector η, ε > 0, and n ≥ n0 (n0 fixed), and for some kδk > 0. Note that η0∂g (δ/√n) /∂δ
is the directional derivative of g at δ/

√
n, i.e. the rate of change of g at δ/

√
n in the direction η.

Thus, for all direction vectors η, moving some distance kδk in the direction η from the true value,

the directional derivative of g in the same direction η should be negative for sufficiently large n. In

the one-dimensional case η = ±1 and (13) reduces to (6) and (7), i.e. the corresponding conditions of
Sargan & Bhargava (1983) and Tanaka (1999). It follows from Theorem 3.1 that

P

µ
η0
∂g (δ/

√
n)

∂δ
≥ 0

¶
→ P

µ
η0
∂W (δ)

∂δ
≥ 0

¶
= P

µ
η0
∂W (δ)

∂δ
−Eη0

∂W (δ)

∂δ
≥ −Eη0 ∂W (δ)

∂δ

¶

≤
V ar

³
η0 ∂W (δ)

∂δ

´
³
Eη0 ∂W (δ)

∂δ

´2
=

1

η0Ψη kδk2 ,

which can be made arbitrarily small by selecting kδk large. Thus, (13) holds by appropriate choices of
kδk and n0, and the existence of the local MLE θ̂n is ensured.

Theorem 3.2 There exists a local maximizer θ̂n (now a K-vector), which satisfies, as n→∞,
√
nθ̂n →d N

¡
0, I−1d

¢
, (14)
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where Id is defined in Theorem 3.1. Under the additional assumption of Gaussianity of {et}, θ̂n is
asymptotically efficient in the sense that its asymptotic variance attains the Cramér-Rao lower bound.

In the present case with different integration orders the score statistic is

Sn =
1√
n

∂L (θ,Σ)

∂θ

¯̄̄̄
θ=0,Σ=Σ̃

= − 1√
n

nX
t=1

diag (ln (1− L) et) Σ̃
−1et

=
1√
n

nX
t=1

t−1X
j=1

j−1J 0K(IK ⊗ Σ̃−1)(et−j ⊗ et)

=
√
n
n−1X
j=1

j−1J 0K(IK ⊗ Σ̃−1) vecC (j) (15)

by use of vec (ABC) = (C 0 ⊗A) vecB and property 1 of Lemma 2. We denote by diag (a) the diagonal

matrix having the vector a on the diagonal and JK is defined in Lemma 2. Exactly as in section 2, the

score statistic (15) reduces to the univariate score statistic when K = 1.

Thus, we can form the LR, W, and LM test statistics as in (9) − (12), but with Sn defined in

(15) and Is replaced by Id, and where the likelihood function is now in terms of different θk for each
equation. We proceed to consider the distribution of the test statistics under alternatives local to the

null, H1n : θ = δ/
√
n, where δ is now a fixed K-vector.

Theorem 3.3 Under θ = δ/
√
n, δ a fixed K-vector, the LR, W, and LM test statistics defined by

(9), (10), and (12), with Sn defined in (15) and Is replaced by Id, are asymptotically equivalent and
distributed as χ2K

¡
δ0Idδ

¢
, where Id is defined in Theorem 3.1. Under the additional assumption of

Gaussianity the tests are efficient in the Pitman sense.

Where the results in section 2 were useful in estimating a common integration order of the ’right

hand side variables’ in the triangular model prior to a fractional cointegration analysis, the results in this

section have enabled us to test whether the integration orders are indeed all equal to some pre-assigned

value without requiring them to be equal under the alternative. Thus, by setting dk = 1 or dk = 2

for all k, this could indeed be considered a valuable diagnostic test prior to a standard I (1) or I (2)

cointegration analysis.

In section 5 we combine these procedures to derive a test of the hypothesis that the integration

orders are equal without specifying the common integration order, i.e. testing if the variables have a

common unspecified integration order.
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4 Inference with Autocorrelated Errors

In this section we allow the errors {et} to follow to finite vector autoregressive process,

A (L) et = εt, (16)

where {εt} satisfies the assumptions of {et} before. Here, A (z) is a matrix polynomial of order p, such
that {et} is a stationary VAR(p) process and A (1) has full rank. An ARMA process could be used

for {et} but it adds significantly to the notational burden and to the difficulty of our proofs, and in
empirical applications it is often found that a short autoregressive polynomial is sufficient to describe

data in fractional models. The parameters of A (z) are gathered in the K2p-vector ψ = vec (A1, ..., Ap)

with true value ψ0.

We consider first the case with the same θ across equations as in section 2. The log-likelihood

function with autocorrelated errors is

L (θ, ψ,Σ) = −n
2
ln |Σ|− 1

2

nX
t=1

(A (L) et)
0Σ−1 (A (L) et) , (17)

and concentrating with respect to Σ we obtain

l (θ, ψ) = −n
2
ln |Σ (θ, ψ)| ,

where Σ (θ, ψ) = n−1
Pn

t=1(A (L) (1− L)
d+θ

ut)(A (L) (1− L)
d+θ

ut)
0. Equivalently, we consider the

maximization of

g (θ, ψ) = −n
2
ln

·
1− 1

n

n |Σ (0, ψ0)|− n |Σ (θ, ψ)|
|Σ (0, ψ0)|

¸
. (18)

With autocorrelated errors the LR test statistic is

LR = 2
³
L(θ̂, ψ̂, Σ̂)− L(0, ψ̃, Σ̃)

´
, (19)

where Σ̂ = Σ(θ̂, ψ̂) and Σ̃ = Σ(0, ψ̃) and the Wald test statistic and LM test statistics are given by (10)

and (12) as before, but with a different Is and with the score statistic

Sn =
1√
n

∂L (θ, ψ,Σ)

∂θ

¯̄̄̄
θ=0,ψ=ψ̃,Σ=Σ̃

=
√
n
n−1X
j=1

j−1 tr(Σ̃−1C̃ (j)), (20)

where C̃ (j) = n−1
Pn

t=j+1 ε̃tε̃
0
t−j is the estimated residual autocovariance function under the null.

We are now able to prove joint asymptotic normality of θ̂ and ψ̂, the local MLEs of τ0 = (θ0, ψ
0
0)
0,

and under Gaussianity we achieve efficiency as before. Furthermore, the results of Theorem 2.3 continue

to hold in the present case with autocorrelated errors, although the noncentrality parameter is different.
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Theorem 4.1 There exists a local maximizer τ̂ = (θ̂, ψ̂
0
)0 of (18), which satisfies, as n→∞,

√
n (τ̂ − τ0)→d N

¡
0,Ξ−1

¢
, (21)

and in particular
√
nθ̂n →d N

¡
0, I−1s

¢
, (22)

where

Ξ =

 π2K
6 (vecΦ0)0

vecΦ0 Γ⊗ Σ−1


Is =

π2K

6
− trΦΓ−1Φ0Σ. (23)

Here, Γ is the covariance matrix of (e0t, ..., e0t−p+1)0, Φ =
¡
Φ01, ...,Φ0p

¢0
, Φi =

P∞
j=i j

−1aj−i, and ai is the

coefficient to zi in the Wold representation of {et}.
The LR, W, and LM test statistics in (19), (10), and (12), with Sn defined in (20) and Is defined

in (23), are asymptotically equivalent and distributed as χ21
¡Isδ2¢ under the local alternatives H1n : θ =

δ/
√
n.

Under the additional assumption of Gaussianity, τ̂ is asymptotically efficient in the sense that its

asymptotic variance attains the Cramér-Rao lower bound, and the tests are efficient in the Pitman sense.

Setting {εt} equal to {et}, i.e. Γ = Φ = 0, the results in section 2 with i.i.d. errors appear as a

special case of this more general theorem. Furthermore, Γ⊗ Σ−1 is the normalized Fisher information
for ψ in the VAR(p) model (16) in case {et} was an observed process.
As a simple example consider the VAR(1), et = Aet−1+εt =

P∞
j=0A

jεt−j . In this case, (23) reduces

to π2K/6 − trΦ1Γ−1Φ01Σ, where Φ1 = IK +
P∞

j=2 j
−1Aj−1 and Γ = E (ete

0
t) can be estimated by

n−1
Pn

t=1 êtê
0
t or recovered from the relation vecΓ = (IK2 −A⊗A)−1 vecΣ. When A is diagonalizable,

with eigenvalues denoted λ1, ..., λK , Φ1 is easily calculated by diagonalization of A, viz.

Φ1 = IK +
∞X
j=2

j−1P diag
³
λj−11 , ..., λj−1K

´
P−1

= P diag
¡−λ−11 ln (1− λ1) , ...,−λ−1K ln (1− λK)

¢
P−1,

where P is the matrix having the eigenvectors of A as its columns.

Proceeding to the case with a different θk for each equation, an important caveat applies in our

multivariate setup as pointed out by Lobato (1997) in a different context. Namely that the ordering of the

autoregressive polynomial and the differencing operator matters. In our multivariate ARFIMA(p, d, 0)

12



time series model in (1)− (2) , (16), it is apparent that ukt (and thus also ykt) is integrated of order dk
for all k = 1, ...,K. However, suppose instead that the model (bivariate for simplicity) was given by (1− L)

d1 0

0 (1− L)
d2

 a11 (L) a12 (L)

a21 (L) a22 (L)

 u1t

u2t

 =

 ε1t

ε2t

 , (24)

where the autoregressive polynomial and the differencing operator have been interchanged compared to

(1)− (2) , (16). Then we can write u1t as

(a11 (L) a22 (L)− a12 (L) a21 (L)) (1− L)d1+d2 u1t = a22 (L) (1− L)d2 ε1t − a12 (L) (1− L)d1 ε2t (25)

and thus u1t ∈ I (d2) if d1 < d2 and a12 (1) 6= 0, and u1t ∈ I (d1) otherwise. Similarly, u2t ∈ I (d1) if

d2 < d1 and a21 (1) 6= 0, and u2t ∈ I (d2) otherwise. The model (24) is equivalent to our model only in

the univariate setup or when dk = d for all k = 1, ...,K, i.e. when the situation is as in section 2.

In the present case with autocorrelated errors and a different θk for each equation, the function

g (θ, ψ) is still given by (18), but θ is now a vector and Σ (θ, ψ) is redefined accordingly. We then have

the following theorem.

Theorem 4.2 There exists a local maximizer τ̂ = (θ̂, ψ̂
0
)0, where θ̂ is now a K-vector, which satisfies,

as n→∞,
√
n (τ̂ − τ0)→d N

¡
0,Ξ−1

¢
, (26)

and in particular
√
nθ̂n →d N

¡
0, I−1d

¢
, (27)

where

Ξ =

 π2

6 Σ¯Σ−1 J 0K (Φ⊗ IK)

(Φ0 ⊗ IK)JK Γ⊗ Σ−1

 ,
Id =

π2

6
Σ¯Σ−1 − ¡ΣΦΓ−1Φ0Σ¢¯Σ−1, (28)

Γ and Φ are defined in Theorem 4.1, and JK is defined in Lemma 2. The LR, W, and LM test statistics in

(19), (10), and (12), with C (j) replaced by C̃ (j) and Is replaced by Id defined in (28), are asymptotically
equivalent and distributed as χ2K

¡
δ0Idδ

¢
under the local alternatives. Under the additional assumption

of Gaussianity, τ̂ and the tests are asymptotically efficient.

Consistent estimates of the parameters Φi and Γ appearing in the asymptotic distributions in The-

orems 4.1 and 4.2 can be obtained from the formulae given above using estimates τ̂ or τ̃ = (0, ψ̃).
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We end this section by remarking that the LR test statistic has the computational advantage that

there is no need to calculate the covariance matrices in Is and Id, i.e. the Φ and Γ matrices, which can
be quite cumbersome when p ≥ 2.

5 Testing Common Unknown Integration Order

Now we consider the case where d is a nuisance parameter instead of a prespecified parameter, and

therefore dmust be estimated under the null and alternative hypotheses. Alternatively, we can formulate

the hypothesis in the framework of section 3 as

H0 : Rθ = 0, R = [IK−1;−ι] , (29)

where ι = [1, ..., 1]0. Thus, again only θ is of interest and d returns to being prespecified. Notice that

rank(R) = K−1 such that there are K−1 restrictions. Under H0 we estimate a common θ = θ̃ (scalar)

as in Theorems 2.2 and 4.1, and under the alternative we estimate θ = θ̂ (K-vector) as in Theorems 3.2

and 4.2. The test statistics are

LR = 2
³
L(θ̂, ψ̂, Σ̂)− L(θ̃, ψ̃, Σ̃)

´
, (30)

W = nθ̂R0
¡
RI−1d R0

¢−1
Rθ̂, (31)

LM =
∂L (θ, ψ,Σ)

∂θ0

¯̄̄̄
H0

"
−E ∂2L (θ, ψ,Σ)

∂θ∂θ0

¯̄̄̄
H0

#−1
∂L (θ, ψ,Σ)

∂θ

¯̄̄̄
H0

, (32)

where L is the likelihood function with different θ’s and Id is defined in Theorems 3.1 and 4.2. The
limiting distributions under local alternatives is given in the following theorem.

Theorem 5.1 Under Rθ = δ/
√
n, δ a fixed (K-1)-vector, the test statistics in (30), (31), and (32) are

asymptotically equivalent and χ2K−1
¡
δ0RIdR0δ

¢
distributed, where Id is defined in Theorems 3.1 and

4.2. Under the additional assumption of Gaussianity the tests are efficient in the Pitman sense.

6 Finite Sample Performance

In this section we compare the finite sample properties of the LR test with the approximation offered

by asymptotic theory in sections 3 and 4. The asymptotic local power of the test is easily derived from

Theorems 3.3 and 4.2 as

P
¡
LR > χ2K,1−α

¢
= 1− Fλ

¡
χ2K,1−α

¢
, (33)
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where χ2K,1−α is the 100 (1− α)% point of the central χ2 distribution with K degrees of freedom and Fλ

is the distribution function of the noncentral χ2 distribution withK degrees of freedom and noncentrality

parameter λ = δ0Idδ defined in Theorems 3.1 and 4.2. Setting δ = θ
√
n in (33) we can compare the

asymptotic local power with the finite sample rejection frequencies for any fixed value of θ.

We report only the results for the LR test since Nielsen (2001) demonstrated the superiority of the

LR test in the univariate setting and since it has the computational advantage that there is no need to

compute the covariance matrices as argued in the previous sections.

The models we consider for the simulation study are the bivariate fractional unit root models,

Model A :

 (1− L)
1+θ1 0

0 (1− L)
1+θ2

ut = εtI (t ≥ 1) , (34)

Model B : (I2 −AL)

 (1− L)1+θ1 0

0 (1− L)
1+θ2

ut = εtI (t ≥ 1) , A =
 a 0

0 a

 , (35)

where the {εt} are i.i.d. N (0,Σ). The contemporaneous covariance matrix Σ is normalized such that

the diagonal elements equal unity and the correlation ρ is 0 or 0.6. The sensitivity of the test to the

parameters in the coefficient matrix A is examined in Table 3 below. Throughout, we fix the nominal

size (type I error) of the test at 5% and the number of replications at 10, 000. We consider the sample

sizes n = 100 and n = 250. All calculations were made in Ox version 3.20 including the Arfima package

version 1.01 (see Doornik (2001) and Doornik & Ooms (2001)).

Tables 1-2 about here

In Table 1 the finite sample rejection frequencies of the LR test with i.i.d. errors is presented, i.e.

Model A with ρ = 0 and ρ = 0.6. The asymptotic local power for the same value of (θ1, θ2) is given

in parenthesis. In each table the entry in bold corresponding to θ1 = θ2 = 0 gives the finite sample

size of the test. For both ρ = 0 and ρ = 0.6, the finite sample size of the test is very close to the

nominal 5% level, and the rejection frequencies are very close to the corresponding asymptotic local

power. Notice that with positive contemporaneous correlation the power of the test (both finite sample

and asymptotic) is especially high when θ1 and θ2 are of opposite sign.

Table 2 shows the finite sample rejection frequencies and asymptotic local power of the LR test for

Model B with a = 0.5. In this case the test is slightly size distorted, especially when ρ = 0.6 where the

finite sample sizes are 0.0741 and 0.0838 for n = 100 and n = 250, respectively. For both sample sizes

the rejection frequencies are close to the asymptotic local power even in this model with autocorrelated

errors. As before, power is particularly high in the correlated case when θ1 and θ2 are of opposite sign,

and it also seems that the finite sample power is highest against negative values of θ1 and θ2.
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Table 3 about here

To evaluate the sensitivity to the particular value of the coefficient matrix in the autoregressive

specification in Model B, Table 3 presents the finite sample sizes of the LR test for different specifications

of the coefficient matrix A in (35). In particular the values a = −0.8,−0.6, ..., 0.8 are considered. Notice
that the column a = 0 corresponds to the case where a VAR(1) is estimated for {et} even though it is
really an i.i.d. sequence. Samples of n = 100, n = 250, and n = 500 are considered, and overall the size

distortions are small. E.g. for samples of n = 100 the finite sample size ranges from 0.0483 to 0.0899

for a nominal 5% test.

Rejection frequencies for the size corrected version of the LR test have been computed (analogously

to Tables 1 and 2), and can be obtained from the author upon request. The results are qualitatively

the same as without size correction since the test has only very little size distortion.

Overall, the LR test has good finite sample size and power properties as documented by the simulation

results in Tables 1-3. Even for samples of n = 100 the size of the test is good and rejection frequencies

are very close to the asymptotic local power calculated using the asymptotic distribution theory in the

previous sections.

7 Conclusion

We have proposed a maximum likelihood inference technique for multivariate fractionally integrated

time series models. This generalizes recent work for univariate fractionally integrated time series models

by Robinson (1994), Tanaka (1999), and Nielsen (2001), among others. In our multivariate framework,

we show that inference can be drawn from the standard normal and chi-squared distributions and that

the local MLE and related tests (Wald, LR, LM) are asymptotically efficient under Gaussianity. Our

results have a wide range of potential applications, but in particular, we can easily test if two or more

time series are integrated of the same possibly fractional order, with or without specifying this common

integration order.

When an autoregressive specification of the errors is estimated, the LR test has the computational

advantage that it avoids a cumbersome calculation of covariance matrices. In addition, previous Monte

Carlo evidence in Nielsen (2001) shows that, in the univariate model, the LR test is superior to the LM

and Wald tests in finite samples, and hence we favor the LR test for practical purposes.

To establish the empirical relevance of the LR test we have evaluated its finite sample properties by

Monte Carlo experiments, which show that the size of the test is close to the nominal level and that
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rejection frequencies are close to the asymptotic local power for samples as small as n = 100.

Appendix A: Proofs

Proof of Theorem 2.1. The denominator in g (θ) obviously converges in probability to |Σ| under
the stated assumptions. By the Mean Value Theorem we have that, as in Tanaka (1999, p. 579),

(1− L)d+θ ut = et − δ√
n

t−1X
j=1

j−1et−j + op(n
−1/2) (36)

uniformly in t. Consider each term in the expansion of the numerator in g (θ),

n |Σ (θ)|− n |Σ (0)| = δ
√
n |Σ (0)| tr

µ
Σ (0)

−1 ∂Σ (0)
∂θ

¶
+

δ2

2
|Σ (0)| tr

µ
Σ (0)

−1 ∂2Σ (0)
∂θ2

¶
−δ

2

2
|Σ (0)| tr

µ
Σ (0)−1

∂Σ (0)

∂θ
Σ (0)−1

∂Σ (0)

∂θ

¶
+
δ2

2
|Σ (0)| tr

µ
Σ (0)−1

∂Σ (0)

∂θ

¶2
+ op (1) .

It follows, using Σ (0)→p Σ and (36), that the first term is

δ
√
n |Σ| tr

Ã
Σ−1

2

n

nX
t=1

(ln (1− L) et) e
0
t

!
+ op (1) = −2√nδ |Σ| tr

Σ−1 1
n

nX
t=1

t−1X
j=1

j−1et−je0t

+ op (1)

→ d − 2δ |Σ|
r

π2K

6
Z

by Lemma 1 and the relation (vecA)0 vecB = tr (A0B). The next term is

δ2 |Σ| tr
Ã
Σ−1

1

n

nX
t=1

£
(ln (1− L) ln (1− L) et) e

0
t + (ln (1− L) et) (ln (1− L) et)

0¤!+ op (1)

= δ2 |Σ| tr
Σ−1 1

n

nX
t=1

t−1X
j=1

j−1

t−j−1X
j0=1

j0−1et−j−j0e0t +
t−1X
j0=1

j0−1et−je0t−j0

+ op (1)

→ pδ
2 |Σ| π

2K

6

by application of a law of large numbers and using the uncorrelatedness of {et}. The last two terms,

−2δ2 |Σ| tr
Σ−1 1

n2

nX
t=1

nX
s=1

t−1X
j=1

t−1X
j0=1

j−1j0−1et−je0tΣ
−1es−j0e0s

+ op (1) ,

2δ2 |Σ| tr
Σ−1 1

n

nX
t=1

t−1X
j=1

j−1et−je0t

2

+ op (1) ,
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are both negligible by Lemma 1. It follows that the numerator in g (θ) converges in distribution to

2δ
p
π2K/6Z − δ2π2K/6, and because

g (θ) = −n
2
ln

µ
1− 1

n
(2Ws (δ) + op (1))

¶
=Ws (δ) + op (1) (37)

we have established (i).

Next, we examine

∂g (θ)

∂δ
=

1√
n
tr

Σ (θ)−1 nX
t=1

t−1X
j=1

j−1
³
(1− L)d+θ ut−j

´³
(1− L)d+θ ut

´0 ,

which equals, using (36) and that Σ (θ)→p Σ (also follows from (36)),

1√
n
tr

Σ−1 nX
t=1

t−1X
j=1

j−1

et−j − δ√
n

t−j−1X
j0=1

j0−1et−j−j0

e0t −
δ√
n

t−1X
j0=1

j0−1e0t−j0


=

1√
n
tr

Σ−1 nX
t=1

t−1X
j=1

j−1et−je0t

− δ

n
tr

Σ−1 nX
t=1

t−1X
j=1

j−2et−je0t−j

+ op (1)

by uncorrelatedness of {et}. As we have already seen above this converges in distribution to
p
π2K/6Z−

δπ2K/6, establishing (ii).

The second derivative is

∂2g (θ)

∂δ2
= − 1

n
tr

Σ (θ)−1 nX
t=1

t−1X
j=1

t−j−1X
j0=1

j−1j0−1
³
(1− L)

d+θ
ut−j−j0

´³
(1− L)

d+θ
ut

´0
− 1
n
tr

Σ (θ)−1 nX
t=1

t−1X
j=1

t−1X
j0=1

j−1j0−1
³
(1− L)

d+θ
ut−j

´³
(1− L)

d+θ
ut−j0

´0
− 1
n
tr

Σ (θ)−1 ∂Σ (θ)
∂θ

Σ (θ)−1
nX
t=1

t−1X
j=1

j−1
³
(1− L)d+θ ut−j

´³
(1− L)d+θ ut

´0 ,

which equals −n−1 tr(Σ−1Pn
t=1

Pt−1
j=1 j

−2et−je0t−j)+op (1) by uncorrelatedness of {et} and (36). Thus,
by a law of large numbers we establish (iii), completing the proof.

Proof of Theorem 2.2. By Theorem 2.1(iii), g (θ) is asymptotically a concave function of δ =
√
nθ

in a neighborhood of size O
¡
n−1/2

¢
of θ0. Hence, by Theorem 2.1 and the subsequent analysis, δ̂ =

√
nθ̂n

is asymptotically the unique maximizer ofWs (δ) in this neighborhood and its asymptotic distribution is

given by (8) by the usual expansion. Under Gaussianity of {et}, (4) is the true likelihood. The limiting
Fisher information is then given in Theorem 2.1(iii) as

lim
n→∞

1

n
E

µ
− ∂2g (θ)

∂θ∂θ0

¯̄̄̄
θ=0

¶
= Is,
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which is the inverse of the asymptotic variance as required.

Proof of Theorem 2.3. The asymptotic equivalence of the three test statistics follows in the

usual way since the information matrix equality holds, c.f. Theorem 2.1.

The distribution of the test statistics under local alternatives follows from Theorems 2.1 and 2.2 and

the Continuous Mapping Theorem. Furthermore, in view of Theorem 2.2 the noncentrality parameter

is maximal and thus the asymptotic relative efficiency is maximal.

Proof of Theorem 3.1. As before the denominator in g (θ) converges in probability to |Σ|.
Corresponding to (36) we now have

(1− L)dk+θk ukt = ekt − δk√
n

t−1X
j=1

j−1ek,t−j + op(n
−1/2), k = 1, ...,K, (38)

uniformly in t. Again we consider each term in the expansion of the numerator in g (θ),

n |Σ (θ)|− n |Σ (0)| =
√
n |Σ (0)| (vecΣ (0)−1)0 ∂ vecΣ (0)

∂θ0
δ (39)

+
δ0

2
|Σ (0)|

³
IK ⊗ (vecΣ (0)−1)0

´ ∂

∂θ0
vec

∂ vecΣ (0)

∂θ0
δ (40)

−δ
0

2
|Σ (0)|

µ
∂ vecΣ (0)

∂θ0

¶0 ³
Σ (0)

−1 ⊗ Σ (0)−1
´ ∂ vecΣ (0)

∂θ0
δ (41)

+
1

2

µ
|Σ (0)| (vecΣ (0)−1)0 ∂ vecΣ (0)

∂θ0
δ

¶2
+ op (1) . (42)

It follows, using that Σ (0)→p Σ by (38), that (39) is

− 2√
n
|Σ| ¡vecΣ−1¢0 nX

t=1

t−1X
j=1

j−1 (diag (et−j)⊗ et) δ + op (1)

= − 2√
n
|Σ| δ0

nX
t=1

t−1X
j=1

j−1 diag (et−j)Σ−1et + op (1)

= − 2√
n
|Σ| δ0

nX
t=1

t−1X
j=1

j−1J 0K
¡
IK ⊗ Σ−1

¢
(et−j ⊗ et) + op (1)

= −2 |Σ| δ0√n
n−1X
j=1

j−1J 0K
¡
IK ⊗ Σ−1

¢
vecC (j) + op (1)

by use of vec (ABC) = (C 0 ⊗A) vecB and property 1 of Lemma 2. By Lemma 1 and property 2 of

Lemma 2 this converges in distribution to −2 |Σ| δ0pπ2/6
¡
Σ¯Σ−1¢1/2 Z. Next, (40) is

δ0

n
|Σ|

nX
t=1

t−1X
j=1

j−1

t−j−1X
j0=1

j0−1
¡
e0tΣ
−1 ⊗ IK

¢
J (et−j−j0) +

t−1X
j0=1

j0−1 diag (et−j)Σ−1 diag (et−j0)

 δ+op (1) ,
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where J (et) is a K2 × K matrix whose k’th column has ((k − 1)K + k)’th element ekt and zeros

otherwise. By uncorrelatedness of {et} we are left with

δ0 |Σ|
n−1X
j=1

j−2
1

n

nX
t=j+1

diag (et−j)Σ−1 diag (et−j) δ + op (1)→p δ
0 |Σ| π

2

6

¡
Σ¯Σ−1¢ δ

by property 3 of Lemma 2 and a law of large numbers. Because (41) and (42) can be shown to be

negligible as in Theorem 2.1, we have shown (i) by using (37).

Next, we examine the first derivative of g (θ) which equals

1√
n

nX
t=1

t−1X
j=1

j−1 diag

et−j +
t−j−1X
j0=1

j0−1 diag (et−j−j0)
δ√
n

Σ−1
et +

t−1X
j0=1

j0−1 diag (et−j0)
δ√
n

+op (1) ,
by (38). By uncorrelatedness of {et} this is just

1√
n

nX
t=1

t−1X
j=1

j−1 diag (et−j)Σ−1et +
1

n

nX
t=1

t−1X
j=1

j−2 diag (et−j)Σ−1 diag (et−j) δ + op (1) ,

which establishes (ii) in view of the above.

The last statement follows in the same way.

Proof of Theorem 3.2. By Theorem 3.1 and the subsequent analysis, g (θ) is asymptotically

a concave function of δ =
√
nθ in a neighborhood of θ0, and δ̂ =

√
nθ̂n is asymptotically the unique

maximizer of Wd (δ) and is given by (14) in this neighborhood. Under Gaussianity the limiting Fisher

information is given by

lim
n→∞

1

n
E

µ
− ∂2g (θ)

∂θ∂θ0

¯̄̄̄
θ=0

¶
= Id

by Theorem 3.1(iii).

Proof of Theorem 3.3. As before the asymptotic equivalence follows since the information matrix

equality holds, c.f. Theorem 3.1. The distribution under local alternatives follows from Theorems 3.1

and 3.2, and in view of Theorem 3.2 the noncentrality parameter is maximal.

Proof of Theorem 4.1. Suppose θ = δ/
√
n and ψ − ψ0 = γ/

√
n. Then, using that

∂A (z)

∂Ar,jk
= −Ejkz

r, (43)

where Ejk is a K ×K matrix with (j, k)’th element one and all other elements zero, we get that

A (L) (1− L)
d+θ

ut = εt − δ√
n

t−1X
j=1

j−1εt−j −
¡¡
e0t−1, ..., e

0
t−p
¢⊗ IK

¢ γ√
n
+ op(n

−1/2) (44)

uniformly in t. This shows, in particular, that Σ (θ, ψ)→p Σ.
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Expand the numerator in g (θ, ψ) as

n |Σ (θ, ψ)|− n |Σ (0, ψ0)| =
√
n |Σ (0, ψ0)| (vecΣ (0, ψ0)−1)0

∂ vecΣ (0, ψ0)

∂τ 0
τ (45)

+
δ2

2
|Σ (0, ψ0)| tr

µ
Σ (0, ψ0)

−1 ∂2Σ (0, ψ0)
∂θ2

¶
(46)

+
γ0

2
|Σ (0, ψ0)| (IK ⊗ (vecΣ (0, ψ0)−1)0)

∂

∂γ0
vec

∂ vecΣ (0, ψ0)

∂γ0
γ (47)

+δ |Σ (0, ψ0)| (vecΣ (0, ψ0)−1)0
∂2 vecΣ (0, ψ0)

∂θ∂γ0
γ + op (1) . (48)

The terms corresponding to (41) and (42) have been merged into the op (1) term as they continue to be

asymptotically negligible. First, (45) is

−√n |Σ| 2
n

nX
t=1

t−1X
j=1

j−1
¡
vecΣ−1

¢0
(εt−j ⊗ εt) ,

¡
vecΣ−1

¢0 ¡¡
e0t−1, ..., e

0
t−p
¢⊗ IK ⊗ εt

¢ τ + op (1)

= − |Σ| τ 0 2√
n

nX
t=1

 Pt−1
j=1 j

−1 ¡ε0t−j ⊗ ε0t
¢
vecΣ−1³¡

e0t−1, ..., e
0
t−p
¢0 ⊗ IK ⊗ ε0t

´
vecΣ−1

+ op (1)

= − |Σ| τ 0 2√
n

nX
t=1

 Pt−1
j=1 j

−1ε0tΣ−1εt−j¡
e0t−1, ..., e0t−p

¢0 ⊗ Σ−1εt
+ op (1)

= − |Σ| τ 0 2√
n

nX
t=1

 Pt−1
j=1 j

−1 ¡vecΣ−1¢0 vec(εtε0t−j)
vec

¡
Σ−1εt

¡
e0t−1, ..., e

0
t−p
¢¢

+ op (1) ,

which converges in distribution to −2 |Σ| τ 0Ξ1/2Z using that et−i =
Pt−i−1

j=i aj−iεt−j and applying

Lemma 1. Next, (46) converges in probability to δ2 |Σ|π2K/6 as in the proof of Theorem 2.1, and (47)

is

γ0 |Σ| 1
n

nX
t=1

³¡
e0t−1, ..., e

0
t−p
¢0 ⊗ Σ−1´ ¡¡e0t−1, ..., e0t−p¢⊗ IK

¢
γ

+ γ0 |Σ| 1
n

nX
t=1


¡
e0t−2, ..., e0t−p−1

¢⊗ IK ⊗ Σ−1εt
...¡

e0t−p−1, ..., e
0
t−2p

¢⊗ IK ⊗ Σ−1εt

 γ + op (1) ,

where the first term converges in probability to γ0 |Σ| ¡Γ⊗ Σ−1¢ γ by definition of Γ and a law of large
numbers and the second term is negligible by uncorrelatedness of {εt}. Lastly, (48) is

2δ |Σ| ¡vecΣ−1¢0 1
n

nX
t=1

t−1X
j=1

j−1
¡¡
e0t−j−1, ..., e

0
t−j−p

¢⊗ IK ⊗ εt
¢
γ

+ 2δ |Σ| ¡vecΣ−1¢0 1
n

nX
t=1

t−1X
j=1

j−1
¡
εt−j ⊗

¡
e0t−1, ..., e

0
t−p
¢⊗ IK

¢
γ + op (1) ,
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where the first term is asymptotically negligible by uncorrelatedness of {εt} and the second term is

2δγ0 |Σ| 1
n

nX
t=1

t−1X
j=1

j−1 vec
¡
Σ−1εt−j

¡
e0t−1, ..., e

0
t−p
¢¢→p 2δγ

0 |Σ| vecΦ0

using et−i =
Pt−i−1

j=i aj−iεt−j .

Thus, we have shown that g (θ, ψ) is asymptotically a concave function of δ and γ in a neighborhood

of τ0, and θ̂ and ψ̂ are asymptotically given by (21). The remainder of the theorem follows as in

Theorems 2.1-2.3 in view of the above.

Proof of Theorem 4.2. Combine the arguments of the previous theorems using the properties of

Lemma 2 as in the proof of Theorem 3.1.

Proof of Theorem 5.1. Follows straightforwardly from Theorems 3.3 and 4.2.

Appendix B: Technical Lemmas

Define the (white noise) autocovariance function

C (j) =
1

n

nX
t=j+1

εtε
0
t−j

where {εt} is a mean zero i.i.d. sequence with covariance matrix Σ and finite fourth moments. We

consider the asymptotic distribution of a particular linear combination of the autocovariances in the

following lemma.

Lemma 1 Let {εt} be i.i.d. (0,Σ) with finite fourth moments. Then

√
n
n−1X
j=1

j−1 vecC (j)→d N

µ
0,
π2

6
Σ⊗ Σ

¶
as n→∞.

Proof. For a fixed m > 0 define the K2m-vector Cm =
¡
(vecC (1))0 , ..., (vecC (m))0

¢0
. It is well

known that
√
nCm →d N (0, Im ⊗ Σ⊗ Σ) ,

and thus
√
n

mX
j=1

j−1 vecC (j)→d N

0, mX
j=1

j−2Σ⊗ Σ
 .
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The desired convergence now follows by application of Bernstein’s Lemma, see e.g. Hall & Heyde (1980,

pp. 191-192).

The next lemma derives some properties of the Hadamard product, which is defined for two m× n

matrices A = (aij) and B = (bij) as

A¯B = (aijbij) ,

see e.g. Magnus & Neudecker (1999, Chapter 3.6) for more details. The proof of the lemma is easy and

is omitted.

Lemma 2 Property 1. There exists a K2×K matrix JK := (vecE11, ..., vecEKK), Eii = eie
0
i where ei

is the i0th unit K-vector, such that for any K ×K matrix A

J 0K vecA = a,

where a is the K-vector holding the diagonal of A. If Ad := IK¯A is the diagonal matrix obtained from

A then

vecAd = JKa.

Property 2. Connection with the Kronecker product. For all K ×K matrices A and B,

J 0K (A⊗B) JK = A¯B

where JK is defined as in property 1.

Property 3. Let A and B be K ×K matrices such that A is diagonal and B is symmetric. Then

ABA = aa0 ¯B

where a is defined as in property 1.

References

Agiakloglou, C. & Newbold, P. (1994), ‘Lagrange multiplier tests for fractional difference’, Journal of

Time Series Analysis 15, 253—262.

Beran, J. (1995), ‘Maximum likelihood estimation of the differencing parameter for invertible short and

long memory autoregressive integrated moving average models’, Journal of the Royal Statistical

Society Series B 57, 659—672.

23



Breitung, J. & Hassler, U. (2002), ‘Inference on the cointegration rank in fractionally integrated

processes’, Journal of Econometrics 110, 167—185.

Choi, I. & Ahn, B. C. (1999), ‘Testing the null of stationarity for multiple time series’, Journal of

Econometrics 88, 41—77.

Dolado, J. J., Gonzalo, J. & Mayoral, L. (2002), ‘A fractional dickey-fuller test for unit roots’, Econo-

metrica 70, 1963—2006.

Doornik, J. A. (2001), Ox: An Object-Oriented Matrix Language, 4th edn, Timberlake Consultants

Press, London.

Doornik, J. A. & Ooms, M. (2001), ‘A package for estimating, forecasting and simulating arfima models:

Arfima package 1.01 for Ox’, Working Paper, Nuffield College, Oxford .

Hall, P. & Heyde, C. C. (1980), Martingale Limit Theory and its Application, Academic Press, New

York.

Hosking, J. R. M. (1980), ‘The multivariate portmanteau statistic’, Journal of the American Statistical

Association 75, 602—608.

Hosoya, Y. (1996), ‘The quasi-likelihood approach to statistical inference on multiple time-series with

long-range dependence’, Journal of Econometrics 73, 217—236.

Jeganathan, P. (1999), ‘On asymptotic inference in cointegrated time series with fractionally integrated

errors’, Econometric Theory 15, 583—621.

Johansen, S. (1988), ‘Statistical analysis of cointegration vectors’, Journal of Economic Dynamics and

Control 12, 231—254.

Ling, S. & Li, W. K. (2001), ‘Asymptotic inference for nonstationary fractionally integrated autoregres-

sive moving-average models’, Econometric Theory 17, 738—764.

Lobato, I. N. (1997), ‘Consistency of the averaged cross-periodogram in long memory series’, Journal of

Time Series Analysis 18, 137—155.

Magnus, J. R. & Neudecker, H. (1999), Matrix Differential Calculus with Applications in Statistics and

Econometrics, revised edn, John Wiley and Sons, New York.

Marinucci, D. & Robinson, P. M. (1999), ‘Alternative forms of fractional Brownian motion’, Journal of

statistical planning and inference 80, 111—122.

24



Nielsen, M. Ø. (2001), ‘Efficient likelihood inference in nonstationary univariate models’, Department of

Economics Working Paper 2001-08 (revised 2002), University of Aarhus .

Nielsen, M. Ø. (2002), ‘Optimal residual based tests for fractional cointegration and exchange rate

dynamics’, Department of Economics Working Paper 2002-7, University of Aarhus .

Phillips, P. C. B. & Durlauf, S. N. (1986), ‘Multiple time series regression with integrated processes’,

Review of Economic Studies 53, 473—495.

Robinson, P. M. (1991), ‘Testing for strong serial correlation and dynamic conditional heteroskedasticity

in multiple regressions’, Journal of Econometrics 47, 67—84.

Robinson, P. M. (1994), ‘Efficient tests of nonstationary hypotheses’, Journal of the American Statistical

Association 89, 1420—1437.

Sargan, J. D. & Bhargava, A. (1983), ‘Maximum likelihood estimation of regression models with first

order moving average errors when the root lies on the unit circle’, Econometrica 51, 799—820.

Tanaka, K. (1999), ‘The nonstationary fractional unit root’, Econometric Theory 15, 549—582.

Watson, M. W. (1994), Vector autoregressions and cointegration, in R. F. Engle & D. L. McFadden,

eds, ‘Handbook of Econometrics, Vol. IV’, North-Holland, Amsterdam, chapter 47, pp. 2843—2915.

25



T
ab
le
1:
Si
m
ul
at
io
n
re
su
lt
s
fo
r
M
od
el
A
.

n
=
10
0

ρ
=
0

ρ
=
0.
6

θ 1
\θ

2
−0

.3
−0

.2
−0

.1
0

0.
1

0.
2

0.
3

−0
.3

−0
.2

−0
.1

0
0.
1

0.
2

0.
3

−0
.3

0.
99
69

(0
.9
9
9
1
)

0.
97
85

(0
.9
9
0
0
)

0.
92
40

(0
.9
6
1
5
)

0.
89
10

(0
.9
4
1
2
)

0.
92
68

(0
.9
6
1
5
)

0.
97
52

(0
.9
9
0
0
)

0.
99
61

(0
.9
9
9
1
)

0.
99
70

(0
.9
9
9
1
)

0.
9
79
0

(0
.9
9
2
3
)

0.
96
34

(0
.9
8
5
8
)

0.
98
14

(0
.9
9
3
9
)

0.
99
71

(0
.9
9
9
5
)

0.
99
9
8

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

−0
.2

0.
97
72

(0
.9
9
0
0
)

0.
86
26

(0
.9
1
1
5
)

0.
64
10

(0
.7
3
0
3
)

0.
53
05

(0
.6
2
6
6
)

0.
66
54

(0
.7
3
0
3
)

0.
87
66

(0
.9
1
1
5
)

0.
97
66

(0
.9
9
0
0
)

0.
98
34

(0
.9
9
2
3
)

0.
8
62
1

(0
.9
1
1
5
)

0.
70
41

(0
.7
7
7
9
)

0.
74
72

(0
.8
2
6
6
)

0.
92
99

(0
.9
6
2
5
)

0.
99
3
1

(0
.9
9
8
6
)

0.
99
96

(1
.0
0
0
0
)

−0
.1

0.
92
47

(0
.9
6
1
5
)

0.
65
54

(0
.7
3
0
3
)

0.
30
30

(0
.3
4
9
1
)

0.
16
65

(0
.1
9
1
9
)

0.
32
57

(0
.3
4
9
1
)

0.
71
44

(0
.7
3
0
3
)

0.
93
93

(0
.9
6
1
5
)

0.
96
74

(0
.9
8
5
8
)

0.
6
90
9

(0
.7
7
7
9
)

0.
30
80

(0
.3
4
9
1
)

0.
24
25

(0
.2
8
0
3
)

0.
61
66

(0
.6
5
4
8
)

0.
93
2
2

(0
.9
6
2
5
)

0.
99
27

(0
.9
9
9
5
)

0
0.
88
77

(0
.9
4
1
2
)

0.
52
21

(0
.6
2
6
6
)

0.
16
22

(0
.1
9
1
9
)

0
.0
5
2
2

(0
.0
5
0
0
)

0.
21
35

(0
.1
9
1
9
)

0.
63
60

(0
.6
2
6
6
)

0.
90
93

(0
.9
4
1
2
)

0.
97
99

(0
.9
9
3
9
)

0.
7
52
3

(0
.8
2
6
6
)

0.
24
35

(0
.2
8
0
3
)

0
.0
5
1
1

(0
.0
5
0
0
)

0.
29
81

(0
.2
8
0
3
)

0.
80
8
3

(0
.8
2
6
6
)

0.
98
06

(0
.9
9
3
9
)

0.
1

0.
92
68

(0
.9
6
1
5
)

0.
65
82

(0
.7
3
0
3
)

0.
33
17

(0
.3
4
9
1
)

0.
20
43

(0
.1
9
1
9
)

0.
37
10

(0
.3
4
9
1
)

0.
71
54

(0
.7
3
0
3
)

0.
93
52

(0
.9
6
1
5
)

0.
99
70

(0
.9
9
9
5
)

0.
9
27
3

(0
.9
6
2
5
)

0.
61
50

(0
.6
5
4
8
)

0.
29
76

(0
.2
8
0
3
)

0.
36
22

(0
.3
4
9
1
)

0.
76
1
6

(0
.7
7
7
9
)

0.
96
71

(0
.9
8
5
8
)

0.
2

0.
97
79

(0
.9
9
0
0
)

0.
87
04

(0
.9
1
1
5
)

0.
71
54

(0
.7
3
0
3
)

0.
63
27

(0
.6
2
6
6
)

0.
72
30

(0
.7
3
0
3
)

0.
88
81

(0
.9
1
1
5
)

0.
97
81

(0
.9
9
0
0
)

0.
99
97

(1
.0
0
0
0
)

0.
9
93
0

(0
.9
9
8
6
)

0.
93
58

(0
.9
6
2
5
)

0.
80
61

(0
.8
2
6
6
)

0.
75
57

(0
.7
7
7
9
)

0.
89
3
8

(0
.9
1
1
5
)

0.
98
09

(0
.9
9
2
3
)

0.
3

0.
99
71

(0
.9
9
9
1
)

0.
97
98

(0
.9
9
0
0
)

0.
93
88

(0
.9
6
1
5
)

0.
91
41

(0
.9
4
1
2
)

0.
93
87

(0
.9
6
1
5
)

0.
97
65

(0
.9
9
0
0
)

0.
99
58

(0
.9
9
9
1
)

1.
00
00

(1
.0
0
0
0
)

0.
9
99
9

(1
.0
0
0
0
)

0.
99
58

(0
.9
9
9
5
)

0.
97
88

(0
.9
9
3
9
)

0.
96
93

(0
.9
8
5
8
)

0.
98
0
2

(0
.9
9
2
3
)

0.
99
60

(0
.9
9
9
1
)

n
=
25
0

ρ
=
0

ρ
=
0.
6

θ 1
\θ

2
−0

.3
−0

.2
−0

.1
0

0.
1

0.
2

0.
3

−0
.3

−0
.2

−0
.1

0
0.
1

0.
2

0.
3

−0
.3

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
99
99

(0
.9
9
9
9
)

0.
99
96

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
0
00
0

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
0
0

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

−0
.2

1.
00
00

(1
.0
0
0
0
)

0.
99
94

(0
.9
9
9
7
)

0.
98
00

(0
.9
8
7
4
)

0.
94
35

(0
.9
6
1
5
)

0.
98
30

(0
.9
8
7
4
)

0.
99
93

(0
.9
9
9
7
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
9
99
6

(0
.9
9
9
7
)

0.
99
02

(0
.9
9
3
4
)

0.
99
42

(0
.9
9
7
1
)

1.
00
00

(1
.0
0
0
0
)

1.
00
0
0

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

−0
.1

0.
99
99

(1
.0
0
0
0
)

0.
98
04

(0
.9
8
7
4
)

0.
69
21

(0
.7
3
0
3
)

0.
37
01

(0
.4
2
5
7
)

0.
70
79

(0
.7
3
0
3
)

0.
98
06

(0
.9
8
7
4
)

0.
99
98

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
9
90
0

(0
.9
9
3
4
)

0.
69
17

(0
.7
3
0
3
)

0.
57
31

(0
.6
1
5
6
)

0.
95
86

(0
.9
7
0
7
)

0.
99
9
6

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0
0.
99
99

(0
.9
9
9
9
)

0.
94
11

(0
.9
6
1
5
)

0.
37
04

(0
.4
2
5
7
)

0
.0
5
2
1

(0
.0
5
0
0
)

0.
45
99

(0
.4
2
5
7
)

0.
94
68

(0
.9
6
1
5
)

0.
99
97

(0
.9
9
9
9
)

1.
00
00

(1
.0
0
0
0
)

0.
9
93
6

(0
.9
9
7
1
)

0.
56
83

(0
.6
1
5
6
)

0
.0
5
3
5

(0
.0
5
0
0
)

0.
62
84

(0
.6
1
5
6
)

0.
99
2
0

(0
.9
9
7
1
)

1.
00
00

(1
.0
0
0
0
)

0.
1

1.
00
00

(1
.0
0
0
0
)

0.
98
04

(0
.9
8
7
4
)

0.
71
18

(0
.7
3
0
3
)

0.
44
02

(0
.4
2
5
7
)

0.
73
23

(0
.7
3
0
3
)

0.
98
00

(0
.9
8
7
4
)

0.
99
99

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
9
99
7

(1
.0
0
0
0
)

0.
95
70

(0
.9
7
0
6
)

0.
62
69

(0
.6
1
5
6
)

0.
73
60

(0
.7
3
0
3
)

0.
98
7
1

(0
.9
9
3
4
)

1.
00
00

(1
.0
0
0
0
)

0.
2

1.
00
00

(1
.0
0
0
0
)

0.
99
93

(0
.9
9
9
7
)

0.
98
02

(0
.9
8
7
4
)

0.
94
99

(0
.9
6
1
5
)

0.
98
11

(0
.9
8
7
4
)

0.
99
93

(0
.9
9
9
7
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
0
00
0

(1
.0
0
0
0
)

0.
99
97

(1
.0
0
0
0
)

0.
99
21

(0
.9
9
7
1
)

0.
98
86

(0
.9
9
3
4
)

0.
99
9
4

(0
.9
9
9
7
)

1.
00
00

(1
.0
0
0
0
)

0.
3

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
99
98

(0
.9
9
9
9
)

0.
99
99

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
0
00
0

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

0.
99
98

(1
.0
0
0
0
)

1.
00
0
0

(1
.0
0
0
0
)

1.
00
00

(1
.0
0
0
0
)

26



T
ab
le
2:
Si
m
ul
at
io
n
re
su
lt
s
fo
r
M
od
el
B
w
it
h
a
=
0.
5.

n
=
10
0

ρ
=
0

ρ
=
0.
6

θ 1
\θ

2
−0

.3
−0

.2
−0

.1
0

0.
1

0.
2

0.
3

−0
.3

−0
.2

−0
.1

0
0.
1

0.
2

0.
3

−0
.3

0.
37
77

(0
.3
8
4
4
)

0.
25
55

(0
.2
8
7
6
)

0.
19
77

(0
.2
2
9
6
)

0.
18
72

(0
.2
0
9
6
)

0.
20
61

(0
.2
2
9
0
)

0.
23
94

(0
.2
8
7
6
)

0.
28
58

(0
.3
8
4
4
)

0.
41
78

(0
.3
8
4
4
)

0.
3
06
4

(0
.2
9
8
6
)

0.
28
71

(0
.2
7
2
9
)

0.
31
99

(0
.3
0
8
4
)

0.
35
20

(0
.4
0
3
3
)

0.
38
0
9

(0
.5
4
5
7
)

0.
40
76

(0
.7
0
5
1
)

−0
.2

0.
26
12

(0
.2
8
7
6
)

0.
14
62

(0
.1
9
0
4
)

0.
10
50

(0
.1
3
4
3
)

0.
09
73

(0
.1
1
6
4
)

0.
11
24

(0
.1
3
4
3
)

0.
14
52

(0
.1
9
0
4
)

0.
17
88

(0
.2
8
7
6
)

0.
30
81

(0
.2
9
8
6
)

0.
1
85
9

(0
.1
9
0
4
)

0.
14
60

(0
.1
4
4
6
)

0.
16
35

(0
.1
5
7
3
)

0.
21
05

(0
.2
3
0
2
)

0.
26
4
5

(0
.3
6
5
3
)

0.
29
37

(0
.5
4
5
7
)

−0
.1

0.
19
19

(0
.2
2
9
0
)

0.
10
00

(0
.1
3
4
3
)

0.
06
47

(0
.0
8
1
9
)

0.
05
86

(0
.0
6
5
6
)

0.
07
41

(0
.0
8
1
9
)

0.
10
15

(0
.1
3
4
3
)

0.
12
37

(0
.2
2
9
0
)

0.
28
44

(0
.2
7
2
9
)

0.
1
44
6

(0
.1
4
4
6
)

0.
09
14

(0
.0
8
1
9
)

0.
09
00

(0
.0
7
4
7
)

0.
12
47

(0
.1
2
0
8
)

0.
17
1
7

(0
.2
3
0
2
)

0.
22
37

(0
.4
0
3
3
)

0
0.
18
70

(0
.2
0
9
6
)

0.
09
90

(0
.1
1
6
4
)

0.
06
36

(0
.0
6
5
6
)

0
.0
5
7
0

(0
.0
5
0
0
)

0.
06
35

(0
.0
6
5
6
)

0.
08
73

(0
.1
1
6
4
)

0.
10
39

(0
.2
0
9
6
)

0.
31
23

(0
.3
0
8
4
)

0.
1
64
4

(0
.1
5
7
3
)

0.
08
81

(0
.0
7
4
7
)

0
.0
7
4
1

(0
.0
5
0
0
)

0.
08
91

(0
.0
7
4
7
)

0.
12
8
9

(0
.1
5
7
3
)

0.
17
49

(0
.3
0
8
4
)

0.
1

0.
20
95

(0
.2
2
9
0
)

0.
10
73

(0
.1
3
4
3
)

0.
06
94

(0
.0
8
1
9
)

0.
06
72

(0
.0
6
5
6
)

0.
07
29

(0
.0
8
1
9
)

0.
09
33

(0
.1
3
4
3
)

0.
10
52

(0
.2
2
9
0
)

0.
34
30

(0
.4
0
3
3
)

0.
2
11
7

(0
.2
3
0
2
)

0.
12
58

(0
.1
2
0
8
)

0.
08
76

(0
.0
7
4
7
)

0.
09
54

(0
.0
8
1
9
)

0.
11
8
7

(0
.1
4
4
6
)

0.
15
40

(0
.2
7
2
9
)

0.
2

0.
23
82

(0
.2
8
7
6
)

0.
14
39

(0
.1
9
0
4
)

0.
09
94

(0
.1
3
4
3
)

0.
09
07

(0
.1
1
6
4
)

0.
08
84

(0
.1
3
4
3
)

0.
09
83

(0
.1
9
0
4
)

0.
12
30

(0
.2
8
7
6
)

0.
40
08

(0
.5
4
5
7
)

0.
2
55
8

(0
.3
6
5
3
)

0.
17
96

(0
.2
3
0
2
)

0.
13
54

(0
.1
5
7
3
)

0.
11
83

(0
.1
4
4
6
)

0.
12
3
5

(0
.1
9
0
4
)

0.
14
87

(0
.2
9
8
6
)

0.
3

0.
27
50

(0
.3
8
4
4
)

0.
18
13

(0
.2
8
7
6
)

0.
12
96

(0
.2
2
9
0
)

0.
11
08

(0
.2
0
9
6
)

0.
11
33

(0
.2
2
9
0
)

0.
11
98

(0
.2
8
7
6
)

0.
13
58

(0
.3
8
4
4
)

0.
46
77

(0
.7
0
5
1
)

0.
3
28
2

(0
.5
4
5
7
)

0.
23
03

(0
.4
0
3
3
)

0.
17
52

(0
.3
0
8
4
)

0.
15
57

(0
.2
7
2
9
)

0.
15
4
5

(0
.2
9
8
6
)

0.
15
85

(0
.3
8
4
4
)

n
=
25
0

ρ
=
0

ρ
=
0.
6

θ 1
\θ

2
−0

.3
−0

.2
−0

.1
0

0.
1

0.
2

0.
3

−0
.3

−0
.2

−0
.1

0
0.
1

0.
2

0.
3

−0
.3

0.
87
79

(0
.7
7
8
4
)

0.
73
21

(0
.6
2
9
1
)

0.
61
57

(0
.5
1
1
2
)

0.
55
96

(0
.4
6
7
5
)

0.
59
81

(0
.5
1
1
2
)

0.
66
34

(0
.6
2
9
1
)

0.
73
30

(0
.7
7
8
4
)

0.
87
52

(0
.7
7
8
4
)

0.
7
55
8

(0
.6
4
8
9
)

0.
70
24

(0
.6
0
1
6
)

0.
74
07

(0
.6
6
5
8
)

0.
79
47

(0
.8
0
1
5
)

0.
83
6
9

(0
.9
2
3
9
)

0.
85
65

(0
.9
8
2
9
)

−0
.2

0.
72
82

(0
.6
2
9
1
)

0.
47
96

(0
.4
2
2
0
)

0.
31
30

(0
.2
7
7
8
)

0.
26
03

(0
.2
2
9
0
)

0.
29
90

(0
.2
7
7
8
)

0.
40
12

(0
.4
2
2
0
)

0.
51
07

(0
.6
2
9
1
)

0.
75
37

(0
.6
4
8
9
)

0.
5
03
2

(0
.4
2
2
0
)

0.
36
16

(0
.3
0
5
3
)

0.
38
19

(0
.3
3
8
8
)

0.
50
30

(0
.5
1
3
9
)

0.
61
0
9

(0
.7
5
3
2
)

0.
69
32

(0
.9
2
3
9
)

−0
.1

0.
60
19

(0
.5
1
1
2
)

0.
31
55

(0
.2
7
7
8
)

0.
15
07

(0
.1
3
4
3
)

0.
10
59

(0
.0
9
0
3
)

0.
14
66

(0
.1
3
4
3
)

0.
24
75

(0
.2
7
7
8
)

0.
35
94

(0
.5
1
1
2
)

0.
69
87

(0
.6
0
1
6
)

0.
3
56
0

(0
.3
0
5
3
)

0.
17
81

(0
.1
3
4
3
)

0.
14
89

(0
.1
1
4
7
)

0.
24
62

(0
.2
4
1
1
)

0.
40
0
9

(0
.5
1
3
9
)

0.
54
07

(0
.8
0
1
5
)

0
0.
55
60

(0
.4
6
7
5
)

0.
25
83

(0
.2
2
9
0
)

0.
10
58

(0
.0
9
0
3
)

0
.0
6
9
4

(0
.0
5
0
0
)

0.
10
07

(0
.0
9
0
3
)

0.
19
31

(0
.2
2
9
0
)

0.
30
21

(0
.4
6
7
5
)

0.
74
01

(0
.6
6
5
8
)

0.
3
88
0

(0
.3
3
8
8
)

0.
14
33

(0
.1
1
4
7
)

0
.0
8
3
8

(0
.0
5
0
0
)

0.
13
46

(0
.1
1
4
7
)

0.
26
9
3

(0
.3
3
8
8
)

0.
43
50

(0
.6
6
5
8
)

0.
1

0.
59
01

(0
.5
1
1
2
)

0.
30
55

(0
.2
7
7
8
)

0.
14
27

(0
.1
3
4
3
)

0.
10
61

(0
.0
9
0
3
)

0.
12
87

(0
.1
3
4
3
)

0.
21
03

(0
.2
7
7
8
)

0.
31
29

(0
.5
1
1
2
)

0.
78
34

(0
.8
0
1
5
)

0.
4
98
5

(0
.5
1
3
9
)

0.
25
34

(0
.2
4
1
1
)

0.
13
42

(0
.1
1
4
7
)

0.
14
14

(0
.1
3
4
3
)

0.
24
8
1

(0
.3
0
5
3
)

0.
39
06

(0
.6
0
1
6
)

0.
2

0.
66
22

(0
.6
2
9
1
)

0.
40
40

(0
.4
2
2
0
)

0.
24
51

(0
.2
7
7
8
)

0.
19
18

(0
.2
2
9
0
)

0.
21
12

(0
.2
7
7
8
)

0.
29
77

(0
.4
2
2
0
)

0.
38
65

(0
.6
2
9
1
)

0.
83
48

(0
.9
2
3
9
)

0.
6
15
2

(0
.7
5
3
2
)

0.
39
92

(0
.5
1
3
9
)

0.
27
49

(0
.3
3
8
8
)

0.
24
51

(0
.3
0
5
3
)

0.
30
7
5

(0
.4
2
2
0
)

0.
41
50

(0
.6
4
8
9
)

0.
3

0.
73
89

(0
.7
7
8
4
)

0.
51
77

(0
.6
2
9
1
)

0.
34
96

(0
.5
1
1
2
)

0.
30
78

(0
.4
6
7
5
)

0.
33
34

(0
.5
1
1
2
)

0.
41
25

(0
.6
2
9
1
)

0.
49
62

(0
.7
7
8
4
)

0.
87
53

(0
.9
8
2
9
)

0.
6
97
7

(0
.9
2
3
9
)

0.
54
42

(0
.8
0
1
5
)

0.
43
27

(0
.6
6
5
8
)

0.
39
46

(0
.6
0
1
6
)

0.
42
4
3

(0
.6
4
8
9
)

0.
49
25

(0
.7
7
8
4
)

27



Table 3: Simulated size of nominal 5% test for Model B.
n ρ \ a −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
100 0 0.0591 0.0613 0.0571 0.0672 0.0759 0.0825 0.0644 0.0483 0.0565

0.6 0.0558 0.0564 0.0629 0.0622 0.0736 0.0899 0.0814 0.0677 0.0779
250 0 0.0544 0.0583 0.0519 0.0538 0.0578 0.0771 0.0804 0.0570 0.0599

0.6 0.0546 0.0526 0.0561 0.0599 0.0564 0.0707 0.1023 0.0684 0.0692
500 0 0.0513 0.0533 0.0498 0.0530 0.0551 0.0601 0.0778 0.570 0.0637

0.6 0.0523 0.0512 0.0526 0.0537 0.0557 0.0566 0.0822 0.0707 0.0623
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