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Abstract

In this paper, we discuss how to best exploit the information contained in spells that
are in progress when an observation period begins, that is, left-censored and left-truncated
duration data. We provide a survey of censoring and truncation mechanisms in event his-
tory models. We describe some approaches that have been suggested in the literature
to deal with left-censoring. Our contribution is the description of ways to use additional
information to obtain more efficient parameter estimates using the left-censored informa-
tions, and particularly, the derivation of the associated likelihood expressions. In order to
use the information efficiently, we often resort to the stationarity assumption. Hence, we
provide a Hausman test for this assumption. The second part of the paper briefly presents
some empirical examples which demonstrates the efficiency gains associated with the use
of the information contained in the left-censored observations. In particular, we show
how the use of some additional pieces of information allows us to obtain more efficient
estimates of the parameters of interest. In doing this, we use the information reported in
the waves 1990-1992 of the French Labour Force Surveys on young French individuals.
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1. Introduction

Event history data have been increasingly used in recent years providing information both on
the times over which individuals change from one discrete state to another and on the sequence
of the states they occupy. These data are normally obtained through surveys carried out at
some specific dates. As a consequence, the information on the length of spells is frequently
incomplete and the data arising are said to be “censored” and/or ”truncated”.

Different kinds of censoring/truncation mechanisms exist in the framework of event history
models. The most common of them - right-censoring - concerns missing information on the
times and states occupied after the end of a given observation period and is routinely handled
in event history analysis. Another censoring mechanism arises when information on the times
and states occupied before the beginning of the observation period is missing. We generally
refer to this mechanism as left-censoring. Attempts to correct for left-censoring in empirical
applications are rare (e.g. Gritz, 1993; Rosholm, 2001; D’Addio and Rosholm, 2002), which
is partially because it is a very complex issue, and partially because it has been the general
perception that left-censored observations does not contain much information that can be
exploited in empirical studies. The complexity is mainly a consequence of the fact that
the entry rate into the initial state is unknown. Solutions to this problem have proceeded
either conditionally on very restrictive assumptions or discarded all left-censored observations.
However, in some situations the information embedded in the left-censored observations is
crucial, e.g. when the observation period is short and the fraction of left-censored observations
fairly large.

Left-censoring is a challenging issue, and the question of how to treat left-censoring arises
often in social science disciplines that rely heavily on survey data (e.g. in the analysis of
employment and unemployment duration, poverty duration, the duration of welfare depen-
dence etc.). In addition, the problem of left-censoring occurs in many other disciplines, like
epidemiology, where the beginning of the process is not known with certainty. For example,
in studies disease duration - like cancers - the onset of the disease is often not known (at least
not with certainty), see e.g. Andersen et al. (1993).

In this paper, we discuss ways in which we can best exploit the information contained in
spells that are in progress when an observation period begins. We begin by providing a survey

of censoring and truncation mechanisms in event history models, focusing on those affecting



data from the left. Further, we will describe some approaches that have been suggested in the
literature to deal with left-censoring. Our main contribution is the description of ways to use
additional information to obtain more efficient parameter estimates using the left-censored
informations, and particularly, the derivation of the associated likelihood expressions. In
order to use the information efficiently, we often resort to the stationarity assumption. Hence,
we provide a Hausman test for this assumption. The second part of the paper will briefly
present some empirical examples which demonstrates the efficiency gains associated with the
use of the information contained in the left-censored observations. In particular, we show how
the use of some additional pieces of information allows us to obtain more efficient estimates
of the parameters of interest. In doing this, we use the information reported in the waves
1990-1992 of the French Labour Force Surveys on young French individuals.

The paper is structured as follows. In the next section we characterise complete and
incomplete data and provide a description of the most common sample designs and of the
bias that can arise when spells in progress at the survey date are not duly accounted for.
In section 3, we illustrate and derive the relevant expressions for the situations termed left-
censoring and left-truncation, respectively. We derive the relevant likelihood expression when
we condition on all the available information and construct the stationarity test. Section 4 is
devoted to the empirical examples. In section 4.1 we concentrate on left-truncated schooling
durations and in section 4.2 on left-censored unemployment durations. Some conclusions are

drawn in section 5.

2. Characterisation of complete and incomplete data

2.1. Some definitions

We begin with a discussion of (left-) censoring and truncation. These concepts are often used
with meanings that vary from one study to the other and represent therefore a source of
confusion.

Some authors use the term censoring to refer to the situation when an individuals spell of
interest ends before the beginning of the observation period and thus is not observed at all,
see Keiding (1986) and Yamaguchi (1991). Conversely, truncation refers in this terminology

to the case where a spell is in progress when the observation period begins (Yamaguchi,



1991). A distinction is made between left truncation with an unknown origin date and left
truncation with a known origin date (Guo, 1993).

Other authors define censoring in duration and transition models as the lack of infor-
mation due to the finiteness of the observation period; this implies that missing information
on the right and the left is defined symmetrically, see e.g. Mayer and Tuma (1990) or Bloss-
feld and Rohwer (1995). A spell which is in progress at the beginning of the observation
period, and for which we observe only the duration from that point in time, is referred to as
left-censored. In this terminology, left truncation refers to spells that are in progress at the
beginning of the observation period, the origin date of which is known

In the exposition we adopt the latter terminology. This means that we use the terms
left truncation and left censoring to refer to situations for which the origin date of a spell
in progress at the start of the observation period is known and unknown, respectively. In a
similar manner, we define right-censoring as the situation arising when the complete duration

is not observed due to the finiteness of the observation period.

2.2. Duration variables for spells in progress at the first survey date

Define 7 to be calendar time (measured on the horizontal axis in figure 1) with 79 and 71
representing the beginning and the end of the observation period, respectively. For conve-
nience we assume 7g = 0. We denote with T, the length of time from 7¢ to the beginning of
the spell in which an individual was observed at calendar time 7, the elapsed duration (see
for instance the case C in figure 1). Similarly, we denote with T, the length of time from
To to the time when the individual leaves the initial state for the first time, the remaining
duration.!

Occupying a particular state at the beginning of the observation period implies having
entered it at some previous date —t.. An individual may at one time occupy one of J differ-
ent states, we refer with U(7) to the stochastic process in continuous time describing state

occupancy.

'In most of the analytical part of the paper we will ignore the possibility of right-censoring. All the

expression are straightforwardly modified to allow for right-censoring.



U(T) =u; < the individual is in the j'th state at calendar time 7
U(T) # u; < the individual is not in the j'th state at calendar time 7

We can now formally define the elapsed and remaining durations, assuming that the state

of interest is the state ug

T. = —sup{7 <0|U(T) #up}
= sup{7 > 0|U(T) =up}

ﬁ
|

The full duration of a spell which is in progress at the survey date can be thus defined as

T=T.+T,.2

2.3. Complete and incomplete data designs

We can distinguish among various situations regarding the observability of T, and T,.. We
represent them graphically in figure 1 below, where each line represents a spell experienced by
some individual. The duration of the spell is measured by the length of the line (T = T. +1;).
In particular, a solid line represents the observed part of the spell, while a dashed line

represents the portion of the spell that is unobserved.

[Figure 1 to be inserted here]
We turn now to the analysis of the different situations illustrated in figure 1.

A) No censoring: The observation A is complete: the full length of the spell after the
sampling date is known and no problem of either right or left censoring or truncation

arises.

B) right-censoring: T, is not observed (situations B; and Bz). Given that the observation

period is finite, some events may be still in progress at its end and therefore are only

2 ¢ . . .

“Some authors use the terms “backward” and “forward” recurrence times to refer to the duration variables
described above. In order to retrieve the useful distributions they use the properties of renewal processes,
with the term renewal corresponding to the replacement of one person by his successor. See for example Cox

(1962), Baydar and White (1988), and Lancaster (1990).



partially observed (right-censored). This form of missing data is routinely handled in
event history analysis. Right-censored data may also occur due to the loss of follow-
up, i.e. to nonresponse; in this situation right-censoring appears during the observation
period (case Bg). If censoring is the result of a random process, the censored observation
can be treated technically as a standard right-censored one.? If right-censoring is non-
random (as censoring occurring because of attrition in a panel study), corrections should
be introduced in order to avoid selectivity to bias the parameters of interest (see Rubin,

1987; Horowitz and Manski, 1996).

C) left-censoring: 7, is observed but 7, is not observed. This situation arises in many
longitudinal surveys (as for instance in the French Labour Force Survey) where at
each survey date individuals are asked to report the states they occupy at the date
of the survey and only up to some time prior to that date. As an example consider
the wave 1990 of the French Labour Force Survey. In January 1990 (the survey date),
individuals were asked to declare their status on the labour market since January 1989.
This means that only the state occupied at that date and those entered afterwards have
been reported. Thus, owing to the lack of additional questions about the entry date
in the state, the starting date of the spells that were in progress in January 1989 is
unknown. Left-censoring is a part of the “initial conditions” problem in event history
analysis (Heckman, 1981; Flinn and Heckman, 1982a,b; Ridder,1984; Heckman and
Singer, 1984, 1986).

D) left-censoring and right-censoring: both T, and T, are unobserved. The observations

arising in this case are both right and left-censored and occur, for instance, in panel
studies in which labour market histories are recorded. Given a solution for left-censored

observation, this case is routinely handled..

E) full right-censoring: Observation E is completely censored on the right. Entry and exit

into the spells occurs after the observation period.

F) full left-censoring : Observation F is fully censored on the left, which means that the

3For instance in the analysis of marriage, the occurence of death by an accident may be regarded as

independent of the hazard of getting married (Yamaguchi, 1991).



starting and ending dates are located before the beginning of the observation period.

These spells, like those described in case E, are not observed.

G) Left-truncation: Both T, and 7, are observed (case G1). This happens when for each

person the date of entry into the initial state is known and the follow-up lasts until
the spell ends. Sometimes we have sufficient retrospective information about the time
of entry into the initial state and thus we can reconstruct the complete spell of this
individual. The case of incomplete observation of 7). due to right-censoring (case G3)
can be also arise. This situation is, once again, routinely handled given a solution for

the case G;.

H) Left-truncation and full right-censoring: T, is observed and T, is not observed at all

(situation H in fig. 1). The observation is thus left-truncated and right-censored.
Sampling from the stock of people officially registered as unemployed at a unique date
and not conducting a follow-up study is an example of this truncation mechanism (see

Nickell, 1979).

In this paper we are concerned mainly with the cases described in C', D, GG; and G2 above,
i.e. with spells that are in progress at the beginning of the observation period. In general, one
can assume that the state occupied at a certain date is the result of the entire history of the
individual since he/she left the schooling system. The previous work on the initial conditions
problem and on the distribution of duration data (Heckman, 1981; Flinn and Heckman,
1982a, b; Ridder, 1984; Heckman and Singer, 1984, 1986; Lancaster, 1990; Hamerle, 1991;
Amemiya, 1999) provides an important framework within which various solutions to it can
be better understood; we rely therefore on this literature in the exposition.

Data on individuals’ behaviour over time can be collected essentially in two ways. When
it is possible to observe individual processes from the very beginning (as in the study of the
changes of labour market status of a group of school leavers) the sample likelihood is equal to
the likelihood of the stochastic process describing the individual behaviour over time. Given
that the beginning of the stochastic process is observed, the problem of initial conditions does
not arise.

When such information is not available (as it is usually the case), data are collected by

sampling stochastic processes that have been in progress for some time and by recording the



history of the sample processes over a specified period. In this case information comes from
two different sources, i.e. the evolution of the process and the observation period: both of
them must be taken into account to build the appropriate likelihood that has to be based
on the joint distribution of the past and on the future of the process as seen at the time of
sampling (Ridder, 1984).

If the analyst is interested in the exit rate out of a particular state, the population can be
sampled mainly in two ways. One way is to randomly sample the members of a population
at a fixed point of time 7¢ (e.g. the stock of unemployed at 7). Another way is to sample
the set of people when they enter (or leave) the state during an interval of time. We call
the first scheme “stock sampling” (Lancaster and Chesher, 1981; Lancaster, 1990; De Toldi,
Gouriéroux and Monfort, 1992). In this case one samples from a particular state and observes
the length of time that individuals subsequently spend in that state.

The second scheme is called “flow sampling” (Lancaster and Chesher, 1981; Lancaster,
1990); the entrants to (or the leavers of) the state during a specified period are sampled. In
this case one observes the starting time for spells of individuals who enter (leave) the state
of interest during a certain period.

Spells depicted in cases C, D, and G in the above figure are stock-sampled. They share
features of selective samples, that is, samples affected by some selection mechanism (see
Ridder, 1984; Chesher and Lancaster, 1983). To see why this point is important consider the
following: Let y be a scalar dependent variable and x a vector of covariates. Let f(y,x;3) be
the joint population distribution of (y,x), with 3 being a vector of parameters. In empirical
investigations the analyst specifies a model for y that is usually described by the conditional
distribution fi(y|x,3;), with B; being a subset of the vector 3. If x is exogenous to y, the
population density f(.) can be decomposed as follows (Ridder, 1984)

[y, x; B) =f1(ylx; B1) f2(x; B2)

where 3, and B, have no elements in common and satisfy 8 = {3;, 3} In other words x is
ancillary for 3; (Cox and Hinkley, 1974; Ridder, 1984). This implies that inference on (3,
can be based without loss of information on the conditional distribution fi(y|x,3;).

In the case of selective samples (like stock-sampled duration data) where the selection rule

is a consequence of a particular sample design, the sample density does not factorize, and



the likelihood based on it depends on the generally unknown distribution of the explanatory
variables. More precisely the distribution of explanatory variables become informative about
the parameters of interest. Ignoring stock-sampling may result in biased estimates for the
parameters of the duration distribution.

With reference to the cases C, D, Gy, G2 and H illustrated in figure 1 above, we can say
that the full length of a sampled spell will exceed the partial length measured by the survey,
i.e. T > T,. This phenomenon is called interruption-bias by Salant (1977).* Figure 1 also
suggests that spells with longer than average full lengths are more likely to be in progress
at the survey date, and this phenomenon is known as length-biased sampling (Salant, 1977;
Cox, 1962).

The outlined concepts imply that a clear distinction must be drawn between the random
variable “duration” that is sampled in existing surveys and the different concept that the

job-search theorists label with the same name.

3. The treatment of initial conditions

The transition rate from state ug to state u;, conditional on explanatory variables x (that

we assume to be time-invariant) can be written as

Pr{t<T <t+AUT) =u;|T >tx
hj(t|X): lim { — + ’ ( ) ]| ) }
A—0 A
where ¢ denotes the time spent in state ug, and U(T') denotes the stochastic process described
above, but here expressed in terms of the duration in the state wg. The hazard rate is the

sum of the transition intensities towards the J — 1 attainable destinations

J-1

h(tlx) =) hy(t]x)

J=1

The distribution function of T, F(t|x), writes

.
F(tlx) =1—exp {— / h(s\x)ds}
Jo
and the survivor function is

S(t|x) = 1 — F(t[x)

"What is observed is a part of an interrupted spell.



In addition, we define the destination-specific sub-density to be
fi(tx) = h;(t]x) - S(t[x)

3.1. The sample density of a stock sample

We will focus on the cases C', D, G1 and G, in figure 1. The crucial point is that individuals
are in a particular state at a specific sampling date. In order to derive the likelihood contri-
butions for the spells sampled under this particular sampling scheme we need to find the joint
conditional distribution of T, and T, where the word conditional refers to the presence of the
individual in a particular state at the beginning of the observation period. In the following
sections, we derive formally this joint density under alternatives assumptions concerning the
observability of 7.

We start the exposition with the case of left-truncation (cases G; and Gz). For this case,
we observe both the relevant duration variables necessary to build the joint density of the
initial spell. For the left-censoring cases C' and D in figure 1, we need to derive the marginal

densities for the observable parts of the spells from this conditional joint density.

3.1.1. Left-truncation

Being in state ug at the beginning of the observation periods is the condition for being
sampled. Let F4 correspond to the event ”the individual enters the initial state at time —t.

and leaves it at time ¢,”
El = {U(_te_) 75 ug, VT € [_teatT) : U(T) = Yo, U(tT> 7é U()}

and let Fo correspond to the event ”the individual enters the initial state at time —t. and

stays at least until ¢,” (i.e. the spell is right-censored)
By = {U(=t;) # ug, V7 € [~te,t,) : U(T) = up}

say E= {El,Eg_}
Consider the case of an individual ¢ being in the state ug at the sampling date 7o = 0.

The joint density of T, and 7, conditional on selection, say Pr[FE|ug,x]), where ug is taken

10



to be synonymous of the event U(0) = ug, can be written as

Pr [E N up|x]
Pr [ug|x]
Pr [E|x]

= Sl (3.1)

Pr[Elxug] =

Denote now the conditional probabilities governing the stochastic process U (1) by Pr{U(74)|U(74)},
for all 7, < Tp. Owing to the characteristics of the process, we define a jump at time 7 as

U(t~) # U(7). The entry rate into the state ug is now defined by

e(—te|x) Eiiinopr [U(te) = uo|UA(—t8 — A) # ug, X]

For Ej, the joint conditional density Pr[Ej|ug,x] can now be derived in the following

way: Define

Alte,tr|x) = Pr{T. > te, T, > tr|x}

- /oo e(—ulx)S(t, + ulx)du (3.2)

Evaluate Pr{T, = t¢, T, = t,|x} by taking the derivatives of (3.2) with respect to t. and t,,

0?A (te, tr|x)

Sy = e (—tefx) f (1 + L) (33)

Compute Py(x) = Pr[ug|x] by evaluating A(0,0|x)

Py(x) = A(0,0x) (3.4)
= ./0 e(—ulx)S(u|x)du

which is the probability of being in the state ug at time 79 = 0. Finally, compute

Alte, tr|x)

PI"(E1|X,’LL0) = A(O 0|X)

The above expression writes as

_ et e + 1)
N e LT 56

In the presence of multiple destinations, the density function f(t. + t,|x) in (3.6) is replaced
by fj(te +tr|x), such that expression (3.6) now writes f;(t, + te|x)e(—te|x). The same holds

for the expression in (3.4) where we have to sum over the J — 1 states attainable from ug.

11



Substituting for the expressions found, the joint density of T, T;., U(t,) = u;, conditional on

covariates x and on ug, writes

e(—te[x) fj(te + tr[x)

t87t7‘7 RS = T
ltertr, ussti0) = oo S () du

(3.7)

This density function represents the point of departure to build the likelihood contributions
of both left-truncated and left-censored spells.

In the case of a right-censored and left-truncated spell, that is, event Eo defined above,
it is straightforward by going through the same steps to verify that

e(= 1t|X) (te + tr[x)
Jo" e(—ulx)S (ulx)du

Pr (E2|X UO)

The expression in (3.7) is, in its general form, intractable. To find a solution, knowledge

of the entry rate, or some specific assumptions about it, is required.

3.1.2. Left-Censoring

In the cases C and D illustrated in figure 1 above, the elapsed duration is unknown.
In both situations, owing to the unobservability of T, we need to integrate (3.7) over T,

in order to obtain the correct density function that writes

g1, (tr|x, ug) = Jo e = u|x fi(u+t|x)du
0

(3.8)

(—u|x)S(ulx)du
It follows that either knowledge of the entry rate or specific assumptions about it are

necessary to make the density in (3.8) tractable. In the next section some of the solutions

proposed in the literature to overcome this problem will be illustrated.

3.2. Some solutions to the left-censoring problem
3.2.1. The conditional likelihood approach as a solution to left-truncated data

When data about T, and 7, are available, the conditional likelihood approach of Lancaster
(1979) may be implemented. This methodology avoids the complications linked to the knowl-
edge of the pre-observation period and efficiently uses the available information in the obser-
vation period. In particular, the explicit consideration of entry rates is unnecessary since this
approach focuses on the distribution of duration conditional on the pre-interview duration

te.

12



The likelihood construction is thus based on the conditional distribution of T} given T¢,
the vector of characteristics of the individuals, x, and the event U(0) = wo.

The joint density g(t., t., uj|x,up) can be decomposed (see Ridder, 1984; Goto, 1996) into
a conditional and marginal component

g(tea tr: ’I,L] ’X,UO)
gm(te’XaUO)

ge(tr, ujlte, x,u0) = (3.9)

This implies to isolate the entire effect of the initial conditions within the marginal probability
gm(te|x,ug), allowing us to use the conditional density g.(t,,u;|te, X,ug) alone to determine
the relevant parameters. The marginal component g, (t.|x,ug) is obtained from the joint
conditional density in (3.7) by summing over all attainable states from the initial state ug

and integrating over all possible values of the post-interview duration 7;.

J=1 oo
gnlteban) = 3 [ gltevuix w)de
=Jo

e(—te[x)S(te[x)
Po(X)

Substituting for ¢g(.)and gm,(.) in (3.9) we get

filte +tr|x
gc(tr;uj‘teaxa UO) = ](S(t—\x)’) (310)

We notice from the above expression that the information contained in t. is merely used to
eliminate the entry rate (see Ridder, 1984; Hamerle, 1991).
The conditional density g.(.) can be expressed in terms of the hazard and the destination

specific transition rate,
te+tr
Geltrs tyltes %, 10) = hy(te + t,]%) exp {— / h(u|x)du} (3.11)

The maximum likelihood estimators proposed by Lancaster (1979) are based on this con-
ditional density. Goto (1996) shows that this estimator coincides with the semi-parametric
MLE of a model for left-truncated data, and that it achieves the semi-parametric efficiency

bound.? As noticed for instance in Guo (1993), the conditional likelihood approach appears

°If we introduce a multiplicative unobserved heterogeneity component, ¢, it can be seen that an assumption

on the entry rate is necessary. In particular by assuming

e(—te|x,€) = k1(x,te)ka(e)

13



to be more efficient when compared to the assumption of stationarity (see below). Moreover,
it allows to introduce time-varying covariates in the model. Indeed one only needs to know

the value of the time-varying covariates during the observation period.

3.2.2. Stationarity assumption

When the elapsed duration, t., is not observed, an assumption that is commonly adopted
is to consider the entry rate as constant over time. Indeed, if we consider the joint density
in (3.7), we remark that this expression will not depend on the entry rate if stationarity is

assumed. In this case, substituting for e(—t.|x) = e(x) in (3.7), we get

e(X)fj(te + tr’X)

e(x) Jo- S(ulx)du

fi(te +tr|x)
E[T[x]

g(te7 t'f‘) ’U/]‘X, UO)
(3.12)

In the case of left-censoring, the stationarity assumption leads to the following expression

obtained from (3.12) by integrating out 7

> fi(u+ te|x)du
gz, (tr, uj|x, uo) = Jo f”é(;’x)’ ) (3.13)

This expression generalizes Ridder (1984) result for a single destination state in which case
the previous expression (3.13) writes

S(tr[x)
E(Tx)

gr, (£, %, ug) = (3.14)
This density corresponds to f(t|x) only in the special case of an exponentially distributed

duration, i.e. when the hazard is constant over time.’

we can write the conditional density as
ge(tr, uj|te, x,ug) o /f(te + tr]|x,8)ka(e)v(e)de = /f(te + tr|x,e)k™ (¢)de

where € denotes the support of €.

¢ Another approach to dealing with left-censored observations is that of Nickell (1979), which we will not

pursue here.
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3.3. Likelihood

Suppose we sample two types of spells; spells that are in progress at the beginning of the
observation period (left-censored spells) and spells which begin during the observation period
(fresh spells). These cases correspond to stock and flow samples, respectively, but here we
consider the combined stock and flow sample of spells. Denote with n; the left-censored spells
and with no = n — n; the fresh spells. For fresh spells we observe both starting time 7 and
the duration ¢.

Let

P (x) = /071 e(ulx)du

denote the probability of observing a fresh spells.

Consider the following likelihood function

T b Pob)  Tre(mix) htix)S(tlx) _ Pi(x)
L= ZHIQTT(MXw O)PO(Xz') P 21_[1 Pr(x) o) £ Py (3.15)
—[Lomtilxu0) [ e (74[x;) }]LD(lt(it;)S(ti'Xi) (3.16)
i=1 i=1 ¢

The expression (3.15), suggested by Amemiya (1999), is the full likelihood of the sample of
n individuals. It consists of separate expressions for stock and flow sampled observations,
multiplied by the probabilities that an observed spell is either stock or flow sampled. The
expression (3.16) is a conditional likelihood, in the sense that it is conditional on the type of
spell observed. Amemiya (1999) shows that both estimators are consistent, but of course only
estimators based on the full likelihood are efficient. He also demonstrates that the estimator
based on the flow sample (that is, based on only the ny fresh spells) while being consistent
is inefficient.

Making once more the assumption of a constant entry rate, we find that the expression

(3.15) simplifies. By inserting previously derived expressions, we find

B U LT R 1
L= HE E[T]Xi}—l—ﬁe(xi)il;[l Ges) hltalxe) S(ties) o BT+ mret)
1
= Hh t ‘Xz t ‘Xz) [T|Xz] NP, (3.17)
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where d; is an indicator for a fresh spell; 71 denotes the length of the observation period, and
t; is the duration of a fresh spell (if d; = 1) or the remaining duration (if d; = 0). In the

presence of right-censoring, an obvious modification of this expression is easily derived.

3.3.1. Improving efficiency further in the stationary model

Now, assume that we have additional knowledge regarding the elapsed duration. Specifically,
we know for sure that T, < . For example; t could be time since age 16, or time since labour
market entry, or some other known limitation. If we study unemployment duration of youth,
we may have the additional information that an individual has had three year of working
experience before the current unemployment spell. This leads to a further reduction in the
upper bound for the elapsed duration. There is potentially plenty of information that can
be used to bound the elapsed duration in this way. The purpose of this ’bounding exercise’
is twofold; first, it leads to an obvious gain in efficiency, and secondly, it may contribute to
making the stationarity assumption less invalid (or perhaps even valid).

In order to derive the likelihood function in the case of an upper bounded elapsed duration,

we define
A*(te, tr|x) = Pr{t>T. >t.,T, >t;|x}
= lt e(—ulx)S(t, + ulx)du (3.18)
We now have that
A*(te, tr[x)

Pr{t>T. > te,T; > t|xu0,Te <t} = (3.19)

Pr (U(0) = uo, T < ¥[x)
In addition

Fy(x)

A*(0,00x)

= Pr(U(0) =uo, T, <1[x)
_ /0 S (uufx)e(—ulx)du (3.20)

Hence, we have that
02 A* (te, tr|x) 1

Ot Oty fot S(u|x)e(—ulx)du
f(te +trx) e (—te|x)

= = (3.21)
Jo S(ulx)e(—ulx)du

g (testrlxu0, T. <T) =
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Now, exploit once again the stationarity assumption to obtain

[ (te £ tr[x)

g (te tr|xu0, T <) =
]0 (u]x)du

(3.22)

Finally, for left-censored spells, with the known maximum of the elapsed duration, we
obtain
S (t]x) — S (tr +1|x)
fo (u]x)du

gt (tr|x,ug, Te < 1) = (3.23)

For exponential and - more importantly - piecewise constant hazard distributions, (3.23)
has simple analytical expressions, as we show in one of the empirical applications. Denoting

the parameter vector to be estimated by %, the likelihood function becomes

L (w) = Hg(tTvifxi,uo,Te < z) P*( f:_xgl(x ) He(Tz"Xz) h(tz‘xz)s(tzyxi)P*( ) ipl(x )
i=1 ’ '

S (te|x) = S (8 + 1
_ H (tr[x) = S (tr +71%) 13 Hh(ti|Xz‘)S(tz’|Xi) - 1 (3.24)
i=1 fo (ulx)du+71 ;5 Jo S(ulx)du + 71

In the empirical application concerning unemployment spells, we will apply this likelihood

specification.

3.3.2. Testing for stationarity

Since we have made the rather restrictive assumption of a constant entry rate, it seems
appropriate to construct a test of its validity. An appropriate test is the Hausman test.
Under the null hypothesis of stationarity, the likelihoods (3.15) and (3.24) lead to estimates
that are consistent and efficient. If the null fails to hold, the likelihood based on the flow

sample

n2

cltew () = [T e (rilxi) h(tilxi) S (tilx;)

i=1

1
i) =3 (3.25)

still leads to consistent, but inefficient estimates. Assuming that the entry rate and the

hazard rate have no parameters in common, estimation may be based on maximization of

Lo () Hh (t]x:) S (ts] %) (3.26)
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Denote the parameter vector estimated under the full likelihood by LAD fuil @nd the one obtained
using only the flow sample by @ Flow-

Hence, a Hausman test of the stationarity assumption may be based on
~ ~ VPN ~ -1 /< ~
HS = (¢flow - wfuu) (Vflow - Vfull) (¢flow - wfuu) (3.27)

which is asymptotically chi-squared with degrees of freedom equal to the number of param-

eters in 1.

4. Empirical Applications

In this section we demonstrate some of the solutions presented above to left-censored and left-
truncated single spell duration data. The first empirical application, in section 4.1, analyses
left-truncated schooling durations of French young people, while the second looks at left-
censored unemployment durations of the same population. In doing this we exploit the data
extracted from the waves 1990-1992 of the French Labour Force Survey (FLFS).

The FLFS is a survey conducted annually by the INSEE. For the available data set,
interviews were carried out on three dates, in January 1990, March 1991 and March 1992.
The data we use in this study consists of 5824 young persons aged 18-29 in 1992. They are
asked (in the "Module Jeunes’ 1992) to give more details about their occupational history and
on family and individual status since they were 16 and until the beginning of the observation
period. Moreover, the state they occupy at the date of the survey, and during each month
of the previous year, is declared. This information allows us to construct the history of each

individual since January 1989.

4.1. The analysis of left-truncated schooling durations

In this section we analyse schooling durations of the individuals who are in the schooling
system at the beginning of the observation period (i.e. January 1989) and that are left-
censored. Thanks to the available information, we can reconstruct for these spells their
elapsed duration, and therefore study their duration in the conditional likelihood approach

of Lancaster (1979).
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4.1.1. The construction of the dataset

To analyse transitions out of the schooling system, we have selected all individuals who were
in school in January 1989. This results in a sample of 2947 young individuals, 1460 men and
1487 women.

The structure of the data is such that we only know the length of stay of each individual
since January 1989; no information is available before this date. However, we do have some
indirect knowledge that we may use, and we can make a few assumptions. Assume that the
schooling system cannot be re-entered once it has been left.” The minimum school-leaving age
is 16 years. Consequently, the schooling duration since age 16 is the variable we are interested
in. We assume further that individuals can not exit the education system during the academic
year of their sixteenth birthday. We thus take the start of schooling duration to be the 1st
of October in the year of the 16th birthday when born between January and September
(we know the month and year of birth of each individual) and to be the 1st of October in
the following year for those born between October and December. For an individual who
was 16 in January 1986 and is observed in education at the beginning of the observation
period, we take thus the 1st of October 1986 as the beginning of her schooling duration. This
implies that t. is equal to 27 months. Acknowledging the possibility of measurement error,

we subsequently groups the data into annual durations.

4.1.2. The conditional likelihood approach for grouped duration data

As shown above, the conditional likelihood approach of Lancaster (1979) considers the dis-
tribution of the remaining duration conditional on the pre-interview duration, t., which is
basically used to eliminate the entry rate from the likelihood.

In order to estimate the probability of leaving the schooling system of French young
individuals, we use a model for grouped duration data, since that is what we have.

The underlying continuous durations are only observed in k disjoint time intervals [0,¢1),

[t1,t2), [ta,t3) ..., [tx—1,00). The probability of exit in the k’th interval for person ¢,

"Re-entry is negligible as it is also shown in Magnac (2000).
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conditional on survival until the beginning of the k’th interval, is

hzk(X) = PI“{T (S [tk_l,tk)|T > t]g_l,Xi}
S(tr|x:)
1l—-— 4.1
S(tk,ﬂxi) ( )

Following Kiefer (1988a) and Meyer (1990,1995), we assume proportional hazards and rewrite
(4.1) as

hik(x) = 1 — exp[—exp(x;8 +7y,)] (4.2)

with v, = In ]t (u)du.Grouped duration data hazard models have an appealing rela-
tionship to binomial models as already noticed in Allison (1982), Kiefer (1988b, 1990) and

Jenkins (1995). Define a new individual- and interval-specific indicator variable
Yij :1{tj—1 §T<tj} (43)

Conditioning the likelihood on having survived up to t. periods, taking logs and multiplying

over the sample, consisting of n individuals, we obtain
log £ = Zzyw log < ) 3 Z log (1 — hy;(x)) (4.4)
i=1 j=1 =1 j=te+1
where t; denotes the sum of elapsed and remaining duration, see e.g. Jenkins (1995). Call

this Model A. Model B neglects left-truncation and treats the observations as drawn from

the inflow into schooling. This corresponds to the following likelihood

log £ = ZZyw log < ) +ZZlog — hi;j(x)] (4.5)

=1 j=1 =1 j=1
4.1.3. Results

The objective pursued in this section is to present some solutions to the initial conditions
problem when single-spell data are available. Therefore, we consider only two explanatory
variables. Descriptive statistics are in table 1. They are the nationality of the father of the

individual and an indicator for being younger than 25 in 1992 - a cohort effect.

[Table 1 to be inserted here]
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In table 2 we compare the probabilities of leaving school estimated by the conditional
likelihood approach (Model A) to those estimated by treating data as a flow sample (Model

B) for men and women.®.

[Table 2 to be inserted here]

We can see that there exists differences in the estimated parameters on the covariates,
not only in their values but also in the significance level. The age (cohort) effect in particular
shows up to be different in the two specifications. In the model where the stock-sampling
nature of the data is ignored, the cohort effect is such that the younger have a much higher
exit rate from education. This is obviously because the sample of older individual consists
only of those who are still in the schooling system at the time of entry into the sample, that is,
the sub-sample among the older cohort which has stayed the longest in the schooling system.
Correcting for this (Model A), we still find an age effect, but it is smaller. Both models show
positive duration dependence, but the model that ignores left-truncation shows a remarkably
different pattern over time. This is more easily observed in the following figures 2 and 3,
where we have drawn the baseline hazards for men and women by putting the explanatory
variables at their sample averages. The cause of the difference is well-known; by treating the
total durations as a fresh sample, we have 'under-sampled’ short durations. The conditional

likelihood corrects for exactly this.

4.2. The analysis of left-censored unemployment spells

In this section, we want to analyse unemployment durations. Our sample consists partly of
a stock sample, and partly of a flow sample. This survey design leads to a serious initial
conditions problem owing to the unobservability of the beginning of the first spells for the

stock sampled part of the data.

8The values of the log-likelihood are for the men equal to -2705.087 and -2885.347 in model A and B
respectively. For women they are: -2443.385 and -2607.698 in model A and B respectively.
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4.2.1. The construction of the data set and upper bounds on elapsed durations

The sample analysed is the same as above; the young individuals of the FLFS. 352 individuals
are unemployed in January 1989, and 2080 flow into unemployment during the observation
period. We have used the same type of information as we used above for schooling duration,
to construct an upper bound on the elapsed unemployment duration: Individuals who are
in the labour market at the beginning of the observation period left school before that date.
We do not know when, but we know that they had to stay in school at least until they were
16. We can thus assume that they entered the labour market somewhere during the interval
of time elapsed since that date until the beginning of the observation period. With these
assumptions we can say that the maximum length of the unobserved pre-interview duration
is the current age (measured with monthly precision) less 16 years. Denote this upper bound
1.

However, we know more; in the additional questionnaire “Module Jeunes” (conducted
in 1992) the interviewed individuals were asked to declare the number of years spent in
education since they were 16 until the beginning of the survey date, i.e. January 1989. Using
this information, we can calculate the time of entry into the labour market. The time elapsed
between this date and the beginning of the observation period is an upper bound on the
elapsed duration, which is tighter than #;. Call this upper bound %s.

If we had access to more information, e.g. accumulated working experience, periods of
maternity (and other types of) leave, military service, etc., we could narrow the interval for
the elapsed duration even further.

Various explanatory variables have been used to assess their influence on the hazard rate.
Specifically, we used the age of the individuals in 1992, their length of education, as well
as indicators for the nationality of the father, being a women, having a technical education,
belonging to a large family (more than two siblings), having had health problems in the
childhood, having parents that are divorced, having a diseased father, and living in Paris.
Most of them are frequently used in the study of unemployment determinants (see D’Addio,
1998; D’Addio, 2002). Descriptive statistics of the dependent variable, #; and f2, and the

explanatory variables used are presented in Table 3.

[Table 3 to be inserted here]
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4.2.2. The likelihood function

We assume a proportional hazard specification, that is, we assume that the transition from

unemployment to employment can be described by the hazard rate

h(t|x) = A(t) exp [z]

where A(.) is the baseline hazard. We make the further assumption that the baseline hazard
is piecewise constant on each of K intervals with splitting times tqg = 0,%1,t2,....,tx _1,tx =
+00. Define a function M : Ry ~ {1,2,..., K}, which maps a duration, ¢, into one of the
intervals defined by the splitting times above. We take the splitting times t; = 1, to = 2,...,
too = 22, and to3 = +o00, that is, we assume that the hazard is constant after 22 months of
unemployment (due to the small number of exits from unemployment after 22 months). The
value of A(.) in the ¢’th interval is parameterized as exp [7,].

The likelihood functions needed for the estimation are given by expressions (3.15) and
(3.24) for the full likelihood, without and with an upper bound on the elapsed duration,
respectively, and (3.26) for the likelihood which is based solely on the flow part of the sample.
The expressions in these functions are all fairly simple, using the specification set up above.

The survival function is given by

S(tlx) = exp [—./0 h(s]x)ds]
m(t)—
= exp[— Z hi (%) (ti = tic1) = Ty (%) (¢ = toey—1) (4.6)

where h; (x) denotes the value of the hazard rate in the ¢’th interval. The expected duration

is given by

K
BT = hjx) 1S (t1]%) — S (t]%) (4.7)

and the expression used when applying the upper bound fg S(u|x)du may also be calculated

easily
mh 1 _
/ St = 3 o 8 1) = S ol + s STy a1) = 5 1) (49)
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4.2.3. Results

In Table 4 we present the results of the estimation with four different models; model 1 corre-
sponds to the model for the flow sample, that is, the likelihood (3.26), model 2 corresponds
to the (Amemiya, 1999) likelihood function without an upper bound on the elapsed duration,
e.g. (3.15) above, while models 3 and 4 both are using the model with an upper bound,
the likelihood function (3.24). Model 3 uses the upper bound #; (the least restrictive), while
model 4 uses to. In figure 4, we plot the baseline hazards corresponding to each of the four

models, each evaluated at the average of exp[z(].

[Table 4 to be inserted here]

[Figure 4 to be inserted here]

The results show that there are some differences, particularly in the parameters of the
baseline hazard around the 14th month. This is caused by a flaw in the data construction,
which affects mainly those individuals who are stock-sampled; namely, in the reconstruction
of the trajectories, the information about the status held in the month of February 1990 was
missing. This problem was solved by imputing the information from the states occupied in
January 1990. Consequently, there are no transitions in this interval (for the stock sampled
individuals).

Another important thing to note is the uniform reduction in the standard errors when
moving across the table from model 1 to model 4. It is also evident that the most important
reduction in standard errors is in the inclusion of the stock-sample, that is, in going from
model 1 to model 2. The inclusion of a tight upper bound on the elapsed duration does lead
to a further reduction in the standard errors, but mostly so for the baseline parameters.

When we look at the coefficients on the explanatory variables, it is notable that some of
those that were not significantly different from zero in the flow model are so in the model
which includes the stock-sampled spells. Hence, the information contained in this relatively
small stock sample is very useful. With access to a relatively larger stock sample or more
information to tighten the upper bound on the elapsed duration, the information gain would
obviously be much larger.

In Table 5, we present the Hausman test statistics for the models 2-4 against model 1. The

Hausman test is performed for the full set of parameters as well as for the set of parameters
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on the covariates, only.
[Table 5 to be inserted here]

Note that stationarity is rejected in all cases but one, where the test statistic was negative
(and hence set to zero). The rejection is much stronger when the baselines are included, due to
the larger differences in these parameter values. Note that the tighter the upper bound on the
elapsed duration, the stronger is our rejection of stationarity. This may be counterintuitive,
since we would expect a tighter upper bound (which is closer to the sampling date) reduces the
non-stationarity problem. However, the test is really not only for non—stationarity. It is also
a test for unobservable variables affecting the probability of being observed in unemployment
at the sampling date which are correlated with unobservables determining unemployment

duration.

5. Conclusion

We have presented a survey of methods for dealing with left-censored and left-truncated
duration data. Spells in progress at the moment at which the sample is drawn need to
be adequately treated, since they are selective samples. In order to derive their likelihood
contribution, the point of departure is the joint conditional density (3.8). Knowledge of two
duration variables is necessary (i.e. the elapsed and remaining durations), as well as the
entry rate into the state. However in many longitudinal surveys, the elapsed duration is not
observed. We have derived methods which are useful for exploiting the available information
as efficiently as possible. Information that can be used for determining the elapsed duration
- either directly or by bounding it - is useful. Depending on the extent of the information
available, we have demonstrated (in the conditional likelihood case) and developed methods
to exploit this information, and we have illustrated the efficiency gain associated herewith.
Finally, we have derived a test for the stationarity assumption, which was used in the empirical

application, too.
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6. Tables and figures

6.1. Tables
Table 1. Descriptive statistic, schooling durations
Variables Men Women
Mean Std.dev. Mean Std.dev.
te (years) 1.25 1.84  1.26 1.89
t, (years) 2.06 096  2.11 0.96
Age< 25 0.95 0.96
Father is French ~ 0.61 0.61
## observations 1460 1487
Table 2. Estimation results for schooling durations
Men Women
Model A Model B Model A Model B
Y1 -3.40 (0.25) -4.91 (0.23) -3.21 (0.26) -5.21 (0.25)
Yo -2.30 (0.24) -3.68 (0.21) -1.87 (0.25) -3.76 (0.23)
Y3 -2.18 (0.24) -3.51 (0.22) -1.70 (0.25) -3.53 (0.23)
Y4 -2.11 (0.24) -3.32 (0.22) -1.58 (0.25) -3.32 (0.23)
Vs -2.03 (0.25) -3.16 (0.22) -1.59 (0.26) -3.22 (0.24)
Y6 -1.92 (0.24) -2.93 (0.23) -1.45 (0.26) -2.98 (0.24)
Y7 -1.28 (0.24) -2.22 (0.23) -0.97 (0.25) -2.45 (0.24)
Vs -0.75 (0.21) -1.37 (0.23) -0.81 (0.24) -2.06 (0.26)
Y9 0.54 (0.24) -0.60 (0.25) -0.16 (0.22) -0.49 (0.23)
Y10 0.17 (0.25)  0.21 (0.25) -0.19 (0.27) -0.16 (0.27)
Age< 25 1.68 (0.23) 2.75(0.21)  1.19 (0.24) 2.74 (0.23)
French father -0.17 (0.06) -0.28 (0.06) -0.12 (0.05) -0.19 (0.05)

Note: Standard errors in parentheses.

Table 3. Descriptive statistics for unemployment durations.
Mean Std.dev.

Duration 6.82 6.61
t1 6.16 2.42
to 3.82 2.71
Age in 1992 24.25 2.86
Woman 0.51

Length of education 15.40 2.06
Technical education 0.69

French father 0.62
Large family 0.50
Parents divorced 0.16
Health problem 0.21
Father dead 0.14
Living in Paris 0.10
7 observations 2432

# left-censored obs. 352
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Table 4:. Estimation results

Coefficients | Flow model Left-censoring | Left- censoring | Left-censoring
Amemiya (1999) using t; using t,

Y1 -1.8908* -1.8762% -1.8914% -1.9126%
[0.0616] [0.061] [0.0608] [0.0602]

Yo -1.9667* -1.9603* -1.9866* -2.0147*
[0.0699] [0.0692] [0.0685] [0.0678]

Y3 -1.9938* -1.984* -2.0194* -2.0127*
[0.0773] [0.0769] [0.076] [0.0746]

Y4 -2.0238* -2.009%* -2.0455%* -2.041*
[0.0871] [0.0861] [0.0847] [0.0835]

Vs -2.1258%* -2.1174* -2.1591%* -2.1587*
[0.1001] [0.0991] [0.0974] [0.0952]

Y6 -2.1283* -2.1154* -2.1439* -2.106%*
[0.1093] [0.1082] [0.106] [0.102]

Yo -2.3837* -2.3749* -2.3926* -2.3684*
[0.1341] 0.1331] 0.1306] [0.1284]

Y -2.1677* -2.167* -2.1901* -2.1996*
[0.1335] 0.1319] [0.1288] [0.1241]

Y9 -2.3928* -2.3891* -2.3896* -2.3377*
0.1612] 0.1598] 0.1562] 0.1492]

Y10 -2.5673% -2.5748% -2.5482* -2.5428*
[0.1899] [0.1882] [0.1815] [0.1793]

Y11 -2.842% -2.8516%* -2.8108* -2.7228*
0.231] 0.2296] 0.2249] 0.2141]

Y12 -2.2659* -2.2985%* -2.2908* -2.2153*
[0.1866] [0.1837] [0.178] [0.1727]

Y13 -1.9074* -1.9343* -1.9545* -1.783*
[0.1869] [0.182] [0.1743] [0.1633]

Y14 -2.9324%* -3.0191* -3.0703* -5.2779*
[0.3254] [0.3222] [0.3186] [0.2337]

Y15 -2.0846* -1.8885% ~1.501* -1.5112%
[0.2327] [0.2287] [0.191] [0.1885]

Y1g -2.4453* -2.2641%* -2.0581* -1.9509*
[0.3053] [0.3] [0.287] [0.2706]

Y17 -2.0948* -1.9463* -1.7835* -1.7956*
[0.2787] [0.2742] [0.2595] [0.2531]
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Table 4 (continued): Estimation results

Coefficients | Flow model Left-censoring | Left- censoring | Left-censoring
Amemiya (1999) using t; using 7o

Y18 -2.4382% -2.305% -2.1843* -2.2%

[0.3484] [0.3454] 0.3297] 0.3011]

Y19 -2.706%* -2.5845% -2.5169%* -2.294%

[0.4232] [0.4189) (0.4045) [0.3604]

Yoo -2.585% -2.5107* -2.5156%* -2.6536%

[0.4232] 0.4181] (0.4083] [0.3809]

Yo1 -2.8565% -2.7902%* -2.7506%* -2.8498*

0.5099] 0.5061] [0.49] [0.413]

Yoo -2.2573* -2.2029* -2.187* -2.3005*

[0.4315] [0.4226] 0.3902] [0.4075]

Yo3 -2.3982%* -2.0939%* -2.0895%* -2.0031°%*

[0.2238] [0.1254] [0.141] [0.1237]

Age -0.0465 -0.314%* -0.318* -0.3623*

in 1992 [0.1053] [0.084] 0.0827] 0.0831]
Technical 0.0566 -0.0066 -0.0075 0.0025
Education [0.0609] [0.0481] [0.0474] [0.047]
Father’s 0.1622* 0.1375* 0.1413* 0.1179*
nationality [0.0596] [0.048] [0.0472] [0.0467]
Large family -0.0907 -0.1309* -0.1346* -0.1464*
[0.0591] [0.0478] [0.0469] [0.0461]

Education length 0.4972%* 0.6238* 0.6331* 0.6521*
[0.1344] 0.1106] [0.108] 0.1065]

Parents divorced -0.0026 -0.0268 -0.0278 0.0006
0.0757] [0.0586] 0.0574] 0.0572]

Health problems 0.0658 0.0693 0.0696 0.0527
during childhood [0.0671] [0.0533] [0.0523] [0.0511]
Sex -0.2679%* -0.2704* -0.2731%* -0.2778*
[0.0561] [0.0452] [0.0443] [0.0436]

Father dead -0.0963 -0.0709 -0.0689 -0.0488
[0.0888] [0.0678] [0.067] 0.0673]

Living in Paris 0.1205 0.046 0.0455 0.0445
[0.0907] [0.0718] [0.0706] [0.0704]

Log-likelihood 4650.84 14470.23 14467.09 14069.48
Meiﬁrz}?i’fgted 9.18 8.69 8.62 8.54
Mean duration 6.06 6.82 6.82 6.82
Number of spells 2080 2432 2432 2432

32




Table 5. Hausman tests

Full parameter set Only covariate parameter set

DF=35 DF=12
Model 2 against 1 0 28.75
Model 3 against 1 93.93 27.64
Model 4 against 1 222.19 35.01
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6.2. Figures
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Figure 1: Different censoring mechanisms
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Figure 3: Baseline hazards, women

35




0.3

0.25

0.2 -

0.15 -

0.1 -

\/ .

0.05

4 6 8 10 12 14 16 18 20 22 24

—— Flow model —m— Left-censoring (1)

—e— Left-censoring (2) —x— Left-censoring (3)

Figure 4: Baseline plots

36




Working Paper

2000-4

2001-5:

2001-6:

2001-7:

2001-8:

2001-9:

2001-16:

2001-17:

2001-18:

2002-1:

2002-2:

2002-3:

2002-4:

2002-5:

Bent Jesper Christensen and Morten ©. Nielsen: Semiparametric
Analysis of Stationary Fractional Cointegration and the Implied-
Realized Volatility Relation in High-Frequency.

Bo Sandemann Rasmussen: Efficiency Wages and the Long-Run
Incidence of Progressive Taxation.

Boriss Siliverstovs: Multicointegration in US consumption data.

Jakob Roland Munch and Michael Svarer: Rent Control and
Tenancy Duration.

Morten . Nielsen: Efficient Likelihood Inference in Non-
stationary Univariate Models.

Effrosyni Diamantoudi: Stable Cartels Revisited.

Bjarne Brendstrup, Svend Hylleberg, Morten Nielsen, Lars
Skipper and Lars Stentoft: Seasonality in Economic Models.

Martin Paldam: The Economic Freedom of Asian Tigers - an
essay on controversy.

Celso Brunetti and Peter Lildholt: Range-based covariance esti-
mation with a view to foreign exchange rates.

Peter Jensen, Michael Rosholm and Mette Verner: A Compari-
son of Different Estimators for Panel Data Sample Selection
Models.

Torben M. Andersen: International Integration and the Welfare
State.

Bo Sandemann Rasmussen: Credibility, Cost of Reneging and
the Choice of Fixed Exchange Rate Regime.

Bo William Hansen and Lars Mayland Nielsen: Can Nominal
Wage and Price Rigidities Be Equivalent Propagation Mecha-
nisms? The Case of Open Economies.

Anna Christina D’Addio and Michael Rosholm: Left-Censoring
in Duration Data: Theory and Applications.



