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Abstract

We introduce a multivariate Lagrange Multiplier (LM) test for fractional integration.

We derive and analyze the LM statistic and show that it is asymptotically chi-squared

distributed under local alternatives, and that, under Gaussianity, the LM test is asymptot-

ically efficient against local alternatives. It is shown that the regression variant in Breitung

& Hassler (2002, Journal of Econometrics 110, 167-185) is not equivalent to the LM test

in the multivariate case, although it is in the univariate case. A generalization of the LM

test that explicitly allows for different integration orders for each variate is also introduced.

The finite sample properties of the LM test are evaluated and compared to the Breitung &

Hassler (2002) test by Monte Carlo experiments. An application to multivariate time series

of real interest rates for six countries is offered, demonstrating that more clear-cut evidence

can be drawn from multivariate tests compared to conducting several univariate tests.
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1 Introduction

In this paper we introduce multivariate Lagrange Multiplier (LM) tests (or efficient score tests)

for fractional integration. Multivariate procedures are important since most applied work

concerns multiple time series, either stationary or nonstationary. Tests for fractional integration

have been examined previously by Robinson (1991, 1994), Agiakloglou & Newbold (1994), and

Tanaka (1999), among others, in a univariate framework, and recently by Breitung & Hassler

(2002) in the multivariate case. The objective is to test if an observed K-vector time series

yt is integrated of order d, denoted I (d), against the hypothesis that it is I (d+ θ) for θ 6= 0.
By differencing the observed time series, this is equivalent to testing if xt = (1− L)d yt is I (0)

against I (θ).

With no multivariate tests available for testing the order of fractional integration, re-

searchers interested in multiple time series have been forced to apply univariate tests to each

element of the multiple time series. This procedure is not only cumbersome, but ignores poten-

tially important correlations between the elements of the multiple time series, which could lead

to increased power of a multivariate test. Hence, the purpose of the present paper is to intro-

duce LM tests that apply to the multivariate case, with the usual computational motivation for

the LM principle. The proposed multivariate tests in the present paper in many ways parallels

the ones by Choi & Ahn (1999) and Nyblom & Harvey (2000), who propose stationarity tests,

i.e. tests of I (0) against I (1), for multiple time series, and our work can thus also be seen as

a generalization of their work with the important difference that our test is directed against

different (i.e. fractional) alternatives.

The tests proposed in this paper are intended primarily for preliminary data analysis. For

instance, when testing the null of stationarity or I (0)-ness (against fractional alternatives),

non-rejection would allow standard methods to be employed for conducting, e.g., causality,

structural VAR, or impulse response analyses. More generally, the tests may indicate the

transformation of the data that would be required in order to make the data suitable for said

analyses.

Suppose we observe {yt, t = 1, ..., n} generated by
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(1− L)d+θ yt = etI (t ≥ 1) , t = 0,±1,±2, ..., (1)

where I (·) denotes the indicator function and et is I (0), i.e. is covariance stationary and

has spectral density that is bounded and bounded away from zero at the origin. The process

yt generated by (1) is well defined for all d, and is sometimes called a multivariate type II

fractionally integrated process, see Marinucci & Robinson (1999). Deterministic terms could

be added to (1), allowing for a non-zero mean and trend or deterministic seasonal behavior,

see section 3.1. In section 3.2 we consider the extension to different values of d and θ for each

component of yt in (1).

For the moment, we let the errors et be independently and identically distributed with

mean zero and positive definite covariance matrix Σ, i.i.d.(0,Σ). In section 3.3 we relax this

assumption, and let et follow a stationary vector autoregressive process of order p, VAR(p).

Note that positive definiteness of Σ rules out cointegration among the components of yt.

We assume that d is specified a priori and wish to test the hypothesis

H0 : θ = 0 (2)

against the alternative H1 : θ 6= 0. For instance, the unit root hypothesis and the hypothesis
of joint stationarity (or more precisely, weak dependence) of yt are given by (1) and (2) with

d = 1 and d = 0, respectively.

Robinson (1994) and Tanaka (1999) consider testing (2) in the univariate model, i.e. (1) with

K = 1. Robinson (1994) shows that the frequency domain LM test statistic has a chi-squared

limiting distribution under the null, and is asymptotically efficient against local alternatives,

θ = δ/
√
n, under Gaussianity. Tanaka (1999) shows that the time domain LM test statistic has

a normal or chi-squared limiting distribution, and is asymptotically most powerful among all

the invariant tests against local alternatives under Gaussianity. In a simulation study, Tanaka

(1999) also demonstrates the finite sample superiority of the time domain test over Robin-

son’s (1994) frequency domain test. Breitung & Hassler (2002) suggest a regression variant of

Tanaka’s (1999) LM test similar to the Dickey-Fuller test, see also Dolado, Gonzalo & Mayoral

(2002). Breitung & Hassler (2002) also suggest a multivariate version, which generalizes to a
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trace test for the cointegrating rank, along the lines of the Johansen (1988) test, and show that

their multivariate test has a limiting chi-squared distribution, where the degrees of freedom

depend only on the cointegrating rank under the null.

We show that the equivalence of the LM test and the regression based test of Breitung

& Hassler (2002) fails to hold in the multivariate case. We derive the LM test statistic for

the hypothesis (2) in the time domain, with the usual computational advantage of estimation

under the null. Thus, no multivariate fractionally integrated model needs to be estimated, and

in fact the test is based on computationally simple moment matrices, see (4) and (7) below.

Desirable distributional properties and optimality properties of the test are established. In

particular, the test statistic is asymptotically chi-squared distributed under local alternatives,

where the degrees of freedom equal the number of restrictions tested, and under Gaussianity,

it is asymptotically efficient against local alternatives.

Furthermore, the LM test is shown to be consistent against fractionally cointegrated alter-

natives, i.e. alternatives where the integration order of some linear combination of the observed

variates is lower than the hypothesized value. Thus, the test could be employed as a test of

non-cointegration against the alternative of cointegration. An extension of the LM test statistic

that explicitly allows for different integration orders (both different d and different θ) for each

variate in the vector time series yt is also introduced, and its asymptotic properties examined.

In a simulation study we examine the properties of the LM test in finite samples and compare

with the Breitung & Hassler (2002) test. We find that the LM test compares favorably with

the Breitung & Hassler (2002) test, and in particular that the LM test has higher finite sample

power than the Breitung & Hassler (2002) test in the noncointegrated model.

We apply our tests to a multivariate time series of real interest rates for six major indus-

trialized countries previously examined by Kugler & Neusser (1993) and Choi & Ahn (1999).

Kugler & Neusser (1993) apply univariate unit root tests to each element of the multiple time

series which mainly reject the null of a unit root, and Choi & Ahn (1999) apply their mul-

tivariate stationarity test (i.e. test of I (0) against I (1)) and find no evidence against the

null hypothesis. Our objective is to test if the real interest rates are I (0) against fractional

alternatives, and the evidence we obtain from the multivariate tests is more clear-cut than the
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evidence from applying univariate tests to each element of the multiple time series.

The rest of the paper is laid out as follows. Next, we derive and analyze the multivariate

LM test in the basic model with only one integration order common to all the variates. In

section 3 we consider generalizations of the basic model allowing deterministic terms, different

values of d and θ for each variate, and short-run dynamics. Section 4 presents the results of

the simulation study, and section 5 presents the empirical application. Section 6 offers some

concluding remarks. Proofs are collected in the appendix.

2 Multivariate LM Test

The Gaussian log-likelihood function of the model in (1) is

L (θ,Σ) = −n
2
ln (2π |Σ|)− 1

2

nX
t=1

(1− L)d+θ y0tΣ
−1 (1− L)d+θ yt, (3)

and hence the score is, see also Tanaka (1999) and Breitung & Hassler (2002),

∂L (θ,Σ)

∂θ

¯̄̄̄
θ=0,Σ=Σ̂

= −
nX
t=1

¡
ln (1− L)x0t

¢
Σ̂−1xt

= tr
³
Σ̂−1S10

´
, (4)

where xt = (1− L)d yt, S10 =
Pn

t=2 x
∗
t−1x0t, x∗t−1 =

Pt−1
j=1 j

−1xt−j , and Σ̂ = n−1
Pn

t=1 xtx
0
t is a

consistent estimate of Σ = E (ete
0
t) under the null. When K = 1, i.e. when the observed time

series is univariate, the score in (4), normalized by
√
n, reduces to Tanaka’s (1999) univariate

time domain score statistic, sn =
√
n
Pn−1

j=1 j
−1ρ (j), where ρ (j) is the j’th order sample

autocorrelation of xt. Our multivariate score (4) is similar to Choi & Ahn’s (1999, p. 47) SBDH

statistic and Nyblom & Harvey’s (2000, p. 179) LBI statistic for testing I (0) against I (1) in

multiple time series. The difference is that we introduce the j−1 weights in the calculation of

x∗t−1, where Choi & Ahn (1999) and Nyblom & Harvey (2000) use unweighted partial sums.

Breitung & Hassler (2002) consider the test statistic

Λ0 (d) = tr
³
Σ̂−1S010S

−1
11 S10

´
, (5)

where S11 =
Pn

t=2 x
∗
t−1x∗0t−1, and show that Λ0 (d) →d χ2K2 under the null (2). However,

since tr (AB) 6= tr (A) tr (B) in general, (5) is not equivalent to the multivariate LM test of
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(2), as demonstrated for the univariate test by Breitung & Hassler (2002). Instead, (5) is a

regression variant along the lines of the Dickey-Fuller test and the fractional Dickey-Fuller test,

see Dolado et al. (2002). Indeed, the main aim of Breitung & Hassler (2002) is to construct a

fractional trace statistic similar to Johansen (1988), just as the Dickey-Fuller test generalizes

to Johansen’s (1988) trace statistic. In particular, (5) can be rewritten as a sum of eigenvalues,

Λ0 (d) =
PK

j=1 λj , where λj turns out to be the test statistic for φj = 0 in

(v0jxt) = φ0jx
∗
t−1 + et

and vj is the eigenvector corresponding to λj . Thus, K2 restrictions are being tested (φj =

0, j = 1, ...,K) instead of one restriction as in (2), which explains the K2 degrees of freedom

in the asymptotic distribution of Λ0 (d). Consequently, the test statistic (5) is not the LM test

statistic for testing the hypothesis (2).

The multivariate LM test statistic for testing (2) is, e.g. Amemiya (1985, p. 142),

LM =
∂L (η)

∂η0

¯̄̄̄
θ=0,Σ=Σ̂

"
− ∂2L (η)

∂η∂η0

¯̄̄̄
θ=0,Σ=Σ̂

#−1
∂L (η)

∂η

¯̄̄̄
θ=0,Σ=Σ̂

, (6)

where η = ((vecΣ)0 , θ0)0. The relevant block of the Hessian matrix in (6) is

− ∂2L (θ,Σ)

∂θ2

¯̄̄̄
θ=0,Σ=Σ̂

=
nX
t=1

¡
ln (1− L)x0t

¢
Σ̂−1 (ln (1− L)xt)

+
1

2

nX
t=1

³
x0tΣ̂

−1 ¡ln2 (1− L)xt
¢
+
¡
ln2 (1− L)x0t

¢
Σ̂−1xt

´
= tr

³
Σ̂−1M11

´
,

defining M11 = S11+
1
2 (S20 + S020), S20 =

Pn
t=1 x

∗∗
t−2x0t, and x∗∗t−2 =

Pt−2
j=1 j

−1x∗t−j−1. Thus, we

find that

LM =
tr(Σ̂−1S10)2

tr(Σ̂−1M11)
. (7)

In the following theorem we present the limiting distribution of the test statistic under

alternatives local to the null, H1n : θ = δ/
√
n, where δ is a fixed scalar.

Theorem 1 Under θ = δ/
√
n, the LM test statistic (7) is asymptotically distributed as χ21

¡Iδ2¢,
where

I = −E0 1
n

∂2L (θ,Σ)

∂θ2

¯̄̄̄
θ=0,Σ=Σ̂

=
π2K

6
. (8)
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Under the additional assumption of Gaussianity, the test is asymptotically efficient against local

alternatives.

Thus, the LM test is chi-squared with one degree of freedom under the null, which is

expected since only one restriction is being tested. In contrast, the test (5) has K2 degrees

of freedom. More generally, standard statistical results apply in the present fractional model,

unlike in the multivariate unit root and stationarity tests nested in autoregressive models, e.g.

Phillips & Durlauf (1986), Choi & Ahn (1999), and Nyblom & Harvey (2000).

Note that Theorem 1 continues to hold if the Fisher information matrix (8) is substituted for

the Hessian matrix. However, in simulation experiments not reported here, it was found that the

LM test defined in (6) has superior finite sample properties, especially in the presence of short-

run dynamics. In addition, when allowance is made for short-run dynamics, the calculation of

the Fisher information matrices, see (16) and (17) below, can be quite complicated. Thus, we

maintain the definition of the LM test in terms of the Hessian matrix as in (6).

Next, as in Choi & Ahn (1999), we use the fact that the LM test is invariant to non-singular

linear transformations, i.e. transformations of the type x̄t = Dxt for D non-singular, to show

that the test is consistent against fractionally cointegrated alternatives. Following Breitung &

Hassler (2002), we say that yt is fractionally cointegrated, denoted CI (d, b), if yt is I (d) and

there exists K × r and K × (K − r) linearly independent matrices β and γ of full rank such

that

γ0yt ∼ I (d) ,

β0yt ∼ I (d− b) ,

where it is assumed that the fractional integration order d is given, but b > 0 is unknown.

That is, the maintained hypothesis is that yt is I (d), but it is now assumed that there exists

some linear combination of yt, which is integrated of a lower order. We also assume that

ut = (γ, (1− L)−b β)0xt is i.i.d. (0,Σ). The following corollary shows that our multivariate LM

test (7) is consistent under the CI(d, b) alternative.

Corollary 2 The LM test statistic (7) is Op (n) under the alternative that yt is CI (d, b).
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3 Extensions of the Model

3.1 Deterministic Terms

We allow for deterministic terms in the data generating process following Robinson (1994).

Suppose we observe the K-vector time series
©
y0t , t = 1, 2, ..., n

ª
, generated by the linear model

y0t = βzt + yt, (9)

where zt is a q-vector of purely deterministic components and yt is an unobservedK-dimensional

component generated by (1).

Two leading cases for the deterministic terms are zt = 1 and zt = (1, t)0, which yield the

models y0kt = βk0 + ykt and y0kt = βk0 + βk1t + ykt, respectively, but other terms like seasonal

dummies or polynomial trends can also be accommodated. As in Definition 2 of Robinson

(1994), it is only required that
Pn

t=1 z̃tz̃t
0 is positive definite for n sufficiently large, where

z̃t = (1 − L)dzt. It follows from Robinson (1994) that β can be estimated by least squares

regression of (1− L)d y0t on z̃t, yielding the estimate β̃. The test statistic is then based on the

residuals ỹt = y0t − β̃zt.

Note that we assume the deterministic terms appear in the generating mechanism of the

observed variate y0t , instead of xt as in Breitung & Hassler (2002). This follows the approach

of Robinson (1994), and is more natural for interpretation of zt when d is nonintegral. Con-

sider the simple case with zt = 1 and 0 < d < 1/2. In our setup, y0t is then a stationary

long memory process around a non-zero mean. However, in the setup of Breitung & Hassler

(2002), y0t would be a stationary long memory process around the fractional deterministic trend

(1− L)−d I (t ≥ 1).

3.2 Different θ for Each Variate

Suppose the generating mechanism (1) is modified to

(1− L)dk+θk ykt = ektI (t ≥ 1) , k = 1, ...,K, t = 0,±1,±2, ..., (10)

such that θ = (θ1, ..., θK)
0 is now a K-vector. Redefining the log-likelihood accordingly and

denoting it LK (θ,Σ) (subscript K denoting different θ for each variate), the score is now given
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by

∂LK (θ,Σ)

∂θ

¯̄̄̄
θ=0,Σ=Σ̂

= −
nX
t=1

diag (ln (1− L)xt) Σ̂
−1xt

=
nX
t=1

J 0K(x
∗
t−1 ⊗ Σ̂−1xt)

= J 0K vec
³
Σ̂−1S010

´
(11)

by use of vec (ABC) = (C 0 ⊗A) vecB and property 1 of Lemma 1. We denote by diag (a) the

diagonal matrix having the vector a on the diagonal, and the matrix JK is defined in Lemma

1. As in the previous section, the score (11) reduces to the univariate score when K = 1.

The relevant block of the Hessian matrix in (6) is

− ∂2LK (θ,Σ)

∂θ∂θ0

¯̄̄̄
θ=0,Σ=Σ̂

=
nX
t=1

diag (ln (1− L)xt) Σ̂
−1 diag (ln (1− L)xt)

+
nX
t=1

J 0K(IK ⊗ Σ̂−1xt) diag
¡
ln2 (1− L)xt

¢
=

nX
t=1

diag
¡
x∗t−1

¢
Σ̂−1 diag

¡
x∗t−1

¢
+

nX
t=1

diag(Σ̂−1xt) diag
¡
x∗∗t−2

¢
= S11 ¯ Σ̂−1 + (Σ̂−1S020)¯ IK ,

using property 3 of Lemma 1. Here, ¯ denotes the Hadamard product, see the appendix or

Magnus & Neudecker (1999). We thus form the LM test statistic

LMK = vec(Σ̂
−1S010)

0JK
³
S11 ¯ Σ̂−1 + (Σ̂−1S020)¯ IK

´−1
J 0K vec(Σ̂

−1S010). (12)

The asymptotic distribution of the test statistic under local alternatives, H1n : θ = δ/
√
n,

where δ is now a fixed K-vector, is given by the following theorem.

Theorem 3 Under θ = δ/
√
n, δ a fixed K-vector, the LM test statistic (12) is asymptotically

distributed as χ2K
¡
δ0IKδ

¢
, where

IK = −E0 1
n

∂2LK (θ,Σ)

∂θ∂θ0

¯̄̄̄
θ=0,Σ=Σ̂

=
π2

6
Σ¯Σ−1.

Under the additional assumption of Gaussianity, the test is asymptotically efficient against local

alternatives.
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From Theorem 3 it is worth noting once more that, in the more general model considered

in this section, the degrees of freedom still equal the number of restrictions tested, K.

3.3 Short-run Dynamics

In this section we allow for short-run dynamics following Tanaka (1999) and Breitung & Hassler

(2002). In particular, suppose et is generated according to the vector autoregressive process

A (L) et = εt, t = 0,±1,±2, ..., (13)

where εt satisfies the assumptions of et before. Here, A (z) is a matrix polynomial of order p,

and such that et is a stationary VAR(p) process and A (1) has full rank. The parameters of

A (z) are gathered in the K2p-vector a = vec (A1, ..., Ap), and we also define φ =
¡
θ0, a0

¢0.
We construct the test statistics based on the prewhitened series, i.e. we use the residuals

from the regression

et = Â1et−1 + ...+ Âpet−p + ε̂t, t = 1, ..., n,

and define ε̂∗t−1 =
Pt−1

j=1 j
−1ε̂t−j , ε̂∗∗t−2 =

Pt−1
j=1 j

−1ε̂∗t−j−1, and Xt−1 =
¡
x0t−1, ..., x0t−p

¢0. The
test statistics (7) and (12) are now defined in terms of Σ̂ = n−1

Pn
t=1 ε̂tε̂

0
t, Ŝ10 =

Pn
t=2 ε̂

∗
t−1ε̂

0
t,

Ŝ11 =
Pn

t=2 ε̂
∗
t−1ε̂

∗0
t−1, Ŝ20 =

Pn
t=2 ε̂

∗∗
t−2ε̂

0
t, Ŝx1 =

Pn
t=2Xt−1ε̂∗0t−1, Sxx =

Pn
t=2Xt−1X 0

t−1, and

the Hessian matrices

− ∂2L (θ, a,Σ)

∂φ∂φ0

¯̄̄̄
θ=0,a=â,Σ=Σ̂

=

 tr(Σ̂−1M̂11) vec(Ŝx1)
0

vec Ŝx1 Sxx ⊗ Σ̂−1

 ,
− ∂2LK (θ, a,Σ)

∂φ∂φ0

¯̄̄̄
θ=0,a=â,Σ=Σ̂

=

 Ŝ11 ¯ Σ̂−1 + (Σ̂−1Ŝ020)¯ IK J 0K(Ŝ
0
x1 ⊗ IK)

(Ŝx1 ⊗ IK)JK Sxx ⊗ Σ̂−1

 .
Applying the partitioned matrix inverse formula, the test statistics are

LM =
tr(Σ̂−1S10)2

tr(Σ̂−1(M̂11 − Ŝx1S
−1
xx Ŝx1))

, (14)

LMK = vec(Σ̂
−1Ŝ010)

0JK
³
Ŝ11 ¯ Σ̂−1 + (Σ̂−1Ŝ020)¯ IK − (Ŝx1S−1xx Ŝx1)¯ Σ̂−1

´−1
J 0K vec(Σ̂

−1Ŝ010).

(15)
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The results of Theorems 1 and 3 continue to hold in the present case with autocorrelated

errors, though the noncentrality parameters are different.

Theorem 4 Suppose (13) holds and let the LM test statistics be defined by (14) and (15). The

results of Theorems 1 and 3 continue to hold with noncentrality parameters defined by

I =π2K

6
− tr ¡Φ0Γ−1ΦΣ¢ , (16)

IK = π2

6
Σ¯Σ−1 − ¡ΣΦ0Γ−1ΦΣ¢¯Σ−1, (17)

where Γ is the covariance matrix of (e0t, ..., e0t−p+1)0, Φ =
¡
Φ01, ...,Φ0p

¢0, Φi =P∞
j=i j

−1Bj−i, and

Bi is the coefficient to zi in the moving average polynomial B (z) from the Wold representation

of et.

As a simple example consider the VAR(1), et = Aet−1 + εt =
P∞

j=0A
jεt−j . In this case, I

and IK reduce to π2K/6− tr ¡Φ1Γ−1Φ01Σ¢ and π2

6 Σ¯Σ−1−
¡
ΣΦ1Γ

−1Φ01Σ
¢¯Σ−1, respectively,

where Φ1 = IK +
P∞

j=2 j
−1Aj−1 and Γ = E (ete

0
t) can be recovered from the relation vecΓ =

(IK2 −A⊗A)−1 vecΣ.

4 Finite Sample Performance

In this section we compare the finite sample properties of the LM test (7), (14), and Breitung

& Hassler’s (2002) Λ0 (d) test (henceforth the BH test) in (5) with allowance for short-run

dynamics when relevant, see Breitung & Hassler (2002). The asymptotic local power of the

LM test can easily be derived from the previous results as

P
¡
LM > χ21,1−α

¢
= 1− F1,λ

¡
χ21,1−α

¢
, (18)

where χ21,1−α is the 100 (1− α)% point of the central χ2 distribution with one degree of freedom,

and F1,λ is the distribution function of the noncentral χ2 distribution with one degree of freedom

and noncentrality parameter λ defined in Theorems 1 and 4. Setting δ = θ
√
n in (18), we can

compare the asymptotic local power with the finite sample rejection frequencies for any fixed

values of θ and n.
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The models we consider for the simulation study are

Model A :

 (1− L)1+θ 0

0 (1− L)1+θ

 yt = εtI (t ≥ 1) ,

Model B : (I2 −AL)

 (1− L)1+θ 0

0 (1− L)1+θ

 yt = εtI (t ≥ 1) , A =
 a 0

0 a

 ,
Model C : y1t = βy2t + u1t, (I2 −AL)

 (1− L)1−θ 0

0 (1− L)

 u1t

y2t

 = εtI (t ≥ 1) ,

where the εt are i.i.d. N (0,Σ). The contemporaneous covariance matrix Σ is normalized such

that the diagonal elements equal unity and the correlation coefficient ρ is 0 or 0.6. Models A

and B are noncointegrated and the alternatives are of the form considered in Theorem 1, i.e.

with the same θ for each variate. The cointegrated alternatives of Corollary 2 are considered

in Model C, where y1t and y2t are fractionally cointegrated if θ > 0 and noncointegrated under

the null hypothesis, θ = 0. To generate data we used β = 1.

All calculations were made in Ox version 3.20 including the Arfima package version 1.01, see

Doornik (2001) and Doornik & Ooms (2001). To calculate the BH test, we adapted the Gauss

code available on Jörg Breitung’s homepage. Throughout, the nominal size (type I error) of

the tests is fixed at 5%, and the number of replications at 10, 000.

Table 1 about here

In Table 1 the finite sample rejection frequencies of the LM and BH tests for the case with

i.i.d. errors are presented, i.e. for Model A. Under the heading ’Limit’, we give the asymptotic

local power calculated from (18) with δ = θ
√
n. Size corrected rejection frequencies have also

been computed and are reported as LMsc and BHsc.

The finite sample sizes of both tests are close to the nominal 5% level, but the LM test is

the more powerful test for Model A, except against θ > 0 with n = 100 in which case the BH

test appears slightly more powerful. Furthermore, the finite sample power of the LM test is

close to the corresponding asymptotic local power.

Unreported simulations show that the BH test is robust to the case where the θ’s in Model

A are allowed to be different, i.e. as in the model of section 3.2. However, the LMK test is
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designed for that DGP and directed against alternatives where the θ’s are different. Hence, the

LMK test is clearly superior to the BH test in that model.

Table 2 about here

Table 2 presents the simulation results for Model B with a = 0.4. For the small sample size,

n = 100, the BH test is slightly size distorted, with finite sample sizes of 0.0745 and 0.0740 for

ρ = 0 and ρ = 0.6, respectively. When n = 100, the BH test has slightly higher power against

θ < 0 (opposite the case in Table 1), but against θ > 0 the LM test has much higher power

than the BH test. When considering the larger sample size, n = 250, or the size corrected tests,

the LM test is clearly the superior test for Model B. It is worth noting that, for both n = 100

and n = 250 and for both values of ρ, the BH test has lower power against θ = 0.3 than against

θ = 0.2.

Table 3 about here

To evaluate the sensitivity to the particular value of the coefficient matrix (i.e. a = 0.4) in

the autoregressive specification in Model B, Table 3 presents the finite sample sizes of the LM

and BH tests for different specifications of the coefficient matrix A in Model B. In particular,

the values a = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75 and sample sizes n = 100, n = 250, and

n = 500 are considered. Notice that the column a = 0 corresponds to the case where a VAR(1)

is estimated for et even though it is really an i.i.d. process.

For all specifications the size distortions of both tests are small. For samples of n = 100

the finite sample size of the LM test ranges from 0.0513 to 0.0762 when a < 0.75. However,

when a = 0.75 the finite sample size of the LM test is approx. 13% for a nominal 5% test.

When larger samples of n = 250 and n = 500 are considered, the finite sample size distortions

for a = 0.75 are smaller. Overall, Table 3 shows that the size of the LM test is close to the

nominal 5% level.

Table 4 about here

Table 4 shows finite sample rejection frequencies of the LM and BH tests for Model C

with a = 0.4, i.e. against fractionally cointegrated alternatives with short-run dynamics. The
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column θ = 0 corresponds to the null of I (1) noncointegrated data, the column θ = 1 to

standard I (1) − I (0) cointegration, and 0 < θ < 1 corresponds to fractional cointegration

with I (1− θ) cointegration errors. Thus, the degree of cointegration is determined by the

magnitude of θ. In this model, both tests exhibit finite sample sizes very close to the nominal

5% level. When ρ = 0, the finite sample rejection frequencies of the two tests are close. When

the errors are contemporaneously correlated, ρ = 0.6, both tests have increased power, but the

gain in power of the BH test is larger than that of the LM test, as expected, since the BH test

is specifically directed towards these alternatives.

Overall, the Monte Carlo study has shown that the LM test has higher finite sample power

than the BH test in the noncointegrated model, although both tests can be slightly size distorted

when the errors exhibit positive autocorrelation. In addition, Table 4 shows that the LM test

is nearly as powerful as the BH test against cointegrated alternatives (which the latter was

developed for) when the errors are contemporaneously uncorrelated.

5 Empirical Application

In this section we apply our tests to the data examined previously by Kugler & Neusser (1993)

and Choi & Ahn (1999). The data are monthly observations on real interest rates for the USA,

Japan, the UK, (West) Germany, France, and Switzerland from January 1980 to October 1991,

i.e. 142 observations on six time series. A more detailed description is available in Kugler &

Neusser (1993) or Choi & Ahn (1999).

Kugler & Neusser (1993) tested the real interest parity hypothesis by a co-dependence

approach, which requires the vector time series in question to be stationary. In order to

establish stationarity of the data, Kugler & Neusser (1993) conducted a series of univariate

unit root tests, which rejected the unit root null hypothesis for most of the series. They found

some sensitivity to the choice of lag length for the augmented Dickey-Fuller tests, while the

Phillips-Perron tests all rejected the null. Choi & Ahn (1999) reversed the null and alternative

hypotheses, and tested the null hypothesis of level-stationarity against the alternative of a unit

root, which seems to be a more natural testing strategy in the present case. It was found that
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one of the univariate stationarity tests (their LMI test) rejected the null at 5% level for France,

and that two univariate stationarity tests (their SBDHT and SBDHB tests) rejected the null

at 10% level for the USA. However, none of their multivariate tests rejected the null at 10%

level, thus providing more certain evidence than the univariate tests.

We apply our LM and LMK tests and the BH test of Breitung & Hassler (2002) to the

real interest rate data to test the hypothesis that d = 0, i.e. that the data are I (0), against

fractionally integrated alternatives. We allow for a non-zero mean by setting zt = 1 as in

section 3.1, and report the tests without allowing short-run dynamics (p = 0) and allowing

VAR(p) dynamics with p = 1 and p = 4.

Table 5 about here

In part (a) of Table 5 we report the results from applying the LM and BH tests to each

univariate time series. When p = 0 both tests reject clearly for all the time series. However,

when p > 0 the LM test rejects at 1% level in two of the twelve cases (Germany and Switzerland

with p = 1), and similarly the BH test rejects at 5% level in one case (Germany with p = 1)

and at 1% level in one case (France with p = 4).

The results from applying the multivariate LM, LMK , and BH tests are reported in part (b)

of Table 5. Again, the null is soundly rejected when no short-run dynamics is allowed, i.e. when

p = 0, and also when p = 4 for the BH test. However, when allowing short-run dynamics with

either p = 1 or p = 4, the LM and LMK tests unanimously do not reject the null. Thus, the

empirical results provide strong evidence that the data are indeed I (0) with non-zero means,

when allowance is made for short-run dynamics, and hence support the unit-root tests in Kugler

& Neusser (1993) and the stationarity tests in Choi & Ahn (1999).

6 Conclusion

We have introduced a multivariate LM test for fractional integration, generalizing the univariate

tests developed recently by Robinson (1994) and Tanaka (1999), among others. We have shown

that the regression variant of the LM test derived by Breitung & Hassler (2002) is not equivalent
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to the LM test in the multivariate case, and indeed, that the two tests have different degrees

of freedom in their asymptotic chi-squared distributions.

Desirable distributional properties and optimality properties of the LM test have been

established. In particular, the test statistic is asymptotically chi-squared distributed under

local alternatives, where the degrees of freedom equal the number of restrictions tested. Under

Gaussianity, the LM test is asymptotically efficient against local alternatives. An extension of

the LM test statistic, explicitly allowing different integration orders for each variate, was also

introduced.

Finite sample properties have been evaluated by Monte Carlo experiments, which show

that the LM test compares favorably with the Breitung & Hassler (2002) test. The tests were

applied to a multivariate time series of real interest rates for six countries, and more clear-cut

evidence were obtained compared to applying univariate tests. The results indicate that, when

allowing for short-run dynamics, the real interest rates are jointly I (0) with non-zero means.
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Appendix: Proofs

Proof of Theorem 1. Breitung & Hassler (2002) show that, under θ = 0,

1√
n
vec

³
Σ̂−1/2S10

´
→d N (0, IK ⊗ Ω) , (19)

and by slight modification of the arguments of Breitung & Hassler (2002, p. 180), it follows

that

n−1S11 →p Ω, n
−1S20 →p 0, n

−1M11 →p Ω, (20)

where

Ω = lim
n→∞n−1

nX
t=1

E
¡
x∗tx

∗0
t

¢
=

π2

6
Σ. (21)
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The distribution under the null follows immediately using tr (A0B) = vec (A)0 vec (B) and

consistency of Σ̂.

Consider next the case θ = δ/
√
n. Then

tr
¡
Σ−1S10

¢
= tr

Ã
Σ−1

nX
t=2

e∗t−1e
0
t

!
+

δ√
n
tr

Ã
Σ−1

nX
t=2

e∗t−1e
∗0
t−1

!
+Op

¡
n−1

¢
, (22)

following the arguments of Tanaka (1999, p. 579). Applying (19) and (20) to the second-

moment matrices of et, the desired result follows.

By uncorrelatedness of xt,

I = −E0 1
n

∂2L (θ,Σ)

∂θ2

¯̄̄̄
θ=0,Σ=Σ̂

= tr
¡
Σ−1Ω

¢
=

π2K

6
,

which is the Fisher information for θ under Gaussianity. Hence, the noncentrality parameter

is maximal, and the test is efficient against local alternatives.

Proof of Corollary 2. Since the LM test is invariant to non-singular linear transforma-

tions, we equivalently consider x̄t = Dxt (corresponding to zt in Breitung & Hassler (2002)),

where

D =

 (γ0Σγ)−1/2 γ0

β0 − β0Σγ (γ0Σγ)−1 γ0


such that the (K − r)-vector x̄1t is i.i.d. (0, IK−r) and the r-vector x̄2t is uncorrelated with x̄1t.

The LM test is proportional to
³PK

k=1 λk

´2
, where the λk are eigenvalues of

¯̄̄
λΣ̂− n−1/2S10

¯̄̄
=

0, or equivalently ¯̄̄
λn−1X̄ 0X̄ − n−1/2X̄ 0X̄∗

¯̄̄
= 0, (23)

with capital letters denoting matrices of observations, i.e. X̄ = (x̄1, ..., x̄n) and X̄∗ = (x̄∗1, ..., x̄∗n).

By Lemma A.1 of Breitung & Hassler (2002),

1√
n
X̄ 0X̄∗ =

1√
n

³
X̄ 0
1 X̄ 0

2

´ X̄∗
1

X̄∗
2

 =

 Op (1) Op (1)

Op (1) Op (
√
n)

 ,

and thus (23) has K − r eigenvalues that are Op (1) and r eigenvalues that are Op

¡
n1/2

¢
.

In the following we need a lemma on some properties of the Hadamard product, which is

defined for two m× n matrices A = (aij) and B = (bij) as

A¯B = (aijbij) ,
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see e.g. Magnus & Neudecker (1999, Chapter 3.6) for more details. The proof of the lemma is

easy and is omitted.

Lemma 1 Property 1. There exists a K2 ×K matrix JK := (vecE11, ..., vecEKK), Eii = eie
0
i

where ei is the i0th unit K-vector, such that for any K ×K matrix A,

J 0K vecA = a,

where a is the K-vector holding the diagonal of A. If Ad := IK ¯ A is the diagonal matrix

obtained from A then

vecAd = JKa.

Property 2. Connection with the Kronecker product. For all K ×K matrices A and B,

J 0K (A⊗B)JK = A¯B,

where JK is defined as in property 1.

Property 3. Let A and B be K ×K matrices such that A is diagonal and B is symmetric.

Then

ABA = aa0 ¯B,

where a is defined as in property 1.

Proof of Theorem 3. It follows from (19), application of vec (ABC) = (C 0 ⊗A) vecB,

and property 2 of Lemma 1 that

1√
n
J 0K vec

³
Σ̂−1S010

´
→d N

µ
0,
π2

6
Σ¯Σ−1

¶
.

By (20) and consistency of Σ̂, the distribution under the null follows. Under θ = δ/
√
n the

expansion corresponding to (22) is

J 0K vec
¡
Σ−1S010

¢
=

nX
t=2

diag
¡
e∗t−1

¢
Σ̂−1et +

nX
t=2

diag
¡
e∗t−1

¢
Σ̂−1 diag

¡
e∗t−1

¢ δ√
n
+Op

¡
n−1

¢
,

(24)

and the result follows as above.
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Proof of Theorem 4. Consider first θ = 0. For a fixed m > p, define the K2m-vector

Ĉm = ((vec Ĉ (1))0, ..., (vec Ĉ (m))0)0, where Ĉ (j) = n−1
Pn

t=j+1 ε̂tε̂
0
t−j is the j’th residual au-

tocovariance. Hosking (1980) showed that

√
nĈm →d N

¡
0, Im ⊗ Σ⊗ Σ−Km

¡
Γ−1 ⊗ Σ¢K 0

m

¢
,

where Γ−1 ⊗ Σ is the inverse Fisher information for the parameters in A (z) and

Km =


Σ 0

ΣB01 Σ
...

...
. . .

ΣB0m−1 ΣB0m−2 · · · · · · ΣB0m−p

⊗ IK .

Thus,
√
n

mX
j=1

j−1 vec Ĉ (j)→d N (0,Ψm)

with Ψm =
Pm

j=1 j
−2Σ ⊗ Σ − (Σ(Φ0(m)1 , ...,Φ

0(m)
p )Γ−1(Φ0(m)1 , ...,Φ

0(m)
p )0Σ) ⊗ Σ and the Φ(m)i

truncated at m. It now follows by application of Bernstein’s Lemma, see e.g. Hall & Heyde

(1980, pp. 191-192), that
√
n
n−1X
j=1

j−1 vec Ĉ (j)→d N (0,Ψ) ,

where Ψ = limm→∞Ψm. The limiting distributions of LM and LMK in (14) and (15), when

θ = 0, now follow by recalling that n−1Ŝ10 =
Pn−1

j=1 j
−1Ĉ (j), and using that n−1Ŝx1 →p ΦΣ

and n−1Sxx →p Γ along with (20).

When θ = δ/
√
n, the desired results follow by combining the arguments of the previous

theorems, and using expansions like (22) and (24).
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Table 1: Finite sample rejection frequencies for Model A
ρ = 0 ρ = 0.6

θ Limit LM BH LMsc BHsc Limit LM BH LMsc BHsc
n = 100
−0.3 0.9998 0.9945 0.9767 0.9950 0.9788 0.9998 0.9966 0.9779 0.9967 0.9775
−0.2 0.9523 0.8914 0.7161 0.8977 0.7328 0.9523 0.8923 0.7064 0.8947 0.7057
−0.1 0.4420 0.3864 0.1998 0.4000 0.2156 0.4420 0.3899 0.2038 0.3937 0.2032

0 0.0500 0.0457 0.0444 0.0500 0.0500 0.0500 0.0489 0.0501 0.0500 0.0500
0.1 0.4420 0.1855 0.2616 0.1906 0.2726 0.4420 0.1879 0.2609 0.1894 0.2606
0.2 0.9523 0.7159 0.8056 0.7234 0.8152 0.9523 0.7171 0.8029 0.7191 0.8022
0.3 0.9998 0.9667 0.9872 0.9677 0.9881 0.9998 0.9666 0.9884 0.9670 0.9884

n = 250
−0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
−0.2 0.9999 0.9999 0.9951 0.9999 0.9952 0.9999 0.9998 0.9965 0.9998 0.9965
−0.1 0.8180 0.7882 0.5324 0.7867 0.5377 0.8180 0.7876 0.5400 0.7832 0.5458

0 0.0500 0.0504 0.0482 0.0500 0.0500 0.0500 0.0519 0.0477 0.0500 0.0500
0.1 0.8180 0.6241 0.6166 0.6234 0.6203 0.8180 0.6380 0.6278 0.6339 0.6326
0.2 0.9999 0.9964 0.9973 0.9964 0.9974 0.9999 0.9973 0.9966 0.9972 0.9968
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Finite sample rejection frequencies for Model B with a = 0.4
ρ = 0 ρ = 0.6

θ Limit LM BH LMsc BHsc Limit LM BH LMsc BHsc
n = 100
−0.3 0.6044 0.2308 0.3211 0.1923 0.2513 0.6044 0.2157 0.3137 0.1766 0.2405
−0.2 0.3171 0.0892 0.1639 0.0702 0.1220 0.3171 0.0897 0.1638 0.0677 0.1210
−0.1 0.1150 0.0441 0.0885 0.0331 0.0614 0.1150 0.0376 0.0860 0.0292 0.0579

0 0.0500 0.0591 0.0745 0.0500 0.0500 0.0500 0.0598 0.0740 0.0500 0.0500
0.1 0.1150 0.1450 0.0973 0.1304 0.0689 0.1150 0.1577 0.0982 0.1402 0.0711
0.2 0.3171 0.3130 0.1232 0.2924 0.0882 0.3171 0.3034 0.1155 0.2842 0.0839
0.3 0.6044 0.3959 0.1143 0.3728 0.0818 0.6044 0.3990 0.1089 0.3765 0.0797

n = 250
−0.3 0.9404 0.8209 0.7818 0.8520 0.7560 0.9404 0.8130 0.7797 0.8330 0.7611
−0.2 0.6500 0.4126 0.3943 0.4651 0.3655 0.6500 0.4032 0.3923 0.4346 0.3652
−0.1 0.2164 0.1087 0.1288 0.1366 0.1146 0.2164 0.1069 0.1241 0.1230 0.1099

0 0.0500 0.0394 0.0570 0.0500 0.0500 0.0500 0.0425 0.0576 0.0500 0.0500
0.1 0.2164 0.1081 0.1161 0.1217 0.1051 0.2164 0.1083 0.1217 0.1172 0.1104
0.2 0.6500 0.3029 0.2367 0.3213 0.2185 0.6500 0.3002 0.2290 0.3093 0.2120
0.3 0.9404 0.5084 0.2118 0.5287 0.1949 0.9404 0.5009 0.2226 0.5132 0.2032
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Table 5: Empirical results for the Kugler-Neusser data
(a) Univariate tests of d = 0 with non-zero mean

p = 0 p = 1 p = 4
LM(1) BH(1) LM(1) BH(1) LM(1) BH(1)

USA 36.48∗∗ 25.34∗∗ 1.81 0.19 1.69 1.30
Japan 37.56∗∗ 26.97∗∗ 0.02 0.39 0.45 0.36
UK 51.98∗∗ 31.23∗∗ 0.85 0.64 0.10 0.32
Germany 26.09∗∗ 18.07∗∗ 8.99∗∗ 4.06∗ 0.43 2.74
France 42.63∗∗ 31.12∗∗ 0.92 1.16 1.04 8.93∗∗

Switzerland 44.53∗∗ 28.05∗∗ 20.17∗∗ 2.25 0.14 2.05

(b) Multivariate tests of d = 0 with non-zero mean
p = 0 p = 1 p = 4

LM(1) BH(36) LMK(6) LM(1) BH(36) LMK(6) LM(1) BH(36) LMK(6)
136.47∗∗ 166.44∗∗ 145.09∗∗ 0.18 41.11 3.76 2.23 76.76∗∗ 6.44

One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level. All test
statistics are asymptotically χ2-distributed, with the appropriate degrees of freedom reported in parenthesis.
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