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Abstract

We consider semiparametric estimation in time series regression in the presence of long

range dependence in both the errors and the stochastic regressors. A central limit theorem is

established for a class of semiparametric frequency domain weighted least squares estimates,

which includes both narrow band ordinary least squares and narrow band generalized least

squares as special cases. The estimates are semiparametric in the sense that focus is on

the neighborhood of the origin, and only periodogram ordinates in a degenerating band

around the origin are used. This setting differs from earlier work on time series regression

with long range dependence where a fully parametric approach has been employed. The

generalized least squares estimate is infeasible when the degree of long range dependence

is unknown and must be estimated in an initial step. In that case, we show that a feasible

estimate exists, which has the same asymptotic properties as the infeasible estimate. By

Monte Carlo simulation, we evaluate the finite-sample performance of the generalized least

squares estimate and the feasible estimate.
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1 Introduction

In this paper we derive central limit theorems for semiparametric estimates of the coefficient

vector β in the multiple linear time series regression model

yt = α+ β0xt + ut, t = 1, 2, ..., (1)

where both the (p− 1)-vector of stochastic regressors xt and the scalar errors ut are allowed to
have long range dependence.

It is well known that, under a wide variety of regularity conditions, the ordinary least

squares and generalized least squares estimates of β are asymptotically normal, see e.g. Hannan

(1979). However, as discussed by Robinson (1994a, 1994b) and Robinson & Hidalgo (1997),

this fails to hold when xt and ut have sufficient collective long range dependence. To account

for this, Robinson (1994a) suggested a narrow band (semiparametric) frequency domain least

squares estimate, where the estimation is conducted over a degenerating band of frequencies

near the origin, and proved its consistency for arbitrary short-run dynamics. As an alternative,

Robinson & Hidalgo (1997) introduced a parametric class of (full band) weighted least squares

estimates (including generalized least squares as a special case), and proved root-n-consistency

and asymptotic normality for these estimates, assuming correct specification of the dynamics

at any frequency.

We consider a semiparametric version of the class of weighted least squares estimates in

Robinson & Hidalgo (1997). The advantage of the semiparametric approach is that consistency

and asymptotic normality are retained without the need for correct specification of the short-

run dynamics. Suppose the spectral density matrix of the p-vector wt = (x0t, ut)
0 exists and

satisfies

fw (λ) ∼ Λ−1GΛ−1 as λ→ 0+, (2)
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where the symbol ”∼” means that the ratio of the left- and right-hand sides tends to one
(elementwise), Λ = diag(λd1 , ..., λdp), and G is a p×p real, symmetric, positive definite matrix.

Then the process wt is said to have long range dependence or strong dependence since the

autocorrelations decay hyperbolically. The parameters d1, ..., dp determine the memory of the

process, i.e. each component of wt, say wat, is associated with one memory parameter, da.

If da > −1/2, wat is invertible and admits a linear representation, and if da < 1/2, wat is

covariance stationary. If da = 0, the spectral density is bounded at the origin and wat has only

weak dependence. Sometimes wat is said to have negative, short, or long memory when da < 0,

da = 0, or da > 0, respectively. Note that the memory parameter of ut = wpt is dp in this

notation. Throughout this paper we shall be concerned with the case 0 ≤ da < 1/2, a = 1, ..., p,

since this is the dominant case in empirical research, see Robinson (1994b) and Beran (1994)

for a review of long range dependent processes.

The most well known parametric models satisfying (2) are the fractional Gaussian noise and

the fractional ARIMA models, see Mandelbrot & Ness (1968), Adenstedt (1974), Granger &

Joyeux (1980), and Hosking (1981). The obvious advantage of specifying the spectral density

only in a neighborhood of the origin as in (2), is that it allows treating the spectral density

away from the origin nonparametrically, assuming only mild regularity conditions. Thus, in

applications we need not worry about correct specification of the short-run dynamics of the

process, such as the autoregressive and moving average orders in the fractional ARIMA model.

Previously, this type of specification, termed semiparametric by Robinson (1994a), has been

applied for estimation of the memory parameters by Geweke & Porter-Hudak (1983), Robinson

(1994a, 1995a, 1995b), Lobato & Robinson (1996), and Lobato (1997, 1999), among others.

Based on observations (yt, xt) , t = 1, ..., n, we consider the class of semiparametric weighted

least squares estimates

β̂δ,m =

 1

m

mX
j=1

λ2δj Re (Ixx (λj))

−1 1
m

mX
j=1

λ2δj Re (Ixy (λj)) , (3)

where

Iab (λ) = wa (λ)w
∗
b (λ) and wa (λ) =

1√
2πn

nX
t=1

ate
itλ (4)
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are the cross-periodogram matrix between at and bt and the discrete Fourier transform of at,

respectively, λj = 2πj/n are the harmonic frequencies, m = m (n) is a bandwidth parameter,

and the asterisk denotes complex conjugation combined with transposition.

Our estimates are semiparametric in the sense that they assume only (2) on the spectral

density matrix of wt, except for weak regularity conditions (see below). Thus, we shall need

the bandwidth parameter m = m (n) to tend to infinity at a slower rate than n, such that we

remain in a neighborhood of the origin where the functional form of the spectral density (2) is

assumed. This has the advantage that our estimate is invariant to the short-run dynamics of

the processes xt and ut (it is also location invariant since λ0 = 0 is left out of the summations

in (3)). In contrast, the estimates in Robinson & Hidalgo (1997) use all available periodogram

ordinates (i.e. m = n) and replace our weights λ2δj by weight functions φ (λ), π ≤ λ < π.

Thus, φ (λ) = 1 and φ (λ) = f−1u (λ) correspond to ordinary least squares and generalized least

squares, respectively, and correct specification of the dynamics of the model at any frequency

is assumed.

In our setting, (3) with δ = 0 (i.e. β̂0,m) is termed the narrow band frequency domain least

squares (FDLS) estimate (see Robinson (1994a) and Robinson & Marinucci (1998)). Hence-

forth, we shall term (3) with δ = dp (i.e. β̂dp,m) the narrow band frequency domain generalized

least squares (FDGLS) estimate. The latter case also corresponds to the local Whittle QMLE

of β. To see this, consider the local frequency domain Whittle QML objective function for (1),

W (β,Gpp) =
1

m

mX
j=1

µ
log fpp (λj) +

Ipp (λj)

fpp (λj)

¶
. (5)

Concentrate Gpp out of the likelihood by setting Ĝpp (β) = m−1
Pm

j=1 λ
2dp
j Ipp (λj), then the

concentrated likelihood is Wc (β) = log Ĝpp (β) apart from constant terms. The derivative,

using that Ipp (λj) = Iyy (λj)−Re(β0Ixy (λj) + Iyx (λj)β − β0Ixx (λj)β), is

W 0
c (β) = 2Ĝpp (β)

−1 1
m

mX
j=1

λ
2dp
j Re (Ixx (λj)β − Ixy (λj)) ,

and setting this equal to zero produces (3) with δ = dp.

In the next section, we shall give the conditions necessary to prove central limit theorems
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of the type
√
mλ

dp
mΛ

−1
m

³
β̂δ,m − β

´
→d N

¡
0, E−1FE−1

¢
, (6)

where Λm = diag(λd1m , ..., λ
dp−1
m ) and E,F will be defined later. As mentioned above, the fully

parametric version of this class of estimates has been examined by Robinson & Hidalgo (1997),

who derived a parametric version of (6) in the case of long range dependent regressors and

errors.

For the case with long range dependent errors and fixed (nonstochastic) regressors, Yajima

(1988, 1991) derived central limit theorems for the ordinary least squares and generalized least

squares estimates under conditions on the cumulants of all orders, and gave conditions for

the ordinary least squares estimate to achieve the efficiency of the generalized least squares

estimate. Dahlhaus (1995) considered an efficient weighted least squares estimate, and proved

asymptotic normality under Gaussianity of the errors. Robinson (1997) gave a central limit

theorem for nonparametric regression with fixed regressors assuming that the errors are linear

in martingale differences. For a detailed discussion of the fixed regressor case, see Robinson &

Hidalgo (1997) and the references therein.

Our emphasis on stochastic long range dependent regressors reflects recent empirical re-

search. Thus, we also cover the case of cointegration where, if dp < min1≤a≤p−1 da, yt and

xt are termed (fractionally) cointegrated. Cointegration is essentially the necessary condition

to avoid spurious regression effects when data is trended, i.e. when da is high, see Phillips

(1986) and Tsay & Chung (2000). Since we impose only the condition da ∈ [0, 1/2), for all a,
on the memory parameters, our framework provides a unified treatment of cointegration and

regression with fractionally integrated regressors and errors.

The paper proceeds as follows. In the next section we present the central limit theorem

for (3), and discuss its implications for the FDLS and FDGLS estimates. Section 3 discusses

feasible versions of these estimates, and it is shown that the central limit theorem continues to

hold for the feasible estimates. Section 4 reports the results of a Monte Carlo investigation of

our estimates. The proofs of our theorems appear in sections 5 and 6, and section 7 contains

some auxiliary lemmas and propositions.
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2 Asymptotic Distribution of Estimates

We shall need the following assumptions on wt and the spectral density matrix fw (λ) (with

obvious implications for yt).

Assumption 1 The spectral density matrix of wt in (2) with typical element fab (λ), the cross

spectral density between wat and wbt, satisfies¯̄̄
fab (λ)−Gabλ

−da−db
¯̄̄
= O

³
λα−da−db

´
as λ→ 0+, a, b = 1, ..., p,

for some α ∈ (0, 2] and 0 ≤ da < 1/2, a = 1, ..., p. The matrix G satisfies Gap = Gpa = 0

for a = 1, ..., p − 1, and the leading (p− 1) × (p− 1) submatrix of G, denoted Gx, is positive

definite.

Assumption 2 wt is a linear process, wt = µ+
P∞

j=0Ajεt−j, where the coefficient matrices are

square summable,
P∞

j=0 kAjk2 <∞. The innovations satisfy, almost surely, E (εt| Ft−1) = 0,

E (εtε
0
t| Ft−1) = Ip, and the matrices µ3 = E (εt ⊗ εtε

0
t| Ft−1) and µ4 = E (εtε

0
t ⊗ εtε

0
t| Ft−1)

are nonstochastic, finite, and do not depend on t, with Ft = σ ({εs, s ≤ t}).

Assumption 3 As λ→ 0+

dAa (λ)

dλ
= O

¡
λ−1 kAa (λ)k

¢
, a = 1, ..., p,

where Aa (λ) is the a’th row of A (λ) =
P∞

j=0Aje
ijλ.

We also need a restriction on the expansion rate of the bandwidth parameter m.

Assumption 4 The bandwidth parameter m = m (n) satisfies, as n→∞,
1

m
+

m1+2α

n2α
→ 0.

Finally, we need to restrict the weighting parameter depending on the memory parameters

as follows.

Assumption 5 The weighting parameter δ satisfies

max
1≤a≤p−1

(2da + 2dp − 1) /4 ≤ δ ≤ dp.
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Our assumptions are a multivariate generalization of those in Robinson (1994a, 1995a),

see also Lobato (1997, 1999). They are in some respects much weaker than those employed by

Robinson & Hidalgo (1997) in their parametric setup. In particular, we avoid their assumptions

of independence between xt and ut and complete specification of f (λ).

Assumptions 1 and 3 specialize (2) by imposing smoothness conditions on the spectral

density matrix of wt commonly employed in the literature. They are satisfied with α = 2 if, e.g.,

wt is a vector fractional Gaussian noise or a vector fractional ARIMA process. The condition

that Gx must be positive definite is a no multicollinearity condition for the components of xt.

The extra condition that Gap = Gpa = 0 for a = 1, ..., p−1 ensures that the coherence at λ = 0
between the regressors and the error process is of smaller order, and can be thought of as a

local version of the usual orthogonality condition from least squares theory. In particular, it

relaxes the independence assumption employed by Robinson & Hidalgo (1997). Assumption

2 is a straightforward multivariate generalization of the corresponding condition in Robinson

(1995a), following Lobato (1999), and imposes a linear structure on wt with square summable

coefficients and martingale difference innovations with finite fourth moments. It is satisfied,

for instance, if εt form an i.i.d. process with finite fourth moments. Under Assumption 2 we

can write the spectral density matrix of wt as

f (λ) =
1

2π
A (λ)A∗ (λ) . (7)

Assumption 4 restricts the expansion rate of the bandwidth parameter m = m (n). The

bandwidth is required to tend to infinity for consistency, but at a slower rate than n to remain

in a neighborhood of the origin, where some knowledge of the form of the spectral density is

assumed. The maximal rate depends on the adequacy of the approximation (2) to (7), i.e. on

the parameter α from Assumption 1, and the weakest constraint is implied by α = 2 in which

case the condition is m = o(n4/5).

Finally, Assumption 5 states the required restrictions on the weighting parameter. Reversing

Assumption 5 effectively gives a restriction on the memory parameters for the narrow band

FDLS estimate (i.e. δ = 0) to be covered by our theory. Thus, for max1≤a≤p−1 da + dp < 1/2,

the narrow band FDLS estimate satisfies Assumption 5.
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We now state the following central limit theorem for β̂δ,m, which is proved in section 5.

Theorem 1 Under (1) and Assumptions 1-5, the estimator defined by (3) satisfies

√
mλ

dp
mΛ

−1
m

³
β̂δ,m − β

´
→d N

¡
0, E−1FE−1

¢
(8)

with

Eab =
Gab

1− da − db + 2δ
, (9)

Fab =
GabGpp

2 (1− da − db − 2dp + 4δ) . (10)

If the memory parameters of xt and ut are all equal, i.e. da = d, a = 1, ..., p, inference is

particularly simple since the memory parameter does not appear in the convergence rate and

E,F are scalar multiples of Gx. We state this special case as a corollary.

Corollary 1 Under (1), Assumptions 1-5, and da = d ∈ [0, 1/2), a = 1, ..., p, the estimator

defined by (3) satisfies

√
m
³
β̂δ,m − β

´
→d N

Ã
0,
(1− 2d+ 2δ)2
2 (1− 4d+ 4δ)GppG

−1
x

!
.

Let us focus briefly on the case of scalar xt. Suppose fw (λ) = diag (fx (λ) , fu (λ)) with

fx (λ) ∼ Gxλ
−2dx and fu (λ) ∼ Guλ

−2du . When dx + du < 1/2, the FDLS estimate satisfies

√
mλdu−dxm

³
β̂0,m − β

´
→d N

Ã
0,
Gu

Gx

(1/2− dx)
2

1/2− dx − du

!
. (11)

However, the FDGLS estimate satisfies

√
mλdu−dxm

³
β̂du,m − β

´
→d N

µ
0,
Gu

Gx
(1/2− dx + du)

¶
(12)

for the entire stationary region of dx and du, unlike the FDLS estimate. Furthermore, the

asymptotic relative efficiency of β̂du,m with respect to β̂0,m (when both are asymptotically

normal) is
V (β̂0,m)

V (β̂du,m)
=

(1/2− dx)
2

(1/2− dx)
2 − d2u

,
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which equals unity if and only if du = 0, and exceeds unity otherwise. Hence, as expected,

the FDGLS estimate is more efficient and applies for a wider range of (dx, du) than the FDLS

estimate.

We end this section by remarking that the location of the spectral pole at the origin is

not critical as long as the location is known. If instead the pole was located at λ = λ̄ 6= 0,

we assume (2) as λ → λ̄ and use periodogram ordinates close to λ̄ in the summations in (3).

However, the case with a pole at the origin dominates both theoretical and empirical research,

so we shall not consider this extension further.

3 Feasible Estimates

For the FDGLS estimate the correct δ is usually not known a priori, and hence this estimate is

infeasible in practice. However, δ can obviously be estimated in any given situation by δ̂ = d̂p,

where d̂p is an estimate of dp based on residuals ût from (1). These residuals can be obtained

by e.g. FDLS, which does not require any knowledge of the memory parameters. Although the

FDLS estimate is not asymptotically normal for all d, it is consistent, see Robinson (1994a)

and Lobato (1997), and is thus useful as a preliminary estimate. We assume the following for

d̂p.

Assumption 6 The estimate of dp satisfies, as n→∞,

(logn)
³
d̂p − dp

´
→p 0.

In practice, the estimate can be obtained from residuals ût as mentioned above. Hassler,

Marmol & Velasco (2000) and Velasco (2001) provide some evidence that the log-periodogram

and Gaussian semiparametric procedures of Robinson (1995a, 1995b), with carefully chosen

bandwidth parameters, satisfy Assumption 6 with d̂p − dp = Op(m
−1/2).

Denote the feasible estimate β̂d̂p,m. The asymptotic distribution is given by the following

theorem which is proved in section 6.

Theorem 2 Under (1) and Assumptions 1-4 and 6 the results of Theorem 1 hold with δ replaced

by d̂p.
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Thus, under the additional Assumption 6, the initial estimation of the memory parameter

of the error process does not influence the asymptotic distribution theory for the regression

coefficients obtained in the previous section.

4 Finite Sample Performance

We proceed to investigate the finite sample properties of the FDGLS (henceforth GLS) and

feasible FDGLS (henceforth FGLS) estimates in a Monte Carlo study with two different gen-

erating mechanisms for xt and ut. In particular, we generated 10, 000 replications of xt and ut

of length n = 256, 512, and 1, 024. Both were Gaussian fractional ARIMAs with spectra given

by the two models

Model A : fa (λ) =
1

2π

¯̄̄
1− eiλ

¯̄̄−2da
, a = x, u,

Model B : fa (λ) =
1

2π

¯̄̄̄
1 + 0.4eiλ

1− 0.6eiλ
¯̄̄̄2 ¯̄̄
1− eiλ

¯̄̄−2da
, a = x, u,

for the grid of values dx = 0.0(0.1)0.4 and du = 0.0(0.1)dx, i.e. du ≤ dx to avoid any spurious

regression effects, see Phillips (1986) and Tsay & Chung (2000). These models both satisfy

Assumptions 1-3 with α = 2. From the linear model (1), we then generated yt by α = 0 and

β = 1; the results are not sensitive to the choice of α and β. All calculations were performed

in Ox version 3.10, see Doornik (2001) and Doornik & Ooms (2001).

In each model we computed β̂du,m and β̂d̂u,m with bandwidth parameters m =
£
n0.4

¤
and

m =
£
n0.5

¤
, where [z] denotes the integer part of z. The first bandwidth is more conservative,

and is expected to be more robust under more complicated generating mechanisms such as

Model B. The FGLS estimate was computed by first obtaining the residual process ût from

FDLS estimation of β, and then estimating du by the Gaussian semiparametric estimator of

Robinson (1995a) using the same bandwidth parameter for the entire estimation procedure.

Tables 1-4 about here

In Tables 1-4 we present the results of the simulation study for Model A. Tables 1 and

2 display the Monte Carlo bias of the GLS and FGLS estimates, respectively. The bias is
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universally lower than 0.008 in absolute value, and there are no clear trends. Tables 3 and 4

display the ratio (henceforth MSE ratio) of the asymptotic variance of β̂du,m (from Theorem

1) to the simulated mean-squared errors of the GLS and FGLS estimates. In both tables the

estimates with the higher bandwidth parameter are superior, their MSE ratios being closer to

unity and in some cases up to 20% higher than those with the lower bandwidth parameter.

Comparing the results of Tables 3 and 4, the mean-squared errors of the FGLS estimates are in

most cases approximately 5% higher than those of the GLS estimates, the difference of course

being due to the estimation of du. Furthermore, we note a clear monotonicity in the MSE

ratios for both estimates. Thus, the ratios tend to be decreasing when dx−du increases. When
dx = du, i.e. on the diagonals, the asymptotic theory performs very well with MSE ratios

around 0.9 for the GLS estimate and 0.85 for the FGLS estimate. The MSE ratios for the fully

parametric estimates in Robinson & Hidalgo (1997) display similar magnitudes and patterns

across dx and du (c and d, respectively, in their notation).

Tables 5-8 about here

Tables 5-8 present the corresponding simulation results for Model B. Again the bias is

negligible, and the pattern of MSE ratios from Tables 3 and 4 is repeated. Naturally, the MSE

ratios tend to be lower under this more complicated generating mechanism, but only slightly

so. Robinson & Hidalgo (1997) considered only Model A as generating mechanism, but do

conjecture that their MSE ratios ’could deteriorate if a richer model of f (λ) were estimated.’

Unreported simulations have shown that the highest possible expansion rate for the band-

width under Assumption 4, m =
£
n0.8

¤
, generally results in an MSE ratio smaller than 0.6 for

the GLS estimate for Model B, and thus appears too high for the sample sizes considered here.

Overall, the asymptotic theory seems to perform well, and the results of the Monte Carlo

study are very similar to those obtained by Robinson & Hidalgo (1997) for their fully parametric

estimates. However, in contrast to the estimates of Robinson & Hidalgo (1997), ours can be

obtained without any prior knowledge of the generating mechanism of xt and ut. In particular,

we do not need to know if xt and ut are generated by Model A or Model B in order to calculate

our semiparametric estimates. The simulated bias is negligible in all our specifications and
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the MSE ratio is high when dx and du are not too far apart. However, when dx is much

larger than du, the asymptotic variance is quite small compared to the Monte Carlo result, and

consequently asymptotic confidence intervals tend to be too narrow.

5 Proof of Theorem 1

We prove Theorem 1 using the auxiliary results in section 7. The basic technique is the

martingale difference approximation method of Robinson (1995a). The left-hand side of (8) isΛmλ−2δm

1

m

mX
j=1

λ2δj Re (Ixx (λj))Λm

−1Λmλdp−2δm
1√
m

mX
j=1

λ2δj Re (Ixp (λj)) .

From Proposition 1 of section 7, the first term on the right-hand side satisfies

Λmλ
−2δ
m

1

m

mX
j=1

λ2δj Re (Ixx (λj))Λm →p E,

where E is defined in (9). Note that Gx (and thus E) is invertible by Assumption 1.

For the second term we show that

1√
m
λ
dp−2δ
m Λm

mX
j=1

λ2δj Re (Ixp (λj))→d N (0, F ) .

By application of the Cramèr-Wold device, we need to examine (η is a (p− 1)-vector)
p−1X
a=1

ηa
1√
m
λ
da+dp−2δ
m

mX
j=1

λ2δj Re (Iap (λj))

=

p−1X
a=1

ηa
1√
m
λ
da+dp−2δ
m

mX
j=1

λ2δj Re
¡
Iap (λj)−Aa (λj)J (λj)A

∗
p (λj)

¢
(13)

+

p−1X
a=1

ηa
1√
m
λ
da+dp−2δ
m

mX
j=1

λ2δj Re

Ã
Aa (λj)

1

2πn

nX
t=1

εtε
0
tA
∗
p (λj)

!
(14)

+

p−1X
a=1

ηa
1√
m
λ
da+dp−2δ
m

mX
j=1

λ2δj Re

Aa (λj)
1

2πn

nX
t=1

X
s 6=t

εtε
0
se

i(t−s)λjA∗p (λj)

 , (15)

where J (λ) is the periodogram matrix of the innovations εt. Lemma 2 of section 7 proves that

(13) is op (1), while Lemma 3 in conjunction with Assumptions 1 and 4 proves that (14) is

op (1) since m−1/2λ
da+dp−2δ
m

Pm
j=1 λ

2δ
j Re (fap (λj)) = O

¡
m1+2αn−2α

¢
.
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We are left with (15), which can be written as
Pn

t=1 ztn, where

ztn = ε0t
t−1X
s=1

ct−s,nεs,

ctn =
1

2πn
√
m

mX
j=1

θj cos (tλj) ,

θj =

p−1X
a=1

ηaλ
da+dp−2δ
m λ2δj Re

¡
A0a (λj) Āp (λj) +A0p (λj) Āa (λj)

¢
.

Since ztn is a martingale difference array with respect to the filtration (Ft)t∈Z, Ft = σ ({εs, s ≤ t}),
we can apply the CLT of Brown (1971) and Hall & Heyde (1980, chp. 3.2) if

nX
t=1

E
¡
z2tn
¯̄Ft−1

¢− p−1X
a=1

p−1X
b=1

ηaηbFab →p 0, (16)

nX
t=1

E
¡
z2tn1 (|ztn| > κ)

¢→ 0, κ > 0. (17)

A sufficient condition for (17) is
nX
t=1

E
¡
z4tn
¢→ 0. (18)

First we show (16). The first term on the left-hand side is

nX
t=1

E

Ã
t−1X
s=1

t−1X
r=1

ε0sc
0
t−s,nεtε

0
tct−r,nεr

¯̄̄̄
¯Ft−1

!
=

nX
t=1

t−1X
s=1

ε0sc
0
t−s,nct−s,nεs + op (1) (19)

by Lemma 4. We need to show that the mean of the first term on the right-hand side of (19)

is asymptotically equal to
Pp−1

a=1

Pp−1
b=1 ηaηbFab. Thus,

nX
t=1

t−1X
s=1

E tr
¡
c0t−s,nct−s,nεsε

0
s

¢
=

nX
t=1

t−1X
s=1

tr
¡
c0t−s,nct−s,n

¢
=

nX
t=1

t−1X
s=1

mX
j=1

1

4π2n2m
tr
¡
θ0jθj

¢
cos2 ((t− s)λj) (20)

+
nX
t=1

t−1X
s=1

mX
j=1

X
k 6=j

1

4π2n2m
tr
¡
θ0jθk

¢
cos ((t− s)λj) cos ((t− s)λk) . (21)
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Notice that, since kθjk = O (1) by Theorem 2 of Robinson (1995b), we have

(21) = O

 nX
t=1

t−1X
s=1

mX
j=1

X
k 6=j

1

n2m
cos ((t− s)λj) cos ((t− s)λk)


and, using that

Pn
t=1

Pt−1
s=1 cos ((t− s)λj) cos ((t− s)λk) = −n/2, (21) isO

³Pm
j=1

P
k 6=j

¡
n2m

¢−1
n
´
=

O (m/n). Now, tr
¡
θ0jθj

¢
equals

Pp−1
a=1

Pp−1
b=1 ηaηbλ

da+db+2dp−4δ
m λ4δj times

tr
¡
Re
¡
A∗p (λj)Aa (λj) +A∗a (λj)Ap (λj)

¢
Re
¡
A0b (λj) Āp (λj) +A0p (λj) Āb (λj)

¢¢
= 4π2 (fab (λj) fpp (λj) + fap (λj) fbp (λj) + fpb (λj) fpa (λj) + fpp (λj) fba (λj))

by definition of f (λ), see (7). By Assumption 1 the second and third terms are of smaller

order, and since (x+ x̄) = 2Re (x) for any complex number x, we can thus rewrite (20) as

nX
t=1

t−1X
s=1

mX
j=1

p−1X
a=1

p−1X
b=1

2ηaηb
n2m

λ
da+db+2dp−4δ
m λ4δj Re (fab (λj) fpp (λj)) cos

2 ((t− s)λj) . (22)

Using Lemma 1 to approximate the sum
Pm

j=1 by an integral, and since
Pn−1

t=1

Pn−t
s=1 cos

2 (sλj) =

(n− 1)2 /4, we have that (22) is
p−1X
a=1

p−1X
b=1

ηaηb
nπm

λ
da+db+2dp−4δ
m

Ã
nX
t=1

t−1X
s=1

cos2 ((t− s)λj)

!Z λm

0
λ4δ Re (fab (λ) fpp (λ)) dλ

=

p−1X
a=1

p−1X
b=1

ηaηb
λ
da+db+2dp−4δ
m

2

Z λm

0
λ4δ Re (fab (λ) fpp (λ)) dλ,

and we have shown (16).

Hence, we have to show (18),

nX
t=1

E
¡
z4tn
¢
=

nX
t=1

E

t−1X
s=1

ε0sct−s,nεtε
0
t

t−1X
r=1

ct−r,nεr
t−1X
p=1

ε0pct−p,nεtε
0
t

t−1X
q=1

ct−q,nεq


≤ C

Ã
nX
t=1

tr

Ã
t−1X
s=1

c0t−s,nct−s,nc
0
t−s,nct−s,n

!
+

nX
t=1

tr

Ã
t−1X
s=1

c0t−s,n
t−1X
r=1

ct−r,nc0t−r,nct−s,n

!!

for some constant C > 0 by Assumption 2. Using the arguments in Lemma 4, this expression

can be bounded by O
³
n
¡Pn

t=1

°°c2tn°°¢2´ = O
¡
n−1

¢
, which completes the proof.

14



6 Proof of Theorem 2

We show that
√
mλ

dp
mΛ

−1
m

³³
β̂d̂p,m − β

´
−
³
β̂dp,m − β

´´
→p 0.

By definition of β̂d̂p,m and β̂dp,m, this amounts to showing that

λ
−2dp
m Λm

 1

m

mX
j=1

³
λ
2d̂p
j − λ

2dp
j

´
Re (Ixx (λj))

Λm →p 0, (23)

√
mλ

−dp
m Λm

 1

m

mX
j=1

³
λ
2d̂p
j − λ

2dp
j

´
Re (Ixp (λj))

→p 0. (24)

Since
¯̄̄
max1≤j≤m λ

2d̂p−2dp
j − 1

¯̄̄
= Op

³¯̄̄
d̂p − dp

¯̄̄
logn

´
, we have

λ
da+db−2dp
m

1

m

mX
j=1

³
λ
2d̂p
j − λ

2dp
j

´
Re (Iab (λj))

= Op

λ
da+db−2dp
m

1

m

¯̄̄̄
max
1≤j≤m

λ
2d̂p−2dp
j − 1

¯̄̄̄ mX
j=1

λ
2dp
j Re (Iab (λj))


= Op

λ
da+db−2dp
m

1

m

¯̄̄
d̂p − dp

¯̄̄
(logn)

mX
j=1

λ
2dp−da−db
j


= Op

³¯̄̄
d̂p − dp

¯̄̄
logn

´
and

√
mλ

da−dp
m

1

m

mX
j=1

³
λ
2d̂p
j − λ

2dp
j

´
Re (Iap (λj))

= Op

√mλ
da−dp
m

1

m

³¯̄̄
d̂p − dp

¯̄̄
logn

´ mX
j=1

λ
α+dp−da
j


= op

³√
mλαm

¯̄̄
d̂p − dp

¯̄̄
logn

´
by Assumption 1. In view of Assumptions 4 and 6, this proves (23) and (24).
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7 Auxiliary Propositions and Lemmas

Here we provide a series of auxiliary results used to prove our main theorems. First, we provide

an extension of the consistency result of Lobato (1997, Theorem 1) for the discretely averaged

cross-periodogram, showing that the result is equally valid for our weighted cross-periodogram.

Proposition 1 Under Assumptions 1, 2, 5, and m−1 +m/n→ 0,

λda+db−2δm

1

m

mX
j=1

λ2δj Re (Iab (λj))−
Gab

1− da − db + 2δ
→p 0, a, b = 1, ..., p. (25)

Proof. Decompose the left-hand side of (25) as

λda+db−2δm

1

m

mX
j=1

λ2δj Re (Iab (λj)−Aa (λj)J (λj)A
∗
b (λj)) (26)

+λda+db−2δm
1

m

mX
j=1

λ2δj Re

Ã
Aa (λj)

1

2πn

nX
t=1

εtε
0
tA
∗
b (λj)− fab (λj)

!
(27)

+λda+db−2δm

1

m

mX
j=1

λ2δj Re

Aa (λj)
1

2πn

nX
t=1

X
s6=t

εtε
0
se

i(t−s)λjA∗b (λj)

 (28)

+λda+db−2δm

1

m

mX
j=1

λ2δj Re (fab (λj))−
Gab

1− da − db + 2δ
. (29)

By Lemmas 2 and 3 and the analysis of (15) in the proof of Theorem 1, (26) − (28) are all
op (1). Applying Lemma 1 to (29) we get that

λda+db−2δm

1

m

mX
j=1

λ2δj Gabλ
−da−db
j − Gab

1− da − db + 2δ
= o (λm) ,

thus completing the proof.

The first lemma is undoubtedly well known and is provided for reference.

Lemma 1 For m−1 +m/n→ 0 and any c ∈ (−1, 1] ,

2π

n

mX
j=1

λcj −
Z λm

0
λcdλ = o

¡
λc+1m

¢
as n→∞.
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Proof. For n sufficiently large, the left-hand side is

mX
j=2

Z λj

λj−1

¡
λcj − λc

¢
dλ =

mX
j=2

λc−1j

Z λj

λj−1

Ã
λj −

µ
λ

λj

¶c−1
λ

!
dλ+ o(λc+1m ).

As |λj − (λ/λj)a λ| ≤ |λj − λ| for λ ∈ (λj−1, λj) and a ≤ 0, the first term on the right-hand

side is

O

 mX
j=1

λc−1j

Z λj

λj−1

¯̄̄̄
¯λj −

µ
λ

λj

¶c−1
λ

¯̄̄̄
¯ dλ

 = O

¯̄̄̄¯̄ mX
j=1

λc−1j

Z λj

λj−1
(λj − λ) dλ

¯̄̄̄
¯̄
 (30)

and, since
R λj
λj−1 (λj − λ) dλ = π2/2n2, it follows that (30) isO

³
n−2

Pm
j=1 λ

c−1
j

´
= O

¡
m−1λc+1m

¢
.

The remaining lemmas are straightforward extensions (to incorporate our weights) and

variants of previous results appearing in Robinson (1995a) and Lobato (1997, 1999).

Lemma 2 Under the conditions of Proposition 1, for a, b = 1, ..., p,

λda+db−2δm

1

m

mX
j=1

λ2δj Re (Iab (λj)−Aa (λj)J (λj)A
∗
b (λj)) = op (1) , (31)

and under the conditions of Theorem 1, for a = 1, ..., p− 1,

λ
da+dp−2δ
m

1√
m

mX
j=1

λ2δj Re
¡
Iap (λj)−Aa (λj)J (λj)A

∗
p (λj)

¢
= op (1) . (32)

Proof. By the same arguments as in Lobato (1997, pp. 143-144), we have that

mX
j=1

λ2δj Re (Iab (λj)−Aa (λj)J (λj)A
∗
b (λj)) = op

³
nλ1−da−db+2δm

´
such that (31) is op (1).

Under the conditions of Theorem 1, we can use eq. (C.2) in Lobato (1999) to conclude that

mX
j=1

λ2δj Re
¡
Iap (λj)−Aa (λj)J (λj)A

∗
p (λj)

¢
= Op

Ã
λ
2δ−da−dp
m

"
m1/3 (logm)2/3 + logm+

m1/2

n1/4

#!
,

and thus (32) is Op

³
m−2/3 (logm)2/3 +m−1/2 (logm) + n−1/4

´
= op (1).
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Lemma 3 Under the conditions of Proposition 1, for a, b = 1, ..., p,

1√
m
λda+db−2δm

mX
j=1

λ2δj Re

Ã
Aa (λj)

1

2πn

nX
t=1

εtε
0
tA
∗
b (λj)− fab (λj)

!
= op (1) .

Proof. The proof follows parts of the proof of Lobato (1997, Proposition 3). By definition

of f (λ), the left-hand side is bounded by¯̄̄̄
¯̄ 1√mλda+db−2δm

mX
j=1

λ2δj Aa (λj)
1

2π
DA∗b (λj)

¯̄̄̄
¯̄ , (33)

where D = n−1
Pn

t=1 εtε
0
t − Ip satisfies kDk = Op(n

−1/2), since by Assumption 2, εtε0t − Ip is a

martingale difference sequence with respect to the filtration (Ft)t∈Z. Then, since kAi (λj)k =
O(fii (λj)

1/2), i = a, b, (33) is bounded by

1

4π2
√
m
λda+db−2δm

 mX
j=1

λ4δj kAa (λj)k2 kDk2 kAb (λj)k2
1/2

= Op

m−1/2λda+db−2δm kDk
 mX

j=1

λ4δj faa (λj) fbb (λj)

1/2


= Op

m−1/2λda+db−2δm kDk
 mX

j=1

λ2δj faa (λj)

1/2 mX
j=1

λ2δj fbb (λj)

1/2
 ,

which is Op(λ
1/2
m ) = op (1) as required.

Lemma 4 Under the conditions of Theorem 1,

nX
t=1

E

Ã
t−1X
s=1

t−1X
r=1

ε0sc
0
t−s,nεtε

0
tct−r,nεr

¯̄̄̄
¯Ft−1

!
−

nX
t=1

t−1X
s=1

ε0sc
0
t−s,nct−s,nεs = op (1) .

Proof. We prove convergence in mean-square. The left-hand side is
Pn

t=1

Pt−1
s=1

P
r 6=s ε

0
sc
0
t−s,nct−r,nεr,

which has mean zero and variance

O

n

Ã
nX

s=1

kcsnk2
!2
+

nX
t=3

t−1X
u=2

Ã
u−1X
s=1

kcu−s,nk2
u−1X
s=1

kct−s,nk2
! , (34)
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following the analysis in Robinson (1995a, p. 1646) and Lobato (1999, pp. 150-151). By

Theorem 2 of Robinson (1995b), kθjk = O (1) such that kcsnk is bounded by

kcsnk = O

 1

n
√
m

mX
j=1

kθjk
 = O

µ√
m

n

¶
.

Since
Pk

j=1 |cos (sλj)| = O (n/s), another bound is

kcsnk = O

 1

n
√
m

mX
j=1

|cos (sλj)|
 = O

µ
1

s
√
m

¶
,

which is a better bound for kcsnk when s > n/m. Thus, we find that

nX
s=1

kcsnk2 = O

[n/m]X
s=1

m

n2
+

nX
s=[n/m]+1

1

s2m


= O

¡
n−1

¢
,

implying that the first term of (34) is O
¡
n−1

¢
. The second term of (34) is bounded by

O

n

Ã
nX

s=1

kcsnk2
![n/2]X

s=1

s kcsnk2
 ,

see Robinson (1995a, pp. 1646-1647). The summand in the last sum is O(sm/n2 + (sm)−1).

Choose the first bound when s ≤ £n/m2/3
¤
, then the last sum is

O

[n/m2/3]X
s=1

sm

n2
+

[n/2]X
s=[n/m2/3]+1

1

sm

 = O

µ
1

m1/3

¶
,

and (34) = O
¡
n−1 +m−1/3

¢
.
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Table 1: Bias (x100) of GLS estimate for Model A.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.7733 −.0060 .1793 .0591 .0591 .2953 .0263 −.1773 .1337 .0020
0.1 − .4049 .1212 −.3895 .0629 − −.0518 .1541 −.0450 −.0566
0.2 − − .2961 .0829 .0920 − − .0927 .0666 −.0435
0.3 − − − .1227 .1817 − − − .0648 .1498
0.4 − − − − .0347 − − − − .0270

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.2024 −.1835 −.0131 −.0095 .0542 −.0900 −.0369 −.0850 −.0244 −.0257
0.1 − .0960 −.0028 −.1694 .1098 − .0169 .0113 .0200 .1260
0.2 − − .3121 −.0062 .2058 − − .0622 .1402 −.1765
0.3 − − − .1069 .0496 − − − .0828 .0957
0.4 − − − − .1913 − − − − −.1440

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.3978 −.0492 −.0090 −.0245 .0597 −.1952 −.1215 −.0572 .0241 −.0327
0.1 − −.0727 −.0642 −.0984 −.0384 − −.1049 .0279 −.0138 .0683
0.2 − − .1535 −.1370 .0691 − − −.1881 −.0478 −.0704
0.3 − − − .0975 .0183 − − − −.0736 .0793
0.4 − − − − .0591 − − − − −.1162
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Table 2: Bias (x100) of FGLS estimate for Model A.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.7944 −.0014 .1751 .0578 .0273 .3206 −.0159 −.1937 .1089 −.0080
0.1 − .3735 .0490 −.3513 .0506 − −.1036 .1480 −.0222 −.0425
0.2 − − .3707 .0799 .1320 − − .1950 .0565 −.0557
0.3 − − − .1947 .2056 − − − .0201 .1935
0.4 − − − − .2135 − − − − .0475

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.1949 −.1477 −.0034 −.0076 .0600 −.1094 −.0205 −.0849 −.0301 −.0145
0.1 − .0626 −.0300 −.1943 .1075 − −.0064 −.0021 .0200 .1476
0.2 − − .3309 .0133 .2500 − − .1177 .1292 −.1904
0.3 − − − .0595 .0487 − − − .0069 .1094
0.4 − − − − .1509 − − − − −.1144

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.3073 −.0163 −.0188 −.0242 .0831 −.2009 −.1301 −.0563 .0063 −.0486
0.1 − .0170 −.0924 −.1709 −.0285 − −.0840 .0204 .0025 .0695
0.2 − − .1925 −.1273 .0592 − − −.1846 −.0452 −.0648
0.3 − − − .1410 .0204 − − − −.0700 .1098
0.4 − − − − .0024 − − − − −.0464
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Table 3: MSE ratio of GLS estimate for Model A.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8858 .8286 .7605 .6042 .4021 .9398 .8692 .8281 .7038 .4553
0.1 − .9064 .8340 .7468 .6343 − .9417 .8997 .8580 .7225
0.2 − − .8751 .8227 .7672 − − .9527 .8950 .8200
0.3 − − − .8532 .8581 − − − .9185 .9092
0.4 − − − − .8578 − − − − .8982

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .9212 .8944 .7923 .6594 .4268 .9459 .9099 .8538 .7457 .4942
0.1 − .9050 .9000 .7855 .6714 − .9587 .9071 .8954 .7519
0.2 − − .9035 .8934 .8185 − − .9674 .9200 .8681
0.3 − − − .8877 .8900 − − − .9286 .9258
0.4 − − − − .8817 − − − − .9184

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .9550 .9079 .8373 .7032 .4752 .9827 .9541 .9007 .7810 .5350
0.1 − .9494 .9050 .8277 .7218 − .9770 .9386 .9251 .8089
0.2 − − .93425 .9159 .8410 − − .9710 .9481 .9023
0.3 − − − .8995 .9016 − − − .9500 .9336
0.4 − − − − .8820 − − − − .9117
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Table 4: MSE ratio of FGLS estimate for Model A.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8287 .7737 .7085 .5597 .37413 .8930 .8236 .7826 .6639 .4314
0.1 − .8448 .7725 .6939 .5829 − .8910 .8535 .8089 .6755
0.2 − − .8050 .7620 .7052 − − .9035 .8456 .7709
0.3 − − − .7793 .7882 − − − .8537 .8428
0.4 − − − − .7608 − − − − .8314

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8693 .8395 .7441 .6148 .3996 .9131 .8742 .8179 .7108 .4693
0.1 − .8448 .8372 .7371 .6239 − .9278 .8700 .8503 .7104
0.2 − − .8479 .8266 .7529 − − .9212 .8808 .8195
0.3 − − − .8264 .8093 − − − .8847 .8723
0.4 − − − − .7972 − − − − .8683

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .9127 .8650 .7866 .6617 .4474 .9561 .9231 .8760 .7494 .5104
0.1 − .8952 .8585 .7873 .6749 − .9479 .9090 .8855 .7753
0.2 − − .8848 .8574 .7866 − − .9405 .9173 .8678
0.3 − − − .8469 .8367 − − − .9202 .8947
0.4 − − − − .8203 − − − − .8746
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Table 5: Bias (x100) of GLS estimate for Model B.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.2044 .1635 .0611 −.1900 .0728 .4680 −.1765 −.1787 .1638 .0220
0.1 − −.1195 −.1304 .1619 .0522 − .0037 −.0905 −.0576 .1679
0.2 − − −.4386 .0352 −.1474 − − −.0469 .2834 −.2454
0.3 − − − −.1338 .2467 − − − .1265 −.0978
0.4 − − − − −.0978 − − − − −.2504

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .0457 −.0221 .1051 −.1531 .0083 .0678 −.2716 −.0721 .0289 .0365
0.1 − .0220 −.0913 .0911 .0530 − .1370 .0143 −.0653 .1247
0.2 − − −.3577 −.2223 −.1993 − − −.1206 −.0003 −.0861
0.3 − − − −.0351 .3337 − − − .1794 −.0876
0.4 − − − − −.0613 − − − − −.5301

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .0908 −.0696 −.0998 −.0120 .0203 .0491 −.0093 −.0748 −.0161 −.0135
0.1 − −.0906 −.0527 −.0502 .0251 − .1616 .0710 −.0687 .0174
0.2 − − −.3233 −.0296 −.1125 − − −.2311 −.1081 −.0775
0.3 − − − .0690 .2212 − − − .1561 −.0833
0.4 − − − − .2007 − − − − −.3223
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Table 6: Bias (x100) of FGLS estimate for Model B.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 −.2263 .0342 .0154 −.2082 .0748 .4661 −.2301 −.1878 .1502 .0067
0.1 − −.1463 −.1412 .2009 .0675 − −.0124 −.0525 −.0417 .1743
0.2 − − −.4286 −.0571 −.2076 − − .0460 .3203 −.2713
0.3 − − − −.1530 .3159 − − − .2171 −.1449
0.4 − − − − −.2354 − − − − −.1875

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .2877 −.0495 .1330 −.1251 −.0045 .0552 −.2613 −.0942 −.0040 .0202
0.1 − .0223 −.0824 .1044 .0610 − .1756 .0484 −.0707 .1187
0.2 − − −.3494 −.1992 −.2081 − − −.0588 −.0229 −.0889
0.3 − − − .0305 .4237 − − − .1858 −.1330
0.4 − − − − −.0911 − − − − −.5193

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .1009 −.04255 −.0984 −.0057 .0297 .0297 .0260 −.1000 −.0278 −.0037
0.1 − −.0780 −.0156 −.0353 .0172 − .1708 .0915 −.0481 .0172
0.2 − − −.4002 −.0451 −.1011 − − −.2167 −.1124 −.0743
0.3 − − − −.0015 .2307 − − − .1570 −.0920
0.4 − − − − .1773 − − − − −.3276
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Table 7: MSE ratio of GLS estimate for Model B.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8782 .8500 .7665 .6340 .3966 .9135 .8589 .8212 .7026 .4690
0.1 − .8903 .8317 .7777 .6326 − .9240 .8744 .8403 .7057
0.2 − − .8817 .8305 .7646 − − .9238 .8859 .8334
0.3 − − − .8598 .8311 − − − .8970 .8553
0.4 − − − − .8540 − − − − .8810

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8863 .8912 .8051 .6805 .4308 .9531 .8966 .8478 .7550 .5085
0.1 − .9139 .8746 .8092 .6478 − .9336 .9048 .8557 .7446
0.2 − − .9220 .8612 .8125 − − .9464 .9016 .8787
0.3 − − − .9272 .8929 − − − .9380 .8961
0.4 − − − − .8676 − − − − .8992

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .9217 .8971 .8479 .7196 .4695 .9826 .9504 .8963 .8092 .5561
0.1 − .9292 .8889 .8366 .7031 − .9767 .9378 .8871 .7675
0.2 − − .9143 .8963 .8374 − − .9761 .9410 .9026
0.3 − − − .9386 .9052 − − − .9518 .9313
0.4 − − − − .9238 − − − − .9551
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Table 8: MSE ratio of FGLS estimate for Model B.
n = 256

m = [n0.4] = 9 m = [n0.5] = 16
du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8266 .7917 .7093 .5863 .3676 .8857 .8287 .7889 .6725 .4469
0.1 − .8356 .7706 .7201 .5899 − .8944 .8344 .8002 .6737
0.2 − − .8134 .7671 .7069 − − .8864 .8474 .7994
0.3 − − − .7843 .7501 − − − .8544 .8112
0.4 − − − − .7621 − − − − .8265

n = 512
m = [n0.4] = 12 m = [n0.5] = 22

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8395 .8340 .7511 .6301 .4037 .9164 .8590 .8151 .7277 .4845
0.1 − .8625 .8172 .7550 .6062 − .9071 .8626 .8265 .7140
0.2 − − .8586 .8037 .7484 − − .9143 .8622 .8404
0.3 − − − .8547 .8305 − − − .9022 .8520
0.4 − − − − .7897 − − − − .8543

n = 1024
m = [n0.4] = 16 m = [n0.5] = 32

du\dx 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
0 .8783 .8570 .7953 .6714 .4400 .9547 .9216 .8631 .7750 .5352
0.1 − .8858 .8346 .7891 .6570 − .9539 .9043 .8531 .7366
0.2 − − .8614 .8441 .7830 − − .9509 .9109 .8623
0.3 − − − .8773 .8370 − − − .9219 .8994
0.4 − − − − .8542 − − − − .9166
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