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Abstract

We derive a functional central limit theorem for the empirical spectral measure or discretely

averaged (integrated) periodogram of a multivariate long range dependent stochastic process in a

degenerating neighborhood of the origin. We show that, under certain restrictions on the memory

parameters, this local empirical spectral measure converges weakly to a Gaussian process with

independent increments. Applications to narrow-band frequency domain estimation in time series

regression with long range dependence, and to local (to the origin) goodness-of-fit testing are offered.

Keywords: Brownian Motion; Fractional ARIMA; Functional Central Limit Theorem; Goodness-

of-fit Test; Integrated Periodogram; Long Memory; Narrow-band Frequency Domain Least Squares

AMS 2000 Classification: Primary: 60G18, 62M15; Secondary: 60F17, 62G20, 62M10

JEL Classification: C14; C22; C32

1 Introduction

We are concerned with p-vector-valued stochastic processes (Xt)t∈Z that admit a spectral density matrix

of the form

f (λ) ∼ Λ−1GΛ−1 as λ→ 0+, (1)

where Λ = diag(λH1−1/2, ..., λHp−1/2), the symbol ”∼” means that the ratio of the left- and right-hand
sides tends to unity (element-by-element), and G is a p × p real, symmetric, positive definite matrix.

∗Address correspondence to: Morten Ørregaard Nielsen, Department of Economics, Building 322, University of Aarhus,

DK-8000 Aarhus C, Denmark; telephone: +45 8942 1584; fax: +45 8613 6334; e-mail: monielsen@econ.au.dk.

1



Such processes are said to have long range dependence or strong dependence, since the autocorrelations

decay hyperbolically in contrast to the much faster exponential rate in the weak dependence case.

The parameters H1, ...,Hp determine the memory of the process, and the components of (Xt), say

(Xat), may have separate memory parameters, Ha. If Ha > 0, (Xat) is invertible and admits a linear

representation, and if Ha < 1 it is covariance stationary. If Ha = 1/2, the spectral density is bounded

at the origin, and the process has only weak dependence. Sometimes (Xat) is said to have negative

memory, short memory, or long memory when Ha < 1/2, Ha = 1/2, or Ha > 1/2, respectively.

Throughout this paper we shall be concerned with the long memory case, since this is the dominant

case in many applications, including in econometrics, hydrology, finance, and other fields. For a review

of the properties of long range dependent processes see, e.g., Robinson (1994b) and Beran (1994).

Two well known parametric models satisfying (1) are the fractional Gaussian noise and the frac-

tionally integrated autoregressive moving-average (FARIMA) models, see Mandelbrot & Ness (1968),

Adenstedt (1974), Granger & Joyeux (1980), and Hosking (1981).

We are concerned with the weak convergence near the origin of the empirical spectral measure of

multivariate long range dependent stochastic processes. The empirical spectral measure over a degen-

erating frequency band near the origin is an estimate of the spectral distribution function local to the

origin, i.e.

F (λ) =

Z λ

0

f (θ) dθ, λ ∈ (−λε, λε] , (2)

for some ’small’ λε, which will be made precise in the next section. Here, f (λ) is the matrix of spectral

density functions defined by Γ (j) =
R π
−π e

ijλf (λ) dλ, where Γ (j) is the j’th autocovariance matrix of

(Xt). The typical element, Fab (λ) =
R λ
0
fab (θ) dθ, is the cross spectral distribution function between

series (Xat) and (Xbt).

For the remainder of the paper we distinguish between the terms ’discretely averaged periodogram’

and ’empirical spectral measure’. For the integrated periodogram evaluated at a particular frequency, we

use the term ’discretely averaged periodogram (DAP)’. When the integrated periodogram is considered

as a stochastic process over a band of frequencies, we use ’empirical spectral measure’.

The main goal of the present paper is to derive a functional central limit theorem for the local (to

the origin) empirical spectral measure. To this end, we first prove a central limit theorem for the DAP,

where the averaging is over a degenerating band of frequencies near the origin. This theorem is of

interest in its own right, e.g. to derive the asymptotic distribution of the narrow-band least squares

estimator, see section 3. In addition, it is used to prove the functional central limit theorerm, which

is the ultimate goal of the analysis. The asymptotic properties of spectral estimates, and the weak

convergence of the empirical spectral measure, are well understood for weakly dependent processes,
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see e.g. Grenander & Rosenblatt (1957), Brillinger (1969), Brillinger (1981), and the references therein.

However, the processes that we consider in this paper do not belong to this class, as they exhibit spectral

poles at the origin.

Recently, the integrated periodogram of long memory processes has been an object of considerable

interest in the literature. For scalar-valued processes with fully parameterized spectral density functions,

Kokoszka & Mikosch (1997) derived a functional central limit theorem for the empirical spectral measure.

In the case where the spectral density function is only locally parameterized, Lobato & Robinson (1996)

derived the limiting distribution of the DAP for Gaussian scalar-valued processes. The consistency of the

DAP for multivariate processes was proved by Lobato (1997). In related work, Yajima (1989) derived

a central limit theorem for the discrete Fourier transform of long memory processes at finitely many λ,

and Robinson (1995b) derived the limiting moments of the discrete Fourier transform when allowing for

an increasing (to infinity) number of λ on a degenerating interval. Thus, our results are also extensions

of their work.

The obvious advantage of specifying the spectral density only in a neighborhood of the origin as

in (1) and (2), is the nonparametric treatment of the process at other frequencies, assuming only mild

regularity conditions such as integrability implied by covariance stationarity. Thus, in applications

one would not have to worry about correct specification of the short-run dynamics of the process,

e.g. the autoregressive and moving average orders in a FARIMA model. Previously, this type of local

specification, termed semiparametric by Robinson (1994a), has been applied in methods for estimation of

the memory parameter(s) by Geweke & Porter-Hudak (1983), Robinson (1994a, 1995a, 1995b), Lobato

& Robinson (1996), and Lobato (1999) among others.

We present two applications of our results. First, we apply the central limit theorem for the DAP

to narrow-band least squares estimation in time series regression with long range dependent regressors

and errors. The narrow-band estimator was first suggested by Robinson (1994a), who showed that, even

when the regressors and errors are correlated and long range dependent, consistent estimates can be

obtained if the estimation is carried out in the frequency domain using a degenerating band of frequencies

around the origin. This type of estimate thus enjoys the advantages of local specification, as discussed

above. With our new limiting theory, we are easily able to derive the asymptotic distribution of the

narrow-band least squares estimator and show that it is normal.

Our second application is to goodness-of-fit testing in the frequency domain based on the empirical

spectral measure. The goodness-of-fit tests are modelled after the corresponding tests in empirical

process theory, e.g. Shorack & Wellner (1986). This idea was explored by Bartlett (1955) and Grenander

& Rosenblatt (1957). Some recent treatments are Anderson (1993) and Kokoszka & Mikosch (1997),
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who considered stationary processes with weak dependence and long range dependence, respectively. In

particular, we consider local (to the origin) versions of the popular Kolmogorov-Smirnov and Cramér-

von Mises testing procedures. The tests are derived from the functional central limit theorem for the

local empirical spectral measure, and thus the tests can be considered measures of goodness-of-fit for

the spectral density near the origin. Indeed, as mentioned above, they do not depend on the form of

the spectral density away from the origin under some mild regularity conditions. Since the processes

we consider have long memory, their spectral mass is concentrated around a peak at the origin. Hence,

goodness-of-fit near the origin should be given preference. We show that the limiting processes are

functionals of time-transformed Brownian Motion, unlike the Brownian Bridge limits in the standard

theory, e.g. Shorack & Wellner (1986), Anderson (1993), and Kokoszka & Mikosch (1997). This is of

course due to the fact that our process is not tied down at frequency π, as is the case in all the above

studies, where the spectral density is completely parameterized.

The remainder of the paper is organized as follows. In section 2 we present our assumptions and the

main results, the proofs of which are in sections 4 and 5. Section 3 offers a brief discussion with applica-

tions of our results to narrow-band estimation in time series regression with long range dependence, and

to local Kolmogorov-Smirnov and Cramér-von Mises goodness-of-fit testing. Section 6 contains some

auxillary lemmas.

2 Main Results

Suppose we observe a sample of size n from (Xt). Define the normalized discrete Fourier transform

(DFT) and periodogram matrix of (Xt)t=1,...,n by

w (λ) =
1√
2πn

nX
t=1

Xte
itλ and I (λ) = w (λ)w∗ (λ) , λ ∈ (−π, π] , (3)

where the asterisk denotes transposition combined with complex conjugation. The cross-periodogram

between series (Xat) and (Xbt) is thus Iab (λ) = wa (λ)wb (λ), where the bar is complex conjugation and

wa (λ) is the a’th component of w (λ).

Our statistic of interest is the discretely averaged periodogram

F̂ (λm) =
2π

n

mX
j=1

I (λj) , (4)

where λj = 2πj/n are the Fourier frequencies. The (a, b)’th component, denoted F̂ab (λm), is the

discretely averaged cross-periodogram between series (Xat) and (Xbt). The number m = m (n) is a
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user-chosen bandwidth parameter, denoting the portion of the periodogram that will be used in the

averaging. The zero-frequency is excluded to render the statistic invariant to location shifts. Note that

we could also have considered the continuously averaged periodogram F̃ (λ) =
R λ
0
I (θ) dθ, but we prefer

the discrete version because of the location invariance and its computational simplicity.

The basic setup follows that of Lobato (1997), who showed the consistency of (4) as an estimate of (2),

when the bandwidth m = m (n) tends to infinity at a slower rate than n. Let (Xt)t∈Z be a covariance

stationary p-vector-valued stochastic process with a’th component (Xat), mean µ, and suppose (Xt)

admits the linear representation

Xt = µ+
∞X
j=0

Ajεt−j , t ∈ Z, (5)

with square summable coefficients Aj . The innovation sequence (εt) satisfies E (εt| Ft−1) = 0 and

E (εtε
0
t| Ft−1) = Ip, where Ft = σ ({es, s ≤ t}) and Ip is the p-dimensional identity matrix. Similarly to

(3), define the DFT and periodogram of (εt), which we denote v (λ) and J (λ), respectively.

Let A (λ) be the Fourier transform of (Aj), i.e. A (λ) =
P∞

j=0Aj exp (ijλ). Then, under (5), the

spectral density matrix of (εt) is fε (λ) = Ip/2π, and the spectral density matrix of (Xt) is f (λ) =

A (λ)A∗ (λ) /2π.

We now state the assumptions used to prove the central limit theorem for the DAP. Our assumptions

strengthen those in Lobato (1997), and are a multivariate generalization of those in Robinson (1994a)

and Robinson (1995a), see also Lobato (1999). They are in some respects much weaker than those

employed by Lobato & Robinson (1996) in the univariate case. In particular, we avoid their assumption

of Gaussianity.

Assumption 1 The spectral density matrix of (Xt) in (1) with typical element fab (λ), the cross spectral

density between (Xat) and (Xbt), satisfies¯̄̄
fab (λ)−Gabλ

1−Ha−Hb

¯̄̄
= O

³
λ1+α−Ha−Hb

´
, as λ→ 0+, a, b = 1, ..., p, (6)

for some α ∈ (0, 2], where Gab is the (a, b)’th element of G.

Assumption 2 The innovations in (5) have square summable coefficient matrices,
P∞

j=0 kAjk2 < ∞,
and satisfy, almost surely, E (εt| Ft−1) = 0, E (εtε0t| Ft−1) = Ip, and the matrices µ3 = E (εt ⊗ εtε

0
t| Ft−1)

and µ4 = E (εtε
0
t ⊗ εtε

0
t| Ft−1) are nonstochastic, finite, and do not depend on t, with Ft = σ ({εs, s ≤ t}).

Assumption 3 As λ→ 0+

dAa (λ)

dλ
= O

¡
λ−1 kAa (λ)k

¢
, a = 1, ..., p,

where Aa (λ) is the a0th row of A (λ) =
P∞

j=0Aje
ijλ.
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Assumption 4 The bandwidth parameter m = m (n) satisfies

1

m
+

m1+2α

n2α
→ 0, as n→∞.

Some comments on our conditions are in order. Assumptions 1 and 3 specialize (1) by imposing

smoothness conditions on the spectral density matrix of (Xt) commonly employed in the literature.

They are satisfied with α = 2 if, e.g., (Xt) is a vector fractional Gaussian noise or a vector FARIMA

process. Assumption 2 is a straightforward multivariate generalization of the corresponding condition

in Robinson (1995a), and imposes a linear structure on (Xt) with square summable coefficients and

martingale difference innovations with finite fourth moments. It is satisfied, for instance, if (εt) form

an i.i.d. process with finite fourth moments. Finally, assumption 4 restricts the expansion rate of the

bandwidth parameter m = m (n), the weakest constraint being implied by α = 2 in which case the

condition is m = o(n4/5).

We now derive the limiting distribution of the DAP, for any fixed fraction r ∈ (0, 1] of the bandwidth
m. Thus, we consider

Fn (r) =
√
mλ−1m Λm

³
F̂ (λ[mr])− F (λmr)

´
Λm, (7)

where Λm = diag(λ
H1−1/2
m , ..., λHp−1/2

m ) and [x] denotes the integer part of x.

The most important tool for proving our results below, and indeed most of the results cited above,

is the (Bartlett) approximation

F̂
¡
λ[mr]

¢
=
2π

n

[mr]X
j=1

Re (I (λj)) ' 2π

n

[mr]X
j=1

Re (A (λj)J (λj)A
∗ (λj)) ,

see e.g. Hannan (1970, p. 248). Following Robinson (1995a), the right-hand side can, when suitably

normalized and centered, be further approximated by the sum of a martingale difference array, allowing

us to invoke simple martingale central limit theorems. The details of this approximation and its proof

is given as Lemma 4 in section 6.

We now provide, for a fixed r ∈ (0, 1], a central limit theorem for (7) which is proved in section 4.

Theorem 1 Under Assumptions 1-4 and 1/2 ≤ Ha < 3/4, a = 1, ..., p, the p×p matrix-valued function

in (7), for a fixed r ∈ (0, 1], is asymptotically normal with mean zero and covariance

lim
n→∞Cov (Fa1b1,n (r) , Fa2b2,n (r)) =

1

2
(Ga1a2Gb2b1 +Ga1b2Ga2b1)

Z r

0

s2−Ha1−Ha2−Hb1
−Hb2ds.

The limiting distribution in Theorem 1 is asymptotically normal, paralleling the well known weak

dependence case. When the memory parameters violate the condition that Ha < 3/4, a = 1, ..., p, it

is conjectured that the DAP is non-normal and converges to a function of the Rosenblatt process (see
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Rosenblatt (1961, 1979) and Taqqu (1975)). This dichotomy may seem strange at first, since in both

cases the model is covariance stationary, but is due to the fact that the spectral density in (6) cannot

be square integrable in the latter case, even in an arbitrarily small neighborhood of the origin.

The parameters appearing in the limiting distribution in Theorem 1 can be replaced by consistent

estimates. For instance, the multivariate log-periodogram estimates in Robinson (1995b), or the mul-

tivariate local Whittle pseudo-likelihood estimates in Lobato (1999), which both have nice asymptotic

properties, are easy to calculate, and local in the same sense as the statistics of the present paper.

Theorem 1 indicates the asymptotic normality of the DAP for any given fraction of the frequency

λm. We now turn to our main objective, which is the weak convergence of the stochastic process³
Fn (r) =

√
mλ−1m Λm

³
F̂ (λ[mr])− F (λmr)

´
Λm

´
0≤r≤1

(8)

in the space Dp×p [0, 1], the space of p × p matrix-valued cadlag functions on the unit interval. This

space is isomorphic with Dp2 [0, 1], and may be endowed with a metric that makes it complete and

separable, see Billingsley (1999, chapter 3). We are able to establish weak convergence of (Fn (r))0≤r≤1
under the same conditions as Theorem 1.

Theorem 2 Under Assumptions 1-4 and 1/2 ≤ Ha < 3/4, a = 1, ..., p, the stochastic process (Fn (r))0≤r≤1
defined in (8) converges weakly in Dp×p [0, 1] to a p × p matrix-valued Gaussian process (Y (r))0≤r≤1
with Y (0) = 0 a.s., mean zero, and covariance structure

Cov (Ya1b1 (r1) , Ya2b2 (r2)) =
1

2
(Ga1a2Gb2b1 +Ga1b2Ga2b1)

Z min(r1,r2)

0

r2−Ha1−Ha2−Hb1−Hb2dr.

The limiting process in Theorem 2 is Gaussian, has mean zero and independent increments, and is

easily seen to be a time-transformed matrix-valued Brownian Motion (and hence to have continuous

sample paths almost surely). In empirical process theory, the limits are typically functionals of the

Brownian Bridge process, e.g. Shorack & Wellner (1986). In previous studies of weak convergence for

empirical spectral measures, this property has been found to carry over to the frequency domain, see

e.g. Anderson (1993) and Kokoszka & Mikosch (1997). The Brownian Bridge process appears in the

limit since the empirical distribution function and empirical spectral measure are tied down at r = 1,

when the full spectral band (−π, π] is considered and the spectral density is fully parameterized. This
is not the case here, and hence we get the time-transformed Brownian Motion process in the limit.
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3 Discussion

The DAP is a statistic of significant independent interest. The properties of its univariate counterpart

have long been well known for the weak dependence case, and have recently been explored for univariate

long range dependent processes in Robinson (1994a) and Lobato & Robinson (1996). There, the DAP

is applied in semiparametric estimation of H for univariate long range dependent processes. Thus, a

distribution theory for the multivariate DAP is essential in extending this estimator to the multivariate

case as in (1). However, a full discussion would be lengthy, and superior semiparametric estimators with

likelihood interpretations are available, see e.g. Lobato (1999), so we leave this issue for future research.

Another application suggested by Robinson (1994a) in the stationary case, and developed by Robin-

son & Marinucci (1998) in the nonstationary case, is narrow-band frequency domain least squares

(FDLS) estimation of β in the model (bivariate for simplicity)

yy = βxt + et, t ∈ Z,

where (xt) and (et) have spectral densities fx (λ) ∼ Gxλ
1−2Hx and fe (λ) ∼ Geλ

1−2He , respectively.

The narrow-band FDLS estimator of β is

β̂m = F̂−1xx (λm) F̂xy (λm) , (9)

which Robinson (1994a, pp. 537-538) proved to be consistent for β. The asymptotic distribution theory

for β̂ is easily derived as a special case of our theorem. Define the vector w0t = (xt, et), with spectral

density fw (λ) given by (1) with G = diag (Gx, Ge). Diagonality of G can be considered a local version

of the usual orthogonality condition from least squares theory. Suppose further that Assumptions 1-4

are satisfied for wt (with obvious implications for yt).

With our new distribution theory it is straightforward to derive the asymptotic distribution for

the narrow-band FDLS estimator (9). First, by Theorem 1 of Lobato (1997), λ2Hx−2
m F̂xx (λm) →p

λ2Hx−2
m Fxx (λm) = Gx/ (2− 2Hx). By our Theorem 1

√
mλHe+Hx−2

m F̂xe (λm)→d N (0,Ωxe) ,

where Ωxe = GxGe/ (6− 4Hx − 4He). Thus, it follows that

√
mλHe−Hx

m

³
β̂m − β

´
= λ2−2Hx

m F̂−1xx (λm)
√
mλHe+Hx−2

m F̂xe (λm)

→d N

Ã
0,

2Ge (1−Hx)
2

Gx (3− 2Hx − 2He)

!
.
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If Hx = He = H ∈ [1/2, 3/4) the distribution is particularly simple, as the normalization is free of
H (it is in fact

√
m) and the variance is 2Ge (1−H)

2
/Gx (3− 4H), admitting very simple asymptotic

inference on the regression coefficients.

Finally, we consider the statistical implications of Theorem 2 for goodness-of-fit testing. To simplify

the discussion, we consider the case of a scalar-valued stochastic process (xt) with spectral density

fx (λ) ∼ Gλ1−2H satisfying the assumptions of Theorem 2. The weak convergence of the local empirical

spectral measure
³
Fx,n (r) =

√
mλ2H−2m

³
F̂x
¡
λ[mr]

¢− Fx (λmr)
´´

0≤r≤1
in the scalar case is stated as a

corollary.

Corollary 3 Under the assumptions of Theorem 2, (Fx,n (r))0≤r≤1 converges weakly in D [0, 1] to the

time-transformed Brownian Motion

y (r) = (3− 4H)−1/2GB (ηH (r)) , 0 ≤ r ≤ 1,

where ηH (r) = r3−4H and B is standard Brownian Motion on [0, 1].

Thus, we are able to derive the limiting distribution of some standard goodness-of-fit test statistics

in this new setting. The following results are obtained from Corollary 3 and the Continuous Mapping

Theorem:

i) Local Kolmogorov-Smirnov test: Under the assumptions of Corollary 3,

LKS = sup
0≤r≤1

|Fx,n (r)|→d
G√
3− 4H sup

0≤r≤1
|B (ηH (r))| .

ii) Local Cramér-von Mises test: Under the assumptions of Corollary 3,

LCvM =

Z 1

0

Fx,n (r)
2 dr→d

G2

3− 4H
Z 1

0

B (ηH (r))
2 dr.

Note that we could equivalently have considered the discrete versions of these statistics, i.e. LKS0 =

max1≤j≤m |Fx,n (j/m)| and LCvM 0 =
Pm

j=1 Fx,n (j/m)
2. The limiting distributions are the same as for

their continuous counterparts. It is also worth noting that these limiting distributions are not functionals

of the Brownian Bridge process as in the usual case, e.g. Shorack & Wellner (1986), Anderson (1993),

and Kokoszka & Mikosch (1997). Instead, they are functionals of the Brownian Motion, since the local

empirical spectral measure is not tied down at r = 1.

4 Proof of Theorem 1

The proof of asymptotic normality of the DAP employs the martingale difference approximation tech-

nique of Robinson (1995a) and Lobato (1999). Applying the Cramèr-Wold device, we need to examine
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the linear combination (η is a p2-vector)

η0
√
mλ−1m (Λm ⊗ Λm)

³
vec F̂

¡
λ[mr]

¢− vecF (λmr)
´

=

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

³
F̂ab

¡
λ[mr]

¢− Fab (λmr)
´

=

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π
n

[mr]X
j=1

Re (Iab (λj))− Fab (λmr)

 ,

which by Lemma 4 can be approximated by

nX
t=1

ε0t
t−1X
s=1

ct−s,nεs, (10)

where

ctn =
1

2πn
√
m

[mr]X
j=1

θj cos (tλj) ,

θj =

pX
a=1

pX
b=1

ηa(p−1)+bλ
Ha+Hb−1
m Re

¡
A0a (λj) Āb (λj) +A0b (λj) Āa (λj)

¢
,

and the dependence on r has been suppressed for notational convenience.

Hence, ztn = ε0t
Pt−1

s=1 ct−s,nεs is a martingale difference array with respect to the filtration (Ft)t∈Z,
Ft = σ ({εs, s ≤ t}), and we can apply the CLT if

nX
t=1

E
¡
z2tn
¯̄Ft−1¢− pX

a1=1

pX
b1=1

pX
a2=1

pX
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2Ωa1(p−1)+b1,a2(p−1)+b2 →p 0, (11)

nX
t=1

E
¡
z2tn1 (|ztn| > δ)

¢→ 0, δ > 0, (12)

see Brown (1971) or Hall & Heyde (1980, chp. 3.2). A sufficient condition for (12) is

nX
t=1

E
¡
z4tn
¢→ 0. (13)

First, to show (11),

nX
t=1

E
¡
z2tn
¯̄Ft−1¢ =

nX
t=1

E

Ã
t−1X
s=1

t−1X
r=1

ε0sc
0
t−s,nεtε

0
tct−r,nεr

¯̄̄̄
¯Ft−1

!

=
nX
t=1

t−1X
s=1

ε0sc
0
t−s,nct−s,nεs (14)

+
nX
t=1

t−1X
s=1

X
u 6=s

ε0sc
0
t−s,nct−u,nεu, (15)
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where (15) is negligible by Lemma 5. So we need to show that the mean of (14) is asymptotically

equivalent to
Pp

a1=1

Pp
b1=1

Pp
a2=1

Pp
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2Ωa1(p−1)+b1,a2(p−1)+b2 . Thus,

E (14) =
nX
t=1

t−1X
s=1

tr
¡
c0t−s,nct−s,n

¢
=

nX
t=1

t−1X
s=1

[mr]X
j=1

1

4π2n2m
tr
¡
θ0jθj

¢
cos2 ((t− s)λj) (16)

+
nX
t=1

t−1X
s=1

[mr]X
j=1

[mr]X
k 6=j

1

4π2n2m
tr
¡
θ0jθk

¢
cos ((t− s)λj) cos ((t− s)λk) . (17)

Notice that, since kθjk = O (1) by construction, (17) is bounded by

O

 nX
t=1

t−1X
s=1

[mr]X
j=1

[mr]X
k 6=j

¡
n2m

¢−1
cos ((t− s)λj) cos ((t− s)λk)

 ,

and using that
Pn

t=1

Pt−1
s=1 cos ((t− s)λj) cos ((t− s)λk) = −n/2, (17) isO

³P[mr]
j=1

P[mr]
k 6=j

¡
n2m

¢−1
n
´
=

O (m/n).

Next, tr
¡
θ0jθj

¢
equals

Pp
a1=1

Pp
b1=1

Pp
a2=1

Pp
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2λ
Ha1+Hb1

+Ha2+Hb2
−2

m times

tr
¡
Re
¡
A∗b1 (λj)Aa1 (λj) +A∗a1 (λj)Ab1 (λj)

¢
Re
¡
A0a2 (λj) Āb2 (λj) +A0b2 (λj) Āa2 (λj)

¢¢
= 4π2 (fa1a2 (λj) fb2b1 (λj) + fa1b2 (λj) fa2b1 (λj) + fb1a2 (λj) fb2a1 (λj) + fb1b2 (λj) fa2a1 (λj))

by definition of f (λ). Since (x+ x̄) /2 = Re (x), for any complex number x, (16) is

nX
t=1

t−1X
s=1

[mr]X
j=1

2

n2m

pX
a1=1

pX
b1=1

pX
a2=1

pX
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2λ
Ha1+Hb1

+Ha2+Hb2
−2

m

×Re (fa1a2 (λj) fb2b1 (λj) + fa1b2 (λj) fa2b1 (λj)) cos
2 ((t− s)λj) . (18)

The summation over λj can be replaced by an integral, viz.

2π

n

[mr]X
j=1

Re (fa1a2 (λj) fb2b1 (λj) + fa1b2 (λj) fa2b1 (λj)) ∼
Z λmr

0

Re (fa1a2 (λ) fb2b1 (λ) + fa1b2 (λ) fa2b1 (λ)) dλ.

11



Using this approximation and the relation
Pn−1

t=1

Pn−t
s=1 cos

2 (sλj) = (n− 1)2 /4, we can rewrite (18) as

(18) ∼
pX

a1=1

pX
b1=1

pX
a2=1

pX
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2λ
Ha1+Hb1

+Ha2+Hb2
−2

m

Ã
nX
t=1

t−1X
s=1

cos2 ((t− s)λj)

!

× 1

nπm

Z λmr

0

Re (fa1a2 (λ) fb2b1 (λ) + fa1b2 (λ) fa2b1 (λ)) dλ

=

pX
a1=1

pX
b1=1

pX
a2=1

pX
b2=1

ηa1(p−1)+b1ηa2(p−1)+b2
λ
Ha1+Hb1

+Ha2+Hb2
−3

m

2

×
Z λmr

0

Re (fa1a2 (λ) fb2b1 (λ) + fa1b2 (λ) fa2b1 (λ)) dλ,

and we have shown (11).

Thus, we only have to show (13), which is easy from the above analysis since, by Assumption 2,

nX
t=1

E
¡
z4tn
¢
=

nX
t=1

E

Ã
t−1X
s=1

ε0sct−s,nεtε
0
t

t−1X
u=1

ct−u,nεu
t−1X
p=1

ε0pct−p,nεtε
0
t

t−1X
q=1

ct−q,nεq

!

≤ C

Ã
nX
t=1

tr

Ã
t−1X
s=1

c0t−s,nct−s,nc
0
t−s,nct−s,n

!
+

nX
t=1

tr

Ã
t−1X
s=1

c0t−s,n
t−1X
u=1

ct−u,nc0t−u,nct−s,n

!!

for some constant C > 0. As in the proof of Lemma 5, this expression can be bounded byO
³
n
¡Pn

t=1

°°c2tn°°¢2´ =
O
¡
n−1

¢
, which completes the proof.

5 Proof of Theorem 2

We have already seen in Theorem 1 that the one-dimensional distributions converge as required, i.e.

Fn (r1) →d Y (r1) , 0 ≤ r1 ≤ 1. Next, consider (Fn (r1) , Fn (r2)) , 0 ≤ r1 < r2 ≤ 1, or equivalently

(Fn (r1) , Fn (r2)− Fn (r1)). The proof in section 4 carries through almost unchanged to this case, so we

just outline the differences.

Applying the Cramér-Wold device we need to examine η01 vecFn (r1)+ η02 vec (Fn (r2)− Fn (r1)), for

p2-vectors η1 and η2. As in the proof of Theorem 1, and using Lemma 4, this can be approximated by

the sum
Pn

t=1 ztn of the martingale difference array ztn = ε0t
Pt−1

s=1 ct−s,nεs, where

ctn =
1

2πn
√
m

[mr1]X
j=1

θ1j cos (tλj) +

[mr2]X
j=[mr1]+1

θ2j cos (tλj)

 ,

θij =

pX
a=1

pX
b=1

ηi,a(p−1)+bλ
Ha+Hb−1
m Re

¡
A0a (λj) Āb (λj) +A0b (λj) Āa (λj)

¢
, i = 1, 2.

12



Since the terms corresponding to λj 6= λk are negligible precisely as before, we examine

nX
t=1

t−1X
s=1

1

4π2n2m

[mr1]X
j=1

tr
¡
θ01jθ1j

¢
cos2 ((t− s)λj) (19)

+
nX
t=1

t−1X
s=1

1

4π2n2m

[mr2]X
j=[mr1]+1

tr
¡
θ02jθ2j

¢
cos2 ((t− s)λj) (20)

+
nX
t=1

t−1X
s=1

2

4π2n2m

[mr1]X
j=1

[mr2]X
k=[mr1]+1

tr
¡
θ01jθ2k

¢
cos ((t− s)λj) cos ((t− s)λk) (21)

corresponding to (16).

The sum of (19) and (20) is seen to converge to

pX
a=1

pX
b=1

³
η1,a(p−1)+bYab (r1) + η2,a(p−1)+b (Yab (r2)− Yab (r1))

´
,

by approximating the sums
P[mr1]
1 and

P[mr2]
[mr1]+1

by the integrals
R λmr1

0
and

R λmr2

λmr1
, respectively. We

are left with (21), which is

O

 nX
t=1

t−1X
s=1

[mr1]X
j=1

[mr2]X
k=[mr1]+1

1

n2m
cos ((t− s)λj) cos ((t− s)λk)

 = O
³m
n
r1 (r2 − r1)

´
,

as for (17). This implies, in particular, that (Y (r)) has independent increments. By the Continuous

Mapping Theorem we have shown that (Fn (r1) , Fn (r2))→d (Y (r1) , Y (r2)).

Precisely the same argument applies for (Fn (r1) , ..., Fn (rk)), for any finite partition 0 ≤ r1 < r2 <

... < rk ≤ 1. Thus, the finite dimensional distributions of (Fn (r)) converge to those of (Y (r)) as

required.

By Prohorov’s Theorem, weak convergence follows if we show that (Fn (r)) is tight, see Billingsley

(1999, section 5). It follows from Billingsley (1999, problem 5.9) that we only need consider the marginal

distribution of each coordinate (Fab,n (r)), and from Billingsley (1999, Theorem 13.5), this is tight if

E
³
|Fab,n (r)− Fab,n (r1)|2 |Fab,n (r2)− Fab,n (r)|2

´
≤ K

³
r3−2Ha−2Hb
2 − r3−2Ha−2Hb

1

´2
(22)

for 0 ≤ r1 ≤ r ≤ r2 ≤ 1 and K finite, which recasts the problem into one similar to showing (13). Again,

we apply the approximation in Lemma 4, i.e. Fab,n (r1) − Fab,n (r2) =
Pn

t=1 ε
0
t

Pt−1
s=1 ct−s,n (r2, r1) εs

with

ctn (r2, r1) =
1

2πn
√
m

[mr1]X
j=[mr2]+1

θj cos (tλj) ,

θj = λHa+Hb−1
m Re

¡
A0a (λj) Āb (λj) +A0b (λj) Āa (λj)

¢
,

13



and by Assumption 2 the left hand side of (22) is

E

¯̄̄̄¯
nX
t=1

ε0t
t−1X
s=1

ct−s,n (r1, r) εs

¯̄̄̄
¯
2 ¯̄̄̄
¯
nX
t=1

ε0t
t−1X
s=1

ct−s,n (r, r2) εs

¯̄̄̄
¯
2


≤ C1

nX
t=1

tr

Ã
t−1X
s=1

ct−s,n (r, r2)
0 ct−s,n (r, r2) ct−s,n (r1, r)

0 ct−s,n (r1, r)

!
(23)

+C2

nX
t=1

tr

Ã
t−1X
s=1

t−1X
u=1

ct−s,n (r, r2)
0 ct−s,n (r, r2) ct−u,n (r1, r)

0 ct−u,n (r1, r)

!
(24)

as in the proof of (13). Since the intervals [r, r2] and [r1, r] are disjoint, the property of independent

increments implies that both (23) and (24) can be written as

C
³
r3−2Ha−2Hb
2 − r3−2Ha−2Hb

´³
r3−2Ha−2Hb − r3−2Ha−2Hb

1

´
,

by the same analysis as in the proof of Theorem 1. This is obviously not greater than the right hand

side of (22). Since r, r1, and r2 are arbitrary, tightness follows, and we have shown the theorem.

6 Auxillary Lemmas

In this section we first prove the martingale approximation (10) in the proof of Theorem 1.

Lemma 4 The approximation (10) holds under the assumptions of Theorem 1.

Proof. We need to examine

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π
n

[mr]X
j=1

Re (Iab (λj))− Fab (λmr)


=

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π

n

[mr]X
j=1

Re (Iab (λj)−Aa (λj)J (λj)A
∗
b (λj)) (25)

+

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π

n

[mr]X
j=1

Re (Aa (λj)J (λj)A
∗
b (λj)− fab (λj)) (26)

+

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π
n

[mr]X
j=1

Re (fab (λj))− Fab (λm)

 . (27)
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By (4.3) and (4.5) of Lobato (1997), (25) + (27) is op
¡√

m
¡
mHa+Hb−2 + λαm

¢¢
, which is negligible by

Assumption 4 and the condition that Ha < 3/4. Equation (26) can be written

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π

n

[mr]X
j=1

Re

Aa (λj)
1

2πn

¯̄̄̄
¯
nX
t=1

εte
itλj

¯̄̄̄
¯
2

A∗b (λj)−
1

2π
Aa (λj)A

∗
b (λj)


=

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π

n

[mr]X
j=1

Re

Ã
Aa (λj)

Ã
1

n

nX
t=1

εtε
0
t − Ip

!
A∗b (λj)

!
(28)

+

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

2π

n

[mr]X
j=1

Re

Aa (λj)
1

2πn

nX
t=1

X
s6=t

εtε
0
se

i(t−s)λjA∗b (λj)

 . (29)

Recalling that (εtε0t − Ip) is a martingale difference sequence with respect to (Ft)t∈Z, such that n−1
Pn

t=1 εtε
0
t−

Ip = Op(n
−1/2), (28) is bounded by supa,bOp(

√
mλHa+Hb−2

m n−3/2
Pm

j=1 |fab (λj)|) = Op(λ
1/2
m ) →p 0.

Equation (29) is

pX
a=1

pX
b=1

ηa(p−1)+b
√
mλHa+Hb−2

m

1

n2

[mr]X
j=1

Re

Aa (λj)
nX
t=1

X
s6=t

εtε
0
se

i(t−s)λjA∗b (λj)


=

nX
t=1

ε0t
t−1X
s=1

pX
a=1

pX
b=1

ηa(p−1)+b

√
m

n2
λHa+Hb−2
m

[mr]X
j=1

Re
³
A0a (λj) e

i(t−s)λj Āb (λj)
´
εs

=
nX
t=1

ε0t
t−1X
s=1

ct−s,nεs,

with ctn =
Pp

a=1

Pp
b=1 ηa(p−1)+b

√
m
n2 λ

Ha+Hb−2
m

P[mr]
j=1 Re

¡
A0a (λj) e

itλj Āb (λj)
¢
. Equation (10) follows.

Lemma 5 Under the assumptions of Theorem 1,

nX
t=1

t−1X
s=1

X
u 6=s

ε0sc
0
t−s,nct−u,nεu = op (1) .

Proof. We show convergence to zero in mean-square. The left-hand side has mean zero and variance

O

n

Ã
nX

s=1

kcsnk2
!2
+

nX
t=3

t−1X
u=2

Ã
u−1X
s=1

kcu−s,nk2
u−1X
s=1

kct−s,nk2
! , (30)

following the analysis in Robinson (1995a, p. 1646). Since kθjk = O (1) by construction,

kcsnk = O

 1

n
√
m

mX
j=1

kθjk
 = O

µ√
m

n

¶
.
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Since
Pk

j=1 |cos (sλj)| = O (n/s), another bound is

kcsnk = O

 1

n
√
m

mX
j=1

kθjk |cos (sλj)|
 = O

µ
1

s
√
m

¶
.

This is a better bound for kcsnk when s > n/m. Thus, we find that

nX
s=1

kcsnk2 = O

[n/m]X
s=1

m

n2
+

nX
s=[n/m]+1

1

s2m


= O

¡
n−1

¢
,

implying that the first term of (30) is O
¡
n−1

¢
. The second term of (30) is bounded by

O

n

Ã
nX
s=1

kcsnk2
![n/2]X

s=1

s kcsnk2
 ,

see Robinson (1995a, p. 1646-1647). The summand in the second sum is O
³
sm/n2 + (sm)−1

´
. Choos-

ing the first bound when s ≤ £n/m2/3
¤
, the second sum is

O

[n/m
2/3]X

s=1

sm

n2
+

[n/2]X
s=[n/m2/3]+1

1

sm

 = O

µ
1

m1/3

¶
,

and (30) is O(n−1 +m−1/3).
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