
Long-run forecasting in multicointegrated systems

Boriss Siliverstovs, Tom Engsted and Niels Haldrup

Working Paper No. 2002-15

DEPARTMENT OF ECONOMICS

Working Paper

ISSN 1396-2426

UNIVERSITY OF AARHUS C DENMARK



INSTITUT FOR ØKONOMI
AFDELING FOR NATIONALØKONOMI - AARHUS UNIVERSITET - BYGNING 350

8000  AARHUS C -  F 89 42 11 33 - TELEFAX 86 13 63 34

WORKING PAPER

Long-run forecasting in multicointegrated systems

Boriss Siliverstovs, Tom Engsted and Niels Haldrup

Working Paper No. 2002-15

DEPARTMENT OF ECONOMICS
SCHOOL OF ECONOMICS AND MANAGEMENT - UNIVERSITY OF AARHUS - BUILDING 350

8000  AARHUS C - DENMARK F +45 89 42 11 33 - TELEFAX +45 86 13 63 34



Long-run forecasting

in multicointegrated systems.∗

Boriss Siliverstovs§

DIW Berlin

Tom Engsted¶

Department of Finance

The Aarhus School of Business

Niels Haldrup‖

Department of Economics

University of Aarhus

October 10, 2002

∗For constructive criticism the authors would like to thank Hans Christian Kongsted, Philip Hans Franses, and Allan
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Abstract

In this paper long-run forecasting of multicointegrating variables is investigated. Multicointegration

typically occurs in dynamic systems involving both stock and flow variables whereby a common fea-

ture in the form of shared stochastic trends is present across different levels of multiple time series.

Hence, the effect of imposing this ”common feature” restriction on out-of-sample evaluation and fore-

casting accuracy of such variables is of interest. In particular, we compare the long-run forecasting

performance of the multicointegrated variables between a model that correctly imposes the ”common

feature” restrictions and a (univariate) model that omits these multicointegrating restrictions com-

pletely. We employ different loss functions based on a range of mean square forecast error criteria,

and the results indicate that different loss functions result in different ranking of models with respect

to their infinite horizon forecasting performance. We consider loss functions using a standard trace

mean square forecast error criterion (penalizing the forecast errors of flow variables only), and a loss

function evaluating forecast errors of changes in both stock and flow variables. The latter loss func-

tion is based on the triangular representation of cointegrated systems and was initially suggested by

Christoffersen and Diebold (1998). It penalizes deviations from long-run relations among the flow

variables through cointegrating restrictions. We present a new loss function which further penalizes

deviations in the long run relationship between the levels of stock and flow variables. It is derived

from the triangular representation of multicointegrated systems. Using this criterion, system forecasts

from a model incorporating multicointegration restrictions dominate forecasts from univariate mod-

els. The paper highlights the importance of carefully selecting loss functions in forecast evaluation of

models involving stock and flow variables.
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1 Introduction

Assessing the forecasting performance of econometric models is an important ingredient in evaluating such

models. In multivariate models containing non-stationary variables, cointegration may be thought to play

a key role in assessing forecasting ability, especially over long horizons, because cointegration captures

the long-run comovement of the variables. Several studies have investigated the forecasting properties

of cointegrated models. Engle and Yoo (1987) make a small Monte Carlo study where they compare

mean-squared forecast errors from a VAR in levels, which does not impose cointegration, to forecasts

from a correctly specified error-correction model (ECM), which does impose cointegration, and they find

that longer-run forecasts from the ECM are more accurate. This result supports the above intuition that

imposing cointegration gives better long-horizon forecasts for variables that are tied together in the long

run. However, subsequent research has somewhat questioned and modified this – at first glance appealing

– conclusion.

According to Christoffersen and Diebold (1998), the doubts on the usefulness of cointegrating restric-

tions on the long-run forecasts are related to the following conjecture. The improved predictive power

of cointegrating systems comes from the fact that deviations from the cointegrating relations tend to

be eliminated. Thus, these deviations contain useful information on the likely future evolution of the

cointegrated system which can be exploited to produce superior forecasts when compared to those made

from models that omit cointegrating restrictions. However, since the long-run forecast of the cointegrat-

ing term is always zero, this information is only likely to be effective when the focus lies on producing

the short-run forecasts. Hence, at least from this point of view, the usefulness of imposing cointegrating

relations for producing long-run superior forecasts can be questioned.

Clements and Hendry (1995) compare mean-squared error forecasts from a correctly specified ECM

to forecasts from both an unrestricted VAR in levels and a misspecified VAR in first-differences (DVAR)

which omits cointegrating restrictions present among the variables. They find that the forecasting supe-

riority of the model that correctly imposes these cointegrating restrictions hinges crucially on whether

the forecasts are for the levels of the variables, their first-differences, or the cointegrating relationship

between the variables. They show that this difference in rankings for alternative yet isomorphic represen-

tations of the variables is due to the mean-squared forecast error (MSFE) criterion not being invariant

to nonsingular, scale-preserving linear transformations of the model.1 In particular, they show that the

forecasts from the ECM model are not superior to those made from the DVAR model at all but the

shortest forecast horizons when the first-differences of I(1) variables are forecasted.

Christoffersen and Diebold (1998) compare mean-squared error forecasts of the levels of I(1) variables

1Clements and Hendry (1993) suggest an alternative measure that is invariant to scale-preserving linear transformations

of the data: the generalized forecast error second moment (GFESM) measure.
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from a true cointegrated VAR to forecasts from correctly specified univariate representations, and they

similarly find that imposing cointegration does not improve long-horizon forecast accuracy. Thus, it

appears that the simple univariate forecasts are just as accurate as the multivariate forecasts when judged

using the loss function based on the MSFE criterion. They argue that this apparent paradox is due to the

fact that the standard MSFE criterion fails to value the long-run forecasts’ hanging together correctly.

Long-horizon forecasts from the cointegrated VAR always satisfy the cointegrating restrictions exactly,

whereas the long-horizon forecasts from the univariate models do so only on average, but this distinction is

ignored in the MSFE criterion. Christoffersen and Diebold suggest an alternative criterion that explicitly

accounts for this feature. The criterion is based on the triangular representation of cointegrated systems

(see Campbell and Shiller, 1987, and Phillips, 1991). The virtue of this criterion is that it assesses forecast

accuracy in the conventional ”small MSFE” sense, but at the same time it makes full use of the information

in the cointegrating relationships amongst the variables. Using this new forecast criterion, they indeed

find that at long horizons the forecasts from the cointegrated VAR are superior to the univariate forecasts.

Christoffersen and Diebold (1998) demonstrate that the reason for Engle and Yoo’s (1987) Monte Carlo

experiment to turn out favorable to a model with cointegrating restrictions is not due to the fact that

such long-run relations are imposed but rather that the correct number of unit roots is imposed.

The purpose of the present paper is twofold. First, we extend the analysis of Christoffersen and

Diebold to the case where the variables under study not only obey cointegrating relationships, but also

obey certain multicointegrating restrictions. Multicointegration was originally defined by Granger and Lee

(1989, 1991) and refers to the case where the underlying I(1) variables are cointegrated in the usual sense

and where, in addition, the cumulated cointegration errors cointegrate with the original I(1) variables.

Thus, essentially there are two levels of cointegration amongst the variables and hence a common feature

in the form of a stochastic trend will exist at different levels of the multiple time series.

Multicointegration is a very convenient way of modeling the interactions between stock and flow

variables. Granger and Lee consider the case where the two I(1) variables production, yt, and sales, xt,

cointegrate, such that inventory investments, st, are stationary, st ≡ yt − βxt ∼ I(0), but where the

cumulation of inventory investment, It ≡ Σt
j=1sj , i.e. the level of inventories (which is then an I(1) stock

variable), in turn cointegrates with either yt or xt, or both of them. Another example, analyzed by Lee

(1992) and Engsted and Haldrup (1999), is where yt is new housing units started, xt is new housing

units completed, st is uncompleted starts, and hence It is housing units under construction. Leachman

(1996), and Leachman and Francis (2000) provide examples of multicointegrated systems with government

revenues and expenditures, and a country’s export and import, respectively. Here the stock variable is

defined as the government debt and the country’s external debt, such that each variable is the cumulated

series of past government and trade deficits, respectively. Yet another example is provided by Siliverstovs
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(2001) who analyze consumption and income, and where cumulated savings (i.e. the cumulation of the

cointegrating relationship between income and consumption) constitutes wealth, which cointegrates with

consumption and income. In general, multicointegration captures the notion of integral control in dynamic

systems, see, for example, Hendry and von Ungern Sternberg (1981).

We investigate how the presence of multicointegration affects long-run forecasting comparisons. In

particular, we set up a model that contains both cointegrating and multicointegrating restrictions, and

we examine how forecasts from this multicointegrated system compare to univariate forecasts. The

comparison is done in terms of the ratio of the (trace) mean-squared forecast errors, but we follow

Christoffersen and Diebold (1998) in using both a standard loss function and a loss function based on the

triangular representation of the cointegrated system. For a model with multicointegrating restrictions

the standard trace mean-squared forecast error criterion entails a loss function that penalizes forecast

errors associated with the levels of flow variables whereas the loss function associated with the triangular

representation penalizes forecast errors of changes in both the flow and the stock variables.

Secondly, we are concerned with the fact that, when the loss function of Christoffersen and Diebold

(1998) is applied to the multicointegrated systems, it focuses exclusively on the maintenance of the coin-

tegrating restrictions while ignoring multicointegrating restrictions present in the data. This corresponds

to ignoring how the levels of both stock and flow variables are related. To this end, we propose a new loss

function that is based on the triangular representation of the multicointegrating variables. This extended

loss function explicitly acknowledges the maintenance of the multicointegrating restrictions in the data.

We also investigate the implications of using this new loss function in assessing the forecast accuracy

between the system and univariate forecasts.

Our most important results can be summarized as follows. First we find that the general result of

Christoffersen and Diebold (1998) derived for a standard cointegration model carries over to multicoin-

tegrated models, that is, based on a standard MSFE criterion, long-horizon forecasts of the levels of

I(1) (flow) variables from the multicointegrated system are found not to be superior to simple univariate

forecasts. However, based on the triangular MSFE criterion (accounting for changes in both stocks and

flows), the system forecasts are clearly superior to the univariate forecasts. This result demonstrates

that as long as the comparison is between the standard MSFE loss function and the triangular MSFE

loss function, multicointegration will have no influence on the conclusions drawn by Christoffersen and

Diebold. Hence, if the loss function reflects changes in the flow variables, or changes in both the flow

and stock variables, then there is really no new insights to be gained from multicointegration in terms

of the forecasting properties. However, in stock-flow models one will typically prefer a loss function that

also values forecast errors associated with the linkage between the levels of stock and flow variables. Our

suggested loss function is doing just that. As a second important result, it is shown that the new loss
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function presented in this paper reflects increasing forecasting gains (for the forecast horizon tending to

infinity) when mean squared forecast errors from a multicointegrated system are compared to univariate

forecasts. These results illustrate the importance of carefully selecting loss functions for systems involving

stock and flow variables.

Testing for multicointegration, and estimation of models with multicointegrating restrictions, are

most naturally conducted within an I(2) cointegration framework, see Engsted, Gonzalo and Haldrup

(1997), Haldrup (1998), Engsted and Johansen (1999), and Engsted and Haldrup (1999). However, since

our primary interest is on the particular dynamic characteristics of multicointegration with respect to

forecasting, we abstract from estimation issues and hence assume known parameters.

The rest of the paper is organized as follows. In Section 2 we set up the multicointegrated systems

used in the subsequent analysis. Also, we derive the corresponding univariate representations of the

system variables. Section 3 derives the expressions for system and univariate forecasts and the associated

forecasting errors. In Section 4 we demonstrate the implications on model ranking using various loss

functions. Section 5 illustrates our findings using a numerical example and the final section concludes.

2 Multivariate and univariate representations of the multicoin-

tegrating variables

In this section we define multicointegrated models and derive the corresponding univariate representations

of the system variables. In order to ease the exposition we employ the simplest models with relevant

multicointegrating restrictions. Our bivariate setup is motivated by the fact that all applications of

multicointegration in the literature have been performed for systems of just two variables.

2.1 Multicointegrated system.

Consider the two I(1) variables, xt and yt, that obey a cointegrating relation

yt − λxt ∼ I (0) , (1)

such that the cumulated cointegration error

t∑

j=1

(yj − λxj) ∼ I (1)
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is an I(1) variable by construction2. We refer to the system as multicointegrated when there exists a

stationary linear combination of the cumulated cointegrating error and the original variables, e.g.

t∑

j=1

(yj − λxj)− αxt ∼ I (0) . (2)

As discussed in Granger and Lee (1989, 1991), the multicointegrating restrictions are likely to occur

in stock-flow models, where both cointegrating relations have an appealing interpretation. The first

cointegrating relation (1) is formed between the original flow variables, for example, production and

sales, income and expenditures, export and import, etc. The second cointegrating relation (2) represents

the relation between the cumulated past discrepancies between the flow variables, for instance: the stock

of inventories, the stock of wealth, the stock of external debt, and all or some flow variables present in

the system. It implies that the equilibrium path of the system is maintained not only through the flow

variables alone, but also through additional forces tying together the stock and flow series and in so doing

provides a second layer of equilibrium.

It is convenient to represent the system of multicointegrating variables in the triangular form

 (1− L) 0

−λ(1− L)−1 − α (1− L)−1





xt

yt


 =


e1t

e2t


 , (3)

where L is the lag operator, (1−L) is the difference operator, and (1−L)−1 is the summation operator,

such that when the latter operator is applied to an I(1) time series the resulting time series is I(2)

by construction, i.e. (1 − L)−1xt =
∑t

j=1 xj . For simplicity, it is assumed that the disturbances are

uncorrelated at all leads and lags, i.e. E (e1t−je2t−i) = 0, ∀ j 6= i for j = 0,±1,±2, ... and i = 0,±1,±2, ...

, and the variances of the disturbances e1t and e2t are given by σ2
1 and σ2

2 , respectively, for all t. Hence

xt is considered a strictly exogenous variable.

If we denote the generated I(2) variables by capital letters, i.e. Yt =
∑t

j=1 yj and Xt =
∑t

j=1 xj , then

we are able to write the system above as

∆xt = e1t

Yt = λXt + αxt + e2t.

Observe that it closely resembles the socalled polynomially cointegrating system where original I(2)

variables cointegrate with their own first differences, see Rahbek, Kongsted, and Jørgensen (1999), and

Banerjee, Cockerell, and Russell (2001) for examples. The only difference between multi- and polynomially

cointegrated models is that in the former case the I(2) variables are generated from the original I(1)

variables, whereas in the latter case I(2) variables are the original time series.
2No deterministic components are assumed in the series and hence, by construction, no trend, for instance, is generated

in the cumulated series.
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Below we provide two equivalent representations of the system in (3). The Vector Error-Correction

model (VECM) can be represented as follows:

 ∆xt

∆yt


 =


 0

−1


 [yt−1 − λxt−1] +


 0

−1


 [Yt−1 − λXt−1 − αxt−1] +


 e1t

(λ + α) e1t + e2t


 .

As seen, the VECM explicitly incorporates both cointegration levels, see equations (1) and (2) , that are

present in the multicointegrated system. Alternatively, the multicointegrated system (3) can be given the

moving-average (MA) representation:

 ∆xt

∆yt


 = C (L) et =


 1 0

[λ + (1− L) α] (1− L)2





 e1t

e2t


 . (4)

Granger and Lee (1991) argue that the necessary and sufficient condition for xt and yt to be multicoin-

tegrated is that the determinant of C (L) should have a root (1− L)2 . This condition is clearly satisfied

for our simple system.

2.2 Univariate representations.

In this section we derive the implied univariate representations for the I(1) variables xt and yt. Of course,

for xt the univariate representation is just

xt = xt−1 + e1t.

In deriving the implied univariate representation for yt we follow Christoffersen and Diebold (1998) by

matching the autocovariances of the process ∆yt. From the MA-representation of ∆yt we have

∆yt = [λ + (1− L)α] e1t + (1− L)2 e2t,

yt = yt−1 + zt,
(5)

where, as shown in the appendix, the process zt corresponds to the MA(2) process

zt = ut + θ1ut−1 + θ2ut−2, ut ∼ IID
(
0, σ2

u

)
.

The coefficient θ2 represents a root of the following fourth order polynomial

θ4
2 + (2−B) θ3

2 +
(
A2 − 2B + 2

)
θ2
2 + (2−B) θ2 + 1 = 0,

where A = [−α (λ + α) q − 4] , B =
[
(λ + α)2 + α2

]
q + 6, and q = σ2

1
σ2
2
.

(6)

and the coefficient θ1 and the variance term σ2
u can be found as follows:

θ1 =
θ2

(1 + θ2)
A and σ2

u =
σ2

2

θ2
. (7)

Observe that the values of the MA coefficients θ1 and θ2 are chosen such that they satisfy the invertibility

conditions for the MA(2) process zt.
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3 Long-run forecasting in multicointegrated systems.

In this section we derive expressions for forecasts of the levels of I(1) variables as well as the corresponding

forecast errors both from the system and univariate representations.

3.1 System forecasts of I(1) variables.

The MA-representation of the multicointegrating variables (4) allows us to write the future values of the

system variables in terms of xt and future innovations e1t+h and e2t+h:

xt+h = xt +
h∑

i=1

e1t+i, (8)

yt+h = λxt + λ

h∑

i=1

e1t+i + αe1t+h + ∆e2t+h.

Correspondingly, the h-steps ahead forecasts for the I(1) variables are given by

x̂t+h = xt,

ŷt+h = λxt (9)

for all forecast horizons but h = 1. In the latter case we have

x̂t+1 = xt

ŷt+1 = λxt − e2t = λxt − [Yt − λXt − αxt] . (10)

In particular, observe that the long-run forecasts from the multicointegrated system maintain the cointe-

grating relation exactly:

ŷt+h = λx̂t+h, for h > 1. (11)

Continuing, the forecast errors are

ε̂x,t+h =
h∑

i=1

e1t+i ∀h > 0, (12)

ε̂y,t+h =





λe1t+1 + αe1t+1 + e2t+1 = (λ + α) e1t+1 + e2t+1 for h = 1

λ
∑h

i=1 e1t+i + αe1t+h + ∆e2t+h for h > 1.
(13)

Furthermore, note that the forecast errors and the original system as in (4) follow the same stochastic

process, i.e. 
 ∆ε̂x,t+h

∆ε̂y,t+h


 =


 1 0

λ + α (1− L) (1− L)2





 e1t+h

e2t+h


 . (14)
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3.2 Univariate forecasts of I(1) variables.

Next, we turn to forecasting of the I(1) variables based on the correctly specified implied univariate

representations. Future values of xt+h are given in equation (8) above and for yt+h

yt+h =





yt + zt+1 = yt + ut+1 + θ1ut + θ2ut−1, h = 1

yt +
∑h

i=1 zt+i = yt + ut+1 + θ1ut + θ2ut−1 + ut+2 + θ1ut+1 + θ2ut +
∑h

i=3 zt+i, h > 1.

The corresponding h−steps ahead forecasts for I(1) variables can now be derived as follows. The

forecast for xt is the same as the system forecast

x̃t+h = x̂t+h = xt,

whereas the forecast ỹt+h is given by

ỹt+h =





yt + θ1ut + θ2ut−1, for h = 1

yt + θ1ut + θ2ut−1 + θ2ut = yt + (θ1 + θ2)ut + θ2ut−1, for h > 1.

The forecast error for xt+h is given by

ε̃x,t+h = ε̂x,t+h =
h∑

i=1

e1t+i. (15)

The corresponding forecast error ε̃y,t+h = yt+h − ỹt+h for yt is

ε̃y,t+h =





ut+1, for h = 1

ut+1 + ut+2 + θ1ut+1 +
∑h

i=3 zt+i =

(1 + θ1 + θ2)
∑h−2

i=1 ut+i + (1 + θ1)ut+h−1 + ut+h, for h > 1.

(16)

4 Assessing the forecast accuracy.

In this section we investigate the implications of using different specifications of the loss functions on model

ranking based on the long-run forecasts. We subsequently explore how the long-run forecasts compare

when judged in terms of three different loss functions. The first is the traditional trace MSFE loss function

which penalizes forecast errors associated with the flow variables. The second is the triangular trace MSFE

loss function based on the triangular representation of the standard I(1) cointegrated system as suggested

in Christoffersen and Diebold (1998), which in a multicointegrated model corresponds to penalizing loss

associated with forecast errors for the changes in stock variable as well as changes in one of the flow

variables. The last loss function, which is suggested in this paper, is novel to the forecasting literature.

It is termed the extended triangular loss function and it is based on the triangular representation of

the multicointegrating variables. Thus, it can be considered an extension of the loss function suggested

in Christoffersen and Diebold (1998) to multicointegrated systems. The feature of the suggested loss

function is that the link between the levels of stock and flow variables is incorporated.
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4.1 Traditional trace MSFE loss function.

First we use the trace MSFE criterion to compare the forecast accuracy of the multivariate and univariate

forecast representations. The traditional trace MSFE loss function reads:

trace MSFE = E





 v1t+h

v2t+h



′ 
 v1t+h

v2t+h





 , (17)

where v1t+h and v2t+h are the forecast errors of the I(1) flow variables. As seen only the losses associated

with flow variables are penalized in this case.

4.1.1 Trace MSFE for system forecasts.

Using the expressions for the system forecast errors in (12) and (13) we can calculate the following forecast

error variances:

V ar (ε̂x,t+h) = hσ2
1 ∼ O (h) , for h > 0 (18)

V ar (ε̂y,t+h) =





(λ + α)2 σ2
1 + σ2

2 , for h = 1

λ2σ2
1h +

[
(λ + α)2 − λ2

]
σ2

1 + 2σ2
2 ∼ O (h) , for h > 1.

(19)

Notice that the variance of the system forecast error for yt+h and xt+h is growing of order O (h) . Then

for the system forecasts we have

trace ̂MSFE =





σ2
1 + (λ + α)2 σ2

1 + σ2
2 , h = 1

λ2σ2
1h +

[
(λ + α)2 − λ2

]
σ2

1 + 2σ2
2 + hσ2

1 , h > 1.
(20)

4.1.2 Trace MSFE for univariate forecasts.

Using expressions (15) and (16) we can calculate the variance of the univariate forecast errors:

V ar (ε̃x,t+h) = V ar (ε̂x,t+h) = hσ2
1 ∼ O (h) . (21)

V ar(ε̃y,t+h) =





σ2
u, for h = 1[
(1 + θ1 + θ2)

2 (h− 2) + (1 + θ1)
2 + 1

]
σ2

u =

= λ2σ2
1 (h− 2) +

[
(1 + θ1)

2 + 1
]
σ2

u ∼ O (h) , for h > 1.

(22)

Observe that similar to the system forecast errors the variance of the univariate forecast errors grows of

order O(h). As a result we have

trace ˜MSFE =





σ2
1 + σ2

u, h = 1

λ2σ2
1 (h− 2) +

[
(1 + θ1)

2 + 1
]
σ2

u + hσ2
1 ∼ O (h) , h > 1.

(23)
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4.1.3 Trace MSFE ratio.

We can now compare the forecast accuracy of the system- and univariate models using the trace MSFE

ratio as the forecast horizon increases:

trace ˜MSFE

trace ̂MSFE
=

hσ2
1 + λ2 (h− 1)σ2

1 − λ2σ2
1 +

[
(1 + θ1)

2 + 1
]
σ2

u

hσ2
1 + λ2 (h− 1)σ2

1 + (λ + α)2 σ2
1 + 2σ2

2

∼ O(h)
O(h)

→ 1. (24)

As seen, as h →∞ this ratio approaches 1 since the coefficients to the leading terms both in the nomina-

tor and denominator are identical. That is, on the basis of the traditional forecast comparison criterion

(trace MSFE ratio) it is impossible to distinguish between the model with imposed multicointegration

restrictions and the model that ignores these restrictions completely. Thus, the conclusion of the use of

the traditional trace MSFE ratio in assessing long-run system- and univariate forecasts in the multicoin-

tegrated systems coincides with that of Christoffersen and Diebold (1998) derived for the standard I(1)

cointegrated model.

4.2 Triangular trace MSFE loss function.

In this section we investigate the implications of using the loss function suggested in Christoffersen and

Diebold (1998) to long-run forecasts of the multicointegrating variables. Recall that this loss function

has been proposed for evaluating long-run forecasts in the standard I(1) cointegrated system. The main

point that we want to make is that the motivation for using Christoffersen and Diebold’s loss function in

the standard I(1) cointegrated systems carries over to the multicointegrating setup in a straightforward

manner. This justifies the use of their loss function in multicointegrated models if the forecast evaluator

is not concerned with losses associated with the linkage between the levels of stock and flow variables.

This loss function has the interpretation of attaching loss to forecast errors associated with changes in

stock and flow variables as opposed to the standard trace MSFE criterion which only accommodates

losses associated with forecasting levels of flow variables. Below we illustrate this important finding.

First, it is worthwhile reviewing related results of Christoffersen and Diebold (1998) for the long-run

forecasts in standard I(1) cointegrated systems. As discussed above, Christoffersen and Diebold (1998)

show that when comparing the forecasting performance of models that impose cointegration and correctly

specified univariate models in terms of the MSFE ratio, there are no gains of imposing cointegration

except at the shortest forecast horizons. The problem is that the MSFE criterion fails to acknowledge the

important distinction between long-run system forecasts and univariate forecasts. That is, the intrinsic

feature of the long-run system forecasts is that they preserve the cointegrating relations exactly, whereas

the long-run forecasts from the univariate models satisfy the cointegrating relations only on average. As

a result, the variance of the cointegrating combination of the system forecast errors will always be smaller
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than that of the univariate forecast errors.

Therefore, if one can define a loss function which recognizes the distinction between system- and

univariate forecasts, then it becomes possible to discriminate between the forecasts made from these

models. Christoffersen and Diebold (1998) show that such a loss function can be based on the triangular

representation of cointegrating variables, see Campbell and Shiller (1987), and Phillips (1991). In its

simplest form a standard I(1) cointegrated system reads

 1− L 0

−λ 1





 z1t

z2t


 =


 v1t

v2t


 ,

where it is assumed that the disturbance terms are uncorrelated at all leads and lags. The corresponding

loss function, introduced in Christoffersen and Diebold (1998), looks as follows:

trace MSFEtri = E








 1− L 0

−λ 1





 v1t+h

v2t+h






′



 1− L 0

−λ 1





 v1t+h

v2t+h








 ,

such that the forecast accuracy of a given model is judged upon the linear transformations of the corre-

sponding forecast errors v1t+h and v2t+h of the I(1) flow variables. Observe that for multicointegrated

series the cointegrating combination of the forecast errors v2,t+h − λv1,t+h corresponds to the forecast

errors of changes in the stock variable whereas (1− L) v1,t+h is the forecast error of changes in a flow

variable. The trace MSFEtri also reads

trace MSFEtri = E





 v1t+h

v2t+h



′

K


 v1t+h

v2t+h





 , where K =


 1− L 0

−λ 1



′ 
 1− L 0

−λ 1


 (25)

and it is instructive to compare this with the traditional MSFE used in other studies, see equation (17).

As seen, the traditional MSFE can be regarded as the special case of the trace MSFEtri with K being

the identity matrix. The trace MSFEtri criterion values small forecast errors as does the traditional MSFE

criterion, but at the same time it also values maintenance of the cointegrating restrictions amongst the

generated forecasts. The latter fact proves to be crucial in distinguishing between system- and univariate

forecasts. The well-recognized drawback of the trace MSFE criterion is that it fails to value the exact

maintenance of cointegrating relations by the long-run forecasts. Hence, the solution is to employ a loss

function that recognizes this fact. Recall that, as we have shown above, the long-run forecasts from the

multicointegrated system obey the cointegrating relation exactly, see equation (11). Therefore, for our

purpose it seems natural to adopt the loss function based on the triangular system.
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4.2.1 Triangular trace MSFE for system forecasts.

In order to use the triangular trace MSFE criterion we need to compute the variance of the cointegrating

combination of the forecast errors. Using expressions (12) and (13), it follows that:

V ar (ε̂y,t+h − λε̂x,t+h) =





α2σ2
1 + σ2

2 , for h = 1

α2σ2
1 + 2σ2

2 , for h > 1
(26)

which is finite for all forecast horizons. Observe that in this simple model the variance of the cointegrating

combination of the forecast errors is the same for all forecast horizons except for h = 1. The reason for

the difference that occurs when h = 1 can be seen from equations (9) and (10) which show that the

multicointegrating term is in the information set for h = 1 and it has expectation zero for h > 1. Using

the loss function (25), we have for the system forecasts

trace M̂SFEtri = E






 (1− L) ε̂x,t+h

ε̂y,t+h − λε̂x,t+h



′
 (1− L) ε̂x,t+h

ε̂y,t+h − λε̂x,t+h








and it follows that

trace M̂SFEtri =





α2σ2
1 + σ2

2 + σ2
1 , for h = 1

α2σ2
1 + 2σ2

2 + σ2
1 , for h > 1.

(27)

4.2.2 Triangular trace MSFE for univariate forecasts.

Next we derive the variance of the cointegrating combination of the univariate forecast errors:

V ar (ε̃y,t+h − λε̃x,t+h) = V ar (ε̃y,t+h) + λ2V ar (ε̃x,t+h)− 2λcov(ε̃y,t+h, ε̃x,t+h),

using expressions (21) and (22) and the following expression for the covariance term

cov(ε̃y,t+h, ε̃x,t+h) = λhσ2
1 + ασ2

1 .

The variance of the cointegrating combination of the univariate forecast errors is

V ar (ε̃y,t+h − λε̃x,t+h) =





σ2
u − λ2σ2

1 − 2λασ2
1 , for h = 1

−2λ2σ2
1 − 2λασ2

1 +
[
(1 + θ1)

2 + 1
]
σ2

u, for h > 1.
(28)

This implies that the variance of the cointegrating combination of forecasts from the implied univariate

representations is finite as well.

For the forecasts from the univariate models we have

trace M̃SFEtri = E






 (1− L) ε̃x,t+h

ε̃y,t+h − λε̃x,t+h



′
 (1− L) ε̃x,t+h

ε̃y,t+h − λε̃x,t+h







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and thus

trace M̃SFEtri =





σ2
u − λ2σ2

1 − 2λασ2
1 + σ2

1 , for h = 1[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 + σ2
1 , for h > 1.

Further simplification results in

trace M̃SFEtri =





σ2
u − λ2σ2

1 − 2λασ2
1 − α2σ2

1 + α2σ2
1 + σ2

1 , for h = 1[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 − α2σ2
1 + α2σ2

1 + σ2
1 , for h > 1,

trace M̃SFEtri =





σ2
u − (λ + α)2 σ2

1 − σ2
2 + α2σ2

1 + σ2
2 + σ2

1 , for h = 1[
(1 + θ1)

2 + 1
]
σ2

u − (λ + α)2 σ2
1 − 2σ2

2 + 2σ2
2 + α2σ2

1 + σ2
1 , for h > 1.

Then, using expressions (19) and (22) we have

trace M̃SFEtri =





V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + α2σ2
1 + σ2

2 + σ2
1 , for h = 1

V ar(ε̃y,t+h)− V ar(ε̂y,t+h) + 2σ2
2 + α2σ2

1 + σ2
1 , for h > 1.

(29)

4.2.3 Triangular trace MSFE ratio.

Using expressions (27) and (29) we can now compute the trace MSFE ratio’s

trace M̃SFE
h=1

tri

trace M̂SFE
h=1

tri

= 1 +
V ar(ε̃y,t+h)− V ar(ε̂y,t+h)

α2σ2
1 + σ2

2 + σ2
1

> 1, (30)

trace M̃SFE
h>1

tri

trace M̂SFE
h>1

tri

= 1 +
V ar(ε̃y,t+h)− V ar(ε̂y,t+h)

α2σ2
1 + 2σ2

2 + σ2
1

> 1. (31)

The trace MSFEtri ratio is constant and greater than one as the system forecasts based on the full

information is more accurate than the univariate forecasts based on the partial information, i.e.

[V ar(ε̃y,t+h)− V ar(ε̂y,t+h)] > 0 for all h > 0. Expressed in terms of the model parameters, expressions

(30) and (31) read:

trace M̃SFE
h=1

tri

trace M̂SFE
h=1

tri

=
σ2

u − λ2σ2
1 − 2λασ2

1 + σ2
1

α2σ2
1 + σ2

2 + σ2
1

> 1, (32)

trace M̃SFE
h>1

tri

trace M̂SFE
h>1

tri

=

[
(1 + θ1)

2 + 1
]
σ2

u − 2λ2σ2
1 − 2λασ2

1 + σ2
1

α2σ2
1 + 2σ2

2 + σ2
1

> 1. (33)

In summary, several of the results in Christoffersen and Diebold (1998) derived for standard cointe-

grated systems carry over to models that obey multicointegrating restrictions. First, long-run forecasts

generated from the multicointegrated system preserve the cointegrating relations exactly, see (11). Sec-

ond, the system forecast errors follow the same stochastic process as the original variables, as depicted in

(14) . Third, the variance of the cointegrating combination of the system forecast errors is finite (see (26))

even though the variance of the system forecast errors of the individual variables grow of order O (h), as
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seen in expressions (18) and (19). Fourth, the variance of the cointegrating combination of the univariate

forecast errors is finite too, see expression (28), even though the variance of the univariate forecast errors

grows of order O (h), see expressions (21) and (22). Fifth, imposing the multicointegrating restrictions

does not lead to improved long-run forecast performance over the univariate models when compared in

terms of the ratio of the traditional mean squared forecast error criterion, as shown in (24). Finally, adop-

tion of a loss function based on the triangular representation of the standard I(1) cointegrated system

leads to the superior ranking of the system forecasts over their univariate competitors, see expressions

(30) and (31).

4.3 An extended triangular trace MSFE loss function.

As shown above adoption of the loss function suggested in Christoffersen and Diebold (1998) leads to

clear superior ranking of the system long-run forecasts over the univariate long-run forecasts. Observe

that this loss function incorporates only the first layer of cointegration while ignoring the second – the

multicointegrating restriction. In this section we suggest a solution to this issue by proposing a new loss

function that is based on the triangular representation of the multicointegrating system given in equation

(3).

The suggested loss function looks as follows

trace MSFE?
tri =

= E








 (1− L) 0

−λ(1− L)−1 − α (1− L)−1





 v1t+h

v2t+h






′



 (1− L) 0

−λ(1− L)−1 − α (1− L)−1





 v1t+h

v2t+h








 ,

where v1t+h and v2t+h are the forecast errors of the I(1) flow variables. This can be rewritten as

trace MSFE?
tri = E





 v1t+h

v2t+h



′

K


 v1t+h

v2t+h





 (34)

with the K matrix given by

K =


 (1− L) 0

−λ(1− L)−1 − α (1− L)−1



′ 
 (1− L) 0

−λ(1− L)−1 − α (1− L)−1


 . (35)

Again, the suggested loss function can be considered a generalization of the traditional trace MSFE loss

function presented in equation (17) where the K matrix is the identity matrix. The loss function (34)

reflects the costs of deviating from the multicointegrating relation and hence explicitly accounts for the

fact that the levels of stock and flow variables are directly interrelated.

Next, we illustrate the implications of using the new loss function in model ranking.
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4.3.1 Trace MSFE?
tri for system forecasts.

First we need to calculate the following expression

trace M̂SFE
?

tri = E





 ε̂x,t+h

ε̂y,t+h



′

K


 ε̂x,t+h

ε̂y,t+h







with the K matrix given in equation (35).

Using the results from Section 3 we can compute the following transformations of the system forecast

errors:

ε̂x,t+h =
h∑

i=1

e1t+i

ε̂X,t+h = (1− L)−1ε̂x,t+h =
h∑

q=1

ε̂x,t+q =
h∑

q=1

q∑

i=1

e1t+i =
h∑

i=1

(h + 1− i) e1t+i

ε̂Y,t+h = (1− L)−1ε̂y,t+h =
h∑

q=1

ε̂y,t+q =
h∑

i=1

[λ (h + 1− i) + α] e1t+i + e2t+h.

Observe that we denote the cumulative forecast errors as ε̂X,t+h and ε̂Y,t+h. This is because they effectively

are the forecast errors of the levels of the generated I(2) variables Xt+h and Yt+h, respectively.

The variance of the multicointegrating combination of the forecast errors is

V ar (ε̂Y,t+h − λε̂X,t+h − αε̂x,t+h) = σ2
2 . (36)

This is finite, and for our simple model it is constant for all forecast horizons h > 0 as there is no short-run

dynamics. The finding of a finite variance of the multicointegrating combination of the forecast errors

is similar to that of Christoffersen and Diebold (1998), and Engle and Yoo (1987) for I(1) systems with

the standard cointegrating restrictions. This is due to the fact that the forecast errors follow the same

stochastic process as the forecasted time series. As a consequence, the forecasts are integrated of the

same order and share the multicointegrating properties of the system dynamics as well.

In addition, observe that the corresponding forecast error variances of the transformed forecast errors

are of the order O
(
h3

)
as seen below:

V ar (ε̂X,t+h) = V ar

(
h∑

q=1

q∑

i=1

e1t+i

)
=

h (h + 1) (2h + 1)
6

σ2
1 ∼ O

(
h3

)

V ar (ε̂Y,t+h) =
h (h + 1) (2h + 1)

6
λ2σ2

1 + 2αλ
h (h + 1)

2
σ2

1 + hα2σ2
1 + σ2

2 ∼ O
(
h3

)
.

Using the expression V ar((1 − L)ε̂x,t+h) = σ2
1 we can calculate the trace MSFE?

tri for the system

forecasts

trace M̂SFE
?

tri = σ2
2 + σ2

1 . (37)
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4.3.2 Trace MSFE?
tri for univariate forecasts.

Next we calculate the trace M̃SFE
?

tri for the corresponding univariate forecasts

trace M̃SFE
?

tri = E





 ε̃x,t+h

ε̃′y,t+h


 K


 ε̃x,t+h

ε̃′y,t+h







with the K matrix given in equation (35).

The transformation of the forecast errors yields the following

ε̃x,t+h =
h∑

i=1

e1t+i

ε̃X,t+h = (1− L)−1ε̃x,t+h =
h∑

q=1

q∑

i=1

e1t+i =
h∑

i=1

(h + 1− i) e1t+i

with the variances

V ar (ε̃X,t+h) = V ar (ε̂X,t+h) =
h (h + 1) (2h + 1)

6
σ2

1 ∼ O
(
h3

)
(38)

V ar (ε̃x,t+h) = V ar (ε̂x,t+h) = hσ2
1 ∼ O (h) . (39)

The corresponding transformation of the forecast errors for yt+h reads

ε̃Y,t+1 = (1− L)−1ε̃y,t+1 = ut+1

ε̃Y,t+h = (1− L)−1ε̃y,t+h =

=
h−2∑

i=1

{(1 + θ1 + θ2) (h− 2− i + 1) + (1 + θ1) + 1}ut+i + ((1 + θ1) + 1) ut+h−1 + ut+h

with the corresponding forecast error variances

V ar (ε̃Y,t+h) = (1 + θ1 + θ2)
2 (h− 2) (h− 2 + 1) (2 (h− 2) + 1)

6
σ2

u (40)

+2 ((1 + θ1) + 1) (1 + θ1 + θ2)
(h− 2) (h− 2 + 1)

2
σ2

u +

+((1 + θ1) + 1)2 (h− 1) σ2
u + σ2

u ∼ O
(
h3

)
.

Next, we calculate the variance of the polynomially cointegrating combination of the forecast errors

from the univariate representation. Straightforward but tedious algebra relegated to the appendix yields

the following relation

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃x,t+h) = [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2
2 . (41)

Thus, using the result V ar((1 − L)ε̃x,t+h) = σ2
1 the resulting trace M̃SFE

?

tri for the univariate forecasts

reads

trace M̃SFE
?

tri = [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2
2 + σ2

1 . (42)
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It is of further interest to find the order of growth of the trace M̃SFE
?

tri for the univariate forecasts.

As shown above both V ar (ε̃Y,t+h) and V ar (ε̂Y,t+h) are O(h3). Thus, we want to find the growth

order of the expression [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)]. A little algebra and use of the expression λ2σ2
1 =

(1 + θ1 + θ2)
2
σ2

u yield the following result

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] =

= −h2λ2σ2
1 − (h− 1)2 λ2σ2

1 + 2 (2 + θ1) (1 + θ1 + θ2)
(h−2)(h−2+1)

2 σ2
u+

+(2 + θ1)
2 (h− 1)σ2

u + σ2
u − 2αλh(h+1)

2 σ2
1 − hα2σ2

1 − σ2
2 .

As seen, although each of the terms V ar (ε̃Y,t+h) and V ar (ε̂Y,t+h) are O(h3), their difference [V ar (ε̃Y,t+h)−
−V ar (ε̂Y,t+h)] is O(h2). Therefore we have the following result

trace M̃SFE
?

tri = [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2
2 + σ2

1 ∼ O(h2). (43)

4.3.3 Ratio trace MSFE?
tri of the univariate to system forecasts.

Using equations (37) and (43) we can compute the trace MSFE?
tri ratio of the univariate to system

forecasts

trace M̃SFE
?

tri

trace M̂SFE
?

tri

=
[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2

2 + σ2
1

σ2
2 + σ2

1

= 1 +
[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)]

σ2
2 + σ2

1

> 1.

Intuitively, this inequality holds as the forecasts that utilize all the information in the system (system

forecasts) will produce a smaller forecast error variance than the ones that are based on the partial

information (univariate forecasts). It also resembles the trace MSFEtri ratio in (30) and (31) .

Using the results from above we can write

trace M̃SFE
?

tri

trace M̂SFE
?

tri

=
O

(
h2

)

O (1)
→∞ as h →∞. (44)

This means that we would prefer the model with multicointegrating restrictions using this criterion.

In fact, there are high (increasing) gains to be achieved in using the new loss function both over the

traditional MSFE loss function and the triangular MSFE loss function suggested in Christoffersen and

Diebold (1998). The result (44) emphasizes that if in fact the forecast evaluator is concerned with losses

associated with the stocks and flows not deviating too much from their steady state level, then this

should be reflected in the loss function. As seen, huge gains can be achieved from the system forecast

when compared to using simple univariate forecasts.

5 Example.

We illustrate the findings of the previous sections using the model (3) with the following values of the

parameters λ = 2, α = 1, σ2
1 = σ2

2 = 1. Such parameter combination leads to the following MA(2) process
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Figure 1: Trace MSFE ratio and Trace MSFEtri ratio of univariate versus system forecasts of multicoin-

tegrating I(1) variables.

for ∆yt : θ1 = −0.5155, θ2 = 0.0795, and σ2
u = 12.578. Figures 1 and 2 are plotted using these true

coefficient parameters.

Figure 1 displays the ratios (24) , (33) and (32). From Figure 1 it can be seen that for the standard trace

MSFE ratio criterion there are no gains as h tends to infinity when system and univariate forecasts are

compared. On the other hand, a specification with a loss function based on the triangular representation

will induce persistent gains in system forecasting as compared to a univariate forecast model. These results

are entirely in line with those reported by Christoffersen and Diebold (1998) for standard cointegration

models.

Similarly, Figure 2 corresponds to the results given in expression (44). A loss function incorporating

the multicointegrating restrictions across the levels of stock and flow variables is given in expression (34)

and when the system forecasts are compared to the univariate forecasts, using this criterion, the (relative)

explosive behavior of the univariate forecast errors is rather apparent as can be seen from Figure 2.

6 Conclusions.

In this paper we have extended the analysis of Christoffersen and Diebold (1998) to multicointegrated

systems. The motivation was that in multicointegrated systems a complicated dynamic interaction of

flow and stock variables may take place and in forecasting such variables a range of loss functions are
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Figure 2: Trace MSFE?
tri ratio of univariate versus system forecasts of multicointegrating I(1) variables.

available when evaluating and comparing forecasts from different models. Christoffersen and Diebold’s

analysis can be conducted by assuming multicointegrated series rather than cointegrated series in the

usual I(1) sense. When this occurs the variables can be given a particular interpretation. A loss function

based on a standard trace mean square forecast error criterion corresponds to forecast evaluation where

the forecast errors associated with the flows of the variables enter the loss function. On the other

hand, the loss function of Christoffersen and Diebold, based on the triangular form representation of

cointegrated systems, can be expressed in terms of losses associated with forecast errors of the changes

in both the flow and stock variables. Although this loss function penalizes the deviations from the

cointegrating relation only and completely ignores the multicointegrating restrictions, when applied to

the forecasts from multicointegrated models, it clearly favours those over the univariate model forecasts.

Notwithstanding, if the desired loss function should reflect the multicointegrating nature of the forecasted

variables a new loss function is required. This function can be derived from the triangular representation

of a multicointegrated system and we show that such a function will penalize deviations from a long-run

stock and flow relation. In fact, the suggested loss function appears to have huge gains when compared

to forecasts of the implied univariate models.

We do not want to take a strong stand upon which loss function to use in practice when evaluating

different models. In this paper we have compared model forecasts from a correctly specified univari-

ate model with that of a correctly specified system forecast. In model selection based on forecasting

performance, one may prefer choosing a loss function which favors models which incorporate stronger
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(multicointegrating) restrictions on the variables that models which do not (i.e. the univariate models).

Ultimately, however, the loss function to be chosen will reflect the preferences of the analyst.

The paper highlights the importance of carefully selecting loss functions when evaluating forecasts

from cointegrated systems, and it shows how different loss functions based on a MSFE criterion help

selection of competing models of increasing complexity. Comparing competing models, some of which are

potentially incorrectly specified, is a different, though extremely relevant, issue. Deriving new results for

multicointegrated systems along these lines, for instance by extending the work of Clements and Hendry

(1995) to multicointegrated systems, is a topic for future research.

In this paper we used a simple bivariate, low-order multicointegrated model in order to establish

the results. Naturally, it is of interest to derive the corresponding results for more general models that

obey multicointegrating restrictions. Also, the consequences of introducing deterministic components are

important as are estimation issues. These extensions will follow in future work.
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7 Appendix.

7.1 Derivation of the implied univariate representation for ∆yt.

zt = [λ + (1− L)α] e1t + (1− L)2 e2t

zt = λe1t + αe1t − αe1t−1 + e2t − 2e2t−1 + e2t−2.

zt = ut + θ1ut−1 + θ2ut−2

The autocovariance structure for zt reads

γz (0) =
[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

γz (1) = −α (λ + α)σ2
1 − 4σ2

2

γz (2) = σ2
2

γz (τ) = 0, |τ | ≥ 3.

This is a MA(2) process with the non-zero first and second autocorrelations. The first autocorrelation

coefficient is

ρz (1) =
−α (λ + α) σ2

1 − 4σ2
2[

(λ + α)2 + α2
]
σ2

1 + 6σ2
2

=
−α (λ + α) q − 4[

(λ + α)2 + α2
]
q + 6

ρz (2) =
σ2

2[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

=
1[

(λ + α)2 + α2
]
q + 6

,

where

q =
σ2

1

σ2
2

is the signal-to-noise ratio.

¿From this we can try to infer values for the parameters θ1 and θ2. By denoting

A = [−α (λ + α) q − 4] B =
[
(λ + α)2 + α2

]
q + 6

and after some algebra we have that

θ1 =
θ2

(1 + θ2)
A

and θ2 is one of the root of the fourth-order polynomial

θ4
2 + (2−B) θ3

2 +
(
A2 − 2B + 2

)
θ2
2 + (2−B) θ2 + 1 = 0.
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Observe that the coefficient values θ1 and θ2 should satisfy the invertibility conditions for the MA(2)

process zt. The variance σ2
u is found from the following expression

σ2
u =

[
(λ + α)2 + α2

]
σ2

1 + 6σ2
2

(1 + θ2
1 + θ2

2)
or σ2

u =
σ2

2

θ2
.

Furthermore, the following relation holds

(1 + θ1 + θ2)
2

(1 + θ2
1 + θ2

2)
=

λ2σ2
1[

(λ + α)2 + α2
]
σ2

1 + 6σ2
2

,

which further leads to

λ2σ2
1 = (1 + θ1 + θ2)

2
σ2

u.

7.2 Variance of the multicointegrating combination of univariate forecast er-

rors.

Here, we calculate the variance of the multicointegrating combination of the forecast errors from the

univariate representation:

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃∆X,t+h) =

= V ar (ε̃Y,t+h − λε̃X,t+h) + α2V ar (ε̃∆X,t+h)− 2αCov (ε̃Y,t+h − λε̃X,t+h, ε̃∆X,t+h) =

= V ar (ε̃Y,t+h) + λ2V ar (ε̃X,t+h)− 2λCov (ε̃Y,t+h, ε̃X,t+h) + α2V ar (ε̃∆X,t+h)−
−2αCov (ε̃Y,t+hε̃∆X,t+h) + 2αλCov (ε̃X,t+h, ε̃∆X,t+h) .

Thus, in order to calculate the variance of the multicointegrating combination of the forecast errors we

need to derive the following expressions:

V ar (ε̃Y,t+h) = (1 + θ1 + θ2)
2 (h− 2) (h− 2 + 1) (2 (h− 2) + 1)

6
σ2

u

+2 ((1 + θ1) + 1) (1 + θ1 + θ2)
(h− 2) (h− 2 + 1)

2
σ2

u +

+((1 + θ1) + 1)2 (h− 1)σ2
u + σ2

u

V ar (ε̃X,t+h) = V ar

(
h∑

q=1

q∑

i=1

e1t+i

)
=

(
h2 + (h− 1)2 + .. + 1

)
σ2

1 =
h (h + 1) (2h + 1)

6
σ2

1

V ar (ε̃∆X,t+h) = hσ2
1

Cov (ε̃Y,t+h, ε̃X,t+h) = λ
h (h + 1) (2h + 1)

6
σ2

1 + α
h(h + 1)

2
σ2

1

Cov (ε̃Y,t+h, ε̃∆X,t+h) = λ
h(h + 1)

2
σ2

1 + αhσ2
1

Cov (ε̃X,t+h, ε̃∆X,t+h) = Cov

(
h∑

q=1

q∑

i=1

e1t+i,

h∑

i=1

e1t+i

)
=

h(h + 1)
2

σ2
1
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These expressions lead to the following result:

V ar (ε̃Y,t+h − λε̃X,t+h − αε̃∆X,t+h) =

= V ar (ε̃Y,t+h)− λ2 h(h+1)(2h+1)
6 σ2

1 − 2αλh(h+1)
2 σ2

1 − α2hσ2
1 =

= V ar (ε̃Y,t+h)− [
V ar (ε̂Y,t+h)− σ2

2

]
= [V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] + σ2

2 .

Using the earlier result that λ2σ2
1 = (1 + θ1 + θ2)

2
σ2

u we get the following:

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] =

= (1 + θ1 + θ2)
2 (h−2)(h−2+1)(2(h−2)+1)

6 σ2
u + 2 (2 + θ1) (1 + θ1 + θ2)

(h−2)(h−2+1)
2 σ2

u + (2 + θ1)
2 (h− 1)σ2

u + σ2
u−

−h(h+1)(2h+1)
6 λ2σ2

1 − 2αλh(h+1)
2 σ2

1 − hα2σ2
1 − σ2

2 =

= h(h+1)(2h+1)
6 λ2σ2

1 − 4h(h+1)
6 λ2σ2

1 − 2h(2h−3)
6 λ2σ2

1 − 2(h−1)(2h−3)
6 λ2σ2

1 + 2 (2 + θ1) (1 + θ1 + θ2)
(h−2)(h−2+1)

2 σ2
u+

+(2 + θ1)
2 (h− 1) σ2

u + σ2
u − h(h+1)(2h+1)

6 λ2σ2
1 − 2αλh(h+1)

2 σ2
1 − hα2σ2

1 − σ2
2 =

= − 4h(h+1)
6 λ2σ2

1 − 2h(2h−3)
6 λ2σ2

1 − 2(h−1)(2h−3)
6 λ2σ2

1 + 2 (2 + θ1) (1 + θ1 + θ2)
(h−2)(h−2+1)

2 σ2
u+

+(2 + θ1)
2 (h− 1) σ2

u + σ2
u − 2αλh(h+1)

2 σ2
1 − hα2σ2

1 − σ2
2 .

Furthermore,

− 4h(h+1)
6 λ2σ2

1 − 2h(2h−3)
6 λ2σ2

1 − 2(h−1)(2h−3)
6 λ2σ2

1 =

= −4h2−4h−4h2+6h−4h2+10h−6
6 λ2σ2

1 = −12h2+12h−6
6 λ2σ2

1 =
(−2h2 + 2h− 1

)
λ2σ2

1 =

= −h2λ2σ2
1 − (h− 1)2 λ2σ2

1 .

Then,

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] = −h2λ2σ2
1 − (h− 1)2 λ2σ2

1 + 2 (2 + θ1) (1 + θ1 + θ2)
(h−2)(h−2+1)

2 σ2
u+

+(2 + θ1)
2 (h− 1) σ2

u + σ2
u − 2αλh(h+1)

2 σ2
1 − hα2σ2

1 − σ2
2 .

The upshot is that even each of the expressions V ar (ε̃Y,t+h) and V ar (ε̂Y,t+h) are O(h3), their difference

[V ar (ε̃Y,t+h)− V ar (ε̂Y,t+h)] is O(h2).
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