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Abstract

This paper considers estimation of a dynamic discrete choice model with second order state

dependence in the presence of strictly exogenous time–varying explanatory variables. We pro-

pose a new method for estimating such models, and a small Monte Carlo study suggests that

the method performs well in practice. The method is used to test for duration dependence in

labour market spells for French youth. The novelty in the application is that we are able to

control for time–varying explanatory variables.

In a discrete time duration model, duration dependent will result in second order state

dependence, and the paper therefore also adds to the literature on estimation of duration models

with unobserved heterogeneity.
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1 Introduction

This paper is concerned with estimation and testing of dynamic discrete choice panel data models

with second order state dependence. These models are closely related to two–state, discrete time

duration models with duration dependence.

An individual who has experienced an event in the past, is frequently more likely to experience

the same event in the future than an individual who has not experienced the event. Examples where

one might expect this include unemployment, union participation, accident occurrence, purchase

decisions, etc. Heckman (1981a, 1981b, 1981c) discusses two explanations for this serial correlation

in the context of standard discrete choice threshold crossing models. The first explanation is

the presence of true state dependence, in which case lagged choices/decisions enter the model in

a structural way as explanatory variables. For example, second order state dependence, which

is the topic of this paper, refers to the case where the choice probability is allowed to depend on

whether the event happened in the two most recent periods. The second source of persistence is the

presence of serial correlation in the unobserved error. Heckman calls this source of serial correlation

spurious state dependence. The serial correlation in the unobserved error is frequently modeled by

assuming that the error is composed of a time–invariant component (unobserved heterogeneity)

and a time–specific, serially independent component.

Distinguishing between the two sources of persistence is important if one wants to evaluate

the effect of economic policies that temporarily change the outcome of the dependent variable. If

the serial correlation is due to unobserved heterogeneity, then such a policy will not change future

choice probabilities, whereas these will change if the dependence is due to true state dependence.

In this paper, we consider estimation of a discrete choice model that accommodates both second

order state dependence and unobserved heterogeneity. Specifically, we considered the model:

yit = 1
{

xitβyi,t−1
+ δi1yit−1 + δ2,yi,t−1yit−2 + αi + εit > 0

}
(1)

where xit is a vector of strictly exogenous variables for individual i in time–period t, εit is an
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unobservable error term, αi and δi1 are unobservable individual-specific effects, and β0, β1, δ2,0

and δ2,1 are the parameters of interest to be estimated or tested. In this model, we allow the

effect xit and yit to depend on the lagged value of yit. This is natural in situations where yit

is an indicator for whether an individual is in one of two states at time t. In that case, it is

natural to allow the transition probabilities (the hazards rates), P (yit = 1| yit−1 = 0, xit, yit−2) and

P (yit = 0| yit−1 = 1, xit, yit−2) to depend differently on xit and yit−2. (1) allows for that. In other

situations, for example if one thinks of (1) as the result of some structural model in the spirit of

Chintagunta, Kyriazidou, and Perktold (2001), it is natural to restrict β0 and δ2,0 to equal β1

and δ2,1, respectively. Therefore, in some of our discussion in this paper, we emphasize this case.

Moreover, we will focus on a logit specification in which εit is i.i.d and logistically distributed, but

the approach can also be used to construct estimators and tests for more semiparametric versions

of the model.

The hypotheses β0 = β1 = 0 and δ2,0 = δ2,1 = 0 are of particular interest, and we will discuss

how to test these in the model given in (1). On one hand, when both β0 and β1 equal 0, it is known

that a conditional likelihood approach (see e.g., Chamberlain (1985)) can be used to estimate δ2,0

and δ2,1 and to test hypotheses regarding them. The resulting estimator and tests will have all the

usual asymptotic properties such as consistency and root-n asymptotic normality (where n denotes

the number of cross sectional units and the number of time periods is assumed to be fixed). On the

other hand, when δ2,0 = δ2,1 = 0, the model becomes consistent with a two–state duration model

with no duration dependence.1 The reason is that in that case, the probability that an individual

is in a given state at time t (yit = 1) depends on whether the individual was in that state in the

previous period (yit−1 = 1), but not whether she/he was in the state in periods before to that.

Hence, that probability does not depend on the duration of time spent in the state.

The contribution of this paper is twofold. First, in section 2, we propose econometric methods

1On the other hand, one might estimate δ2,0 and δ2,1 to be nonzero even if there is no true duration dependence,

but the unobserved errors are serially correlated in a way that is more complicated than the one assumed here.
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to estimate the model in (1). As mentioned, when β = 0 a conditional likelihood approach can be

used to estimate δ2. See e.g. Magnac (2000) for a discussion of this. When δ2,0 = δ2,1 = 0 and δi1

is constant, the model is similar to the model with first order state dependence discussed in Honoré

and Kyriazidou (2000b).

The approach proposed in our paper is based on generalizations of the suggestions in Honoré

and Kyriazidou (2000b). Like the estimator proposed by them, our estimator will depend on a

bandwidth, which must shrink to zero (as n → ∞) for the estimator to be consistent. As in Honoré

and Kyriazidou (2000b), this will prevent our estimator from being root–n consistent. This is

in contrast to the conditional likelihood method that one would use to estimate δ2,0 and δ2,1 in

(1) if one knows that β = 0. That approach does not depend on a bandwidth, and it generally

leads to a root–n consistent estimator. It is therefore interesting to note that the Wald–test of

the hypothesis that β = 0 in (1) will have its usual χ2–distribution (under the null), even if one

considers asymptotics that holds the bandwidth fixed. A small scale Monte Carlo study presented

in section 4 of this paper suggests that the estimator performs well in practice.

The second contribution of this paper is to reconsider the issue of second order state depen-

dence in youth unemployment by estimating (1) using the difference in the (monthly) number of

unemployed between t and t− 1, as the time–varying explanatory variable. We interpret this vari-

able as a proxy for business cycle effects, and finding that it has a significant effect in (1), should

be considered as evidence that some time varying variable plays a role in (1). A recent paper by

Magnac (2000) estimates a model like (1), as well as more complicated multi–state models, to study

the dynamics of youth labour market behavior. Unfortunately, existing methods did not allow that

paper to control for business cycle effects by including time–varying (macroeconomic) variables.

It is exactly this problem that motivates the econometric developments in the next section. We

therefore estimate model (1) using the same data as Magnac (2000), but also including the first

difference of the number of unemployed in a month as explanatory variable and distinguishing ac-

cording to the gender and the age. When we assume that the explanatory variables have the same
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effects on the probability of being unemployed next period for employed and non-employed, the

estimate of on the effect of the macroeconomic variable tends to not be significant. When this as-

sumption is removed, we find that the macroeconomic variable is statistically significant (and with

the right sign) in some of the sub-samples considered, and that its effects vary according to the

state occupied on the labour market. We also find that second order state dependence is important

for the overall sample when β and δ do not depend on yi,t−1. When those parameters depend on the

prior state, the results are somehow different. In most cases duration dependence does not seem to

be statistically significant. This is in agreement with most of the literature on youth labour market

behaviour and more specifically for French young people (see for instance d’Addio (2000)). These

results are discussed in Section 3.

2 Estimation

As explained in Chamberlain (1985), one can test for duration dependence in a duration model

with point sampling by considering the hypothesis that δ2 = 0 in the model

P (yi,t = 1| yi,t−1, yi,t−2, αi) =
exp (αi + δ1iyi,t−1 + δ2yi,t−2)

1 + exp (αi + δ1iyi,t−1 + δ2yi,t−2)
(2)

This model has been used, for example, by Chay, Hoynes, and Hyslop (2001) to estimate a model for

welfare participation, and a multinomial version of it has been used by Magnac (2000) to estimate

a model for labour market transitions. In the latter, the coefficient measuring the of duration

dependence, δ2, is allowed to depend on which state the individual is in. In other words, δ2 in (2)

is replaced by δ2,yit−1 . This is the model given in (1), but without the explanatory variables, xit.

When δ2 = 0, (2) is a Markov chain for a given individual, i. Both αi and δ1i are allowed to

differ across individuals in an arbitrary way, which implies that the logit assumption places no

restrictions on the transition probabilities. (2) is therefore a nonparametric Markov chain when

δ2 = 0. However, the logit assumption does impose restrictions when δ2 does not equal 0, and the

model given by (2) is therefore semiparametric. A parametric version of (2) can be obtained by
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making distributional assumptions on αi and δ1i.

The absence of time-varying effects in (2) is a limitation, which is sometimes undesirable in

empirical applications. In order to allow for such time–varying effects, it is natural to generalize (2)

by allowing the probability to also depend on a set of strictly exogenous time–varying explanatory

variables, xit. One way to do this, is to introduce xit as additional explanatory variables in (2)

P (yi,t = 1| yi,t−1, yi,t−2, xi, αi) =
exp (αi + xi,tβ + δ1iyi,t−1 + δ2yi,t−2)

1 + exp (αi + xi,tβ + δ1iyi,t−1 + δ2yi,t−2)
(3)

where xi denotes the set of all the explanatory variables in all time periods for individual i. While

(3) is a natural extension of (2), it differs from (2) in that it imposes parametric assumptions even

when δ2 = 0. The model can therefore no longer be considered nonparametric in this case.

It seems natural to let xi,t and yi,t−2 appear as in (3) because that makes it a simple general-

ization of a logit model. However, this functional form is unnatural if one interprets the model as a

discrete time, two–state duration model. In that case (3) imposes restrictions between the exit rate

from state 1 to state 0 and the exit rate from state 0 to state 1. For example, the same explanatory

variables affect the two exit rates, and the relative importance of different explanatory variables is

the same in the two rates (because they both depend on xi,tβ). Similarly, the relative importance

of duration dependence is the same for the two states. To overcome this, it is therefore interesting

to also consider a generalization of (3) that allows β and δ2 to depend on the yi,t−1,

P (yi,t = 1| yi,t−1, yi,t−2, xi, αi) =
exp

(
αi + xi,tβyi,t−1

+ δ1iyi,t−1 + δ2,yi,t−1yi,t−2

)
1 + exp

(
αi + xi,tβyi,t−1

+ δ1iyi,t−1 + δ2,yi,t−1 yi,t−2

) (4)

The objects of interest in this paper are δ2 and β in (3) (or δ2,0, δ2,1, β0 and β1 in (4)). The

δ2’s capture the degree of duration dependence, and the β’s accounts for time–varying explanatory

variables. Since the point of departure is (2), it is of particular interest to test β = 0.

The paper by Honoré and Kyriazidou (2000b) considered a model with first order state depen-

dence which is the same across individuals, i.e. δ1 is not individual specific. Their paper emphasized

the case where β does not depend on the yi,t−1. However, it is implicit in their discussion of gen-

eralizations to multinomial models that the approach generalizes to models with first order state
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dependence in which β is allowed to depend on the yi,t−1.

Non–Bayesian estimation of non-linear models like (3) and (4) is usually justified by asymptotic

arguments. These asymptotic arguments can be based on letting either the number of individuals,

n, or the number of time periods, T , (or both) increase to infinity. Since most relevant data

sets have many more individuals than time periods, the asymptotic arguments used to justify the

proposed estimators of δ2 and β will be based on letting the number of individuals, n, increase for

fixed number of time periods, T .

When specifying and estimating (3) and (4) one has the choice of whether to take a random

effects approach in which one specifies a distribution for (αi, δ1i), or a fixed effects approach, which

attempts to estimate the β’s and the δ2’s without making any assumptions on the distribution of

(αi, δ1i) and on the way distribution relates to xit. There is a trade-off between these approaches.

The main advantage of the random effect approach is that it delivers a completely specified model.

This means that one can calculate all probabilities of interest under any “what–if” scenario, pro-

vided, of course, that the model remains true. One disadvantage of the approach is that it requires

one to specify the distribution of (αi, δ1i) conditional on the time–varying explanatory variables in

all the time–periods. If one assumes that the basic structure of the model is correct no matter how

many time–periods one observes, this often leads to specifications that are inconsistent with the

observed distribution of the time–varying explanatory variables, unless one assumes that (αi, δ1i) is

independent of the time–varying explanatory variables. See Honoré (2002) for a discussion of this

point. A second, and possibly more severe, disadvantage of the approach is the initial condi-

tions problem. Indeed, a random effects approach also needs to specify either the distribution of

(αi, δ1i) conditional on (yi1, yi2, xi), or the distribution of (yi1, yi2) conditional on (αi, xi). If values

of yit before the start of the sample were also generated by (3) or by (4), then the relationship

between (αi, δ1i) and (yi1, yi2) would depend on the time–varying variables before the start of the

sample in a complicated way. Hence, if one models either the distribution of (αi, δ1i) conditional on

(yi1, yi2, xi), or the distribution of (yi1, yi2) conditional on (αi, δ1i, xi), one is implicitly modeling
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the behavior of the time–varying explanatory variables.

There are also severe drawbacks associated with a fixed effects approach like the one proposed in

this paper. First, it will not always be possible to estimate a nonlinear model with fixed effects. For

example, the approach used here places restrictions on the behavior of support of the time–varying

explanatory variable that may not be satisfied, and it is not known how to estimate the model

without these restrictions. Secondly, the semiparametric nature of fixed effects models may lead to

estimates that are much less precise than the corresponding random effects estimates. Thirdly, and

perhaps most seriously, the parameters estimated by the fixed effects approach often do not allow

one to calculate objects such as the average effect of the explanatory variable on the probability

that yit equals 1 (because this will depend on the distribution of (αi, δ1i)).

In this paper we pursue the fixed effects approach to estimate (3) and (4) , but it should be

clear from the discussion above that this will only provide a partial answer to the question of how

one should estimate such models.

The key idea behind the construction of estimators of fixed effects panel data models is to find

some characteristic of the distribution of some random variable (which can be constructed from the

data) that does not depend on the fixed effects. In a textbook linear panel data model with strictly

exogenous explanatory variables, this is the conditional mean of the dependent variable minus the

individual specific averages of the dependent variable. In the conditional likelihood approach it is

the distribution of the dependent variable conditional on the sufficient statistic for the fixed effects.

Our proposed methods for analyzing (3) and (4) are based on the following expressions which

are derived in the appendix. They are all probability statements which are satisfied at the true

parameter values and which do not depend on the fixed effects.

Define Ξits to be the sequence of all the y’s for individual i, except for yit and yis, Ξits =

{yi,1, ..., yi,T } \ {yi,t, yi,s}, where 3 ≤ t < s ≤ T − 2.
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For t = 3, ..., T − 3, we have

P (yi,t = 1|Ξit,t+1, yi,t �= yi,t+1, yi,t−1 = yi,t+2,

xi,t+1β1 = xi,t+2β1, xi,t+1β0 = xi,t+2β0, xi,t+2βyi,t−1
= xi,t+3βyi,t−1

)

=
exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

)
1 + exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

) (5)

For t = 3, ..., T − 4

P (yi,t = 1|Ξit,t+2, yt �= yi,t+2, yi,t−1 = yi,t+1 = yi,t+3,

xi,t+1β1 = xi,t+3β1, xi,t+1β0 = xi,t+3β0, xi,t+2βyi,t−1
= xi,t+4βyi,t−1

)

=
exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

)
1 + exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

) (6)

Finally for t = 3, ..., T − 5 and s = t + 3, ..., T − 2

P (yi,t = 1|Ξits, yi,t �= yi,s, yi,t−1 = yi,s−1, yi,t+1 = yi,s+1,

xi,t+1β1 = xi,s+1β1, xi,t+1β0 = xi,s+1β0, xi,t+2βyi,t+1
= xi,t+3βyi,t+1

)

=
exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

)
1 + exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

) (7)

Although equations (5), (6) and (7) are derived by brute force in the appendix, they are motivated

by a conditional likelihood approach. Consider a version of (4) with no exogenous variables. Such

a model could be estimated by the conditional likelihood approach (see Chamberlain (1985)).

This would involve conditioning on the first two and the last two observations, the sum of all

the observations, as well as
∑

yityit−1. Equations (5), (6) and (7) are derived by considering

any subset of the data starting at time period t − 2 and ending in period s + 2. We then first

condition on the first two and the last two observations as well as on the sum of all the observations

and
∑

yi,tyi,t−1, as one would in a model with no exogenous variables. Because of the exogenous
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variables, this leads to expressions that depend on (αi, δ1i). To eliminate the terms depending on

(αi, δ1i) one must condition on events related to the exogenous variables. As will be seen shortly,

this is costly in terms of the rate of convergence of the proposed estimator. It is therefore desirable

to minimize this type of conditioning. The smallest amount of conditioning done in this way is

obtained if one further conditions on all but two of the dependent variables (recall that we also

condition on the sum of all of the dependent variables, so this is the most conditioning that one

can do without making the distribution degenerate). This is why the probabilities in (5), (6)

and (7) condition on all the values of yit, except for two. This gives raise to conditioning on

events of the type Ξits, yi,t �= yi,s. When there are no time–varying explanatory variables, one

would want to be sure to be implicitly conditioning on
∑

yi,tyi,t−1 (because then one would have

conditioned on the sufficient statistic for (αi, δ1i)). When s = t+1, this is achieved by conditioning

on yi,t−1 = yi,t+2. When s = t + 2, one would need to condition on yi,t−1 = yi,t+3. However,

for the case where yi,t−1 = yi,t+3 �= yi,t+1 to deliver expressions that do not depend on (αi, δ1i),

one needs to condition on xi,t+1 = xi,t+2 = xi,t+3 = xi,t+4. The curse of dimensionality suggests

that this is undesirable (relative to the conditioning in (6)) when x is continuously distributed,

and we therefore ignore these terms. When s > t + 2, conditioning on
∑

yi,tyi,t−1, implies that

yt−1+yt+1 = ys−1+ys+1. However, conditioning on either {yt−1 = 0, yt+1 = 1, ys−1 = 1, ys+1 = 0}

or {yt−1 = 0, yt+1 = 1, ys−1 = 1, ys+1 = 0} leads to expressions that do not involve (αi, δ1i) (for all

values of β0, β1, δ2,0 and δ2,1) only if xt+1 = xt+2 = xs+1 = xs+2. Since these are based on three

equalities rather than two (as in the other expressions), we will not use these expressions. The

probabilities in (5), (6) and (7) are therefore the only cases in which αi and/or δ1i do not appear

(for all values of β0, β1, δ2,0 and δ2,1), and which require conditioning on only .two events of the

type xit = xis.

If one assumes that β = 0, then the xβ terms in (5), (6) and (7) are all equal by construction and

one can use them to set up a “partial” conditional likelihood function in order to estimate δ2. This

would be inefficient relative to the conditional maximum likelihood approach because the additional
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conditioning eliminates variability which is informative about δ2. If β does not equal zero, then

one can mimic the line of argument in Honoré and Kyriazidou (2000b) and use nonparametric

regression techniques to essentially construct a sample analog of the conditional likelihood function

based on (5), (6) and (7). The problem with this is that the conditioning sets in these equations

depend on β. This can be overcome by noting that the calculations in the appendix also imply the

following probability statements.

For t = 3, ..., T − 3, we have

P (yi,t = 1|Ξit,t+1, yi,t �= yi,t+1, yi,t−1 = yi,t+2, xi,t+1 = xi,t+2 = xi,t+3)

=
exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

)
1 + exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

) (8)

For t = 3, ..., T − 4

P (yi,t = 1|Ξit,t+2, yt �= yi,t+2, yi,t−1 = yi,t+1 = yi,t+3, xi,t+1 = xi,t+3, xi,t+2 = xi,t+4)

=
exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

)
1 + exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

) (9)

Finally for t = 3, ..., T − 5 and s = t + 3, ..., T − 2

P (yi,t = 1|Ξits, yi,t �= yi,s, yi,t−1 = yi,s−1, yi,t+1 = yi,s+1, xi,t+1 = xi,s+1, xi,t+2 = xi,t+3)

=
exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

)
1 + exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

) (10)

When xit is continuously distributed, we therefore propose to estimate (β, δ2) by maximizing2

∑
i

qi (b, d2) (11)

2When elements of xit are discrete, it is not necessary to use a kernel for those components of xit.
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where

qi =
T−3∑
t=3

1 {yt �= yt+1} 1 {yi,t−1 = yt+2}K

(
xi,t+1 − xi,t+2

h

)
K

(
xi,t+2 − xi,t+3

h

)
(12)

log

(
exp

(
yi,t

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

))
1 + exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

) )

+
T−4∑
t=3

1 {yt �= yt+2} 1 {yi,t−1 = yt+1 = yt+3}K

(
xi,t+1 − xi,t+3

h

)
K

(
xi,t+2 − xi,t+4

h

)

log

(
exp

(
yi,t

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

))
1 + exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

) )

+
T−5∑
t=3

T−2∑
s=t+3

1 {yt �= ys} 1 {yt−1 = ys−1} 1 {yt+1 = ys+1}K

(
xi,t+1 − xi,s+1

h

)
K

(
xi,t+2 − xi,s+2

h

)

log

(
exp

(
yi,t

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

))
1 + exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

) )
,

K (·) is a kernel and h is a bandwidth that approaches 0 as the number of observations increase to

∞. In the empirical application in the next section we choose K to be an Epanichnikov kernel3 and

we experiment with the bandwidth h.

It is interesting to note that the first two sums in qi separate into a sum of two terms, one that

depends on (b0, d2,0) and one that depends on (b1, d2,1). This means that one can estimate the

parameters of the two transition probabilities (from state 0 to state 1, and from state 1 to state 0)

separately by considering only the first two sums in qi. On the other hand, if one wants to use all

3This kernel is efficient (in a particular sense) in other settings, here we use it primarily because of its simplicity

and because it is continuous and has finite support (which means that the many of the terms in the objective function

are 0).
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the terms in (12) that are informative about (δ2,0, β0) (or(δ2,1, β1)), then one must simultaneously

estimate δ2,1 (or δ2,0)

By arguments similar to those in Honoré and Kyriazidou (2000b),

√
nh2k

(
θ̂ − θ

)
−̃→N

(
0, Γ−1V Γ−1

)
(13)

under suitable regularity conditions, where θ̂ and θ denote
(
β̂0, β̂1, δ̂2,0, δ̂2,1

)
and (β0, β1, δ2,0, δ2,1),

respectively, and k is the dimensionality of xit. avar
(
θ̂
)

= 1
nh2k Γ−1V Γ−1 can be estimated by

(∑
i

q′′i
(
β̂0, β̂1, δ̂2,0, δ̂2,1

))−1

(14)

(∑
i

q′i
(
β̂0, β̂1, δ̂2,0, δ̂2,1

)T
q′i

(
β̂0, β̂1, δ̂2,0, δ̂2,1

)) (∑
i

q′′i
(
β̂0, β̂1, δ̂2,0, δ̂2,1

))−1

.

Since the contribution of this paper is to allow for time–varying explanatory variables in models

like (2), it is useful to consider a test of β0 = β1 = 0. A natural test would be the Wald test

based on (13) and (14). Such a test will be justified in the sense that it will have the usual χ2

–distribution (under the null) even if the bandwidth is a fixed constant (i.e., does not decrease to

0 as the sample size increases). The reason for this is that if the true β0 and β1 equal 0, then (for

fixed h), E [qi] would be maximized by making the terms inside the log’s equal to the probability

that yit = 1 (conditional on the events in the indicator function for each of the terms in the sums

in qi). This happens at b1 = b0 = 0, d2,0 = δ2,0 and d2,1 = δ2,1. It therefore follows from standard

asymptotics for M–estimators that if β equals 0, then the proposed estimator will be consistent and

asymptotically normal as n → ∞, but with h (and T ) fixed. This in turn implies that the Wald test

of the hypothesis β = 0 that uses âvar
(
θ̂
)

in (14) will have the usual asymptotic χ2 –distribution

under the null (for h fixed). In other words, under the null, the Wald test has the same asymptotic

distribution as it would in a parametric model. Unfortunately, it does not follow that the Wald test

is consistent for h fixed. This is because the estimator of (β0, β1) is not guaranteed to be consistent

under the alternative.

A random effects approach to estimating (3) or (4) has to deal with the fact that the model
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does not specify the distribution of the first two observations conditional on (xi1, ..., xiT , αi, δ1i).

If the first two observations are also generated from (3) or (4), then their distribution (given

(xi1, ..., xiT , αi, δ1i)) will depend on the distribution of the explanatory variables in time periods

prior to the sample (given (xi1, ..., xiT , αi, δ1i)) which is typically unspecified. This is the initial

conditions problem. It is therefore important to note that the probability statements in (5), (6)

and (7) all condition on the first two observations for an individual. This is because Ξits always

contains yi1 and yi2. This means that the estimators based on (5), (6) and (7) do not suffer from

the initial conditions problem.

The difference between basing an estimator on (8), (9) and (10) rather than on (5), (6) and

(7) is bigger than it might appear. The reason is that in the latter case, the dimensionality of

the nonparametric problem is 2k, whereas it would be either 2 or 3 in the former (depending on

whether k = 1 or k > 1). The curse of dimensionality implies that this can be very important. One

way to exploit (5), (6) and (7) is to note that they can be used to construct moment conditions that

are based on conditional probabilities given values of xitβ. However, it is not clear whether those

moment conditions identify β. One should therefore combine them with the moment conditions

based on conditional probabilities given values of xit. If the former satisfy a local identification

condition, then this would lead to an estimator whose rate of convergence is driven by the moment

conditions based on the conditional probabilities given values of xitβ (by an argument similar to

that in Honoré and Hu (2000)). Since the application discussed in the next section has only one

time–varying explanatory variable, we do not pursue this here.

3 The Empirical Application

In this section we use the methods outlined above to estimate equation (3) and (4) for a dataset

composed of French youth. This is the same data set used by Magnac (2000). Since one of the

specification used by him is similar to (2), it is especially interesting to test whether β = 0 in (3)

and β0 = β1 = 0 in (4).
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The data are extracted from the 1990-1992 waves of the French Labour Force Survey and an

additional survey held in 1992 (Module Jeunes) focusing on individuals and their family background

since they were 16 years old up to the survey date.

The French Labour Force Survey is a rotating panel on three years concerning approximately

60,000 households. One third of the sample is renewed each year implying that 20,000 households

are present in the survey at three successive dates. The sub–sample used here consists of 5,824

young individuals aged between 18 and 29 in 1992. More specifically, it contains information about

their histories on the labour market for the period going from January 1989 to March 1992. Surveys

took place at three dates, January 1990, March 1991 and March 1992. At each survey date, the

interviewer attempted to rebuild the individuals’ labour market history through questions about

their activities in each month of the previous year. The interviewer also asked about the current

labour market activity of the individual. As a result of this, the information about the month of

February 90 is missing.

The survey sampling scheme makes spells in various states left–censored at the beginning of

the observation period and right–censored at the end. This complications matters if one models

the durations using standard continuous time duration models. See d’Addio and Rosholm (2002).

However, as discussed in the previous section, the initial conditions problem (which is similar to

the problem of left censoring in duration models) plays no role for the approach proposed here.

Right–censoring is also not a problem, provided that the censoring time is exogenous. This is

clearly the case here, since censoring time is the final survey date.

For the empirical application, the dependent variable is defined to be 1 if the individual is

unemployed or out of the labour force, and 0 otherwise. This differs from Magnac (2000) who

estimated a multinomial model with a more disaggregated definition of the labour market states.

If an individual is in school at the start of the survey, we ignore the data until the moment she/he

enters the labour market. Later periods of schooling are treated as employment.

Table 1 presents summary statistics regarding the dynamic behavior of the dependent variable
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(non-employment)

Table 1: Transition probabilities

Pr(yt = 1|yt−1 = 0) 2.38
Pr(yt = 1|yt−1 = 1) 92.68

Pr(yt = 1|yt−1 = 0, yt−2 = 0) 2.26
Pr(yt = 1|yt−1 = 0, yt−2 = 1) 7.61
Pr(yt = 1|yt−1 = 1, yt−2 = 0) 84.90
Pr(yt = 1|yt−1 = 1, yt−2 = 1) 93.10

Although Table 1 does not control for individual–specific heterogeneity, it appears that state

dependence of order 1 (see the first two lines of Table 1) and order 2 (the last four lines of Table

1) is important in the non-employment behaviour of young individuals. Without first order state

dependence, Pr(yt = 1|yt−1 = 0) would equal Pr(yt = 1|yt−1 = 1), but, as one would expect,

the probability of nonemployment is much higher for an individual who was not employed in the

previous month. Without second order state dependence, Pr(yt = 1|yt−1 = 0, yt−2 = 0) would equal

Pr(yt = 1|yt−1 = 0, yt−2 = 1), and Pr(yt = 1|yt−1 = 1, yt−2 = 0) would equal Pr(yt = 1|yt−1 =

1, yt−2 = 1). However, the data clearly suggest that the employment status in time period t − 2

plays a role for the employment history in period t, and this role is consistent with a decreasing

hazard in both employment and unemployment.

As mentioned earlier, it is interesting to control for macro–economic business cycle effects

when studying unemployment. Here, we use the difference between t and t − 1 in the number

of French unemployed as the time–varying explanatory variable. Strictly speaking, this variable

will not satisfy the regularity conditions needed for the consistency of the estimator discussed in

the previous section because it does not vary by individual. However, the Wald tests will have the

correct asymptotic distribution (under the null).

Figure 1 shows the time–path for the difference between t and t − 1 in the number of French

unemployed over the relevant time–period.

[insert Fig. 1 here]
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We think of this variable as a proxy for broad business cycle effects and more particularly for labour

market conditions.

Several arguments suggest that macroeconomic effects (frequently summarized by the overall

unemployment rate) may have an important impact on the unemployment of young individuals.

For instance, it has been argued that when labour market conditions allow for it, young people

are more likely than adults to “shop around” before finding a stable job and to quit voluntarily

(see e.g. Blanchflower (1996)). The reason may be that their opportunity cost of changing jobs is

lower than the adults’. This phenomenon has been found to be especially important for very young

workers and to become less important with age. Other reasons have been advocated to explain the

higher turnover of young individuals. For instance, within human capital theory (Becker (1993)),

turnover acquires a particular meaning when costs (linked to human capital) for both the firm and

the workers appear. One of those costs is related to training. For young people this cost (and the

related investment) is lower compared to that supported for the adults, therefore firms are more

likely to separate from the former. In addition, firms can more easily fire young workers since

the protection offered by the employment legislation to people hired under an apprenticeship or a

limited term contract is often very weak. Besides this, the flow of young people into unemployment

is often considered as a mechanism of adjustment: during a recession period firms cut at first

jobs held by young people to protect those of adults (more experienced). This would confirm the

importance of the LIFO (Last In First Out) criterion in the firing decisions of young individuals

as suggested by Layard, Nickell, and Jackman (1991) and would imply that, in recession periods,

newly employed young individuals would suffer more than the adults. Moreover, especially for young

individuals firms face a great uncertainty about their skills. Signaling (Spence (1973)) ranking and

filtering (Arrow (1973)) mechanisms can intervene in the hiring process as suggested for example

in Blanchard and Diamond (1994). On one hand, young individuals entering the labour market

have generally no previous professional experience. Those with better labour market histories will

be likely to be more successful; being older (among the young individuals) and having experienced
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unemployment in the past may affect the labour market prospects, especially in recession periods.

On the other hand, within the same cohort, better educated (or experienced) individuals would

provide potential employers with the best signals. These mechanisms are latent in dual market

theories that account also for various forms of information asymmetries;

Because of this we will consider subsets of the sample based on age. Since the behaviour of

young individuals has been shown to differ between men and women, we will also consider subsets

of sample based on gender.

All the data used in this paper were collected by the French National Institute of Statistics

(INSEE).

3.1 Results

In this section we present the results from estimating (3) and (4)using the data described above.

As previously mentioned, it is likely that duration dependence and the effect of the business cycle

differ across age groups. One might also expect these to differ according to gender. In order to

account for this, we estimate the models using the total sample as well as four different sub–samples.

Specifically, we consider the samples

1. The overall sample;

2. Men in the sample aged less than 25;4

3. Women in the sample aged less than 25;

4. Men in the sample aged 25 or more;

5. Women in the sample aged 25 or more;

Note that the individuals who turn 25 during the period will be used in both the under 25 and

the over 25 samples, but only for the periods for which they were under 25 or over 25, respectively.

4This corresponds to the ILO definition of young people.
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This makes some of the samples unbalanced, but the number of observations for an individual is

exogenous.

The contribution of a single individual to the objective function is a sum of
(
Ti−4

2

)
= (Ti−4)(Ti−5)

2

terms (although many of them will be 0), where Ti is the number of observations for individual i.

Heuristically, this seems to give too much weight to individuals with a large value of Ti. Following

Honoré and Kyriazidou (2000a), we therefore use a weighted version of (3) with weights given by

1
Ti−4 , with the standard errors adjusted appropriately. This does not affect the consistency of the

estimator, but while we do not claim the weights to be optimal, we suspect that they will result

in an improvement in efficiency over the unweighted estimator. Our motivation for using these

weights is that by conditioning on the first two and last two observations, we essentially have Ti −4

terms for each individual. The contribution to the objective function is then defined by all pairwise

comparisons of observations taken from those. Hence, we have
(
Ti−4

2

)
terms. The deviations from

mean estimator of the standard linear panel data model can also be written as the minimizer

of a weighted sum (across individual) of terms that are defined by all pairwise comparisons of

observations for that individual. The weight given to an individual in that case is the inverse of the

number of observations for that individual minus 1. This is the reason for using 1
Ti−4 as the weight.

The estimator defined by minimizing (11) depends on a bandwidth and a kernel to be chosen

by the researcher. The choice of kernel is usually less critical than the choice of bandwidth in

applications of semi– and nonparametric methods. We therefore use only one kernel, which is the

Epanichnikov kernel given by

K (u) = max
{
0, 1 − u2

}
(15)

The fact that K (·) has bounded support implies that many of the terms in the objective function

are 0. This make it computationally much more tractable than, say, a normal kernel. Since we

expect that the choice of bandwidth is more important than the choice of kernel, we use three

different values of the bandwidth h.
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The results from estimating (3) and (4) using the method described in Section 2 are presented

in Table 2 and in Table 3 respectively. Tables 2 also presents results from a linear probability

model with individual specific intercepts, and from a logit model that treats αi as parameters to

be estimated,5

(
δ̂1, δ̂2, β̂

)
= argmin

d1,d2,b

n∑
i=1

max
ai

∑
t

{
yit log (Λ (xitb + d1yi,t−1 + d2yi,t−2 + ai)) (16)

+ (1 − yit) log (1 − Λ (xitb + d1yi,t−1 + d2yi,t−2 + ai))
}

Table 3 presents results from a linear probability model with individual specific intercepts and

coefficients on yi.t−1 and with yit−2 and xit interacted with yit−1, and from a logit model that treats

αi and δi1 as parameters to be estimated and allows the coefficients on yit−2 and xit to depends on

yit−1,

(
δ̂20, δ̂21, β̂0, β̂1

)
= argmin

d20,d21,b0,b1

n∑
i=1

max
ai,δ1i

∑
t

{
yit log

(
Λ

(
xitbyi,t−1 + δ1iyi,t−1 + δ2,yi,t−1yi,t−2 + ai

))
(17)

+ (1 − yit) log
(
1 − Λ

(
xitbyi,t−1 + δ1iyi,t−1 + δ2,yi,t−1yi,t−2 + ai

))}
As mentioned in the previous section, yit is missing for the month February 1990. Since this

is exogenous, the sums in (12) can be replaced by the same sums excluding terms that involve

February of 1990 without affecting the asymptotic properties of the estimator (except for the loss

of efficiency). For the linear probability model and the maximum likelihood estimator defined

in (16) and (17), we also ignore terms that involve February of 1990. This also will not affect

the interpretation of our results, although it does mean that (16) and (17) are not the maximum

likelihood estimators (but rather a quasi maximum likelihood estimators with the same properties).

Both the linear probability model and the model estimated by (16) assume that δ1 is constant

across individuals, and the estimators would be consistent as T → ∞ for fixed n. One should

5We calculate the asymptotic standard errors of the estimator by treating it as an m—estimator of the form

β̂ = argminb

∑n
i=1 qi , where qi is the term inside {·} in 16.
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therefore not necessarily expect similar results across the three models. One should also expect the

scales of the estimates obtained from (16) to differ from those estimated by the linear probability

model because the two models make different scale normalizations.

[Table 2 to be inserted here]

[Table 3 to be inserted here]

The results in Table 2 are as one would expect. An increase in the aggregate number of

unemployed increases the probability that an individual is unemployed. This is true for all the

estimators and all the subsamples, except the estimates from (3) for men over 25 and for women

over 25 for one of the bandwidths (and the estimates are insignificant in those cases). Takes as a

whole the results in Table 2 also suggest negative6 duration dependence (with the exceptions being

insignificant). Specifically, the probability of being unemployed (or employed) is lower if the person

was unemployed (employed) two weeks earlier. The results in Table 3 that allow for the coefficients

on the change in the number of unemployed and on yit−2 to depend on yit−1 are somewhat more

interesting. First, it is clear that coefficients differ depending on yit−1. This is not at all surprising,

since there is no reason why the hazard for employment and unemployment spells should be related

in the way that is enforced by (3). Secondly, it appears that the estimates are unstable across the

different subsamples. Presumably, the reason for this is that the effective samples size (the number

of nonzero terms in the objective function) is small for some of the subsamples. We therefore focus

on the results for the full sample. Here, the effect of the macroeconomic variable is significant

with the expected sign for the people who are currently employed and insignificant for the people

who are unemployed. The estimates for the linear probability model and the estimates based on

(16) and (17) imply positive duration dependence whereas the estimates based on (4) suggest no

or positive duration dependence. The Monte Carlo results reported in the next section suggest

that the incidental parameters problem which is associated with the linear probability model and

6Note that a positive coefficient on yi,t−2 is associated with negative duration dependence.
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the estimates based on (16) and (17), results in severe bias in the direction of positive duration

dependence. This is consistent with the finding in Table 3.

As a general statement we would expect that higher values of h will lead to more biased but

less variable estimators. It is impossible to comment on the bias based on Table 2 and Table 3

(because the true data–generating process is unknown), but the estimated variances are consistent

with the standard errors of the estimator being bigger when h is small.

4 Monte Carlo Investigation

In this section we report the results of a small Monte Carlo study designed to investigate the

behavior of the estimator defined in equation (11) as well as the maximum likelihood estimator

defined in (16). We focus on the models (and estimators) that restrict the coefficients on xit and

yit−2 to not depend on yit−1. The reason for this is that it makes the model more similar to a

standard logit model and the Monte Carlo study presented here more comparable to the one in

Honoré and Kyriazidou (2000b).

We consider four versions of the model

P (yi,t = 1| yi,t−1, yi,t−2, xi, αi) =
exp (αi + xi,tβ + δ1iyi,t−1 + δ2yi,t−2)

1 + exp (αi + xi,tβ + δ1iyi,t−1 + δ2yi,t−2)
(18)

All designs have xit distributed as independent normal random variables with mean zero and

variance 2. This choice is based on convenience. The other common features of (18) are that β = 1

and δ2 = 1 in all the designs. All the data sets have n = 1000, and data is generated from (18) for

time periods 1 to T + 10, where yi,1 and yi,2 are generated from (18) with yi,0 = 0 and yi,−1 = 0.

Only the last T time periods are used for the estimation. This essentially means that the initial

observations are drawn for the stationary distribution of (yit, yit+1). The differences in the designs

are summarized in Table 4.
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Table 4: Monte Carlo Designs

Design 1 δ1i = 1 αi = 0

Design 2 δ1i ∼ N (1, 1) αi = 0

Design 3 δ1i = 1 αi ∼ N (1, 1)

Design 4 δ1i ∼ N (1, 1) αi ∼ N (1, 1)

For each of the designs we generate 500 datasets for both T = 10 and for T = 20. For each

dataset, we estimate the β and δ2 using the estimator defined in maximizing (11) and (16). For the

latter, we also obtain estimates of δ1. Since one might suspect that the estimator (11) is sensitive to

the choice of bandwidth, we calculate the estimator using three values of h, with h = 0.5, h = 1.0,

h = 1.5. We use the Epanichnikov kernel in (15).

Tables 4 and 5 report the mean bias and root mean square error of the three estimators of δ2

and β for each of the eight designs. Those tables also report the median bias and median absolute

errors of the estimators. The results for T = 10 are in Table 4, and the results for T = 20 are in

Table 5.

[Tables 5 and 6 to be inserted here]

A number of interesting patterns emerge from Tables 5 and 6,

• The estimator proposed in this paper generally performs much better than the fixed effects

maximum likelihood estimator that treats the individual–specific effects as parameters to be

estimated.

• While all the estimators improve when T is increased from 10 to 20, the improvement is

particularly pronounced for the bias of the fixed effects estimator.

• The performance of the estimators does not vary dramatically with the sample design. This

is presumably because the individual specific effects and the state dependence parameter are
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relatively small compared to the exogenous explanatory variables and to the (implicit) error

in the logit model.

• The estimator defined in (16) is severely biased in favor of positive duration dependence. We

conjecture that this is due to the incidental parameters problem. This would explain why the

estimates in the first two columns of Tables 2 and 3 suggest duration dependence parameters

that are much lower than the ones based on the estimator proposed here.

5 Conclusion

Existing methods do not allow one to estimate and test for second order state dependence in

dynamic discrete choice models with unrestricted individual–specific effects. Building on Honoré

and Kyriazidou (2000b), this paper proposes methods for doing this in the context of a logit model.

We discuss the large sample properties of the estimator and a small Monte Carlo study illustrates

its performance in finite samples. An extension to the semiparametric case following the logic of

Honoré and Kyriazidou (2000b) is relatively straightforward, and the resulting maximum score

estimator based on Manski (1987) would be consistent.

The paper also applies the method to estimate a simple dynamic discrete choice model of youth

unemployment which allows for a time–varying macroeconomic explanatory variable. The results

suggest that such variables are indeed important in practice.

6 Appendix: Derivation of objective function

Recall that the model is

P (yi,t = 1| yi,t−1, yi,t−2, xi, αi) =
exp

(
αi + xi,tβyt−1

+ δ1iyt−1 + δ2,yt−1yt−2

)
1 + exp

(
αi + xi,tβyt−1

+ δ1iyt−1 + δ2,yt−1yt−2

)
an that the estimation of (β0, β1, δ2,0, δ2,1) is based on minimizing

∑
i

qi (b, d2)
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where

qi =
T−3∑
t=3

1 {yt �= yt+1} 1 {yi,t−1 = yt+2}K

(
xi,t+1 − xi,t+2

h

)
K

(
xi,t+2 − xi,t+3

h

)

log

(
exp

(
yi,t

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

))
1 + exp

(
(xi,t − xi,t+1) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+3)

) )

+
T−4∑
t=3

1 {yt �= yt+2} 1 {yi,t−1 = yt+1 = yt+3}K

(
xi,t+1 − xi,t+3

h

)
K

(
xi,t+2 − xi,t+4

h

)

log

(
exp

(
yi,t

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

))
1 + exp

(
(xi,t − xi,t+2) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,t+4)

) )

+
T−5∑
t=3

T−2∑
s=t+3

1 {yt �= ys} 1 {yt−1 = ys−1} 1 {yt+1 = ys+1}K

(
xi,t+1 − xi,s+1

h

)
K

(
xi,t+2 − xi,s+2

h

)

log

(
exp

(
yi,t

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

))
1 + exp

(
(xi,t − xi,s) byi,t−1 + d2,yi,t−1 (yi,t−2 − yi,s−2) + d2,yi,t+1 (yi,t+2 − yi,s+2)

) )
,

K (·) is a Kernel and h is a bandwidth which will in principle depend on the sample size.

The objective function is defined by considering two sequences, A and B, each sequence is of

length T ≥ 6. The two sequences differ only in the tth and sth coordinate, where 2 < t < s < T − 1.

We will now justify the objective function above by considering three cases based on whether t

and s differ by one, two or more than two. In each case we will compare P (A|xi,1, ..., xi,T , αi, δ1i) to

P (B|xi,1, ..., xi,T , αi, δ1i). For notational convenience, we will denote these by P (A) and P (B),

and we will drop the subscript i on x, y, α and δ1.

6.1 Case 1. s = t + 1

Without loss of generality assume that A has yt = 1, yt+1 = 0 (otherwise switch A and B)
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P (A)
P (B)

=
F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
1 − F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

) (19)

× 1 − F (α + xt+1β1 + δ1 + δ2,1yt−1)
F (α + xt+1β0 + δ2,0yt−1)

× F (α + xt+2β0 + δ2,0)
yt+2 (1 − F (α + xt+2β0 + δ2,0))

1−yt+2

F (α + xt+2β1 + δ1)
yt+2 (1 − F (α + xt+2β1 + δ1))

1−yt+2

×
F

(
α + xt+3βyt+2

+ δ1yt+2

)yt+3
(
1 − F

(
α + xt+3βyt+2

+ δ1yt+2

))1−yt+3

F
(
α + xt+3βyt+2

+ δ1yt+2 + δ2,yt+2

)yt+3
(
1 − F

(
α + xt+3βyt+2

+ δ1yt+2 + δ2,yt+2

))1−yt+3

If yt−1 = yt+2 = 1, xt+1β0 = xt+2β0 and xt+1β1 = xt+2β1 = xt+3β1 then (19) becomes

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

× 1 − F (α + xt+1β1 + δ1 + δ2,1)
F (α + xt+1β0 + δ2,0)

× F (α + xt+1β0 + δ2,0)
F (α + xt+1β1 + δ1)

× F (α + xt+1β1 + δ1)
yt+3 (1 − F (α + xt+1β1 + δ1))

1−yt+3

F (α + xt+1β1 + δ1 + δ2,1)
yt+3 (1 − F (α + xt+1β1 + δ1 + δ2,1))

1−yt+3
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or

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

× 1 − F (α + xt+1β1 + δ1 + δ2,1)
F (α + xt+1β1 + δ1 + δ2,1)

yt+3 (1 − F (α + xt+1β1 + δ1 + δ2,1))
1−yt+3

× F (α + xt+1β1 + δ1)
yt+3 (1 − F (α + xt+1β1 + δ1))

1−yt+3

F (α + xt+1β1 + δ1)

There are then two cases. If yt+3 = 1 then

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)
× 1 − F (α + xt+1β1 + δ1 + δ2,1)

F (α + xt+1β1 + δ1 + δ2,1)

If yt+3 = 0 then

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)
× 1 − F (α + xt+1β1 + δ1)

F (α + xt+1β1 + δ1)

Either way

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)
× 1 − F (α + xt+1β1 + δ1 + δ2,1yt+3)

F (α + xt+1β1 + δ1 + δ2,1yt+3)
(20)

On the other hand, if yt−1 = yt+2 = 0 and xt+1β0 = xt+2β0 = xt+3β0 and xt+1β1 = xt+2β1then

(19) becomes

P (A)
P (B)

=
F (α + xtβ0 + δ2yt−2)

1 − F (α + xtβ0 + δ2yt−2)

× 1 − F (α + xt+1β1 + δ1)
F (α + xt+1β0)

× 1 − F (α + xt+1β0 + δ2,0)
1 − F (α + xt+1β1 + δ1)

× F (α + xt+1β0)
yt+3 (1 − F (α + xt+1β0))

1−yt+3

F (α + xt+1β0 + δ2,0)
yt+3 (1 − F (α + xt+1β0 + δ2,0))

1−yt+3
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or

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)

× 1 − F (α + xt+1β0 + δ2,0)
F (α + xt+1β0)

× F (α + xt+1β0)
yt+3 (1 − F (α + xt+1β0))

1−yt+3

F (α + xt+1β0 + δ2,0)
yt+3 (1 − F (α + xt+1β0 + δ2,0))

1−yt+3

There are again two cases. If yt+3 = 0

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+1β0)

F (α + xt+1β0)

If yt+3 = 1

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+1β0 + δ2,0)

F (α + xt+1β0 + δ2,0)

Either way

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+1β0 + δ2,0yt+3)

F (α + xt+1β0 + δ2,0yt+3)
(21)

Combining (20) and (21) we get that if yt−1 = yt+2, xt+1β1−yt−1
= xt+2β1−yt−1

and xt+1βyt−1
=

xt+2βyt−1
= xt+3βyt−1

then

P (A)
P (B)

(22)

=
F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
1 − F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

) ×
1 − F

(
α + xt+1βyt−1

+ δ1yt−1 + δ2,yt−1yt+3

)
F

(
α + xt+1βyt−1

+ δ1yt−1 + δ2,yt−1yt+3

)

The logit assumption, F (η) = exp(η)
1+exp(η) , implies F (η)

1−F (η) = exp (η), and therefore (22) becomes

P (A)
P (B)

=
exp

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
exp

(
α + xt+1βyt−1

+ δ1yt−1 + δ2,yt−1yt+3

) = exp
(
(xt − xt+1)βyt−1

+ δ2,yt−1 (yt−2 − yt+3)
)
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In other words,

P (A |A ∪ B ) =
P (A)

P (A) + P (B)
=

P (A) /P (B)
P (A) /P (B) + 1

=
exp

(
(xt − xt+1) βyt−1

+ δ2,yt−1 (yt−2 − yt+3)
)

1 + exp
(
(xt − xt+1)βyt−1

+ δ2,yt−1 (yt−2 − yt+3)
)

It is easy to see that yt−1 = yt+2, xt+1β1−yt−1
= xt+2β1−yt−1

and xt+1βyt−1
= xt+2βyt−1

=

xt+3βyt−1
is the only case in which α and δ1cancel. In particular without yt−1 = yt+2, the sum∑

ytyt−1 would differ for the sequences A and B, so in that case conditioning on A ∪ B will not

condition on what would be the sufficient statistics for α and δ1 in a model without time–varying

explanatory variables.

6.2 Case 2 s = t + 2

Without loss of generality assume that A has yt = 1, yt+2 = 0 (otherwise switch A and B)
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P (A)
P (B)

=
F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
1 − F

(
α + xtβyt−1

+ δ1yt−1 + δ2.yt−1yt−2

) (23)

×
(

F (α + xt+1β1 + δ1 + δ2,1yt−1)
F (α + xt+1β0 + δ2,0yt−1)

)yt+1
(

1 − F (α + xt+1β1 + δ1 + δ2,1yt−1)
1 − F (α + xt+1β0 + δ2,0yt−1)

)1−yt+1

×
1 − F

(
α + xt+2βyt+1

+ δ1yt+1 + δ2,yt+1

)
F

(
α + xt+2βyt+1

+ δ1yt+1

)

×
(

F (α + xt+3β0 + δ2,0yt+1)
F (α + xt+3β1 + δ1 + δ2,1yt+1)

)yt+3
(

1 − F (α + xt+3β0 + δ2,0yt+1)
1 − F (α + xt+3β1 + δ1 + δ2,1yt+1)

)1−yt+3

×
 F

(
α + xt+4βyt+3

+ δ1yt+3

)
F

(
α + xt+4βyt+3

+ δ1yt+3 + δ2,yt+3

)
yt+4  1 − F

(
α + xt+4βyt+3

+ δ1yt+3

)
1 − F

(
α + xt+4βyt+3

+ δ1yt+3 + δ2,yt+3

)
1−yt+4

Throughout this section, we will condition on the event xt+1β1 = xt+3β1, xt+1β0 = xt+3β0 and

xt+2βyt−1
= xt+4βyt−1

, and we will consider two cases.

Consider first the case where yt−1 = yt+1 = yt+3 = 0. In this case

If yt+4 = 1 (23) simplifies to

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+2β0 + δ2,0)

F (α + xt+2β0 + δ2,0)

If yt+4 = 0 (23) simplifies to

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+2β0)

F (α + xt+2β0)

Either way

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xt+2β0 + δ2,0yt+4)

F (α + xt+2β0 + δ2,0yt+4)

Consider next the case where yt−1 = yt+1 = yt+3 = 1. In this case
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P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

×
(

F (α + xt+1β1 + δ1 + δ2,1)
F (α + xt+1β0 + δ2,0)

)

× 1 − F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

×
(

F (α + xt+1β0 + δ2)
F (α + xt+1β1 + δ1 + δ2,1)

)

×
(

F (α + xt+2β1 + δ1)
F (α + xt+2β1 + δ1 + δ2,1)

)yt+4
(

1 − F (α + xt+2β1 + δ1)
1 − F (α + xt+2β1 + δ1 + δ2,1)

)1−yt+4

which simplifies to

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)
1 − F (α + xt+2β1 + δ1 + δ2,1yt+4)

F (α + xt+2β1 + δ1 + δ2,1yt+4)

Thus if yt−1 = yt+1 = yt+3

P (A)
P (B)

=
F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
1 − F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

) 1 − F
(
α + xt+2βyt−1

+ δ1yt−1 + δ2,yt−1yt+4

)
F

(
α + xt+2βyt−1

+ δ1yt−1 + δ2,yt−1yt+4

)
In the case of a the logit model, this becomes

P (A)
P (B)

=
exp

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
exp

(
α + xt+2βyt−1

+ δ1yt−1 + δ2,yt−1yt+4

) = exp
(
(xt − xt+2)βyt−1

+ δ2,yt−1 (yt−2 − yt+4)
)

.

The individual specific effect α and δ1 will only cancel in the expression for P (A)
P (B) if yt−1 = yt+3.

The reason for this is that this is the condition for A and B to have the same value of
∑

ytyt−1.

The reason why we do not use the terms corresponding to yt−1 = yt+3 �= yt+1 is that in order to

use those, we would also need to condition on xt+1 = xt+2 = xt+3 = xt+4.
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6.3 Case 3. s > t + 2

Without loss of generality assume that A has yt = 1, ys = 0 (otherwise switch A and B)

P (A)
P (B)

=
F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)
1 − F

(
α + xtβyt−1

+ δ1yt−1 + δ2,yt−1yt−2

)

×
(

F (α + xt+1β1 + δ1 + δ2,1yt−1)
F (α + xt+1β0 + δ2,0yt−1)

)yt+1
(

1 − F (α + xt+1β1 + δ1 + δ2,1yt−1)
1 − F (α + xt+1β0 + δ2,0yt−1)

)1−yt+1

×
F

(
α + xt+2βyt+1

+ δ1yt+1 + δ2,yt+1

)
F

(
α + xt+2βyt+1

+ δ1yt+1

)
yt+2 1 − F

(
α + xt+2βyt+1

+ δ1yt+1 + δ2,yt+1

)
1 − F

(
α + xt+2βyt+1

+ δ1yt+1

)
1−yt+2

×
1 − F

(
α + xsβys−1

+ δ1ys−1 + δ2,ys−1ys−2

)
F

(
α + xsβys−1

+ δ1ys−1 + δ2,ys−1ys−2

)

×
(

F (α + xs+1β0 + δ2,0ys−1)
F (α + xs+1β1 + δ1 + δ2,1ys−1)

)ys+1
(

1 − F (α + xs+1β0 + δ2,0ys−1)
1 − F (α + xs+1β1 + δ1 + δ2,1ys−1)

)1−ys+1

×
 F

(
α + xs+2βys+1

+ δ1ys+1

)
F

(
α + xs+2βys+1

+ δ1ys+1 + δ2,ys+1

)
ys+2  1 − F

(
α + xs+2βys+1

+ δ1ys+1

)
1 − F

(
α + xs+2βys+1

+ δ1ys+1 + δ2,ys+1

)
1−ys+2

Expressions that do not depend on α can only be obtained when yt−1 + yt+1 = ys−1 + ys+1. This

can be seen by inspection, or by noting that without time–varying explanatory variables, one

would have to condition of
∑

ytyt−1, which implies that the sequences A and B must satisfy

yt−1 + yt+1 = ys−1 + ys+1. There are six such cases.
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6.3.1 yt−1 = 0, yt+1 = 0, ys−1 = 0, ys+1 = 0

In this case

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ + δ2yt−2)

×
(

1 − F (α + xt+1β1 + δ1)
1 − F (α + xt+1β0)

)

×
(

F (α + xt+2β0 + δ2,0)
F (α + xt+2β0)

)yt+2
(

1 − F (α + xt+2β0 + δ2,0)
1 − F (α + xt+2β0)

)1−yt+2

× 1 − F (α + xsβ0 + δ2,0ys−2)
F (α + xsβ0 + δ2,0ys−2)

×
(

1 − F (α + xs+1β0)
1 − F (α + xs+1β1 + δ1)

)

×
(

F (α + xs+2β0)
F (α + xs+2β0 + δ2,0)

)ys+2
(

1 − F (α + xs+2β0)
1 − F (α + xs+2β0 + δ2,0)

)1−ys+2
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This simplifies only in the event xt+1β1 = xs+1β1, xt+1β0 = xs+1β0 and xt+2β0 = xs+2β0, in which

case

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)

×
(

F (α + xt+2β0 + δ2,0)
F (α + xt+2β0)

)yt+2
(

1 − F (α + xt+2β0 + δ2,0)
1 − F (α + xt+2β0)

)1−yt+2

× 1 − F (α + xsβ0 + δ2,0ys−2)
F (α + xsβ0 + δ2,0ys−2)

×
(

F (α + xt+2β0)
F (α + xt+2β0 + δ2,0)

)ys+2
(

1 − F (α + xt+2β0)
1 − F (α + xt+2β0 + δ2,0)

)1−ys+2

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xsβ0 + δ2,0ys−2)

F (α + xsβ0 + δ2,0ys−2)

× F (α + xt+2β0 + 1 {yt+2 > ys+2} · δ2,0)
1 − F (α + xt+2β0 + 1 {yt+2 > ys+2} · δ2,0)

× 1 − F (α + xt+2β0 + 1 {yt+2 < ys+2} · δ2,0)
F (α + xt+2β0 + 1 {yt+2 < ys+2} · δ2,0)

In the logit case, this becomes

P (A)
P (B)

= exp ((xt − xs)β0 + δ2,0 (yt−2 − ys−2 + yt+2 − ys+2))

or

P (A|A ∪ B) =
exp ((xt − xs) β0 + δ2,0 (yt−2 − ys−2 + yt+2 − ys+2))

1 + exp ((xt − xs) β0 + δ2,0 (yt−2 − ys−2 + yt+2 − ys+2))
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6.3.2 yt−1 = 0, yt+1 = 1, ys−1 = 0, ys+1 = 1

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)

×
(

F (α + xt+1β1 + δ1)
F (α + xt+1β0)

)

×
(

F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

)yt+2
(

1 − F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1)

)1−yt+2

× 1 − F (α + xsβ0 + δ2,0ys−2)
F (α + xsβ0 + δ2,0ys−2)

× F (α + xs+1β0)
F (α + xs+1β1 + δ1)

×
(

F (α + xs+2β1 + δ1)
F (α + xs+2β1 + δ1 + δ2,1)

)ys+2
(

1 − F (α + xs+2β1 + δ1)
1 − F (α + xs+2β1 + δ1 + δ2,1)

)1−ys+2
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This simplifies only if xt+1β1 = xs+1β1, xt+1β0 = xs+1β0 and xt+2β1 = xs+2β1, in which case

P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)

× 1 − F (α + xsβ0 + δ2,0ys−2)
F (α + xsβ0 + δ2,0ys−2)

×
(

F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

)yt+2
(

1 − F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1)

)1−yt+2

×
(

F (α + xt+2β1 + δ1)
F (α + xt+2β1 + δ1 + δ2,1)

)ys+2
(

1 − F (α + xt+2β1 + δ1)
1 − F (α + xt+2β1 + δ1 + δ2,1)

)1−ys+2

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)
× 1 − F (α + xsβ0 + δ2,0ys−2)

F (α + xsβ0 + δ2,0ys−2)

×
(

F (α + xt+2β1 + δ1)
1 − F (α + xt+2β1 + δ1)

1 − F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1 + δ2,1)

)1{ys+2>yt+2}

×
(

F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1 + δ2,1)

1 − F (α + xt+2β1 + δ1)
F (α + xt+2β1 + δ1)

)1{ys+2<yt+2}

In the logit case this becomes

P (A)
P (B)

= exp ((xt − xs) β0 + δ2,0 (yt−2 − ys−2) + δ2,1 (yt+2 − ys+2))

or

P (A|A ∪ B) =
exp ((xt − xs)β0 + δ2,0 (yt−2 − ys−2) + δ2,1 (yt+2 − ys+2))

1 + exp ((xt − xs)β0 + δ2,0 (yt−2 − ys−2) + δ2,1 (yt+2 − ys+2))

6.3.3 yt−1 = 0, yt+1 = 1, ys−1 = 1, ys+1 = 0

In this case
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P (A)
P (B)

=
F (α + xtβ0 + δ2,0yt−2)

1 − F (α + xtβ0 + δ2,0yt−2)

×
(

F (α + xt+1β1 + δ1)
F (α + xt+1β1)

)

×
(

F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

)yt+2
(

1 − F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1)

)1−yt+2

× 1 − F (α + xsβ1 + δ1 + δ2,1ys−2)
F (α + xsβ1 + δ1 + δ2,1ys−2)

× 1 − F (α + xs+1β0 + δ2,0)
1 − F (α + xs+1β1 + δ1 + δ2,1)

×
(

F (α + xs+2β0)
F (α + xs+2β0 + δ2,0)

)ys+2
(

1 − F (α + xs+2β0)
1 − F (α + xs+2β0 + δ2)

)1−ys+2

In this case, expressions that do not involve α (for all values of β) can only be obtained if equalities

across the time periods t + 1, t + 1, s + 1 and s + 2 are satisfied. Since these are based on

three equalities (across time) rather than two (as in the other expressions), we will not use these

expressions.
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6.3.4 yt−1 = 1, yt+1 = 0, ys−1 = 1, ys+1 = 0

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

× 1 − F (α + xt+1β1 + δ1 + δ2,1)
1 − F (α + xt+1β0 + δ2)

×
(

F (α + xt+2β0 + δ2)
F (α + xt+2β0)

)yt+2
(

1 − F (α + xt+2β0 + δ2)
1 − F (α + xt+2β0)

)1−yt+2

× 1 − F (α + xsβ1 + δ1 + δ2,1ys−2)
F (α + xsβ1 + δ1 + δ2,1ys−2)

× 1 − F (α + xs+1β0 + δ2,0)
1 − F (α + xs+1β1 + δ1 + δ2,1)

×
(

F (α + xs+2β0)
F (α + xs+2β0 + δ2,0)

)ys+2
(

1 − F (α + xs+2β0)
1 − F (α + xs+2β0 + δ2,0)

)1−ys+2
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This simplifies only if xt+1β1 = xs+1β1, xt+1β0 = xs+1β0 and xt+2β0 = xs+2β0, in which case in

which case

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

×
(

F (α + xt+2β0 + δ2,0)
F (α + xt+2β0)

)yt+2
(

1 − F (α + xt+2β0 + δ2,0)
1 − F (α + xt+2β0)

)1−yt+2

× 1 − F (α + xsβ1 + δ1 + δ2,1ys−2)
F (α + xsβ1 + δ1 + δ2,1ys−2)

×
(

F (α + xt+2β0)
F (α + xt+2β0 + δ2,0)

)ys+2
(

1 − F (α + xt+2β0)
1 − F (α + xt+2β0 + δ2,0)

)1−ys+2

In the case of a logit

P (A)
P (B)

= exp ((xt − xs) β1 + δ2,1 (yt−2 − ys−2) + δ2,0 (yt+2 − ys+2))

or

P (A|A ∪ B) =
exp ((xt − xs)β1 + δ2,1 (yt−2 − ys−2) + δ2,0 (yt+2 − ys+2))

1 + exp ((xt − xs)β1 + δ2,1 (yt−2 − ys−2) + δ2,0 (yt+2 − ys+2))

6.3.5 yt−1 = 1, yt+1 = 0, ys−1 = 0, ys+1 = 1

As the case yt−1 = 0, yt+1 = 1, ys−1 = 1, ys+1 = 0, expressions that do not involve α (for all values

of β) can only be obtained if equalities across the time periods t + 1, t + 1, s + 1 and s + 2 are

satisfied. Since these are based on three equalities (across time) rather than two (as in the other

expressions), we will not use these expressions.
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6.3.6 yt−1 = 1, yt+1 = 1, ys−1 = 1, ys+1 = 1

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

×
(

F (α + xt+1β1 + δ1 + δ2,1)
F (α + xt+1β0 + δ2)

)

×
(

F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

)yt+2
(

1 − F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1)

)1−yt+2

× 1 − F (α + xsβ1 + δ1 + δ2,1ys−2)
F (α + xsβ1 + δ1 + δ2,1ys−2)

×
(

F (α + xs+1β0 + δ2)
F (α + xs+1β1 + δ1 + δ2,1)

)

×
(

F (α + xs+2β1 + δ1)
F (α + xs+2β1 + δ1 + δ2,1)

)ys+2
(

1 − F (α + xs+2β1 + δ1)
1 − F (α + xs+2β1 + δ1 + δ2,1)

)1−ys+2

This simplifies only if xt+1β1 = xs+1β1, xt+1β0 = xs+1β0 and xt+2β1 = xs+2β1, in which case
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in which case

P (A)
P (B)

=
F (α + xtβ1 + δ1 + δ2,1yt−2)

1 − F (α + xtβ1 + δ1 + δ2,1yt−2)

×
(

F (α + xt+2β1 + δ1 + δ2,1)
F (α + xt+2β1 + δ1)

)yt+2
(

1 − F (α + xt+2β1 + δ1 + δ2,1)
1 − F (α + xt+2β1 + δ1)

)1−yt+2

× 1 − F (α + xsβ1 + δ1 + δ2,1ys−2)
F (α + xsβ1 + δ1 + δ2,1ys−2)

×
(

F (α + xt+2β1 + δ1)
F (α + xt+2β1 + δ1 + δ2,1)

)ys+2
(

1 − F (α + xt+2β1 + δ1)
1 − F (α + xt+2β1 + δ1 + δ2,1)

)1−ys+2

In the case of a logit

P (A)
P (B)

= exp ((xt − xs)β1 + δ2,1 (yt−2 − ys−2 + yt+2 − ys−2))

or

P (A|A ∪ B) =
exp ((xt − xs)β1 + δ2,1 (yt−2 − ys−2 + yt+2 − ys+2))

1 + exp ((xt − xs)β1 + δ2,1 (yt−2 − ys−2 + yt+2 − ys+2))
.
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Honoré, B. E. (2002): “Nonlinear Models with Panel Data,” Forthcoming, Portuguese Economic

Journal.
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Table 2: Controlling for the change in the number of unemployed

LP w. FE Logit Based on (3)
h = 0.3 h = 0.4 h = 0.5

Everybody (n = 3590)

δ1
0.755∗
0.006

4.397∗
0.074 — — —

δ2
0.009
0.005

0.256∗
0.071

0.764∗
0.182

0.672∗
0.156

0.599∗
0.140

β
0.006∗
0.110

0.139∗
0.033

0.670∗
0.204

0.646∗
0.160

0.624∗
0.134

Young Men (n = 1625)

δ1
0.743∗
0.009

4.296∗
0.106 — — —

δ2
0.022∗
0.008

0.253∗
0.100

0.511
0.298

0.395
0.246

0.319
0.224

β
0.008∗
0.002

0.120∗
0.053

0.195
0.290

0.394
0.239

0.426∗
0.206

Young Women (n = 1436)

δ1
0.736∗
0.010

4.457∗
0.138 — — —

δ2
−0.015

0.009
−0.213

0.134
−0.236

0.338
−0.043

0.290
0.070
0.269

β
0.011∗
0.002

0.346∗
0.064

0.047
0.335

0.133
0.276

0.110
0.234
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Table 2 (continued)

LP w. FE Logit Based on (3)
h = 0.18 h = 0.24 h = 0.30

Men over 25 (n = 831)

δ1
0.752∗
0.018

4.453∗
0.276 — — —

δ2
0.006
0.016

0.109
0.265

2.075∗
0.828

2.342∗
0.703

2.291∗
0.571

β
0.001
0.002

0.019
0.130

−0.326
0.608

−0.495
0.539

−0.462
0.470

Women over 25 (n = 894)

δ1
0.744∗
0.015

4.420∗
0.282 — — —

δ2
0.004
0.014

0.052
0.303

0.648
0.657

0.762
0.511

0.822∗
0.423

β
0.000
0.002

0.039
0.139

−0.086
0.549

0.110
0.455

0.213
0.399
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Table 3: Controlling for the change in the number of unemployed

LP w. FE Logit Based on (4)
h = 0.3 h = 0.4 h = 0.5

Everybody (n = 3590)

δ2,0
-0.062∗
0.006

-0.890∗
0.124

-0.259
0.583

-0.255
0.415

-0.190
0.362

δ2,1
-0.067∗
0.008

-0.594∗
0.106

0.258
0.579

0.911
0.472

0.979∗
0.473

β0
0.004∗
0.001

0.297∗
0.058

1.488
0.602

1.385∗
0.422

1.345∗
0.355

β1
0.007∗
0.003

0.012
0.028

-0.597
0.490

-0.282
0.416

-0.203
0.408

Young Men (n = 1625)

δ2,0
-0.066∗
0.009

-1.079∗
0.206

-1.526
1.160

-0.342
0.601

0.006
0.531

δ2,1
-0.039∗
0.014

-0.322∗
0.151

-1.103
0.815

-0.754
0.725

-0.641
0.650

β0
0.005∗
0.002

0.257∗
0.090

2.589
1.697

2.200∗
0.875

2.062∗
0.680

β1
0.009
0.006

0.031
0.120

-0.126
0.819

-0.224
0.666

-0.189
0.595

Young Women (n = 1436)

δ2,0
-0.080∗
0.010

-1.402∗
0.236

-1.040
0.885

0.320
0.824

0.613
0.822

δ2,1
-0.103∗
0.014

-1.251∗
0.217

2.1222
1.260

1.698
1.256

1.805
1.233

β0
0.011∗
0.002

0.628∗
0.109

2.191∗
0.858

1.827∗
0.567

1.581∗
0.476

β1
0.011∗
0.005

0.194
0.115

-2.336∗
0.934

-2.202∗
0.720

-2.142∗
0.647
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Table 3 (continued)

LP w. FE Logit Based on (4)
h = 0.3 h = 0.4 h = 0.5

Men over 25 (n = 831)

δ2,0
-0.055∗
0.018

-0.796∗
0.350

-1.220
1.191

0.287
0.880

0.705
0.870

δ2,1
-0.093∗
0.025

-1.111∗
0.440

51.330∗
0.000

19.650∗
0.010

19.874∗
0.008

β0
0.000
0.001

0.053
0.184

2.173∗
1.131

0.954
1.092

0.602
0.971

β1
0.003
0.013

0.010
0.127

-48.215∗
0.003

-7.240∗
2.897

-6.385∗
2.697

Women over 25 (n = 894)

δ2,0
-0.071∗
0.016

-0.936∗
0.335

-0.012
1.441

-0.412
1.281

0.055
0.946

δ2,1
-0.088∗
0.019

-1.067∗
0.309

1.304
0.877

1.453
0.875

1.111
0.923

β0
-0.001
0.002

0.013∗
0.033

0.317
0.965

0.478
0.818

0.874
0.743

β1
-0.003
0.004

-0.149
0.165

0.689
1.749

0.196
1.598

0.222
1.523
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Table 5: Monte Carlo Results (T = 10)

δ2 β

Mean Med. Mean Med.
Bias RMSE Bias MAE Bias RMSE Bias MAE

Design 1

MLE −0.605 0.612 −0.610 0.610 0.235 0.239 0.236 0.236
h = 0.5 0.680 7.155 0.080 0.689 0.472 4.011 0.128 0.283
h = 1.0 0.045 0.510 0.014 0.302 0.056 0.229 0.024 0.131
h = 1.5 0.001 0.344 −0.000 0.220 0.034 0.147 0.019 0.089

Design 2

MLE −0.508 0.516 −0.510 0.510 0.199 0.202 0.198 0.198
h = 0.5 0.747 8.840 0.115 0.688 0.864 7.503 0.112 0.262
h = 1.0 0.008 0.480 −0.028 0.317 0.049 0.216 0.030 0.129
h = 1.5 −0.012 0.338 −0.018 0.208 0.032 0.146 0.006 0.082

Design 3

MLE −0.625 0.632 −0.622 0.622 0.240 0.243 0.238 0.238
h = 0.5 0.377 3.023 −0.059 0.728 0.652 4.824 0.115 0.261
h = 1.0 −0.001 0.501 −0.027 0.332 0.073 0.220 0.035 0.129
h = 1.5 −0.017 0.351 −0.014 0.230 0.048 0.151 0.030 0.091

Design 4

MLE −0.517 0.524 −0.522 0.522 0.199 0.203 0.197 0.197
h = 0.5 1.224 10.709 0.145 0.739 1.141 9.241 0.140 0.295
h = 1.0 0.041 0.513 −0.025 0.328 0.085 0.274 0.039 0.145
h = 1.5 −0.005 0.325 −0.026 0.223 0.041 0.156 0.030 0.097
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Table 6: Monte Carlo Results (T = 20)

δ2 β

Mean Med. Mean Med.
Bias RMSE Bias MAE Bias RMSE Bias MAE

Design 1

MLE −0.248 0.253 −0.248 0.248 0.089 0.091 0.089 0.089
h = 0.5 0.009 0.300 −0.007 0.202 0.028 0.151 0.010 0.090
h = 1.0 −0.012 0.161 −0.006 0.108 0.005 0.073 0.001 0.049
h = 1.5 −0.023 0.122 −0.015 0.077 0.004 0.051 0.001 0.036

Design 2

MLE −0.160 0.169 −0.159 0.159 0.057 0.060 0.057 0.057
h = 0.5 0.044 0.309 0.026 0.186 0.032 0.142 0.020 0.089
h = 1.0 0.003 0.162 −0.010 0.113 0.009 0.074 0.005 0.049
h = 1.5 −0.011 0.118 −0.015 0.084 0.005 0.053 0.005 0.035

Design 3

MLE −0.256 0.260 −0.257 0.257 0.091 0.093 0.091 0.091
h = 0.5 0.024 0.322 0.003 0.217 0.030 0.146 0.018 0.093
h = 1.0 0.006 0.176 −0.004 0.121 0.007 0.075 0.002 0.051
h = 1.5 −0.013 0.126 −0.007 0.092 0.005 0.054 0.005 0.036

Design 4

MLE −0.161 0.169 −0.163 0.163 0.058 0.061 0.058 0.058
h = 0.5 0.036 0.330 0.038 0.216 0.034 0.145 0.017 0.088
h = 1.0 −0.002 0.165 0.002 0.115 0.010 0.075 0.002 0.052
h = 1.5 −0.013 0.122 −0.013 0.086 0.007 0.055 0.004 0.035
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Figure 1: Difference in the number of unemployed between t and t-1 over the observation period (1989-1992)
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