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Abstract

Cointegration imposes restrictions on the frequency domain behavior of a time series at the

zero-frequency. We derive these restrictions for a multivariate fractionally cointegrated system. In

particular, we consider a p-vector time series integrated of order d with r cointegrating relations,

given by the rows of [Ir;β0], where the cointegration errors are integrated of order d − b, d ≥
b > 0. We show that, at the zero-frequency, the spectral density matrix of the d’th differenced

series has reduced rank (p − r), the coherence and phase measures (multiple and partial) equal

unity and zero, respectively, and the gain is the matrix of cointegrating coefficients. Extensions to

noncontemporaneous cointegration, seasonal cointegration, and different fractional values of b for

each cointegrating relation are considered.

JEL Classification : C32.

Keywords : Common stochastic trend; fractional cointegration; frequency domain analysis; re-

duced rank; zero-frequency.
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1 Introduction

The concept of cointegration introduced by Granger (1981) has become a standard tool in empirical

modelling and estimation of relationships among different variates especially in finance and macroeco-

nomics. Cointegration is the existence of one or more long-run relations among a group of (integrated)

variates. Equivalently, these variates are said to share a common stochastic trend, and thus move to-

gether in the long run even though they may drift apart in the short run. The vast amount of economic

theory predicting such long-run co-movement or long-run equilibria has made cointegration testing and

estimation part of any empirical researcher’s toolkit.

Since cointegration is a long-run property, it refers to the zero-frequency relationship between two

or more series in the frequency domain. Levy (2002) has examined the frequency domain implications

of cointegration in a simple setup and has shown that the existence of cointegration between two time

series in the time domain imposes restrictions on the series zero-frequency behavior in terms of the

squared coherence, phase, and gain. The squared coherence, phase, and gain can be easily interpreted

as frequency domain equivalents of correlation coefficient, time-delay (lag), and regression coefficient,

respectively. In particular, Levy (2002) considers a bivariate time series integrated of order one (i.e.

possessing a unit root in the time domain autoregressive representation, denoted I(1)) where the linear

combination [1;β] makes the resulting series integrated of order zero, I(0). He then shows that the

squared coherence between the once-differenced series will equal one, the phase-shift between them will

equal zero, and the gain will equal |β|.
However, Levy (2002) confines his analysis to the bivariate case and extensions to multiple time

series exhibiting multiple cointegrating relations seem important, both from a theoretical and an em-

pirical point of view. Furthermore, only variates integrated of order one and cointegrating to order

zero (standard cointegration) is considered. Following the original idea by Granger (1981), a natural

generalization of the cointegration concept is to assume that the raw series are integrated of a fractional

order d, see also Granger & Joyeux (1980) and Hosking (1981), and that certain linear combinations

are integrated of a smaller fractional order d − b with d ≥ b > 0 real numbers. Clearly, this allows the

study of co-movement among persistent series much more generally than in the standard I(1) − I(0)

cointegration case. As it turns out, the fractional cointegration case is well suited for frequency domain

analysis with properties analogous to those found in the standard cointegration case.

In the present paper the analysis in Levy (2002) is extended in several directions. (i) We consider a

general multivariate process with potentially more than one cointegrating relation. (ii) The multivariate

time series in question is allowed to be fractionally integrated and fractionally cointegrated, i.e. both d
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and b can take non-integer values. (iii) The spectral density matrix of the d’th differenced variates at the

zero-frequency (G) is shown to have reduced rank. (iv) In our multivariate setup more spectral measures

become relevant, e.g. partial coherence and partial phase measures, which we include in our analysis.

(v) The dependence on b of some of these spectral measures, and in particular that of the eigenvalues

of G, is analyzed in terms of their rates of convergence as a function of b. (vi) We analyze the case of

noncontemporaneous (fractional) cointegration, where lagged variates may appear in the cointegrating

relation, and examine the influence of the timing of the cointegrating variates on the spectral properties

of the d’th differenced variates.

The paper proceeds as follows. In the next section we set up the model of fractional cointegration

and derive the spectral properties at the zero-frequency. The spectral density matrix of the d’th dif-

ferenced variates at the zero-frequency is derived and several measures of coherence, phase, and gain

are derived and analyzed within the model. Extensions to noncontemporaneous cointegration, seasonal

cointegration, and different fractional values of b for each cointegrating relation are also considered.

Section 3 offers a brief discussion of our results and some implications.

2 Fractional Cointegration in the Frequency Domain

Consider the triangular system

X1t = β0X2t + Zt, (1)

∆d−bZt = u1tI (t ≥ 1) , (2)

∆dX2t = u2tI (t ≥ 1) , (3)

where I (·) denotes the indicator function and the fractional difference operator ∆d = (1− L)
d is defined

by its binomial expansion

(1− L)
d
=
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)L
j , Γ (z) =

Z ∞
0

tz−1e−tdt,

in the lag operator L (Lxt = xt−1), see Granger & Joyeux (1980) or Hosking (1981) for the details.

With this definition, Zt and X2t are well defined for all d and b and, in particular, they are type II

fractionally integrated processes, see Marinucci & Robinson (1999).

We assume that X1t is r × 1 and X2t is (p− r) × 1, with p > r > 0 integers, such that the

system is generated by p− r common stochastic trends (X2t) and exhibit r cointegrating relations (Zt).

The cointegration vectors are thus given by the rows of [Ir;−β0]. In the standard cointegration case,
d = b = 1, the triangular model (1)-(3) was studied by e.g. Phillips (1991a).
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We assume that the innovations ut = (u01t, u
0
2t)

0 are generated by the linear process

ut = C (L) εt =
∞X
j=0

Cjεt−j ,
∞X
j=0

tr
¡
CjC

0
j

¢
<∞, (4)

where εt is an uncorrelated process with E (εt) = 0 and E (εtε0t) equal to a positive definite matrix, which

can thus be chosen, without loss of generality, to be the identity matrix. The spectral density matrix of

εt is uniform, fε (λ) = Ip/ (2π), and under (4), ut is a covariance stationary process with spectral density

matrix fu (λ) = C
¡
e−iλ

¢
C
¡
e−iλ

¢∗
/ (2π), see Priestley (1981, p. 671). The asterisk indicates complex

conjugation combined with transposition. We denote fu (0) (also known as the long-run covariance

variance matrix of ut) by Ω = C (1)C (1)0 / (2π), which is real, symmetric, and non-negative definite.

Applying the fractional difference operator to Xt = (X 0
1t,X

0
2t)

0 and defining the d’th differenced

variates xt = ∆dXt, we obtain a system of equations in differences,

xt =

 ∆bIr β0

0 Ip−r

utI (t ≥ 1) , (5)

with spectral density matrix, Priestley (1981, p. 671),

f (λ) =

 ¡
1− e−iλ

¢b
Ir β0

0 Ip−r

 fu (λ)
 ¡

1− e−iλ
¢b
Ir β0

0 Ip−r

∗ . (6)

Separating the components of the spectral density matrix important for the zero-frequency, we can

rewrite (6) as

f (λ) =

 β0f22 (λ)β β0f22 (λ)

f22 (λ)β f22 (λ)


+

 ¡
1− eiλ

¢b
β0f21 (λ) +

¡
1− e−iλ

¢b
f12 (λ)β +

¯̄
1− e−iλ

¯̄2b
f11 (λ)

¡
1− e−iλ

¢b
f12 (λ)¡

1− eiλ
¢b
f21 (λ) 0

 , (7)

where fab (λ) is the (a, b)’th block of fu (λ), a, b = 1, 2.

Since ¯̄
1− e−iλ

¯̄2b
= 2b (1− cosλ)b

= O(λ2b) as λ→ 0+,

the second term of (7) is O(λb). Thus, in the vicinity of the origin, (6) reduces to

f (λ) =

 β0Ω22β β0Ω22

Ω22β Ω22

³1 +O
³
λb
´´

as λ→ 0+. (8)
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The spectral density matrix of xt at the zero-frequency, denoted G, is consequently given by

G =

 β0

Ip−r

Ω22 h β Ip−r
i
, (9)

which has rank p− r, see also Robinson & Yajima (2002, Theorem 1).

From (8) we note that the rank deficiency of G depends on the reduction of the integration order

implied by the cointegration property. The rank properties can be restated in terms of the eigenvalues

of f (λ) as λ → 0+, offering a more precise statement. Thus, as λ → 0+, f (λ) has p − r non-zero (i.e.

O (1)) eigenvalues and r eigenvalues of order O(λb).

In the remainder of this section we examine the implications of this result for several coherence, phase,

and gain measures from multivariate spectral analysis, most of which are defined in e.g. Brillinger (1981,

chap. 8) or Priestley (1981, chap. 9).

The matrix squared coherence, Koopmans (1974, chap. 5.6), between x1 and x2 at frequency λ is

defined as

K2x1x2 (λ) = f−1/2x1 (λ) fx1x2 (λ) f
−1
x2 (λ) fx2x1 (λ) f

−1/2
x1 (λ)

and indicates the extent of linear dependence between x1 and x2 at frequency λ. Usually, this is

measured in terms of the eigenvalues of K2x1x2 (λ) which are all between zero and one. Thus, complete
linear dependence of x1 on x2 at frequency λ corresponds to the extreme case where all eigenvalues

equal unity. On the other hand, if all eigenvalues equal zero no linear relationship exists between x1

and x2 at frequency λ. For the present model we get that, at the zero-frequency,

K2x1x2 (0) =
¡
β0Ω22β

¢−1/2
β0Ω22β

¡
β0Ω22β

¢−1/2
= Ir

and its eigenvalues all equal unity.

The multiple coherence, Priestley (1981, chap. 9.3), between a scalar variate x1 and a (possibly

vector-valued) variate x2 at frequency λ is

Km
x1x2 (λ) =

fx1x2 (λ) f
−1
x2 (λ) fx1x2 (λ)

∗

fx1 (λ)
.

It is comparable to the multiple coefficient of determination (R2) in time domain regression analysis or

the multiple correlation coefficient in analysis of variance, and the interpretation of multiple coherence

is the same as that of the R2-statistic for each frequency λ. Thus, we evaluate the multiple coherence

between x1a and x2, i.e. the a’th equation of (5), at the zero-frequency,

Km
x1ax2 (0) =

β0aΩ22Ω
−1
22 Ω22βa

β0aΩ22βa
= 1,
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where βa is the a’th column of β.

Next, we consider the partial coherence between the a’th component of x1 and the b’th component of

x2 while controlling for the common influence of the remaining variates in x2, denoted x2(−b), Priestley

(1981, chap. 9.3). The partial coherence is an obvious spectral analogue (at frequency λ) of a partial

correlation coefficient or a partial R2-statistic. Since the multiple coherence equals unity, all the partial

coherences also equal unity. To see this, recall that the partial coherence between x1a and x2b controlling

for x2(−b), denoted Kp
x1ax2b·x2(−b) (λ), can be written as a function of Km,

Kp
x1ax2b·x2(−b) (λ) =

vuutKm
x1ax2 (λ)−Km

x1ax2(−b) (λ)

1−Km
x1ax2(−b) (λ)

,

which equals unity at λ = 0 since Km
x1ax2 (0) = 1.

Hence, all the coherence measures at the zero-frequency equal unity, supporting the interpretation

of (fractional) cointegration as a type of long-run multicollinearity or long-run equilibrium.

From the transfer function

Bx1x2 (λ) = fx1x2 (λ) f
−1
x2 (λ)

one can derive the phase shift and gain as, Brillinger (1981, p. 307),

Φx1x2 (λ) = arg (Bx1x2 (λ))

Γx1x2 (λ) = |Bx1x2 (λ)| ,

where arg (A) and |A| returns the argument and the modulus, respectively, element-by-element of the
complex-valued matrix A. In the simple scalar case, bx1x2 (λ) = γx1x2 (λ) e

iφx1x2 (λ), the gain mea-

sures the amplification of the spectral density of x2 to approximate that of x1 at frequency λ and the

phase measures the phase shift (lead-lag relationship) between x1 and x2. In the multivariate case the

interpretation of gain is like that of a regression coefficient, see Brillinger (1981, p. 307).

Thus, from (8) we get that

Bx1x2 (λ) = β0Ω22Ω−122
³
1 +O

³
λb
´´

= β0
³
1 +O

³
λb
´´

as λ→ 0+.

It is apparent, since Bx1x2 (λ) is real-valued up to an additive term of order O(λb) as λ→ 0+, that the

phase shift as λ→ 0+ is at most of order O(λb), i.e.

Φx1x2 (λ) = O(λb) as λ→ 0+,
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and the gain is

Γx1x2 (λ) =
¯̄̄
β0
³
1 +O

³
λb
´´¯̄̄

as λ→ 0+.

Similarly, the partial phase shifts, Priestley (1981, chap. 9.3), all vanish at the zero-frequency. Recall

that the partial cross-spectral density between x1a and x2b allowing for x2(−b) is

fx1ax2b·x2(−b) (λ) = fx1ax2b (λ)− fx1ax2(−b)f
−1
x2(−b) (λ) fx2(−b)x2b (λ)

and the partial phase shift of x1a relative to x2b allowing for x2(−b) is

Φpx1ax2b·x2(−b) (λ) = arg
¡
fx1ax2b·x2(−b) (λ)

¢
.

Since fx1ax2b·x2(−b) (0) is real-valued, the partial phase shifts at λ = 0 are zero and have rates of conver-

gence

Φpx1ax2b·x2(−b) (λ) = O(λb) as λ→ 0+,

for all a, b, as above.

Setting p = 2, r = 1, and d = b = 1 in (1)-(3), we obtain the bivariate, standard I(1) − I(0)

cointegrated system in Levy (2002), and all his results appear as the corresponding special cases of our

results in the more general model (1)-(3).

The analysis so far has been restricted to contemporaneous cointegration, where the components ofXt

only enter the cointegrating relation at time t, i.e. no lagged variates appear. The noncontemporaneous

case can be analyzed in the same way. Replace (1) by

X1t = β0X2,t−q + Zt, (10)

and suppose (2)-(3) continue to hold. Then,

xt = ∆
dXt =

 ∆bIr β0Lq

0 Ip−r

utI (t ≥ 1)
with spectral density matrix given by (apart from terms irrelevant to the zero-frequency)

f (λ) =

 β0Ω22β e−iqλβ0Ω22

Ω22βe
iqλ Ω22

³1 +O(λb)
´

=

 β0Ω22β β0Ω22

Ω22β Ω22

³1 +O (λ) +O(λb)
´

as λ→ 0+,

since eiqλ = 1 +O (λ) for q 6= 0 and λ→ 0+.
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Thus, as λ → 0+, f (λ) has p − r non-zero eigenvalues and r eigenvalues of order O(λmin(1,b))

and the timing of the variates in the cointegrating relation only matters when b > 1. In the time

domain, the same result can be seen by considering X1t − β0X2t = X1t − β0X2,t−q − β0
Pq−1

j=0∆X2,t−j ,

which is I (max (d− b, d− 1)) by (10). Hence, X1t − β0X2t is I (d− b) for b ≤ 1, in which case the

timing does not interfere with the cointegration properties, but is I (d− 1) for b > 1, turning X1t −
β0X2t+ β0

Pq−1
j=0∆X2,t−j into a polynomial cointegrating relation. Returning to the frequency domain,

the introduction of lagged variates in the time domain naturally causes a change in the phase shift. As

λ→ 0+, the transfer function is Bx1x2 (λ) = e−iqλβ0(1+O(λb)) with phase shift Φx1x2 (λ) = qλ+O(λb).

Thus, the phase shift tends to zero at the same rate as before when b ≤ 1, but at a slower rate when
b > 1.

To complete the study of the system (1)-(3) we indicate briefly how the analysis can be generalized

to seasonal fractional cointegration and to different values of b for each component of Zt, and the impli-

cations of such extensions. First, the extension to seasonal fractional cointegration is straightforward.

If we replace all difference operators by the seasonal difference operator, ∆s = (1− Ls), where s is the

number of seasons (e.g. s = 4 for quarterly data or s = 7 for weekly data), the results of the paper carry

through virtually unchanged. The frequency domain results hold as stated when the limits are taken

as λ → λh = 2πh/s, h = 0, ..., s, and in the noncontemporaneous case the results remain unchanged if

the lag is changed to qs. More generally, assume the data are fractionally integrated and cointegrated

at a finite set of frequencies Λ. In this case the frequency domain results hold as λ→ λ̄, for any λ̄ ∈ Λ.
Second, suppose the integration orders of Zt are d− b1, ..., d− br. Then (5) is replaced by

xt =

 ∆ (d− b1, ..., d− br) β0

0 Ip−r

utI (t ≥ 1) ,
where ∆ (d− b1, ..., d− br) = diag

¡
∆d−b1 , ...,∆d−br¢. From this point, the analysis proceeds as above.

As λ → 0+, f (λ) has p − r non-zero eigenvalues and r eigenvalues of orders O(λb1), ..., O(λbr) and

coherence, phase shift, and gain follow. Similar extensions are possible for d.

3 Discussion

Cointegration imposes restrictions on the frequency domain behavior of a time series at the zero-

frequency. We have examined these restrictions for a p-vector time series integrated of order d with

r cointegrating relations, given by the rows of
£
Ir;β

0¤, where the cointegration errors are integrated of
order d− b, d ≥ b > 0. It was shown that, at the zero-frequency, the spectral density matrix of the d’th
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differenced series has reduced rank (p − r), the coherence and phase measures (multiple and partial)

equal unity and zero, respectively, and the gain is the matrix of cointegrating coefficients.

Some concluding remarks are in order. First, the analysis of fractional cointegration fits neatly in

the frequency domain where it offers a natural generalization of standard cointegration. On the other

hand, the time domain representations of fractionally cointegrated systems are often more cumbersome,

and starting from a triangular system such as (1)-(3) it does not appear straightforward to derive, e.g.,

the reduced rank structures or the error correction representation.

Second, the reduced rank conditions on the spectral density matrix of the d’th differenced variates

at the zero-frequency (G) are a natural starting point for establishing methods of determining the

cointegrating rank in the frequency domain. In particular, tests based on the eigenvalues of G could

be employed, following Phillips & Ouliaris (1988) for the standard cointegration case and Robinson &

Yajima (2002) for the d < 1/2 case, and are currently under investigation by the author.

Third, methods for estimating spectral density matrices are well known and widely applied. Based on

the results in the previous section such methods may be used to estimate the cointegration vector(s), as

examined by Phillips (1991b) in the standard cointegration case, or to test for (fractional) cointegration

through estimation of coherence measures. However, further research is needed to examine the properties

of such methods, both theoretical and in practice.
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