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Abstract

In this paper, we perform an extensive Monte Carlo study of the
finite sample properties of different estimators for panel data sample
selection models. The estimators investigated are various two-step es-
timators and maximum likelihood estimators with simultaneous equa-
tions for the sample selection process and the equation of interest. The
main result of the Monte Carlo study is that the maximum likelihood
estimators of random effects models in general perform better than
the two-step estimators.
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1 Introduction

When working with micro data sets, two problems invariably present them-
selves: the problem of sample selection and the problem of unobserved
individual-specific effects. The problem of sample selection is that a selective
sample - one obtained by employing a non-random sampling scheme; for in-
stance, by sampling only individuals with an observed wage - leads to biased
parameter estimates, unless an appropriate correction is made. Heckman
(1979) pointed out the sample selection problem and introduced a method
to make such a correction. Since then, numerous sample selection estima-
tors have been introduced and applied in the literature (see Vella (1998) for
a recent survey of sample selection models). The problem of unobserved
individual-specific effects may be solved using panel data where each unit of
analysis is observed more than once. A number of estimators are available
for estimating the parameters of panel data models taking into account the
presence of such unobserved effects (see Hsiao (1986) or Baltagi (1995) for
overviews of panel data methods).

Sample selection models are frequently estimated in applied microecono-
metric work using cross-section data, but they are less frequently applied
when panel data are available. It is often argued that if the sample selec-
tion process is constant over time, then some standard panel data estimators
eliminate sample selection bias since they ”difference out” both the unob-
served individual-specific effect and the sample selection effect. However,
in general there is no reason to believe that the sample selection process is
time-invariant. Furthermore, estimators exploiting differencing will not be
efficient. In general, unobservable individual-specific effects may occur in
both the selection equation and the equation of interest, and they may ex-
hibit a complex correlation structure. Hence, in applied microeconometric
work one often needs estimation procedures for panel data sample selection
models.

Recently, the econometrics literature has contained various suggestions
on such estimation procedures. In general, two paths have been followed in
the development of panel data sample selection model estimators: two-step
estimators following the idea of Heckman (1979) and maximum likelihood
estimators. The former includes the estimators suggested by Wooldridge
(1995), Kyriazidou (1997), Vella and Verbeek (1999), Rochina-Barrachina
(1999), and Lee (2001). The latter has been applied by Husted et al. (2001)
and Verner (2001). The sample selection problem has also been considered



in the related setting of attrition in panel data by Hausman and Wise (1979),
Ridder (1990), and Verbeek and Nijman (1996). The evidence on the perfor-
mance of the various panel data sample selection estimators is rather sparse,
although recently Dustmann and Rochina-Barrachina (2000) and Lee (2001)
have reported on comparisons of some of these estimators.

The purpose of this paper is to undertake an extensive investigation of
these different estimation methods for panel data sample selection models by
a Monte Carlo study. Our viewpoint is that of a microeconometrician do-
ing applied work. Hence, we will specify the data generating processes with
a view towards "typical” processes encountered in empirical applications,
namely by introducing various correlation structures of the unobserved com-
ponents. In addition, we extend some of the previously proposed estimators
to examine if there are simple ways to remedy violations of the basic as-
sumptions. Specifically, we have chosen to investigate the properties of the
following estimators:

e Selection process estimated by a conditional logit; the equation of in-
terest estimated by a fixed effect model (the "naive” estimator which
does not take sample selection into account).

e Selection process estimated by a conditional logit; the equation of in-
terest estimated by use of the semiparametric estimator proposed by
Kyriazidou (1997). Estimation of the equation of interest involves a
correction for sample selection, based on the conditional logit.

e Selection process estimated by a panel data probit model; the equa-
tion of interest estimated by OLS with a correction calculated from
the first step included, based on the two-step estimators proposed by
Wooldridge (1995) and Vella and Verbeek (1999).

e Selection process estimated by a panel data probit model; the equation
of interest estimated by a fixed effect method with a correction calcu-
lated from the first step included, an extension of the above estimator.

e Selection process estimated by a panel data probit model with ”Mund-
lak correction” introduced; the equation of interest estimated by a fixed
effect method with a correction calculated from the first step included,
another extension of the above estimator.



e Parametric panel data random effects model, both equations estimated
simultaneously by maximum likelihood.

e Parametric panel data random effects model, both equations estimated

simultaneously by maximum likelihood, ”Mundlak correction” intro-
duced.

Each of these estimators may produce consistent estimates given that cer-
tain assumptions are satisfied. The consistency requirements are different for
the various estimators and in many typical applications some of the assump-
tions are likely to be violated. From a practical point of view, this means that
the choice of model specification and the choice of an appropriate estimator
become intrinsically linked. If we have a correctly specified model, we would
ideally like to choose a consistent and asymptotically efficient estimator, like
e.g. the ML estimator for that model. However, in real-world applications
we do not know the correct model and it is therefore important to have some
knowledge about the performance of the estimators when the model is mis-
specified. In our Monte Carlo study, we provide such evidence by specifying
various data generating processes and applying the estimators even if they
are inconsistent. We are thus able to investigate the robustness against var-
ious forms of misspecification, such as for instance assuming that the error
term in the selection equation follows a logistic or normal distribution or that
the unobserved components have a certain correlation structure.

The results of our extensive Monte Carlo study show that, in general, the
simultaneous maximum likelihood estimators of the random effects models
have the best performance when both bias and variation are taken into ac-
count. However, these estimators are more computationally demanding than
the two-step estimators. Furthermore, in a number of situations the two-step
estimators are almost as well behaved as the maximum likelihood estimators,
and the two-step estimators may therefore be preferred in cases where the
computational burden represents a major obstacle.

The remainder of the paper is organized as follows. Section 2 presents
the different estimation methods for panel data sample selection models that
we investigate in this paper. Section 3 describes the Monte Carlo simulation
design, and Section 4 contains the results of the Monte Carlo study and a
discussion of the advantages and disadvantages of the estimators. Finally,
Section 5 summarizes and concludes.



2 Estimation methods for panel data sample
selection models

The model we consider can be formulated as follows:

Y = Tub+aitean (1)
di, = wyy+ i+ uy
dy = 1ifd;, >0, 0 otherwise

Yie = Vi dit,

where ¢ (i = 1,...,N) denotes the individual and ¢ (¢ = 1,...,T) denotes
the time period. We will restrict our attention to the case of T' = 2. The
equation of interest is the first one and the selection process is the second
one in 1. Here, # and 7 are unknown parameter vectors which we wish to
estimate, and z;; and w;; are vectors of explanatory variables, possibly with
common elements. The «; and 7; are unobservable time-invariant individual-
specific components which are possibly correlated with each other and with
the explanatory variables, and ¢; and u; are unobserved disturbances or
idiosyncratic error terms (possibly correlated with each other). The variable
y5, is only observable if the indicator variable d; = 1, which gives rise to
sample selectivity.

In the cross-sectional case the individual-specific components (or ”inci-
dental parameters”) are absorbed into the error terms and it is rather simple
to estimate the sample selection effect in a discrete choice model and insert
it in the equation of interest. However, in the panel data case complications
arise: First, estimation of v requires more complicated estimation methods,
since in a nonlinear model first-differencing the equation does not eliminate
the incidental parameters. Second, the sample selection effect entering ad-
ditively in the equation of interest is an unknown nonlinear function of the
observed and unobserved time-varying regressors of the selection process and
does not disappear when simple first-differencing is made. In the applied
literature various more or less suitable methods have been used. We will
investigate how well the following estimators perform:

Estimator 1 (CL/FE): Conditional logit / fixed effect
To consistently estimate the parameters of the selection process we use a
conditional logit model. In that model the basic idea is to avoid the incidental



parameters problem by conditioning out the individual-specific components,
;-

If a minimum sufficient statistic 7; for 7; exists which is not dependent
on 7, then the conditional density

1y fdilym)
fly, m) 9(7ilv.m)

for g(-) > 0, does not depend on 7;.

Maximizing this conditional density will give a consistent estimator of
the common parameter v under mild regularity conditions. In the case of a
binary choice problem, such a sufficient statistic can be 37, d;;. Since only
the cases where3 2_, d;; = 1, that is, the cases where individuals change status
between time-periods, contribute to the conditional likelihood function, only
these individuals are used for estimation of the parameters. The conditional
log-likelihood function becomes :

In L="7Y" [zi InF ((wi2 - wu)/V) + (1 = 2z)In(1 = F((wi - wz’l)IV))} ’

i€B
where F, in the case of a logit model, is:

exp(-)
A

and z; = 1 if (d;;,d;n) = (0,1) and z; = 0 if (d;1,di2) = (1,0).

The parameters of the equation of interest are estimated by a ”fixed
effects” approach. This means that first-differences of the linear model are
taken on an individual basis thereby eliminating the incidental parameters.
Note, that only individuals where d;; = d;» = 1 can be used in this procedure.
OLS is then performed on the first-differences. This "naive” estimator of
[ ignores sample selectivity and is therefore inconsistent. However, this
estimator may be viewed as a "benchmark” against which we can compare
the other estimators to assess the improvement that is obtained by controlling
for sample selectivity.

Estimator 2 (KYRI): Two-step estimator proposed by Kyriazi-
dou (1997)

This estimator follows the two-step approach proposed by Heckman (1979)
in the case of parametric estimation of cross-section selection models.
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In the panel data case, the sample selection effect, \;;, can be defined as:

it = E(Eit|dil =1,dpp = 1;@) (2)
= Na(wiyy + ni, winy + 135 G),

where (; = (w1, Wiz, Ti1, Tiz, 04, 1;)-

By subtracting this selection effect from the original error term of the
equation of interest, we get a new error term, vy; = &; — Ay, which by
construction satisfies F(vy|dy = 1,dn = 1,() = 0. We may now rewrite the
equation of interest as:

Yir = TS + i + Nip + vy (3)

Ideally, we would like to eliminate both the individual-specific component,
«;, and the selection effect, \;, by first-differencing the rewritten equation.
Kyriazidou (1997) discusses in detail the assumptions needed for performing
this ”differencing out”. There is no need for making strong distributional
assumptions across individuals, since first-differences are taken on an indi-
vidual basis. In particular, the functional form of A; () may be allowed to
vary across individuals. Under certain weak distributional assumptions (see
Kyriazidou (1997) for further details), the sample selection effects \;; will
be the same in the two periods, when w},y = w.,y. This suggests estimat-
ing 4 by OLS from a subsample consisting of those observations that have
wiy = wlyy and d;j; = dy = 1 (presuming that v is known). However, ~
is unknown and it may be the case that w!,v # w.yy for all individuals in
our sample. The idea behind the estimator of 3 is thus to apply an esti-
mation scheme that approximates the outlined procedure, based on pairs of
observations for which w};y and w],y are ”close”.

The proposed two-step estimation procedure is as follows: In the first
step, estimate the parameters of the selection equation, 7y, consistently. In
this paper, this is done by a conditional logit, using only the individuals who
change status over time, i.e. d;; +d;» = 1. Then in the second step, use these
estimates to construct weights, 1;,, to be inserted in a weighted least square
regression. Let D; = 1{d;; = d;» = 1} = d;1d;2. This results in the following
estimator

n “1rn
i=1 i=1



where 1;,, are constructed as ”kernel” weights, declining to zero as |w}; 7, —
WheTn| increases:
'~
~ 1 K AwlA,
in = 7 —
he, ho,

K is a "kernel density” function, and h,, is a sequence of bandwidths
which tends to zero as n — oo.

In the estimations performed in this paper, the kernel function is chosen
to be a standard normal density function and the bandwidth is set to h,, =
h-n~Y51 The result of this estimation procedure is, in the case of a given
number of observations, that observations with a lot of selection bias are given
little weight, and asymptotically only individuals with no selection bias are
used in the estimation procedure and the individual-specific component is
eliminated from the equation of interest by taking first-differences.

It should be noted that the proposed estimator is asymptotically biased,
and Kyriazidou provides a correction, resulting in an asymptotically unbi-
ased, normally distributed estimator of 3. This is done using (3,5, which is
an estimator of 3 estimated with a smaller bandwidth, namely h,, = h-n%/3,
and as suggested in her paper ¢ is set to 0.1.

The bias-corrected estimator of 3 becomes

A
Bns = 1 — n-(1-62/5

which is the estimator used in the subsequent Monte Carlo experiments. This
estimator is consistent for (3, provided that a consistent estimator is used for

.

Estimator 3 (TSE1l): Two-step estimator based on Wooldridge
(1995) and Vella and Verbeek (1999)

IFor a given kernel density function and a given sample size the problem of choosing
bandwidth reduces to choosing the constant h. Kyriazidou proposes a ”plug-in” method
for performing this choice, but her Monte Carlo study shows that this procedure results
in less variation of the estimates, at the cost of a larger mean bias. Therefore, we have
chosen not to complicate matters and to set h to 1, following the simple Monte Carlo
estimations in Table II of her paper. This means that the bandwidth for our purpose is
set to h,, = n—1/5.



The basic idea of this estimator is also in the spirit of Heckman’s (1979)
method. Since our model is a special case of the very general model consid-
ered by Vella and Verbeek (1999), the two-step estimator they propose can
also be applied to our case. This results in an estimator that is a slight gene-
ralization of the two-step estimator proposed by Wooldridge (1995), where we
estimate the parameters of the selection equation by a panel method rather
than by a cross-section method. First, estimate the selection equation by a
panel data probit model where the individual-specific component is treated
as a normally distributed random effect. The contribution to the likelihood
function from a single individual for that model is

L= /_ °O°o [T @ [(2die = 1) (wlyy 3] - f (1)

Next, calculate the expected value of the error terms in this model:
e = L+ uywi, wi,di, dig) (5)
= / [77i +FE [uit|wz’17 Wiz, di1, diz, 771]] I (i|wir, wiz, dix, diz) dn; (6)

where F [u;¢|wi1, wio, di1, dig, ;] is the cross-sectional generalized residual (Gourier-
oux et al., 1987), that is,>

E [uit|wi17 Wiz, di1, dya, 77i] = K [uit|wit7 dy, 772']
¢ (wiy + i) - ¢ (wiy + i)
P (U’;ﬁ + 772’) ’ 1-9 (wgﬁ + 772’)

(1 —dy)

and f (n;|wi, w2, di1, d;io) is calculated exploiting the following expression:

f (dil, d;a, 77i|wi1a wi?)
f (dﬂ, di2|wi1a wi?)

The term in the denominator is identical to the likelihood contribution for
an individual.

Given this expression, the expression in 5 is calculated by (in the case of
a normal mixing distribution) numerical integration. Once this is done, the
following equation is estimated by OLS

f (ni|wi17wi2adi17di2) -

Yit = T3+ el + e pu+ € (7)

2Tn the present case, the u;’s are assumed to be independent over time.
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where e;. is the individual-specific average value of the residual e;;, and €;; now
denotes the error term in the equation of interest (which may still contain
an individual-specific component). If an individual-specific component is
present in the error term and it is correlated with x;, then the estimator of
(G will be inconsistent.

Estimator 4 (TSE2): Extension of two-step estimator above

For this estimator the first step is the same as above in estimator 3, that
is, a panel data probit model. However, in the second step, the equation of
interest is estimated in first-differences (no constant term included),

Yiz — Yir = (T2 — ﬂﬁil)/ﬁ + (€2 — €i1) 0 + (€2 — €i1)

Hence, the individual-specific average of the error term e;; is eliminated,
as is any individual-specific component that might have been present in the
equation of interest. Particularly, a component correlated with z; would
lead to inconsistency in the estimator of 3 used in estimator 3 above.

Estimator 5 (TSE3): Extension of two-step estimator above

Basically this estimator is a generalization of estimator 4, where the first
step is augmented by introducing a "Mundlak correction” in the selection
equation. The random effects formulation may be criticized on the grounds
that it neglects the correlation that may exist between the random effect
and the explanatory variables. If this correlation is ignored, the estimators
of the parameters of interest (here v and (3) will be inconsistent for a finite
number of observations per individual. Mundlak (1978) proposes a way to
take this correlation into account. He approximates E (n;/w) by a linear
function and includes the individual means of the explanatory variables in
the linear predictor.? A simple F-test will then determine whether correlation
is present. We make the assumption that 7, is correlated with the individual-
specific average, W; = (w;; + w;2) /2. Hence, we assume

N = Ww + v,

where v; ~ N (0,02). In the second step, the parameters of the equation
of interest is estimated by first-differencing, as in estimator 4 above. If the

3While this approach works well in the linear regression model, there is no guarantee
that it does so in a nonlinear estimation problem.

10



distributional assumptions for the selection equation are satisfied, then this
estimator will be consistent for v and (.

Estimator 6 (MLE1): Maximum Likelihood Estimator

In this estimation procedure the selection process and the equation of
interest are estimated simultaneously. For this purpose it is necessary to
specify the joint distribution of the individual-specific components treated as
random effects in the selection equation and the equation of interest. Specif-
ically, we make the following assumptions for the model. The idiosyncratic
error terms are assumed to follow a bivariate normal distribution

0'2 O
(€ityuig) ~ N(0,%), where ¥ = [ p;g ? ]

Furthermore, we make the following assumptions concerning the random
effects and their interactions with the idiosyncratic errors:

E[O‘i] = E[m] =0
Eit, Wi L oy, 1
Thus, the individual-specific components in the selection equation and
the equation of interest may be correlated, but they are assumed to be un-

correlated with the idiosyncratic error terms. The likelihood of a single ob-
servation, conditional on the random effects, is then

Ez’t(’YaﬁaE’O‘iam) = f(git;uit’aiyni)

dit
/ Geu(Yit — TS — u)du}

71‘”;{777]1'

—wi, Y= [0 1-die
/ / GeulE, u)dsdu]

— 00 —

X

7w£t’777li

*w'-ﬂ*m' 1idit
/ ' gbu(u)du]

—0o0

X

- Kl — Dy (—wipy — milya — 2y — Oéi)) < G (Yir — 73 — Oéz')}d

X [ @y (—wiyy — Th')]lid“ )

11

dit
/ Qbu\s(uyyit - x;tﬁ - Oéz') : ¢e(yz’t - x;tﬁ - Oéi)dul
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where the conditional distribution ule ~ N (g—s, (1— p2)). When a distri-
bution is specified for the random effects it is straightforward to integrate
them out of the likelihood function. If (o, 7;) is distributed according to the
distribution function G(-) we have:

Li(v,8,%) = /O:o /O:o [ﬁf(fitauit|aia77i)

In the estimations of this paper, G(-) is specified as a bivariate discrete
distribution with 2 x 2 points of support.* If the distributional assumptions
are satisfied, then this estimator will be consistent for v and (3, but it does
not allow for correlation between the observed and unobserved variables.

dG(Oéi, 77i)

Estimator 7 (MLE2): Extension of Maximum Likelihood Esti-
mator

This estimator is the same as the one described above, except that in the
selection equation, we assume that

N = Ww + v,

that is, we introduce once again the Mundlak correction. In addition, we
make the assumption that the observed and unobserved variables of the main
equation may be correlated

o =T+ G,

and we finally assume that (v;,;) follows a bivariate discrete distribution
with 2 x 2 points of support. If the distributional assumptions are satisfied,
then this estimator will be consistent for v and 3, and in particular, it allows
for correlation of the observed and unobserved variables.

3 Monte Carlo simulation design

The data generating processes (DGP) are designed to mimic situations com-
mon in applied microeconometric work. There are two explanatory variables

4Clearly, the precision of this estimator depends on the number of support points in
the discrete distribution of the individual-specific effects. Our interest in this paper is on
estimators that are simple to apply and compute. Hence, we have restricted our attention
to the case with 2 x 2 points of support. However, we briefly investigate the properties of
the estimator when more support points are allowed; see Appendix 2.

12



in the selection equation: w; and wy. They are independent and normally
distributed, with mean 0 and variance 1. There is one variable, x, in the
main equation, and x = w;. We thus have one variable which is excluded
from the main equation, as it is standard in order to obtain nonparametric
identification of the parameters of the model.

The idiosyncratic error term in the selection equation, u;, follows either
a logistic distribution or a normal distribution, in both cases with mean 0
and variance 1. We perform one set of Monte Carlo experiments with w;
generated by the logistic distribution and another set with u; generated
by the normal distribution. The results from the former are reported in
the following section, whereas the results from the latter are reported in
Appendix 1. The idiosyncratic error term in the equation of interest is defined
as g4 = 0.6u;+0.8&1, with &; an independent standard normal variable. With
this specification the correlation between u; and ¢; is 0.6. In addition, we
define three random variables: &, &3, and &;. These are individual-specific
variables. They are all independent and standard normally distributed. This
defines the common set-up of all the different DGPs that we use in this paper.

In the following, we specify three different DGPs, which differ according
to the correlation structure between observed and unobserved variables and
the correlation structure across equations.

Model A: Here we assume that the two individual-specific components
« and n are correlated. More specifically, let

ni = &+& (8)
a; = &+& (9)

Model B: In this case we assume that observed and unobserved variables
are correlated, but that there is no correlation between individual-specific
components across equations

Wa i1 + Wa 2
2
Zi1 + Ti2
2

(10)

(11)

ni = &+

ap = &+
Note, however, that this implies that « and w; are positively correlated, since
Tr = wi.

Model C: This is the most general model. Here we allow for both types
of correlation structures, between the two individual-specific components and

13



between individual-specific components and observed variables.

Wa 31 + Wa 42
2
Ti1 + Ti2
2

n = &+ + &4 (12)

o = &3+ + & (13)

The parameter values are all set to 1 (3 = 7; = 7,). Given these val-
ues, we generate samples of two different sizes N = 1000, 4000 individuals®
observed in two subsequent periods, i.e. T = 2.

We use the GAUSS programme to generate the random numbers (pro-
cedure RNDN for normal random variables, procedure RNDU for uniform
random variables). All random numbers are drawn independently over indi-
viduals and time. We use the same draws for all three (six) DGPs to minimize
sources of variation across the experiments.

Each Monte Carlo experiment is performed 500 times.

4 Results

In this section the results of the Monte Carlo experiments are presented.
Tables 1, 2, and 3 present the mean bias, the median bias, the standard
error, the root mean squared error, and the median absolute deviation of
the various estimation techniques for both the v and the 3 parameters. We
have chosen to report the results for the parameters of both the selection
equation and the equation of interest, since they may all be of interest to
the researcher. As indicated by the terminology, the main interest is often
on the parameters of the equation of interest, but in several applications the
selection equation may also represent an important part of the model.
Again it is important to stress that our viewpoint is that of a micro-
econometrician doing applied work. Our main interest is thus in finding an
estimation procedure that works well in practical applications, where typ-
ically we do not know the correct model (the DGP). In our Monte Carlo
experiments, we apply all seven estimation procedures to the specified DGPs
regardless of the theoretical properties of the estimators. This allows us to
provide evidence on the performance of the estimators in the presence of

5We have also performed all experiments with N = 250 individuals, but the results of
these experiments are not reported in the paper due to space considerations. They are
available from the authors on request.
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misspecification of the model or violations of consistency requirements. The
results reported and discussed in this section are all based on the DGPs with
u; generated by a logistic distribution. This means that only Kyriazidou’s
estimator is consistent for v and 3. As mentioned in the previous section, we
report results from another set of experiments with u;; generated by a normal
distribution in Appendix 1. There the TSE3 and the MLE2 estimators are
consistent for v and 3, whereas the remaining estimators are not.

Table 1 shows the results from the seven different estimation procedures
when the data generating process is specified by Model A with the error
term in the selection equation generated by a logistic distribution. This is
the model where the two individual-specific components are correlated, i.e.
there is sample selection on the individual-specific components.

Table 1 about here

For the parameters of the selection equation, the consistent estimator
based on the conditional logit model (CL/FE and KYRI) is moderately bi-
ased for these finite samples, whereas the standard error shows that this esti-
mator has a considerable variance, resulting in a considerable rmse. Clearly,
this is a result of the estimation procedure where only individuals with a
change in status contribute to the conditional likelihood function. The esti-
mators from the other two-step models have a lower bias than the conditional
logit estimator and are also more efficient, with a standard error of about
half the size. Among the other two-step estimators the small loss of efficiency
when the "Mundlak correction” is included leads to the conclusion that the
TSE1/TSE2 estimator performs best. The ML estimators suffer from a large
negative bias and this leads, despite a low standard error, to a very large
rmse. These problems are most pronounced in the model without Mundlak
correction. So, if the parameters of interest are the +’s, then the estimator
based on the random effects probit model in the two-step procedure does
best.

Turning to the § parameter, we see a considerable bias of the estimator
from the simple fixed effects model (CL/FE), which is also reflected in the
rmse, whereas the standard error is rather low. Since this estimator does not
take the sample selection into account, this result is as expected. Kyriazi-
dou’s estimator is virtually unbiased, but this is at the expense of a consider-
able loss in efficiency, which is reflected by the large standard error and the
correspondingly large rmse. In the other two-step models, the unobserved

15



heterogeneity generates a large bias in the simple version, whereas the fixed
effects version performs very well both in terms of bias and variation. The
inclusion of the Mundlak correction does not make much difference. The ML
estimators do slightly worse than the TSE2 and TSES3 estimators in terms of
bias, but slightly better in terms of variance. The inclusion of the Mundlak
correction term leads to a slightly lower bias. In total, the TSE2 and TSE3
estimators have the best performance when both bias and variation are taken
into account, closely followed by the ML estimators.

If both the v and the 3 parameters are of interest, the ML estimators
should be avoided due to the large bias in the estimation of the v parameters.
Instead, a reasonable choice of estimator would be the TSE2 estimator, since
it performs well for both sets of parameters.

Table 2 shows the results when the data generating process is specified by
Model B with the error term in the selection equation generated by a logistic
distribution. This is the model where the two individual-specific effects are
uncorrelated, but with correlation between observables and unobservables.

Table 2 about here

Again, first considering the parameters of the selection equation, we see
that the consistent conditional logit estimator (CL/FE and KYRI) has the
lowest bias of the estimators considered, but it still has a considerable varia-
tion, especially when the sample size is small. The other two-step estimators
have very large biases, in particular for «, which is the coefficient of the
observed variable that is correlated with the unobserved individual-specific
effect. The introduction of the Mundlak correction (in TSE3) reduces this
bias, but it is still considerable and the correction actually increases the bias
for ;. The ML estimator is also biased, but here the Mundlak correction
improves the estimator (MLE2) by removing most of the bias which in com-
bination with a low standard error means that this estimator has the lowest
rmse. So, if the parameters of interest are the 7’s, then the preferred esti-
mators are the conditional logit (which does best in terms of bias) and the
MLE2 (which does best in terms of variation and rmse).

For the equation of interest, Kyriazidou’s estimator is again virtually un-
biased, but at least for the sample sizes considered here it is quite inefficient,
leaving it with a very large rmse. Compared with model A, the absence of
correlation between the individual-specific effects has made the performance
of the simple two-step estimator (TSE1) much better, since it has a very
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low bias and a small standard error. Particularly for the small sample size,
N = 1000, it can compete with the other estimators in terms of rmse. The
TSE2 estimator is unattractive due to a fairly large bias. The ML estimator
is seriously biased (which is not a big surprise, since it is also inconsistent),
but the Mundlak correction removes this bias entirely, yielding an estimator
that is virtually unbiased (MLE2). This does not come as a surprise since
this estimator is specifically constructed to correct for the correlation between
observables and unobservables. Actually, also the efficiency of this estimator
is very good, which leads to the conclusion that the preferred estimator for
[ is MLE2, followed by TSE1 and KYRI.

When observables and unobservables are correlated, it turns out that the
MLE2 estimator is uniformly superior in terms of rmse for all parameters of
the model, and in particular for the § parameter since it is unbiased.

Table 3 shows the results when the data generating process is specified by
Model C with the error term in the selection equation generated by a logistic
distribution. This is the model where both types of correlation are present.

Table 3 about here

For the parameters of the selection equation, we see again that the consis-
tent conditional logit estimator (CL/FE and KYRI) is moderately biased, at
a level comparable with the bias observed for Models A and B. However, its
standard error is still quite large. For the two-step estimator (TSE1/TSE2),
the correlation between observables and unobservables still creates a large
bias for the 7, parameter, although the estimator shows a good performance
for the ; parameter. The inclusion of the Mundlak correction (TSE3) elim-
inates the bias almost entirely, which in combination with a very small stan-
dard error makes this estimator the estimator preferred for the v parameters.
Apparently, the presence of both types of correlation is important for this
estimator, as can be seen by comparing with its performance for Model B
where the Mundlak correction was not able to remove the bias. For the ML
estimators, we find the same pattern as we did for Model A, i.e. they cannot
handle the correlation between unobservables across the two equations which
causes a large bias, regardless of the Mundlak correction®.

SHowever, the performance of the MLE2 estimator for the v parameters may be consid-
erably improved by increasing the number of support points for the heterogeneity distri-
bution in the selection equation. Results regarding this aspect are reported in Appendix
2.
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Turning to the equation of interest, we see the same picture as for Model
B. Kyriazidou’s estimator is unbiased for the large sample size, but it has
a very large standard error. The two-step estimators TSE1, TSE2, and
TSE3, are reasonably well-behaved with the simple version TSE1 actually
performing best in terms of rmse. The correlation between observables and
unobservables still causes the ML estimator to be very biased, but this is
handled by the Mundlak correction. So for the ( parameter, the MLE2
estimator is preferred.

4.1 Summary and comparison

Above we have discussed the performance of the various estimators for the
three different data generating processes. This has been done for both the
~ parameters and the J parameters, and our focus has been on bias and
efficiency in finite samples. Clearly, to be efficient an estimator needs to
have a small bias and a relatively small standard error. However, these
two aspects may often conflict like we saw in a number of cases above. In
the same manner, a given estimator may not have good properties for the
parameters of both equations at the same time. An additional aspect that
deserves attention is the computing time of the various estimators. In the
following, we will briefly summarize our results for each estimator and make
a final comparison where all these aspects will be considered.

CL/FE: This estimator is consistent for the v parameters, but is moder-
ately biased in finite samples and suffers from a large standard error. Thus,
it is quite inefficient for estimating the -~ parameters. It is obviously not a
good choice for estimating the § parameter, since it is not consistent.

KYRI: For the v parameters, this estimator is identical to CL/FE. For
the 3 parameter, it is virtually unbiased, but it has a very large standard
error, which makes it inefficient for the sample sizes considered here.

TSE1: It performs well for the v parameters when there is no correlation
between observables and unobservables, but it becomes seriously biased when
there is correlation. In that situation, however, it typically becomes a good
estimator of the 3 parameter.

TSE2: For the v parameters, this estimator is identical to TSE1. For
the 8 parameter, it is moderately biased and has a relatively small standard
error, but it is only the preferred choice of estimator (together with TSE3)
when there is no correlation between observables and unobservables.

TSE3: It performs well for the v parameters when the unobservables
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are correlated across equations, but not otherwise. For the 3 parameter, its
performance is similar to TSE2, although it is slightly more rmse efficient.”

MLE1: Unless there is no correlation between observables and unobserv-
ables, this estimator is a complete waster. In the case with no correlation
between observables and unobservables, it is still unable to provide good esti-
mates of the v parameters, but it does a nice job estimating the 3 parameter.

MLE2: In the case where the unobservables are not correlated across
equations, this estimator is efficient for the « parameters despite a moderate
bias. Otherwise, it is quite biased for the v parameters (although we are able
to remove most of the bias as shown in Appendix 2). For the [ parameter,
it is the preferred choice when observables and unobservables are correlated,
and otherwise it is still a strong contender.

It is easy to rank the seven different estimators according to the com-
puting time needed to obtain the estimates. The naive estimator (CL/FE)
requires least computing time, followed by Kyriazidou’s estimator, and fol-
lowed again by the other two-step estimators (TSE1, TSE2, TSE3) which
use approximately the same amount of computing time. The simultaneous
maximum likelihood estimators (MLE1, MLE2) are computationally much
more demanding than the other estimators, so judged by a computing time
criterion the ML estimators are the least attractive.

Obviously, the three criteria applied here - bias, efficiency (rmse), and
computing time - do not capture all aspects of the performance of the esti-
mators, but in our opinion they represent the most important aspects. Thus,
they form an appropriate basis on which to choose between the various esti-
mators.

However, in real-world applications the true data generating processes
are unknown, and we need to bear that in mind when choosing an estimator.
Thus, there may be sample selection and /or correlation between observed and
unobserved variables, in which case the choice of estimator narrows down to
a close race between the extended version of the two-step estimator, TSES3,
and the simultaneous maximum likelihood estimator with Mundlak correc-
tion, MLE2. Here, the ultimate choice must depend on the type of the main
parameters of interest - the parameters of the selection process or the para-

"The results reported in Appendix 1 show that the performance of the TSE3 estima-
tor is improved when the DGP has a normal error term instead of a logistic error term.
This reflects that the estimator is consistent in this case. The choice of preferred esti-
mator may thus be altered in favour of TSES3, but if it is important to safeguard against
misspecification of the error term distribution, MLE2 is more robust.
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meters of the equation of interest - and the sample size. When the sample size
is very large, the MLE2 estimator requires a lot of computing time, especially
when there are many parameters.®

5 Conclusion

In this paper, we have examined the consequences of the choice between dif-
ferent estimation methods for panel data sample selection models suggested
in the literature. We have done this by use of Monte Carlo experiments with
data generated by three (six) different data generating processes chosen in a
way that mimics "real” data encountered in empirical applications, and in
a way that makes it possible to illustrate what happens when basic model
assumptions are violated.

When we look at the results of the Monte Carlo study it is important to
bear in mind which parameters are the parameters of interest. In many mi-
croeconometric applications only the parameters of the equation of interest,
(3, are of interest, and in these cases the problems of estimating the parame-
ters of the selection process may be ignorable. However, in general we should
be able to obtain satisfactory estimates of all parameters.

The results show that, in general, the ”Mundlak corrected” simultaneous
maximum likelihood estimator, MLE2, has the best performance when both
bias and variation are taken into account. However, this estimator is more
computationally demanding than the two-step estimators. Furthermore, in
a number of situations the two-step estimators are almost as well behaved as
the maximum likelihood estimator, and the two-step estimators may there-
fore be preferred in cases where the computational burden represents a major
obstacle. The estimator proposed by Kyriazidou performs very well in terms
of bias, but the variation is quite considerable compared with the other esti-
mators investigated in this paper. This large variation is reduced when the
number of individuals increases (this is also shown by our results comparing
N = 1000 with N = 4000), so for very large data sets this estimator may
become a good choice, but in moderately sized data sets it is not a preferable
choice.

A number of extensions of this study could be topics for future research:

8For example, with 50,000 observations, 50 parameters, and running on a decently
sized Pentium IIT with sufficient amounts of RAM, the estimation will typically take a day
(using GAUSS software).
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Firstly, we have limited ourselves to the case of T' = 2, but it is clearly
relevant to analyse longer panels as well. Secondly, the specified DGPs could
be generalized, mainly by changing the distribution of the error term in the
selection process. In this paper, we have applied two different distributions,
the logistic and the normal. Thirdly, our results show that semiparametric
estimators may perform very well, and this could of course be investigated
in more detail.

6 Appendix 1: Simulation results with nor-
mal error term

In this Appendix, we present the results of the Monte Carlo experiments
with the error term in the selection equation, u;, generated by the normal
distribution. The results reported in the main text of the paper are from a set
of experiments where the error term is generated by the logistic distribution.
The simulation design with a logistic error term was chosen because some
of our estimators of the parameters of the selection equation are based on
a conditional logit model (CL/FE and KYRI). On the other hand, we are
also examining estimators where we apply a probit model to estimate the
parameters of the selection equation. Hence, not to treat these estimators
unfairly, we have chosen also to use a simulation design with a normal error
term. In addition, this also allows us to investigate the sensitivity of the
estimators to the distribution of the error term.

Table Al shows the results when the data generating process is specified
by Model A with the error term in the selection equation generated by a
normal distribution.

Table A1l about here

For the v parameters, the bias of the conditional logit estimator is reduced
considerably compared with the case in Table 1, at least for the large sample
size. Also the standard deviation is reduced, although not as much as the
bias. The bias of the other two-step estimators is also reduced remarkably,
such that these estimators are now virtually unbiased. This may be taken as
an indication that the bias seen in Table 1 originates from the misspecification
of the distribution of error term in the selection equation. When the DGP has
a normally distributed error term, the estimators based on the probit model
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are more satisfactory. The ML estimators do slightly worse than in Table 1,
both in terms of bias and efficiency, but the larger rmse is almost exclusively
due to the increased bias. The overall conclusion has not changed compared
with the results in Table 1; the two-step estimators are still preferred.

For the [ parameter, there are no major changes compared with the re-
sults in Table 1. The fixed effects estimator still has a considerable bias and
now a slightly larger standard error. Kyriazidou’s estimator has a negligible
bias, but its standard error has actually increased slightly, making it even
more unattractive in terms of rmse. The extended two-step estimators are
improved and so are the ML estimators. The qualitative conclusions regard-
ing the estimators are unchanged.

Table A2 shows the results when the data generating process is specified
by Model B with the error term in the selection equation generated by a
normal distribution.

Table A2 about here

Compared with the results in Table 2, the performance of the TSE-based
two-step estimators of the + parameters is basically unchanged; they still
have a very large bias. The conditional logit estimator has improved, mainly
in terms of a reduced bias, and in terms of relative efficiency it is now the
best estimator of the v parameters. The MLE2 estimator has a larger bias,
which causes it to have a larger rmse than the conditional logit estimator,
thereby interchanging their ranking compared with Table 2.

For the 3 parameter, Kyriazidou’s estimator and the MLE2 estimator
have a slightly larger bias, whereas the extended two-step estimators (TSE2
and TSE3) have a smaller bias compared with Table 2. In fact, the TSE3 es-
timator is now virtually unbiased (reflecting the consistency of this estimator
with normally distributed error terms), but this does not alter the ranking
of the estimators; the preferred estimator is still MLEZ2, followed by TSEL.

Table A3 shows the results when the data generating process is specified
by Model C with the error term in the selection equation generated by a
normal distribution.

Table A3 about here

Generally, not much has changed compared with Table 3 and the ranking
of the estimators is still the same. For the v parameters, the TSE3 esti-
mator is clearly preferable, especially since its bias and standard error have
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decreased a bit. For the (3 parameter, the MLE2 estimator still shows the
best performance in terms of both bias and rmse.

Summarizing the results, we find that the sensitivity of the estimators to
the distribution of the error term is moderate. In general, there are no major
changes in the performance of the estimators when we use a normal error
term instead of a logistic error term. Some smaller changes occur and in most
cases they are as expected; the performance of the estimators are improved
when the correct distributional assumptions are applied in the estimation
procedure. Most importantly, the choice of error term distribution does not
have any major impact on the ranking of the estimators.

7 Appendix 2: Sensitivity to the discrete het-
erogeneity distribution

For the simultaneous maximum likelihood estimators, we have chosen to
model the joint distribution of the random effects (the individual-specific
components) as a bivariate discrete distribution with 2 x 2 points of support.
Clearly, the precision of the ML estimators depends on the number of support
points. Since our interest in the paper is on estimators that are relatively
simple to apply and compute, we have restricted our attention in the main
text to the case with 2 x 2 points of support. In this Appendix, we present
some additional results obtained by increasing the number of support points
in the selection equation. Specifically, we have estimated the parameters of
the model where the DGP is specified by Model C and the MLE2 estimator
is used with 2 x 2, 3 x 2, and 4 x 2 points of support, respectively. The
experiments are only performed for sample size N = 1000. The results are
shown in Table A4.

Table A4 about here

The results for 2 x 2 points of support are identical to the results in
Table 3 in the main text of the paper. The estimator is unbiased for the (8
parameter, but has a moderate bias for the v parameters. By increasing the
number of support points in the selection equation, we are able to reduce
this bias quite substantially; approximately by a factor 4 when going from 2
to 3 points and approximately by a factor 2 when going from 3 to 4 points.
However, this decrease in bias occurs at the expense of an increased standard
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deviation, but the rmse of the estimator is reduced by one third, bringing it
to a level where it may compete with the TSE3 estimator (see Table 3). It
should also be noted that the rmse is basically the same for 3 and 4 points,
i.e. the reduction in bias is almost exactly counteracted by an increase in
the standard deviation. Finally, note that the increased number of support
points only has a negligible influence on the estimator of the § parameter.
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Table 1. Results from Model A, logistic error term.

2000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0240 0.0240 0.0138 0.0138 0.0141 -0.1155 -0.1139
medianbias ~ 0.0099 0.0099 0.0115 0.0115 0.0118 -0.1180 -0.1155
std err 0.1307 0.1307 0.0664 0.0664 0.0664 0.0635 0.0637
rmse 0.1327v  0.1327 0.0678 0.0678 0.0678 0.1318 0.1305
mad 0.0820 0.0820 0.0440 0.0440 0.0435 0.1185 0.1167
72 meanbias 0.0277 0.0277 0.0138 0.0138 0.0171 -0.1105 -0.0973
medianbias  0.0165 0.0165 0.0132 0.0132 0.0167 -0.1136 -0.0975
std err 0.1296 0.1296 0.0647 0.0647 0.0720 0.0628  0.0696
rmse 0.1324 0.1324 0.0661 0.0661 0.0739 0.1271 0.1196
mad 0.0780 0.0780 0.0434 0.0434 0.0487 0.1136 0.1027
B meanbias -0.1099 -0.0085 -0.4851 -0.0046 -0.0050 -0.0264 -0.0201
medianbias -0.1125 -0.0258 -0.4861 -0.0019 -0.0019 -0.0282 -0.0193
std err 0.0615 0.2719 0.0310 0.0753 0.0749 0.0681 0.0736
rmse 0.1259 0.2717 0.4862 0.0753 0.0750 0.0729 0.0762
mad 0.1126  0.1831 0.4861 0.0501 0.0506 0.0488 0.0597
8000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0148 0.0148 0.0109 0.0109 0.0108 -0.1203 -0.1191
medianbias  0.0145 0.0145 0.0110 0.0110 0.0107 -0.1197 -0.1187
std err 0.0642 0.0642 0.0322 0.0322 0.0323 0.0288 0.0292
rmse 0.0658 0.0658 0.0339 0.0339 0.0340 0.1237 0.1226
mad 0.0448 0.0448 0.0227 0.0227 0.0227 0.1197 0.1191
v2 meanbias 0.0163 0.0163 0.0114 0.0114 0.0122 -0.1141 -0.1015
medianbias  0.0113 0.0113 0.0104 0.0104 0.0123 -0.1158 -0.1008
std err 0.0622 0.0622 0.0325 0.0325 0.0374 0.0313 0.0360
rmse 0.0642 0.0642 0.0344 0.0344 0.0393 0.1183 0.1077
mad 0.0394 0.0394 0.0225 0.0225 0.0246 0.1158 0.1017
B meanbias -0.1079  0.0042 -0.4855 -0.0034 -0.0035 -0.0287 -0.0219
medianbias -0.1093  0.0046 -0.4856 -0.0062 -0.0064 -0.0301 -0.0210
std err 0.0292 0.1342 0.0155 0.0380 0.0379 0.0342 0.0348
rmse 0.1118 0.1341 0.4857 0.0381 0.0381 0.0446 0.0411
mad 0.1093 0.0876 0.4856 0.0270 0.0270 0.0326 0.0330
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Table 2. Results from Model B, logistic error term.

2000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLE1 MLE2
v1 meanbias 0.0273  0.0273 0.0958 0.0958 0.1479 -0.0507 -0.0434
medianbias  0.0038  0.0038 0.0911 0.0911 0.1457 -0.0490 -0.0463
std err 0.1411 0.1411 0.0687 0.0687 0.0750 0.0715 0.0710
rmse 0.1436 0.1436 0.1178 0.1178 0.1658 0.0876  0.0832
mad 0.0899 0.0899 0.0913 0.0913 0.1457 0.0716 0.0688
2 meanbias 0.0346 0.0346 0.4746 0.4746 0.1460 0.2644 -0.0434
medianbias  0.0175 0.0175 0.4711 0.4711 0.1428 0.2570 -0.0473
std err 0.1387 0.1387 0.0866 0.0866 0.0879 0.0786  0.0819
rmse 0.1429 0.1429 0.4824 0.4824 0.1703 0.2758 0.0927
mad 0.0795 0.0795 0.4711 0.4711 0.1428 0.2644 0.0749
B meanbias -0.1028 -0.0132 0.0023 -0.0315 -0.0056 0.7587  0.0018
medianbias -0.1031 -0.0146 0.0041 -0.0299 -0.0055 0.7597 -0.0031
std err 0.0605 0.2649 0.0469 0.0673 0.0711 0.0701  0.0572
rmse 0.1192  0.2650 0.0469 0.0743 0.0712 0.7619 0.0572
mad 0.1031  0.1700 0.0317 0.0491 0.0458 0.7587  0.0462
8000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLE1 MLE2
v1 meanbias 0.0129 0.0129 0.0869 0.0869 0.1389 -0.0636 -0.0507
medianbias  0.0098 0.0098 0.0867 0.0867 0.1392 -0.0644 -0.0515
std err 0.0672 0.0672 0.0336 0.0336 0.0363 0.0336 0.0338
rmse 0.0684 0.0684 0.0932 0.0932 0.1435 0.0719 0.0609
mad 0.0454 0.0454 0.0867 0.0867 0.1392 0.0645 0.0532
v2 meanbias 0.0162 0.0162 0.4676 0.4676 0.1382 0.2570 -0.0485
medianbias  0.0129  0.0129 0.4677 0.4677 0.1373 0.2555 -0.0483
std err 0.0668 0.0668 0.0406 0.0406 0.0414 0.0364 0.0373
rmse 0.0687 0.0687 0.4693 0.4693 0.1443 0.2595 0.0612
mad 0.0428 0.0428 0.4677 0.4677 0.1373 0.2570 0.0519
B meanbias -0.1002 -0.0014 0.0036 -0.0293 -0.0043 0.7633 0.0017
medianbias -0.0994 -0.0011 0.0043 -0.0278 -0.0029 0.7624 0.0018
std err 0.0298 0.1386 0.0242 0.0334 0.0353 0.0369 0.0281
rmse 0.1045 0.1385 0.0244 0.0444 0.0355 0.7642 0.0282
mad 0.0994 0.0924 0.0164 0.0296 0.0231 0.7633 0.0227
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Table 3. Results from Model C, logistic error term.

2000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0294 0.0294 -0.0183 -0.0183 0.0129 -0.1635 -0.1365
medianbias  0.0158 0.0158 -0.0191 -0.0191 0.0142 -0.1634 -0.1352
std err 0.1494 0.1494 0.0650 0.0650 0.0668 0.0664 0.0623
rmse 0.1521 0.1521 0.0674 0.0674 0.0679 0.1765 0.1501
mad 0.0880 0.0880 0.0444 0.0444 0.0411 0.1640 0.1371
72 meanbias 0.0354 0.0354 0.2939 0.2939 0.0135 0.1574 -0.1281
medianbias  0.0191 0.0191 0.2888 0.2888 0.0112 0.1556 -0.1298
std err 0.1445 0.1445 0.0768 0.0768 0.0791 0.0723  0.0725
rmse 0.1486 0.1486 0.3038 0.3038 0.0802 0.1732 0.1471
mad 0.0865 0.0865 0.2888 0.2888 0.0533 0.1579 0.1313
B meanbias -0.0910 -0.0235 0.0135 -0.0250 -0.0054 0.7214 -0.0015
medianbias -0.0898 -0.0183 0.0131 -0.0235 -0.0051 0.7200 0.0015
std err 0.0578 0.2851 0.0492 0.0662 0.0706 0.0778  0.0645
rmse 0.1078 0.2858 0.0510 0.0707 0.0708 0.7255 0.0645
mad 0.0903 0.1895 0.0320 0.0459 0.0485 0.7214 0.0510
8000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0162 0.0162 -0.0228 -0.0228 0.0094 -0.1719 -0.1446
medianbias  0.0132  0.0132 -0.0229 -0.0229 0.0080 -0.1722 -0.1451
std err 0.0728 0.0728 0.0334 0.0334 0.0343 0.0335 0.0313
rmse 0.0745 0.0745 0.0404 0.0404 0.0355 0.1751 0.1480
mad 0.0497 0.0497 0.0293 0.0293 0.0234 0.1722 0.1446
v2 meanbias 0.0178 0.0178 0.2930 0.2930 0.0098 0.1524 -0.1371
medianbias  0.0154 0.0154 0.2905 0.2905 0.0100 0.1495 -0.1385
std err 0.0680 0.0680 0.0383 0.0383 0.0389 0.0362 0.0364
rmse 0.0702 0.0702 0.2955 0.2955 0.0401 0.1566 0.1418
mad 0.0462 0.0462 0.2905 0.2905 0.0271 0.1495 0.1371
B meanbias -0.0905 -0.0031 0.0132 -0.0256 -0.0067 0.7230 -0.0008
medianbias -0.0896 0.0022 0.0114 -0.0266 -0.0074 0.7241 -0.0010
std err 0.0283 0.1318 0.0257 0.0327 0.0349 0.0410 0.0306
rmse 0.0948 0.1317 0.0289 0.0415 0.0355 0.7242  0.0306
mad 0.0896 0.0860 0.0186 0.0304 0.0256 0.7241 0.0244
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Table Al. Results from Model A, normal error term.

2000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0255 0.0255 0.0056 0.0056 0.0063 -0.1236 -0.1223
medianbias  0.0177  0.0177 0.0037 0.0037 0.0040 -0.1267 -0.1251
std err 0.1199 0.1199 0.0607 0.0607 0.0608 0.0566 0.0565
rmse 0.1224 0.1224 0.0609 0.0609 0.0611 0.1359 0.1347
mad 0.0798 0.0798 0.0402 0.0402 0.0407 0.1267 0.1232
72 meanbias 0.0276 0.0276 0.0052 0.0052 0.00539 -0.1195 -0.1078
medianbias  0.0186 0.0186 0.0019 0.0019 0.0045 -0.1225 -0.1103
std err 0.1301  0.1301 0.0630 0.0630 0.0748 0.0622 0.0715
rmse 0.1329 0.1329 0.0631 0.0631 0.0749 0.1347 0.1294
mad 0.0865 0.0865 0.0436 0.0436 0.0511 0.1225 0.1130
B meanbias -0.1071 -0.0073 -0.4850 0.0004 0.0005 -0.0289 -0.0203
medianbias -0.1062 -0.0200 -0.4854 0.0054 0.0048 -0.0303 -0.0197
std err 0.0603 0.2750 0.0305 0.0772 0.0774 0.0652 0.0684
rmse 0.1228 0.2748 0.4860 0.0772 0.0774 0.0712 0.0712
mad 0.1062 0.1759 0.4854 0.0509 0.0519 0.0460 0.0568
8000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLEl1 MLE2
v1 meanbias 0.0036  0.0036 -0.0009 -0.0009 -0.0011 -0.1327 -0.1310
medianbias  0.0026  0.0026 -0.0004 0.0004 0.0001 -0.1330 -0.1317
std err 0.0608 0.0608 0.0311 0.0311 0.0310 0.0287 0.0291
rmse 0.0609 0.0609 0.0311 0.0311 0.0310 0.1358 0.1342
mad 0.0435 0.0435 0.0216 0.0216 0.0216 0.1330 0.1310
v2 meanbias 0.0028 0.0028 -0.0024 -0.0024 -0.0031 -0.1293 -0.1172
medianbias  0.0012 0.0012 -0.0006 -0.0006 -0.0042 -0.1294 -0.1162
std err 0.0628 0.0628 0.0314 0.0314 0.0361 0.0311 0.0355
rmse 0.0628 0.0628 0.0315 0.0315 0.0362 0.1330 0.1224
mad 0.0426 0.0426 0.0212 0.0212 0.0247 0.1294 0.1172
B meanbias -0.1069 -0.0021 -0.4845 0.0009 0.0009 -0.0252 -0.0197
medianbias -0.1061 -0.0020 -0.4852 0.0008 0.0010 -0.0261 -0.0197
std err 0.0303 0.1368 0.0162 0.0397 0.0397 0.0352 0.0357
rmse 0.1111 0.1366 0.4848 0.0397 0.0397 0.0433 0.0407
mad 0.1061 0.0883 0.4852 0.0269 0.0275 0.0300 0.0332
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Table A2. Results from Model B, normal error term.

CL/FE KYRI TSEl TSE2 TSE3 MLE1 MLE2

2000 obs.
v1  meanbias 0.0187 0.0187 0.0797 0.0797 0.1307 -0.0697 -0.0603
medianbias  0.0044 0.0044 0.0762 0.0762 0.1272 -0.0749 -0.0634
std err 0.1360 0.1360 0.0650 0.0650 0.0703 0.0649 0.0668
rmse 0.1372 0.1372 0.1028 0.1028 0.1484 0.0952 0.0899
mad 0.0902 0.0902 0.0792 0.0792 0.1272 0.0778 0.0748
Y2 meanbias 0.0253 0.0253 0.4612 0.4612 0.1348 0.2494 -0.0542
medianbias  0.0081 0.0081 0.4552 0.4552 0.1334 0.2476 -0.0574
std err 0.1400 0.1400 0.0811 0.0811 0.0855 0.0744 0.0766
rmse 0.1421 0.1421 0.4683 0.4683 0.1596 0.2602 0.0938
mad 0.0888 0.0888 0.4552 0.4552 0.1334 0.2476 0.0763
[ meanbias -0.0981 0.0072 0.0035 -0.0254 -0.0006 0.7623 0.0054
medianbias -0.0981 0.0059 0.0028 -0.0259 -0.0012 0.7684 0.0063
std err 0.0576 0.2534 0.0489 0.0649 0.0703 0.0730 0.0543
rmse 0.1138 0.2533 0.0490 0.0696 0.0703 0.7658 0.0545
mad 0.0981 0.1644 0.0313 0.0452 0.0472 0.7684 0.0434
8000 obs. CL/FE KYRI TSEl TSE2 TSE3 MLE1 MLE2
~v1 meanbias 0.0075 0.0075 0.0764 0.0764 0.1265 -0.0752 -0.0623
medianbias -0.0003 -0.0003 0.0755 0.0755 0.1254 -0.0746 -0.0609
std err 0.0627 0.0627 0.0320 0.0320 0.0342 0.0320 0.0325
rmse 0.0631 0.0631 0.0828 0.0828 0.1310 0.0817 0.0703
mad 0.0394 0.0394 0.0755 0.0755 0.1254 0.0746 0.0629
Y2 meanbias 0.0088 0.0088 0.4531 0.4531 0.1260 0.2418 -0.0595
medianbias  0.0067 0.0067 0.4519 0.4519 0.1257 0.2420 -0.0590
std err 0.0659 0.0659 0.0371 0.0371 0.0396 0.0339 0.0364
rmse 0.0664 0.0664 0.4546 0.4546 0.1321 0.2442 0.0698
mad 0.0443 0.0443 0.4519 0.4519 0.1257 0.2420 0.0629
[ meanbias -0.1005 0.0085 0.0052 -0.0259 -0.0009 0.7655 0.0035
medianbias -0.0998 0.0147 0.0054 -0.0261 -0.0007 0.7668 0.0025
std err 0.0291  0.1447 0.0240 0.0337 0.0360 0.0390 0.0281
rmse 0.1046 0.1448 0.0246 0.0425 0.0360 0.7665 0.0282
mad 0.0998 0.1001 0.0165 0.0298 0.0253 0.7668 0.0228

30



Table A3. Results from Model C, normal error term.

2000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLE1 MLE2
v1 meanbias 0.0297 0.0297 -0.0288 -0.0288 0.0018 -0.1782 -0.1465
medianbias  0.0107 0.0107 -0.0306 -0.0306 -0.0004 -0.1806 -0.1490
std err 0.1439 0.1439 0.0630 0.0630 0.0669 0.0679 0.0632
rmse 0.1468 0.1468 0.0692 0.0692 0.0668 0.1907 0.1595
mad 0.0913 0.0913 0.0473 0.0473 0.0456 0.1806 0.1476
72 meanbias 0.0370 0.0370  0.2878  0.2878 0.0059 0.1481 -0.1358
medianbias  0.0257 0.0257 0.2871 0.2871 0.0025 0.1427 -0.1427
std err 0.1450 0.1450 0.0730  0.0730  0.0769  0.0709  0.0730
rmse 0.1495 0.1495 0.2969 0.2969 0.0771 0.1641 0.1541
mad 0.0933 0.0933 0.2871 0.2871 0.0507  0.1427  0.1389
B meanbias -0.0876 0.0088 0.0140 -0.0208 -0.0015 0.7222  0.0007
medianbias -0.0878 0.0000 0.0118 -0.0173 0.0008 0.7227  0.0027
std err 0.0573 0.2726  0.0488 0.0660 0.0705 0.0806 0.0603
rmse 0.1047 0.2725 0.0507 0.0691 0.0705 0.7266  0.0603
mad 0.0878 0.1837 0.0338 0.0445 0.0480 0.7227  0.0479
8000 obs. CL/FE KYRI TSE1l TSE2 TSE3 MLE1 MLE2
v1 meanbias 0.0109 0.0109 -0.0327 -0.0327 -0.0018 -0.1833 -0.1543
medianbias  0.0066 0.0066 -0.0331 -0.0331 -0.0028 -0.1830 -0.1555
std err 0.0672 0.0672 0.0320 0.0320 0.0338 0.0324 0.0304
rmse 0.0680 0.0680 0.0457 0.0457 0.0338 0.1861 0.1573
mad 0.0441 0.0441 0.0351 0.0351 0.0245 0.1830 0.1543
v2 meanbias 0.0113 0.0113 0.2804 0.2804 -0.0024 0.1376 -0.1477
medianbias  0.0113 0.0113 0.2789 0.2789 -0.0031 0.1363 -0.1479
std err 0.0676 0.0676 0.0355 0.0355 0.0359 0.0335 0.0352
rmse 0.0685 0.0685 0.2826  0.2826  0.0360 0.1416  0.1518
mad 0.0451 0.0451 0.2789 0.2789 0.0249 0.1363 0.1477
B meanbias -0.0881 0.0065 0.0149 -0.0204 -0.0014 0.7244 0.0015
medianbias -0.0897 0.0096 0.0157 -0.0200 -0.0018 0.7234 0.0016
std err 0.0295 0.1380 0.0261 0.0345 0.0368 0.0406 0.0314
rmse 0.0929 0.1380 0.0301 0.0401 0.0368 0.7255 0.0314
mad 0.0897 0.0940 0.0200 0.0278 0.0251 0.7234  0.0254
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Table A4. Results from Model C estimated with MLE2, for various num-
bers of support points in the selection equation.
2000 obs. 2x2 support 3x2 support 4x2 support

points points points

v1 meanbias -0.1365 -0.0351 -0.0176
medianbias -0.1352 -0.0391 -0.0249
std err 0.0623 0.0848 0.0904
rmse 0.1501 0.0917 0.0920
mad 0.1371 0.0744 0.0505

2 meanbias -0.1281 -0.0329 -0.0193
medianbias -0.1298 -0.0334 -0.0241
std err 0.0725 0.0956 0.0994
rmse 0.1471 0.1010 0.1013
mad 0.1313 0.0816 0.0808

# meanbias -0.0015 0.0043 0.0050
medianbias 0.0015 0.0051 0.0061
std err 0.0645 0.0651 0.0645
rmse 0.0645 0.0652 0.0647
mad 0.0510 0.0518 0.0505
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