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Abstract

Recent literature shows that embedding fractionally integrated time series models with spectral

poles at the long-run and/or seasonal frequencies in autoregressive frameworks leads to estimators

and test statistics with nonstandard limiting distributions. However, we demonstrate that when

embedding such models in a general I(d) framework the resulting estimators and tests regain de-

sirable properties from standard statistical analysis. We show the existence of a local time domain

maximum likelihood estimator and its asymptotic normality, and under Gaussianity asymptotic

efficiency. The Wald, likelihood ratio, and Lagrange multiplier tests are asymptotically equivalent

and chi-squared distributed under local alternatives. With i.i.d. Gaussian errors and a scalar pa-

rameter, we show that the tests in addition achieve the Gaussian power envelope of all invariant

unbiased tests, i.e. they are uniformly most powerful invariant unbiased. In a Monte Carlo study

we document the finite sample superiority of the likelihood ratio test.
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1 Introduction

In this paper we consider likelihood based estimation and testing within a wide class of possibly nonsta-

tionary models, including but not limited to the seasonal fractionally integrated ARMA model. In such

models, estimators and test statistics are often found to have nonstandard distributional properties. In

contrast, we show that by adapting time domain procedures and embedding the models of interest in a

general I(d) framework, instead of the autoregressive alternatives typically considered in the literature,

estimators and test statistics regain the standard distributions and optimality properties well known

from simpler models.

Several versions of the Wald (W), likelihood ratio (LR), and score or Lagrange multiplier (LM) testing

procedures have appeared in the literature on nonstationary models, e.g. when conducting Dickey &

Fuller (1979) type tests for a unit root (I(1) against I(0)) or testing stationarity (I(0) against I(1)).

For a comprehensive recent survey, see Phillips & Xiao (1998). However, these tests have nonstandard

limiting distributions that have to be simulated on a case-by-case basis. Some advances have been made

recently towards achieving efficient tests. Locally optimal and point optimal tests have been derived for

the stationarity hypothesis (e.g. Saikkonen & Luukkonen (1993a, b)) and for the unit root hypothesis

(e.g. Elliott, Rothenberg & Stock (1996)). However, these tests still have nonstandard distributions and

no uniformity results apply.

What is needed is a class of processes that is more general than the unit root I(1) models and

admits the testing of smooth hypotheses in the sense that the properties of the process do not differ

substantially if the null hypothesis is changed slightly. One such class is that of fractionally integrated

processes. Thus, a process is I (d) (fractionally integrated of order d) if its d’th difference is I (0), i.e.

yt ∈ I (d) if

(1− L)d yt = etI (t ≥ 1) , (1)

where I (·) denotes the indicator function and et ∈ I (0). A process is I (0) if it is covariance stationary

and its spectrum is bounded and bounded away from zero at any frequency. Testing H0 : d = 1 in (1)

may be seen as an alternative to unit root testing. We show that in a fractional integration framework

much more desirable properties obtain than in autoregressive (and possibly seasonal and fractional) unit

root models where test statistics have nonstandard distributions, see e.g. Phillips (1987), Hylleberg,

Engle, Granger & Yoo (1990), or Sowell (1990).

Notable exceptions to the nonstandard tests are Robinson (1994) and Tanaka (1999), extending

earlier work by Robinson (1991) and Agiakloglou & Newbold (1994), and it is the Robinson (1994)

model that we consider further in this paper. Robinson (1994) derived the LM test statistic (of (16) and
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(23) below) in the frequency domain, claiming it was more suitable for the analysis, and showed that it

is asymptotically chi-squared distributed and locally most powerful under Gaussianity. In a simulation

study it was found that when the data generating process (DGP) was of the fractional type the finite

sample performance of the new test was better than that of existing tests, the opposite being the case

when the DGP was of an autoregressive type. Tanaka (1999) considered the fractional unit root model in

(1), and showed the existence of a local time domain maximum likelihood estimator (MLE) and derived

the LM and Wald tests. Tanaka (1999) showed that the estimator is normal and, under invariance

conditions, that the tests are locally most powerful and indeed uniformly most powerful against one-

sided alternatives. Simulations showed that in finite samples the time domain tests were superior to

Robinson’s (1994) frequency domain LM test with respect to both size and power. The estimator was

also shown to be quite close to its asymptotic distribution, except in the presence of errors with strong

positive serial correlation.

The main contributions of the present paper over the previous work of Robinson (1994) are sum-

marized in the following five points. (i) All the results are obtained in the time domain, which is most

frequently employed by practitioners, whereas Robinson (1994) favors a frequency domain approach.

The derivation of results and statement of assumptions in the time domain requires different methods

than in the frequency domain. Another reason to consider the time domain is that sometimes the re-

sulting tests are more easily applied than their frequency domain counterparts, and this is indeed the

case in the present framework. (ii) It is of interest to examine the estimation of the model by maximum

likelihood as the estimator is expected to have good properties. Indeed, it is shown that standard as-

ymptotics as well as efficiency applies, which is a great advantage in applied work. (iii) Where Robinson

(1994) only considered the LM test, we also consider the Wald and LR tests and show that standard

asymptotics apply also to the test statistics. (iv) For the submodels with a scalar parameter and i.i.d.

Gaussian errors, the LM, LR, and Wald tests are shown to be uniformly most powerful among all invari-

ant and unbiased tests. (v) In a simulation study based on the well known fractional unit root model

the LR test outperforms the LM and Wald tests with respect to both size and power.

Contrary to the present paper, Tanaka (1999) considers only a special case of the full model in

Robinson (1994), namely the fractional unit root model, and conducts an analysis similar to ours. We

consider the full model.

The paper proceeds as follows. Next, we set up the model and discuss important special cases.

In section 3 we consider inference with martingale difference errors, and derive the properties of the

estimator and tests, whereas in section 4 we allow serially correlated errors. Section 5 presents the

results of our Monte Carlo experiments and section 6 concludes. All proofs are collected in the appendix.
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2 The Model

Suppose we observe the real-valued stochastic process {yt, t = 1, 2, ..., n} generated by the linear model

yt = β0xt + ut, (2)

where {xt} is a k× 1 purely deterministic component and {ut} is an unobserved error component. Two
leading cases for the deterministic terms are xt = 1 and xt = (1, t)

0 which yields the models yt = β0+ut

and yt = β0 + β1t + ut, respectively, but other terms like seasonal dummies are also allowed for, c.f.

Assumption 2 below. {ut} is assumed have the generating mechanism

φ (L, θ)ut = etI (t ≥ 1) , (3)

Here, {et} is a stationary and invertible process with only weakly dependent errors (i.e. no long memory
or nonstationarity) and φ (z, θ) is a function of the complex variate z and the p × 1 parameter vector
θ ∈ Θ ⊆ Rp. The chosen parametrization is such that θ = 0 is the true value, without loss of generality,
and this belongs to the interior of Θ.

The model is further required to satisfy the following assumptions.

Assumption 1 The function φ (z, θ) is such that (i) φ (0, θ) = 1 and φ (z, θ) = φ (z) if and only if

θ = 0, where φ (z) = φ (z, θ)|θ=0. (ii) φ (z, θ) is twice continuously differentiable in θ in an open convex

set Θ∗ containing Θ and

0 < det (Ψ) <∞, (4)

where Ψ =
P∞

j=1 ζjζ
0
j and ζj is the coefficient on zj in the expansion of ζ (z) = ∂

∂θ lnφ (z, θ)
¯̄
θ=0

in

powers of z. (iii) The function λ (z, θ) = (φ (z, θ) /φ (z)) ∂
∂θ lnφ (z, θ) is continuous in θ at θ = 0 for

almost all z such that |z| = 1, and, letting λj (θ) be the coefficient on zj in the expansion of λ (z, θ) in

powers of z, in a neighborhood N of size O(n−1/2) of θ = 0, supθ∈N
P∞

j=1 kλj (θ)k2 <∞.

Assumption 2 The k × 1 vector of regressors xt is non-stochastic and such that Dn =
Pn

t=1 x̃tx̃
0
t is

positive definite for n sufficiently large, where x̃t = φ (L)xt.

Assumption 3 The innovation sequence in (3), {et, t = 0,±1,±2, ...}, satisfies E (et |Ft−1 ) = 0 a.s.

and E
¡
e2t |Ft−1

¢
= σ2 a.s. for all t ≥ 1, where Ft = σ ({es, s ≤ t}) is an increasing sequence of

σ-algebrae, and {e2t , t = 0,±1,±2, ...} is uniformly integrable.

Some comments on the assumptions are in order. Assumption 1 is a time domain equivalent of the

assumptions made by Robinson (1994) on the parametric model, where (i) ensures identifiability of θ
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and (ii)-(iii) are smoothness conditions on the parametric model. The unit root process nested in an

autoregressive model is (3) with φ (z, θ) = 1− (1 + θ) z, but in this case the right hand side inequality

of (4) is not satisfied. Differentiability to any order is easily verified for all the examples below.

Assumption 2 is a very mild multicollinearity condition on the regressors. It does not even require

the smallest eigenvalue of Dn to tend to infinity as n→∞, which is usually required in linear regression
models to get consistent estimates of β.

Finally, Assumption 3 ensures that the innovations are such that {et,Ft} and {e2t − σ2,Ft} are
both uniformly integrable martingale difference sequences. This is more general than i.i.d. and in

practice not much more restrictive than uncorrelatedness. An implication of this assumption is that

n−1
Pn

t=1 e
2
t → σ2 in probability, e.g. Hall & Heyde (1980, Theorem 2.22), which we will use later.

Assumption 3 can be replaced by any other assumption that gives rise to a weak LLN for {e2t} and a CLT
in Theorem 3.1 below. Thus, we could presumably relax Assumption 3 to accommodate ARCH/GARCH

type errors (as suggested by an anonymous referee) which are often found in financial data where our

methods are especially applicable due to the large amount of data available, see also Ling & Li (1997).

A very general model considered by Robinson (1994), and satisfying the above assumptions, is

φ (z, θ) = (1− z)d1+θi(1) (1 + z)d2+θi(2)
hY

j=3

¡
1− 2 cosλjz + z2

¢dj+θi(j) , (5)

where for each j, θi(j) = θl for some l, and for each l there is at least one j such that θi(j) = θl;

i.e. there are up to h singularities in the spectral density of ut and p ≤ h. That is, we do not

require that there is a θj for each dj . For example, the quarterly I (1) hypothesis is given by the

functions φ (z, θ) = (1 − z4)θ, where we use the same θ for each of the h = 3 spectral singularities, or

φ (z, θ) = (1− z)1+θ1 (1 + z)1+θ2 (1 + z2)1+θ3 , where the integration orders are allowed to be different

at different frequencies under the alternative.

The case considered by Tanaka (1999) is the fractional unit root model defined by

φ (z, θ) = (1− z)d+θ . (6)

In this model ζ (z) = ln (1− z) and ζj = −j−1 such that Ψ = π2/6. The weak dependence, unit root,

and I (2) models nested in a fractional integration framework correspond to (6) with d = 0, d = 1, and

d = 2, respectively.

Another important special case of the general model (5) is the cyclical I (d) or generalized fractional

ARIMA model by Gray, Zhang & Woodward (1989), and recently advocated by Chung (1996), Bierens

(2001), and Gil-Alana (2001). This model is generated by the function

φ (z, θ) =
¡
1− 2 cosλz + z2

¢d+θ
, (7)

5



where λ is the cyclic frequency of interest. Then d = 1 and θ = 0 corresponds to the cyclic/seasonal

unit root at frequency λ.

Finally, suppose the m-vector xt is I (d) and fractionally cointegrated and the cointegrating vector

is known a priori from economic theory such that we can treat ut = α0xt as an observed time series.

Then the hypothesis H0 : θ = 0 in (6) corresponds to the null of no fractional cointegration, and

with θ0 = d − θ the hypothesis H 0
0 : θ

0 = 0 corresponds to the null of fractional cointegration with

I (0) equilibrium errors. A well known example is the purchasing power parity. Let xt consist of the

time t domestic log-price, foreign log-price, and the log exchange rate, respectively, and suppose xt is

fractionally integrated of order d. Then the purchasing power parity predicts that α = (−1, 1, 1)0 should
be a cointegrating vector and that θ0 = 0. Imposing α = (−1, 1, 1)0 on the data, the last implication can
be tested as in (6) with d = 0.

The above examples illustrate the generality of our approach. To see why standard asymptotics

apply, we briefly examine the data generating mechanism in detail, see also the discussion by Ling &

Li (2001, pp. 739-741). When {ut} is generated by truncation as in (3), DGM2 in the terminology of
Ling & Li (2001), it depends only on the shocks starting at time t = 1, and not on shocks starting in

the infinite past as would otherwise be the case. Under DGM2, Ling & Li (2001) consider the fractional

unit root model (6) assuming that d ∈ (−1/2, 1/2), the stationary region, and allowing unit roots
in the autoregressive polynomial a (z). Standard asymptotics is obtained for the fractional difference

parameter, but the estimates of the unit roots have nonstandard Dickey-Fuller type distributions. On the

other hand, Robinson (1994) and Tanaka (1999) capture the unit root through the fractional difference

parameter d and assume that a (z) is stationary. We follow this practice in the present paper. Since no

unit root must be estimated in a (z) we avoid the nonsmooth behavior of the model near the unit roots,

and this admits standard asymptotics in our setting.

In the subsequent analysis, we first consider the case where {et} is a martingale difference sequence,
and then we treat the full model in which {et} is allowed to follow an ARMA process.

3 Inference with Martingale Difference Errors

The Gaussian log-likelihood function of (2) and (3) is

L
¡
β, σ2, θ

¢
= −n

2
ln
¡
σ2
¢− 1

2σ2

nX
t=1

¡
φ (L, θ)

¡
yt − β0xt

¢¢2
(8)

apart from constant terms. The asymptotic results derived later only impose Assumption 3 on the error

process. Gaussianity is not necessary for most of our results, and is used only to choose a likelihood
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function and to show efficiency.

Since only θ is of interest we concentrate out the nuisance parameter (β0, σ2). This does not influence

the results, and in fact θ̂ is asymptotically uncorrelated with (β̂
0
, σ̂2), see the formula for the information

matrix (21) below. The concentrated likelihood is

l (θ) = L
¡
β (θ) , σ2 (θ) , θ

¢
= −n

2
ln
¡
σ2 (θ)

¢
, (9)

where

β (θ) =
£
(φ (L, θ)X)

0
(φ (L, θ)X)

¤−1
(φ (L, θ)X)

0
φ (L, θ)Y, (10)

σ2 (θ) =
1

n

nX
t=1

¡
φ (L, θ)

¡
yt − β (θ)0 xt

¢¢2
, (11)

and capital letters denote the appropriate matrices of observations, e.g. X is the n × k matrix with

x0t as the t’th row. Here, β (θ) and σ2 (θ) are functions of θ. They define the estimator (β̂
0
, σ̂2) =

(β(θ̂n)
0, σ2(θ̂n)) of (β0, σ2). We shall also need (β̃

0
, σ̃2) = (β (0)

0
, σ2 (0)) which is the estimator of

(β0, σ2) under the true value of θ. Note that β (θ) is just the ordinary least squares estimator in a

regression of φ (L, θ) yt on φ (L, θ)xt, and σ2 (θ) is the usual maximum likelihood variance estimator for

the residual process φ (L, θ) (yt − β(θ)0xt).

Note that the estimate of β need not be consistent in our model. One such case occurs when xt = 1

in the fractional unit root model (6) with d = 1. Then β̃ = β0 + e1, so β̃ is inconsistent, but this has

no influence on inference based on ũt = ut + (β̃ − β0), see Robinson (1994) and the appendix. In fact,

what we need in the proofs is the relation

E

°°°°³β̃ − β
´0
D1/2
n

°°°° = O (1) , (12)

which follows under Assumption 2 by definition of β̃.

3.1 Estimation

In this section we show the existence of a local MLE and derive the limiting distribution theory following

Sargan & Bhargava (1983) and Tanaka (1999). In particular, we consider the conditional sum of squared

residuals objective function (9). Hosoya (1997) considers a rather complicated exact frequency domain

maximum likelihood procedure for fractional ARIMA models.

In the following we find it convenient to consider maximizing

g (θ) = l (θ)− l (0) = −n
2
ln

"
1− 1

n

Pn
t=1 (φ (L) ũt)

2 −Pn
t=1 (φ (L, θ) ût)

2

1
n

Pn
t=1 (φ (L) ũt)

2

#
, (13)
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where ũt = yt − β̃
0
xt and ût = yt − β̂

0
xt. Assume first that we are in a neighborhood of the true value,

i.e. that there exists a δ such that θ = δ/
√
n (the existence of δ will be proven shortly). Then we can

show the following.

Theorem 3.1 Let Assumptions 1-3 be satisfied and let g (θ) be given by (13). Then, under θ = δ/
√
n,

(i) g (θ)→d W (δ) =
δ0

2

³
2Ψ1/2Z −Ψδ

´
,

(ii)
∂g (θ)

∂δ
→d

∂W (δ)

∂δ
= Ψ1/2Z −Ψδ,

(iii)
∂2g (θ)

∂δ∂δ0
→p −Ψ,

where Z is a p-dimensional standard normal random vector.

Next, we prove the existence of a local MLE θ̂n of θ0 = 0 such that
√
nθ̂n = δ̂ = Op (1) following

Sargan & Bhargava (1983) and Tanaka (1999). Let ι be a p× 1 direction vector, i.e. satisfying kιk = 1,
where k·k is the Euclidean norm, and let δ = kδk ι. Generalizing the scalar approach by Sargan &
Bhargava (1983) and Tanaka (1999), it suffices to show that

P

µ
ι0
∂g (δ/

√
n)

∂δ
≥ 0

¶
≤ ε (14)

for any direction vector ι, ε > 0, and n ≥ n0 (n0 fixed), and for some kδk > 0. Note that ι0∂g (δ/√n) /∂δ
is the directional derivative of g at δ/

√
n, i.e. the rate of change of g at δ/

√
n in the direction ι.

Thus, for all direction vectors ι, moving some distance kδk in the direction ι from the true value,

the directional derivative of g in the same direction ι should be negative for sufficiently large n. In the

one-dimensional case ι = ±1 and (14) reduces to the corresponding conditions of Sargan & Bhargava

(1983) and Tanaka (1999). It follows from Theorem 3.1 that

P

µ
ι0
∂g (δ/

√
n)

∂δ
≥ 0

¶
→ P

µ
ι0
∂W (δ)

∂δ
≥ 0

¶
= P

µ
ι0
∂W (δ)

∂δ
−Eι0

∂W (δ)

∂δ
≥ −Eι0 ∂W (δ)

∂δ

¶

≤
V ar

³
ι0 ∂W (δ)

∂δ

´
³
Eι0 ∂W (δ)

∂δ

´2
=

1

ι0Ψι kδk2 ,

which can be made arbitrarily small by selecting kδk large. Thus, (14) holds by appropriate choices of
kδk and n0, and the existence of the local MLE θ̂n is ensured.
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Theorem 3.2 Under Assumptions 1-3, there exists a local maximizer θ̂n of the concentrated likelihood

(9), that satisfies, as n→∞,
√
nθ̂n →d N

¡
0,Ψ−1

¢
, (15)

and under the additional assumption of Gaussianity of {et}, θ̂n is asymptotically efficient in the sense
that its asymptotic variance attains the Cramér-Rao lower bound.

This asymptotic normality result stands in sharp contrast e.g. to the nonstandard Dickey-Fuller

distribution. In that case, n−1 ∂l (θ) /∂θ|θ=0 ⇒ 1
2 (W (1)− 1), n−2∂2l (θ) /∂θ∂θ0 ⇒ R 1

0
W 2 (t) dt, and

thus nθ̂ ⇒ 1
2 (W (1)− 1) / R 1

0
W 2 (t) dt, where W (t) is a standard Brownian Motion and ⇒ is weak

convergence, see e.g. Phillips (1987) or Phillips & Xiao (1998). Furthermore, if a constant term is

included in the Dickey-Fuller model the distribution changes. This is not the case in our model, where

the limiting distribution is independent of the nuisance parameter (β0, σ2).

The additional assumption of Gaussianity allows a strengthening of the results. Thus, θ̂n is asymp-

totically the best estimator in the class of all
√
n-consistent and asymptotically normal estimators. This

result also contrasts those usually found in the theory of nonstationary time series.

The simple asymptotic distribution in Theorem 3.2 above makes it easy to construct p-dimensional

confidence ellipsoids for θ or conduct Wald type tests of hypotheses on θ. This is examined in detail in

the next section.

3.2 Hypothesis Testing

Suppose we wish to test the hypothesis

H0 : θ = θ0 = 0, (16)

where θ0 is set to zero since otherwise we would get trivial asymptotic distributions under the null.

Robinson (1994) considered the LM test in a frequency domain framework. We now consider all the

classical (Wald, LR, LM) tests, see Engle (1984), in the time domain.

From Theorem 3.2, the Wald test statistic is

W = nθ̂
0
nΨθ̂n. (17)

We denote by a tilde (~) an estimator under the null hypothesis. The (quasi) likelihood ratio test

statistic is given by

LR = 2
³
L(β̂, σ̂2, θ̂n)− L(β̃, σ̃2, 0)

´
= n ln

µ
σ̃2

σ̂2

¶
, (18)
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see equation (9). Finally, to derive the Lagrange multiplier test statistic

LM =
∂L (η)

∂η0

·
E0

µ
∂L (η)

∂η

∂L (η)

∂η0

¶¸−1
∂L (η)

∂η

¯̄̄̄
¯
β=β̃,σ2=σ̃2,θ=0

, (19)

where η = (β0, σ2, θ0)0, we note that

∂L
¡
β, σ2, θ

¢
∂θ

¯̄̄̄
¯
β=β̃,σ2=σ̃2,θ=0

= σ̃−2
nX
t=1

t−1X
j=1

ζj ẽt−j ẽt = nÃn, (20)

while the other two partial derivatives vanish. Here, Ãn =
Pn−1

j=1 ζj ρ̃ (j) and ρ̃ (j) is the j’th sample au-

tocorrelation of ẽt = φ (L) (yt−β̃0xt). The diagonal block of the Fisher information matrix corresponding
to θ is

1

σ4

nX
t=1

nX
s=1

t−1X
j=1

s−1X
i=1

ζjζ
0
iE0 (et−jeteses−i) =

1

σ4

nX
t=1

t−1X
j=1

ζjζ
0
jE
¡
e2t−jE

¡
e2t
¯̄Ft−1¢¢

= n
n−1X
j=1

µ
1− j

n

¶
ζjζ

0
j ,

so the Fisher information matrix in (19) evaluated at β = β̃, σ2 = σ̃2, θ = 0 is n times
σ−2Dn 0 0

0 1
2σ
−4 0

0 0 Ψn

 , (21)

which is invertible for n sufficiently large by (4) and Assumption 2. The diagonal blocks corresponding to

β and σ2 follow using that {et,Ft} and {e2t −σ2,Ft} are martingale differences, respectively. In Tanaka
(1999), ζj = j−1 and Ψ = π2/6. We allow for more general weights to the autocorrelations in Ãn,

corresponding to the more flexible model represented by the function φ (z, θ). Ψn =
Pn−1

j=1

¡
1− j

n

¢
ζjζ

0
j

is a truncated version of Ψ, which is asymptotically equivalent to Ψ. Thus, the LM test statistic is

LM = nÃ0nΨ
−1Ãn. (22)

In the fractional unit root model (6) where ζj = j−1 we have Ψ100 = 1.5831, Ψ500 = 1.6294 and

Ψ = Ψ∞ = π2/6 = 1.6449.

We derive the distribution of the test statistics under the more general assumption of local (Pitman)

alternatives given by the sequence

H1 : θ = θ1n = δ/
√
n (23)

with δ a fixed p× 1 vector.
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Theorem 3.3 Let Assumptions 1-3 be satisfied and let T denote the W, LR, or LM test statistics given

by (17), (18), and (22). Then, under (23), it holds that

T →d χ
2
p

¡
δ0Ψδ

¢
as n → ∞. The three tests are consistent and asymptotically equivalent, i.e. if T1 and T2 are any two

of the statistics then T1 − T2 → 0 in probability. Under the additional assumption of Gaussianity they

are locally most powerful (LMP).

Usually in nonstandard tests such as the Dickey-Fuller test, the three test statistics are not equivalent.

From the proof we note that the equivalence of the tests depends crucially on the information matrix

equality, which holds asymptotically in our model, but does not hold when the unit root is nested in an

autoregressive alternative.

Thus, we find that unusually simple asymptotic tests can be performed in this model using the chi-

squared distribution. Also, we can easily calculate the asymptotic local power of the three test statistics,

which we state as a corollary.

Corollary 3.1 Under the conditions of Theorem 3.3 it holds that, under θ = δ/
√
n,

P
¡
T > χ2p,1−α

¢→ 1− Fδ0Ψδ
¡
χ2p,1−α

¢
(24)

as n → ∞, where χ2p,1−α is the 100 (1− α)% point of the χ2p distribution and Fδ0Ψδ is the distribution

function of the χ2p
¡
δ0Ψδ

¢
distribution.

Using Corollary 3.1 we can compare the finite sample performance of the tests with the approximation

offered by asymptotic theory, and we shall discuss this in section 5.

Next, we show that even stronger results can be obtained in a subclass of models.

3.3 Uniformly Most Powerful Tests

While the general theory above applies for multidimensional θ, even stronger results obtain in the

special case of scalar θ, e.g. (6) or (7), which we now consider briefly. Following the reasoning in Elliott

et al. (1996) and Tanaka (1999), we derive the power envelope for the two-sided testing problems under

invariance and unbiasedness conditions and show that this two-sided power envelope is equal to (24), i.e.

that this power is achieved by our tests. The unbiasedness condition is new since Elliott et al. (1996)

and Tanaka (1999) only considered one-sided tests and thus did not need unbiasedness.
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In particular, we assume that the errors are Gaussian and that the model in (3) is characterized by

a scalar parameter θ. This rules out the general model in (5), but still applies to most of the models in

section 2. The testing problem is invariant to any transformation of the type y → ay +Xb (a > 0 and

b ∈ Rk), or in the parameter space, ¡
θ, β, σ2

¢→ ¡
θ, b+ aβ, a2σ2

¢
. (25)

Thus, we shall restrict attention to the family of tests that are invariant to the group of transformations

in (25), see Lehmann (1986, chapter 6).

Assume that the data generating process is given by (2)−(3), with true parameter value θ0n = c/
√
n

for some fixed c. Now consider testing the hypothesisH0 : θ = 0 against the sequence of local alternatives

H1 : θ1n = δ/
√
n for some fixed δ. This is a test of a simple null vs. a simple alternative with nuisance

parameter
¡
β0, σ2

¢
. Then we can apply invariance arguments to

¡
β0, σ2

¢
and the Neyman-Pearson

Lemma tells us, e.g. Lehmann (1986, p. 338), that the test that rejects the null when

Mn = n

Pn
t=1 ẽ

2
tn −

Pn
t=1 ê

2
tnPn

t=1 ẽ
2
tn

(26)

becomes large is most powerful invariant (MPI) with respect to the group of transformations (25). As in

the previous section, ẽtn and êtn are residuals under H0 and H1 respectively. The next theorem derives

the limiting distribution of Mn under local alternatives.

Theorem 3.4 Let Mn denote the MPI test statistic (26), but with θ0n = c/
√
n (c a fixed scalar) instead

of θ0 = 0. Let Assumptions 1-2 be satisfied and suppose the error process is i.i.d. Gaussian. Then,

under the sequence of local alternatives θ1n = δ/
√
n (δ a fixed scalar), it holds that

Mn →d M (c, δ) = 2δ
√
ΨZ + δ (2c− δ)Ψ

as n→∞, where Z is a standard normal variable.

Thus, invariance arguments have reduced the testing problem to the consideration of the statistic

Mn, and the power envelope of all invariant tests is the power of M (δ, δ). Obviously, the results in

Tanaka (1999) apply with little change to the corresponding one-sided testing problem in our setup and

this power envelope is achieved by one-sided versions of our tests. However, since we consider mainly the

two-sided testing problem, we cannot hope to achieve the same power envelope, and thus the following

results differ from those in Tanaka (1999), where only one-sided hypotheses are considered.

To find a test statistic that applies against two-sided alternatives we invoke the principle of un-

biasedness, see Lehmann (1986, chapter 4), to construct a MPI unbiased (MPIU) test. Unbiasedness

12



requires that the power of the test never falls below the nominal significance level for any point in the

alternative. Since for varying c the family of distributions M (c, δ) is normal, it satisfies the require-

ment that it be strictly totally positive of order 3 (STP3, see Lehmann (1986, p. 119)), and hence the

power envelope of all invariant and unbiased tests of H0 : θ = 0 against H1 : θ1n = δ/
√
n is given

by Π (δ) = 1 − P (C1,α (δ) < M (δ, δ) < C2,α (δ)) (Lehmann (1986, p. 303)), where the constants are

determined by

P (C1,α (δ) < M (0, δ) < C2,α (δ)) = 1− α (27)
∂P (C1,α (δ) < M (c, δ) < C2,α (δ))

∂c

¯̄̄̄
c=0

= 0. (28)

A test whose power attains the power envelope for all points δ is UMP invariant unbiased. The

following theorem shows that the power envelope of all invariant and unbiased tests is given by (24),

i.e. that this power is achieved by our tests.

Theorem 3.5 Let Assumptions 1-2 be satisfied and suppose the error process is i.i.d. Gaussian. Then

the asymptotic Gaussian power envelope of all invariant (with respect to (25)) and unbiased tests of

H0 : θ = 0 against H1 : θ1n = δ/
√
n (δ a fixed scalar) is given by (24). Thus, the W, LR, and LM tests

are uniformly most powerful among all invariant and unbiased tests (UMPIU).

This result is in stark contrast to the results of Saikkonen & Luukkonen (1993a, b) and Elliott et al.

(1996), among others, whose tests are only point optimal invariant, i.e. tests that have maximal power

against a single pre-specified point in the alternative. Our criterion is against all possible alternatives.

Furthermore, Theorem 3.5 also applies to the test statistic in Robinson (1994), and thus generalizes

his result, too, since he only shows that his test is LMP.

4 Inference with Serially Correlated Errors

Now we extend the basic model to allow for weakly dependent (ARMA) errors. In particular, we work

with the following assumption.

Assumption 4 {et} is generated by an ARMA model of the form

a (L) et = b (L) εt, (29)

where {εt} satisfies Assumption 3. Here a (z) and b (z) are finite polynomials without common roots

and all roots strictly outside the unit circle. The coefficients in the autoregressive and moving average

polynomials are collected in the q × 1 parameter vector ψ.
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This assumption follows Tanaka (1999), who in addition assumes that {εt} is i.i.d. Thus, we offer
more generality in this respect too, because of our martingale difference assumption on {εt}.
Collect the parameters of the dynamic part of the model in the vector γ =

¡
θ0, ψ0

¢0
with true value

γ0 =
¡
00, ψ00

¢0
and let c (z, ψ) = a (z) b−1 (z). Analogously to ζ (z, θ), define ξ (z, γ) = ∂ ln (φ (z, θ) c (z, ψ)) /∂γ

and ξ (z) = ∂ ln (φ (z, θ) c (z, ψ)) /∂γ|γ=γ0 =
P∞

j=1 ξjz
j . Note that ξj = (ζ

0
j , c

0
j)
0 with ζj defined as be-

fore and cj defined as the coefficient on zj in the expansion of ∂ ln c (z, ψ) ∂ψ|ψ=ψ0 in powers of z. As
in Assumption 1(ii) we define

Ξ =
∞X
j=1

ξjξ
0
j =

 Ψ κ0

κ Φ

 (30)

with κ =
P∞

j=1 cjζ
0
j and Φ =

P∞
j=1 cjc

0
j .

It is easily shown that Φ is the Fisher information for ψ under Assumption 4, e.g. if {et} is an AR(1)
process with coefficient a then cj = −aj−1 and Φ = (1−a2)−1. Finally, corresponding to (4), we assume
that

0 < det
¡
Ψ− κ0Φ−1κ

¢
<∞, (31)

which in particular implies that Ξ is non-singular.

The log-likelihood function in the case of serially correlated errors is, except for constants,

L
¡
β, σ2, γ

¢
= −n

2
ln
¡
σ2
¢− 1

2σ2

nX
t=1

¡
φ (L, θ) c (L,ψ)

¡
yt − β0xt

¢¢2
, (32)

to be compared with (8). The concentrated likelihood function for γ = (θ0, ψ0)0 becomes

l (γ) = −n
2
ln
¡
σ2 (γ)

¢
(33)

except for constants, where

β (γ) =
£
(φ (L, θ) c (L,ψ)X)

0
(φ (L, θ) c (L,ψ)X)

¤−1
(φ (L, θ) c (L,ψ)X)

0
φ (L, θ) c (L,ψ)Y, (34)

σ2 (γ) =
1

n

nX
t=1

¡
φ (L, θ) c (L,ψ) (yt − β (γ)0 xt)

¢2
, (35)

and (β̂
0
, σ̂2) and (β̃

0
, σ̃2) are now defined in terms of these functions. Corresponding to (13) we consider

the function

g (γ) = l (γ)− l (γ0) = −
n

2
ln

"
1− 1

n

Pn
t=1 (φ (L) c (L,ψ0) ũt)

2 −Pn
t=1 (φ (L, θ) c (L,ψ) ût)

2

1
n

Pn
t=1 (φ (L) c (L,ψ0) ũt)

2

#
.
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4.1 Estimation

The analysis of the model with serially correlated errors proceeds in the same way as with martingale

difference errors above. Thus, we are able to show the existence of a local MLE γ̂n = (θ̂
0
n, ψ̂

0
n)
0 satisfying

√
nγ̂n = Op (1), and to prove joint asymptotic normality of θ̂n and ψ̂n. Under Gaussianity we achieve

efficiency as before.

Theorem 4.1 Under Assumptions 1, 2, 4, and (31) there exists a local maximizer γ̂n = (θ̂
0
n, ψ̂

0
n)
0 of

the concentrated likelihood (33), that satisfies, as n→∞,
√
n (γ̂n − γ0)→d N

¡
0,Ξ−1

¢
. (36)

Under the additional assumptions of Gaussianity of {εt} and correct (minimal) specification (all elements
of ψ0 are non-zero), γ̂n is asymptotically efficient in the sense that its asymptotic variance attains the

Cramér-Rao lower bound.

Based on this theorem it is possible to create joint (p+ q)-dimensional confidence ellipsoids for θ and

ψ that take into account the asymptotic correlation between the estimates represented by the matrix

κ. This is important for inference, not only on θ, but also on ψ. Usually, in applied work, one would

determine the appropriate filtration of data (i.e. the function φ (z, θ)) by Dickey-Fuller tests or similar

methods, and then treat the filtered data as if it were observed, i.e. as if the correct filter were known a

priori. The resulting inference on ψ is incorrect, since the correlation between θ and ψ is ignored. When

applying Theorem 4.1, this pre-testing problem is avoided because θ and ψ are estimated jointly.

Note that Theorem 4.1 restricts the ARMA parameters more than assumed in Assumption 4. Specif-

ically, since the roots of the AR and MA polynomials are assumed to belong to a compact set, they are

bounded away from the unit circle.

When inference on θ is of interest, the asymptotic marginal distribution of θ̂n can be immediately

derived from the theorem.

Corollary 4.1 Under the conditions of Theorem 4.1,

√
nθ̂n →d N

³
0,
¡
Ψ− κ0Φ−1κ

¢−1´
(37)

as n→∞.

In parallel with Corollary 4.1, var(
√
n(ψ̂n − ψ0)) → (Φ − κΨ−1κ0)−1 (by the partitioned matrix

inverse formula), and in the special case where φ is not present this reduces to Φ−1, which is the Fisher

information on ψ. Thus, the well known asymptotic efficiency of the MLE in pure ARMA models comes
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out as a special case of our results. More importantly, Theorem 4.1 with φ present demonstrates the

joint efficiency in the generalized model.

To illustrate the loss of efficiency in estimation of θ stemming from serially correlated errors, consider

again the fractional unit root model. Suppose we know that the errors are not serially correlated, but

simply martingale differences. Then the asymptotic variance of
√
nθ̂n is 6/π2 by Theorem 3.2. If instead

it is known that the errors exhibit serial correlation of the AR(1) or MA(1) type with coefficient a, then

the asymptotic variance of
√
nθ̂n is the inverse of π2

6 − 1−a2
a2 (ln (1− a))

2 by Corollary 4.1.

Figure 1 about here

Figure 1 shows the relative efficiency of these two estimates as a function of the serial correlation

parameter, a. This is calculated as

1− 6

π2
1− a2

a2
(ln (1− a))

2
, (38)

which has a minimum at a = 0.684. This suggests that moderate levels of a best replicate the behavior

of the (weighted) autocorrelations of a fractionally integrated process. The point a = 0 shows that

the relative efficiency allowing for serial correlation when it is not present is 0.392, as noted by Tanaka

(1999).

4.2 Hypothesis Testing

We now consider the testing problems (16) and (23) in the presence of serially correlated errors, where

again only θ is of interest. The Wald, LR, and LM tests are

W = nθ̂
0
n

³
Ψ− κ̂0Φ̂−1κ̂

´
θ̂n, (39)

LR = n ln

Ã
σ2(0, ψ̃n)

σ2(θ̂n, ψ̂n)

!
, (40)

LM = nÃ0n
³
Ψ− κ̃0Φ̃−1κ̃

´−1
Ãn, (41)

where κ̂ and Φ̂ are evaluated at ψ̂n and κ̃ and Φ̃ are evaluated at ψ̃n, the estimate of ψ under the null, and

Ãn =
Pn−1

j=1 ζj ρ̃ (j) is defined in terms of the j’th sample autocorrelation of ε̃t = φ (L) c(L, ψ̃n)(yt−β̃
0
xt).

It is obvious from the expressions for the test statistics and Ãn that the LM test is not necessarily

the simplest to apply in practice. The implementation of the Wald and LR test statistics is quite easy

when we can estimate the model under both the null and alternative and should not be a problem, given
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the methods available in the previous sections. In particular, the LR test is attractive, since there is no

need to calculate Ψ, κ, and Φ.

Similar to the calculation of the infinite order MA coefficients in standard ARMA models, the

calculation of κ and Φ can be quite cumbersome when the model in Assumption 4 is more complex than

just an AR(1) or MA(1) model, see also the discussion in Tanaka (1999). To overcome this issue, one

could employ the numerical approximations,

cW = nθ̂
0
n

Ã
nX
t=1

∂ε̂t
∂θ

∂ε̂t
∂θ0

,
nX
t=1

ε̂2t

!
θ̂n

¯̄̄̄
¯
H1

,

dLM = n
nX
t=1

ε̃t
∂ε̃t
∂θ0

Ã
nX
t=1

∂ε̃t
∂θ

∂ε̃t
∂θ0

nX
t=1

ε̃2t

!−1 nX
t=1

ε̃t
∂ε̃t
∂θ

¯̄̄̄
¯̄
H0

,

which of course have the same asymptotic properties as W and LM . However, since Ψ, κ, and Φ, and

thus W and LM , can be calculated for any given parameter value (say γ̄) by numerically expanding

∂ lnφ (z, θ) c (z, ψ) /∂γ at γ = γ̄ in powers of z using a computer, we do not consider cW and dLM further.

The asymptotic distribution of the tests under local alternatives and with serial correlation is given

by the following theorem.

Theorem 4.2 Let Assumptions 1, 2, 4, and (31) be satisfied and let T denote the W, LR, or LM test

statistics (39), (40), and (41). Then, under (23), it holds that

T →d χ
2
p

¡
δ0
¡
Ψ− κ0Φ−1κ

¢
δ
¢

as n → ∞. The three tests are consistent and asymptotically equivalent, and under the additional

assumption of Gaussianity they are locally most powerful (LMP).

This theorem shows that the tests are still LMP, even in the presence of serially correlated errors.

Setting κ = Φ = 0, i.e. when no serial correlation is present and ψ is not estimated, generates Theorem

3.3 as a special case. As with Corollary 3.1 in the case without serial correlation, we can easily calculate

the asymptotic local power giving us a benchmark against which to compare the power of the tests in

finite samples.

Corollary 4.2 Under the conditions of Theorem 4.2 it holds that under θ = δ/
√
n

P
¡
T > χ2p,1−α

¢→ 1− Fδ0(Ψ−κ0Φ−1κ)δ
¡
χ2p,1−α

¢
(42)

as n → ∞, where χ2p,1−α is the 100 (1− α)% point of the χ2p distribution and Fδ0(Ψ−κ0Φ−1κ)δ is the

distribution function of the χ2p
¡
δ0
¡
Ψ− κ0Φ−1κ

¢
δ
¢
distribution.
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Figure 2 shows the local power functions against positive alternatives for the fractional unit root

model with different specifications of AR(1) errors using Corollary 4.2. Since δ only enters (42) through

δ2, the power functions are symmetric. The solid line is the local power function when the errors are

a martingale difference sequence and this is known (i.e. using Corollary 3.1). The dotted, dashed, and

starred lines correspond to AR(1) specifications of the errors with coefficient a = −.5, a = 0, and a = .5,

respectively. In the case a = 0, the errors are a martingale difference sequence, but an AR(1) error

process is estimated.

Figure 2 about here

The local power of the tests in the model with a = .5 is much lower than for the other specifications.

On the other hand, the power loss in the model with a = −.5 is small. This is in accordance with the
results in section 4.1, c.f. (38) and Figure 1.

5 Finite Sample Performance

In this section, we compare the asymptotic local power functions derived in the previous sections to the

finite sample rejection frequencies by means of Monte Carlo experiments.

The model we have chosen for the simulation study is the well known fractional unit root model with

an AR(1) error,

(1− L)1+θ yt = etI (t ≥ 1) , (43)

(1− aL) et = εt, (44)

where {εt} is i.i.d. standard normal. This model is also studied in simulations by Robinson (1994) and
Tanaka (1999). In addition to this fractional DGP, Robinson (1994) also considered an autoregressive

DGP and found that his test was dominated by Dickey-Fuller type tests in the latter case.

We concentrate on comparing the finite sample performance of the three test statistics (W, LR, LM).

Tanaka (1999) documented that the time domain LM test outperforms Robinson’s (1994) frequency

domain LM test, so we do not consider the frequency domain test here. The properties of the estimator

θ̂ in this model were examined by Tanaka (1999), who found that in the case without serial correlation the

behavior of the local MLE is very close to the asymptotic distribution. However, with serially correlated

errors the performance of the local MLE degrades, and especially in the case of strong positive serial

correlation the performance is very poor. This is expected based on (38) and Figure 1.
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Tables 1-2 about here

Throughout, we fix the nominal level (type I error) at .05 and the number of replications at 5, 000.

We consider the sample sizes n = 100 and n = 500. The first is typical for macroeconomic time series,

and the latter (or even larger) for financial time series. For each experiment, 5, 000 samples of size

n = 500 were generated using the ’rann’, ’diffpow’, and ’armagen’ routines in Ox version 3.00 (Doornik

(2001)) including the Arfima package version 1.01 (Doornik & Ooms (2001)). For the smaller sample

size, n = 100, we used the first 100 out of the 500 observations from each sample.

Tables 1-4 present the simulated rejection frequencies of the test statistics for different specifications

of the error term in (44). For each value of θ, the asymptotic local power has been calculated by setting

δ = θ
√
n in Corollaries 3.1 and 4.2, and is reported under the heading ’Limit’. In all the tables, the first

three tests are calculated as in sections 3.2 and 4.2, whereas the last three tests are calculated using size

corrected critical values.

First, consider the case of martingale difference errors shown in Table 1, i.e. {et} = {εt}. In this
case, all the finite sample rejection frequencies are very close to the asymptotic local power, except the

LM test in the small sample n = 100, which has lower power than the LR and Wald tests.

When the errors are serially correlated the differences between the test statistics are more apparent.

With negative serial correlation a = −.5 (Table 2), and with a = 0 (Table 3), i.e. when there is no serial
correlation in the DGP but an AR(1) is estimated, the LM test loses power compared to the LR and

Wald tests, and the Wald test tends to be oversized in the small sample, which is also reflected by its

very low size corrected power for n = 100 in Table 3.

Tables 3-4 about here

In Table 4 the errors are positively serially correlated with a = .5. From the previous sections

we know that the asymptotic local power is much lower in this case than with negative or no serial

correlation. As Table 4 shows, this is also the case for the finite sample rejection frequencies. In the

small sample, n = 100, there are severe distortions, especially to the LM and Wald tests. The LM

test completely loses power against negative alternatives, with rejection frequencies even lower than the

nominal size, and the Wald test is severely oversized. When n = 500 the situation improves, but the

LM test still has the lowest power and the Wald test is still severely oversized.

Unreported simulations (which can be obtained from the author upon request) show that, not sur-

prisingly, the performance of the LR test (with n = 100) is very bad when relevant deterministic terms

are left out and that the inclusion of irrelevant mean and/or trend terms decreases power against positive

values of θ. This is well known from AR-based unit root tests such as the Dickey-Fuller test, where a
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mean (and trend) must be included if any power against non-zero mean (and trend) is desired. However,

it is worth noting that, unlike in our model, the distribution of Dickey-Fuller type test statistics changes

when deterministic terms are included.

Overall, the simulations show that the improvement with respect to both size and power when

considering n = 500 instead of n = 100 is substantial. Thus, one would expect very good performance

of the tests in financial applications where samples are often many times larger. In such cases, the

power loss resulting from the estimation of serially correlated errors would also be of less importance.

It was also found that generally the LM test has lower power than the Wald and LR tests and that the

Wald test is often severely oversized. We have stressed the possibility of conducting simple asymptotic

inference in our model, using the chi-squared tables, and since this property is lost if size corrected

critical values must be employed, this weighs heavily against the Wald test.

Even though we concentrated on the simple and well known fractional unit root model in the present

simulation study, similar relative performance is to be expected in more complicated models such as the

general model in (5). Thus, the LR test is expected to outperform the Wald and LM tests with respect

to both size and power also in more complicated models.

6 Conclusion

We have considered likelihood inference in a wide class of potentially nonstationary univariate time

series models. In such cases, inference is usually drawn in an autoregressive framework and nonstandard

asymptotics apply.

In this paper we have shown that, when the estimation and testing problems are embedded in

a fractional integration framework, standard asymptotics apply and desirable statistical properties of

likelihood inference reemerge. In particular, there exists a local MLE which is asymptotically normal,

and the classical likelihood based tests (Wald, LR, LM) are consistent and asymptotically chi-squared

distributed under local alternatives. Under the additional assumption of Gaussianity, the local MLE is

asymptotically efficient, and the tests are locally most powerful. Furthermore, in the scalar parameter

case with i.i.d. Gaussian errors, our tests achieve the Gaussian power envelope of all invariant and

unbiased tests, i.e. they are uniformly most powerful among all invariant and unbiased tests.

The Monte Carlo study shows that with sample sizes typical for macroeconomic time series the tests

are reasonable, and with larger sample sizes, such as those usually found in finance applications, the

performance of the tests is very good and their rejection frequencies very close to the asymptotic local
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power curve. In our Monte Carlo study the LR test dominates with respect to both size and power in

finite samples. The LR test also has attractive computational features when serially correlated errors

are allowed for, since it avoids a quite cumbersome calculation of covariance matrices.

The results derived in this paper could also be applied to the problem of testing for fractional

cointegration when the cointegrating vector is known a priori, e.g. from economic theory. When the

cointegrating vector must be estimated the results in this paper no longer apply. This presents an

interesting avenue for further research, which is currently under active investigation.

Appendix: Proofs

Proof of Theorem 3.1. First, by noting that φ (L) ũt = et + (β − β̃)0x̃t it is immediate that the

denominator in g (θ) is

¡
σ2 + op (1)

¢
+
1

n

nX
t=1

(β − β̃)0x̃tx̃0t(β − β̃) +
1

n

nX
t=1

(β − β̃)0x̃tet (45)

by Assumption 3. The last two terms are asymptotically negligible since

E

°°°°° 1n
nX
t=1

(β − β̃)0x̃tx̃0t(β − β̃)

°°°°° = O

µ
1

n
tr
³
D−1/2n DnD

−1/2
n

´¶
by Assumption 2 and (12) and

E

°°°°° 1n
nX
t=1

(β − β̃)0x̃tet

°°°°°
2

= O

µ
1

n
tr
³
D−1/2n DnD

−1/2
n

´¶
using also uncorrelatedness of {et}.
The numerator in g (θ) can be written as

nX
t=1

(φ (L) ũt)
2 −

nX
t=1

(φ (L)ut)
2 +

nX
t=1

(φ (L, θ)ut)
2 −

nX
t=1

(φ (L, θ) ût)
2 (46)

+
nX
t=1

(φ (L)ut)
2 −

nX
t=1

(φ (L, θ)ut)
2 . (47)

By the Mean Value Theorem we have, for some θ∗ = θ∗ (t, n) such that 0 ≤ kθ∗k ≤ kθk,

φ (L, θ)ut = φ (L)ut + θ0
∂φ (L, θ∗)

∂θ
ut

= et +
δ0√
n
ζ (L) et +

δ0√
n
(λ (L, θ∗)− ζ (L)) et, (48)
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where the last term has mean zero and variance O
³
n−1

P∞
j=1

°°λj (θ∗)− ζj
°°2´ = o

¡
n−1

¢
by Assumption

1(iii) and dominated convergence. As in Robinson (1994, p. 1435), it follows that

φ (L, θ)ut = et +
δ0√
n
ζ (L) et + op(n

−1/2) (49)

uniformly in t. Using (49) we get that (47) is

2
nX
t=1

δ0√
n
(ζ (L) et) et −

nX
t=1

δ0√
n
(ζ (L) et) (ζ (L) et)

0 δ√
n
+ op (1) . (50)

For a fixedm > 0, consider the p-vector vt =
Pm

j=1 ζjet−jet and the p×pmatrix Vt =
Pm

j=1

Pm
k=1 ζjζ

0
ket−jet−k.

By Assumption 3, EVt = σ2
Pm

j=1 ζjζ
0
j and applying a LLN, n

−1Pn
t=1 Vt → σ2

Pm
j=1 ζjζ

0
j in proba-

bility. {vt} is a martingale difference sequence with respect to the filtration {Ft} because vt is Ft/B
measurable, integrable, and E (vt| Ft−1) =

Pm
j=1 ζjet−jE (et| Ft−1) = 0 a.s. for all t. Using Assumption

3, Evtv0t = E (E (vtv
0
t| Ft−1)) = σ4

Pm
j=1 ζjζ

0
j and by application of a martingale difference CLT, e.g.

Brown (1971) or Hall & Heyde (1980, chapter 3.2), we establish that

1√
n

nX
t=1

vt →d N

0, σ4 mX
j=1

ζjζ
0
j

 . (51)

Because E
°°°n−1/2Pn

t=1

Pn−1
j=m+1 ζjet−jet

°°°2 = O
³P∞

j=m+1

°°ζj°°2´ can be made arbitrarily small by
choosing m large by (4), we can apply Bernstein’s Lemma , e.g. Hall & Heyde (1980, pp. 191-192), to

conclude that (47) converges in distribution to δ0(2Ψ1/2Z −Ψδ)σ2. Because

g (θ) = −n
2
ln

·
1− 1

n
(2W (δ) + op (1))

¸
=W (δ) + op (1)

we have proven the first statement of the theorem if we show that (46) is asymptotically negligible.

Thus, (46) can be written as

nX
t=1

(β − β̃)0x̃tx̃0t(β − β̃) +
nX
t=1

(β − β̂)0x̂tx̂0t(β − β̂) (52)

−2
nX
t=1

(β − β̃)0x̃tet − 2
nX
t=1

(β − β̂)0x̂t(et + op(n
−1/2)) (53)

by (49), where x̂t = φ (L, θ)xt. (53) is

2
nX
t=1

(β̂ − β̃)0x̃tet + 2
nX
t=1

(β − β̂)0 (x̃t − x̂t) et + op (1) , (54)

where

(x̃t − x̂t)
0
=

δ0√
n
ζ (L) x̃0t + op(n

−1/2) (55)
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uniformly in t by the same analysis as for ut, and

β̂ =

Ã
nX
t=1

x̂tx̂
0
t

!−1 nX
t=1

x̂t

³
et +Op(n

−1/2)
´
= β̃ +Op (1) (56)

using (55) and Assumption 2. Now the second term of (54) is 2n−1/2
Pn

t=1(β−β̂)0
Pt−1

j=1 x̃t−jζ
0
jδet+op (1)

and E
°°°n−1/2Pn

t=1(β − β̂)0
Pt−1

j=1 x̃t−jζ
0
jδet

°°°2 = O
¡
n−1

¢
by uncorrelatedness of {et}, Assumption 2,

(4), (12), and (56). The same arguments apply to the first term of (54) and to the terms in (52).

Next, we examine

∂g (θ)

∂δ
= −

Ã
1

n

nX
t=1

(φ (L, θ) ût)
2

!−1
1√
n

nX
t=1

µ
∂φ (L, θ)

∂θ
ût

¶
φ (L, θ) ût. (57)

The expression in the first parenthesis is

1

n

nX
t=1

(φ (L, θ)ut)
2
+
1

n

nX
t=1

(β − β̂)0x̂tx̂0t(β − β̂) +
2

n

nX
t=1

(β − β̂)0x̂t(et +Op(n
−1/2)) = σ2 + op (1) (58)

using (49), E
°°°n−1Pn

t=1(β − β̂)0x̂tx̂0t(β − β̂)
°°° = O

¡
n−1

¢
, E

°°°n−1Pn
t=1(β − β̂)0x̂t(et +Op(n

−1/2))
°°° =

O
¡
n−2

¢
as in (45) by Assumption 2, (12), (55), and (56).

Defining the function ζ (z, θ) = ∂
∂θ lnφ (z, θ), the second sum in (57) is

1√
n

nX
t=1

(ζ (L, θ)φ (L, θ) ût)φ (L, θ) ût − 1√
n

nX
t=1

(ζ (L, θ)φ (L, θ)ut)φ (L, θ)ut (59)

+
1√
n

nX
t=1

(ζ (L, θ)φ (L, θ)ut)φ (L, θ)ut − 1√
n

nX
t=1

(ζ (L) et)φ (L, θ)ut (60)

+
1√
n

nX
t=1

(ζ (L) et)φ (L, θ)ut − 1√
n

nX
t=1

(ζ (L) et) et (61)

+
1√
n

nX
t=1

(ζ (L) et) et, (62)

where (62) converges in distribution to Ψ1/2Zσ2 as in (50). Applying (49) to (61) we see that it equals

n−1
Pn

t=1 (ζ (L) et) (ζ (L) et)
0
δ + op (1), which converges in probability to Ψδσ2 as in (50).

Thus, we need to show that (59) and (60) are asymptotically negligible. First, write (59) as

1√
n

nX
t=1

(ζ (L, θ)φ (L, θ) (ût − ut))φ (L, θ) ût +
1√
n

nX
t=1

(ζ (L, θ)φ (L, θ)ut)φ (L, θ) (ût − ut)

=
1√
n

nX
t=1

(ζ (L) (β − β̂)0x̂t)(et + (β − β̂)0x̂t) +
1√
n

nX
t=1

((ζ (L, θ)− ζ (L)) (β − β̂)0x̂t)(et + (β − β̂)0x̂t)

+
1√
n

nX
t=1

(ζ (L) et) (β − β̂)0x̂t +
1√
n

nX
t=1

((ζ (L, θ)− ζ (L)) et) (β − β̂)0x̂t + op (1) ,
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using (49). The first and third terms are Op(n
−1/2) by (4) and the arguments applied to (58), and

the second and fourth terms are Op(n
−1/2) by combining the arguments applied to the first term and

those applied to (48). Rewriting (60) as n−1/2
Pn

t=1 ((λ (L, θ)− ζ (L)) et) (et + Op(n
−1/2)) using (49),

we note that it is asymptotically negligible by the same arguments as applied to (48). This establishes

the second statement of the theorem.

The second derivative is

∂2g (θ)

∂δ∂δ0
= −

Ã
1

n

nX
t=1

(φ (L, θ) ût)
2

!−1
1

n

nX
t=1

µ
∂φ (L, θ)

∂θ
ût

¶µ
∂φ (L, θ)

∂θ
ût

¶0

−
Ã
1

n

nX
t=1

(φ (L, θ) ût)
2

!−1
1

n

nX
t=1

µ
∂2φ (L, θ)

∂θ∂θ0
ût

¶
φ (L, θ) ût,

which is equal to

−σ−2 1
n

nX
t=1

(ζ (L, θ)φ (L, θ) ût) (ζ (L, θ)φ (L, θ) ût)
0

−σ−2 1
n

nX
t=1

(λ (L, θ)φ (L) ût)φ (L, θ) ût

−σ−2 1
n

nX
t=1

(ζ (L, θ) ζ (L, θ)φ (L, θ) ût)φ (L, θ) ût + op (1)

by (58). Combining the above arguments it can be shown that the last two terms are both op (1) while

the first term converges in probability to −Ψ. This completes the proof.
Proof of Theorem 3.2. By Theorem 3.1(iii) and Assumption 1, g (θ) is asymptotically a concave

function of δ =
√
nθ in Sp (0, kδk /√n), the sphere in p-dimensional Euclidean space centered at the origin

with radius kδk /√n. Hence, by Theorem 3.1 and the subsequent analysis, δ̂ =
√
nθ̂n is asymptotically

the unique maximizer of W (δ) in Sp (0, kδk /√n) and its asymptotic distribution is given by (15) by the
usual expansion. Under Gaussianity of {et}, (8) is the true likelihood. The limiting Fisher information
is then given by Theorem 3.1(iii) as

lim
n→∞

1

n
E

µ
− ∂2l (θ)

∂θ∂θ0

¯̄̄̄
θ=0

¶
= Ψ,

which is the inverse of the asymptotic variance as required.

Proof of Theorem 3.3. Though the equivalence of the test statistics is well known in standard

testing problems, we have stressed the nonstandard nature of our model, and thus we start by showing

equivalence. By the Mean Value Theorem

√
nθ̂n =

µ
1

n

∂2l (θ)

∂θ∂θ0

¯̄̄̄
θ=θ∗

¶−1µ
1√
n

∂l (θ)

∂θ

¯̄̄̄
θ=0

¶
,

24



where θ∗ is an intermediate value. This implies that W − LM → 0 in probability by Theorem 3.1.

Similarly, by a Taylor expansion of the likelihood

l(0) = l(θ̂n) + θ̂
0
n

∂l(θ)

∂θ

¯̄̄̄
θ=θ̂n

+
1

2
θ̂
0
n

∂2l(θ)

∂θ∂θ0

¯̄̄̄
θ=θ∗

θ̂n

= l(θ̂n) +
1

2
nθ̂

0
n

µ
1

n

∂2l (θ)

∂θ∂θ0

¯̄̄̄
θ=0

¶
θ̂n + op (1) ,

and thus LR−W → 0 in probability by Theorem 3.1(iii).

The asymptotic distribution of the test statistics follows directly from the previous theorems. Under

the local alternatives (23) we set
√
n(θ̂n − θ1n) = δ̂ − δ →d Ψ

−1/2Z by Theorem 3.2. Then the Wald

test is

W = δ̂
0
Ψδ̂ →d

³
Ψ−1/2Z + δ

´0
Ψ
³
Ψ−1/2Z + δ

´
by Theorem 3.2. Similarly,

LM =
∂g (θ)

∂θ0

·
E0

µ
∂g (θ)

∂θ

∂g (θ)

∂θ0

¶¸−1
∂g (θ)

∂θ
→d

³
Ψ1/2Z −Ψδ

´0
Ψ−1

³
Ψ1/2Z −Ψδ

´
by Theorem 3.1(ii) and

LR = 2g(θ̂n)→d

³
Ψ−1/2Z + δ

´0
Ψ
³
Ψ−1/2Z + δ

´
by Theorems 3.1(i) and 3.2.

Under the additional assumption of Gaussianity the tests are locally most powerful since the non-

centrality parameter is maximal by Theorem 3.2 and the formula for the information matrix (21).

Proof of Corollary 3.1. Immediate from Theorem 3.3.

Proof of Theorem 3.4. Following the arguments of the previous sections, those in Tanaka (1999),

and using (49) we find that

ẽtn = et +
c√
n

t−1X
j=1

ζjet−j + op(n
−1/2)

êtn = et +
c− δ√

n

t−1X
j=1

ζjet−j + op(n
−1/2)

uniformly in t. Thus, the denominator of (26) normalized by 1/n converges to σ2 in probability as

n→∞, and the numerator

nX
t=1

¡
ẽ2tn − ê2tn

¢
=

2δ√
n

nX
t=1

t−1X
j=1

ζjet−jet +
δ (2c− δ)

n

nX
t=1

t−1X
j=1

ζjet−j

2

+ op (1)

= 2δ
√
Ψσ2Z + δ (2c− δ)Ψσ2 + op (1)
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by the same arguments as those in the proof of Theorem 3.1. As before, it can be shown that this is

unaffected by the presence of the regressors and the result follows.

Proof of Theorem 3.5. Consider first (28) which implies that (in this context φ is the density

function of the standard normal distribution)

φ

µ
C2,α (δ) + δ2Ψ

2δ
√
Ψ

¶
= φ

µ
C1,α (δ) + δ2Ψ

2δ
√
Ψ

¶
with the non-trivial solution C1,α (δ) = −C2,α (δ)− 2δ2Ψ. Now determine the constants by (27),

1− α = P
¡−C2,α (δ)− 2δ2Ψ < M (0, δ) < C2,α (δ)

¢
= P

µ
−C2,α (δ) + δ2Ψ

2δ
√
Ψ

< Z <
C2,α (δ) + δ2Ψ

2δ
√
Ψ

¶
,

where Z is a standard normal variable. Thus, C2,α (δ) is the solution to

Φ
³¡
C2,α (δ) + δ2Ψ

¢
/2δ
√
Ψ
´
= 1− α/2,

i.e. C2,α (δ) = 2δ
√
ΨZ1−α/2 − δ2Ψ, where Z1−α/2 is the 100 (1− α/2)% point of the standard normal

distribution.

The power envelope is given by

Π (δ) = 1− P (C1,α (δ) < M (δ, δ) < C2,α (δ))

= 1− P
³
−2δ
√
ΨZ1−α/2 − δ2Ψ < 2δ

√
ΨZ + δ2Ψ < 2δ

√
ΨZ1−α/2 − δ2Ψ

´
= P

³¯̄̄
Z + δ

√
Ψ
¯̄̄
> Z1−α/2

´
= Fδ2Ψ

¡
χ21,1−α

¢
,

where the last line follows by squaring both sides of the inequality, χ21,1−α is the 100 (1− α)% point of

the χ21 distribution, and Fδ2Ψ is the distribution function of the χ
2
1

¡
δ2Ψ

¢
distribution.

Proof of Theorem 4.1. The proof proceeds along the same lines as those of Theorems 3.1 and

3.2. By the same arguments it can be shown that the results are unaffected by the presence of the

regressors, so we assume here that {ut} is observed.
Under γ = γ0 + µ/

√
n, µ =

¡
δ0, ν0

¢0
, we first show that

(i) g (γ)→d W (µ) =
µ0

2

³
2Ξ1/2Z − Ξµ

´
,

(ii)
∂g (γ)

∂µ
→d

∂W (µ)

∂µ
= Ξ1/2Z − Ξµ,

(iii)
∂2g (γ)

∂µ∂µ0
→p −Ξ,
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where Z is a (p+ q)-dimensional standard normal random vector.

It is immediate that the denominator in g (γ) converges in probability to σ2 by Assumption 4. By

the Mean Value Theorem we have, for some γ∗ = γ∗ (t, n) partitioned as γ∗ =
¡
θ∗0, ψ∗0

¢0
and such that

kγ0k ≤ kγ∗k ≤ kγk,

φ (L, θ) c (L,ψ)ut = εt +
µ0√
n
ξ (L) εt +

δ0√
n
(λ (L, θ∗)− ζ (L)) εt +

ν0√
n
(λν (L,ψ

∗)− λν (L,ψ0)) εt,

where λν (z, ψ) =
∂ ln c(z,ψ)

∂ψ
c(z,ψ)
c(z,ψ0)

and λ (z, θ) is defined in Assumption 1(iii). Denoting by λν,j (ψ) the

coefficient on zj in an expansion of λν (z, ψ) in powers of z and by N a neighborhood of size O
¡
n−1/2

¢
around ψ0, supψ∈N

P∞
j=0 kλν,j (ψ)k2 <∞ since a (z, ψ) and b (z, ψ) have roots that are bounded away

from the unit circle. Thus, as in (49), it follows that

φ (L, θ) c (L,ψ)ut = εt +
µ0√
n
ξ (L) εt + op(n

−1/2) (63)

uniformly in t. Hence the numerator in g (γ) is

2
nX
t=1

µ0√
n
(ξ (L) εt) εt −

nX
t=1

µ0√
n
(ξ (L) εt) (ξ (L) εt)

0 µ√
n
+ op (1) . (64)

Define for a fixed m > 0 the (p + q)-vector vt =
Pm

j=1 ξjεt−jεt and the (p + q) × (p + q) matrix Vt =Pm
j=1

Pm
k=1 ξjξ

0
kεt−jεt−k. As in the proof of Theorem 3.1, n−1

Pn
t=1 Vt → σ2

Pm
j=1 ξjξ

0
j in probability,

and

1√
n

nX
t=1

vt →d N

0, σ4 mX
j=1

ξjξ
0
j


by application of a martingale difference CLT. (i) now follows by Bernstein’s Lemma.

To prove (ii) we notice that the first term in

∂g (γ)

∂µ
= −

Ã
1

n

nX
t=1

(φ (L, θ) c (L,ψ)ut)
2

!−1
1√
n

nX
t=1

(ξ (L, γ)φ (L, θ) c (L,ψ)ut)φ (L, θ) c (L,ψ)ut

(65)

is
¡
σ2 + op (1)

¢−1
by (63) and write the second term in (65) as

1√
n

nX
t=1

(ξ (L, γ)φ (L, θ) c (L,ψ)ut)φ (L, θ) c (L,ψ)ut − 1√
n

nX
t=1

(ξ (L) εt) εt +
1√
n

nX
t=1

(ξ (L) εt) εt.

The last term converges in distribution to Ξ1/2Zσ2 as in (64), and by application of (63) the difference

of the first two terms is n−1
Pn

t=1 µ
0 (ξ (L) εt) (ξ (L) εt)

0
µ + op (1), which converges in probability to

Ξµσ2 as in (64).

The result (iii) follows exactly as in the proof of Theorem 3.1.
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Next, it follows as in section 3.1 that (14) holds with δ replaced by µ and g replaced by the function

in section 4. Thus, the existence and uniqueness in Sp+q (0, kµk /√n) of a local MLE γ̂n satisfying√
nγ̂n = Op (1) is ensured, and its distribution is given by (36) from the usual expansion.

Efficiency follows directly from (iii) which is the Fisher information under Gaussianity of {εt}.
Proof of Corollary 4.1. Apply the partitioned matrix inverse formula to Ξ.

Proof of Theorem 4.2. Follows straightforwardly by applying the arguments in the proof of

Theorem 3.3 to the results in Theorem 4.1 and its proof.

Proof of Corollary 4.2. Immediate from Theorem 4.2.
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Table 1: Finite sample rejection frequencies with martingale difference errors
Not Size Corrected Size Corrected

Sample size θ Limit LR LM W LR LM W
n = 100 −0.30 0.9705 0.9466 0.7752 0.9780 0.9474 0.8786 0.9706

−0.25 0.8937 0.8476 0.5924 0.9118 0.8494 0.7444 0.8880
−0.20 0.7275 0.6566 0.4028 0.7582 0.6604 0.5608 0.7178
−0.15 0.4856 0.4280 0.2350 0.5368 0.4306 0.3688 0.4814
−0.10 0.2497 0.2240 0.1088 0.3078 0.2266 0.2022 0.2646
−0.05 0.0983 0.0968 0.0508 0.1412 0.0986 0.0956 0.1178

0 0.0500 0.0494 0.0238 0.0646 0.0500 0.0500 0.0500
0.05 0.0983 0.0956 0.0464 0.0946 0.0972 0.0776 0.0722
0.10 0.2497 0.2566 0.1428 0.2254 0.2592 0.1802 0.1796
0.15 0.4856 0.4752 0.3016 0.4422 0.4778 0.3610 0.3916
0.20 0.7275 0.6928 0.4980 0.6680 0.6948 0.5576 0.6186
0.25 0.8937 0.8666 0.7066 0.8566 0.8680 0.7558 0.8292
0.30 0.9705 0.9446 0.8340 0.9436 0.9450 0.8686 0.9300

n = 500 −0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
−0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
−0.20 0.9999 1.0000 0.9998 1.0000 0.9998 0.9998 1.0000
−0.15 0.9904 0.9892 0.9748 0.9932 0.9868 0.9792 0.9912
−0.10 0.8180 0.8018 0.7440 0.8334 0.7854 0.7578 0.8136
−0.05 0.2998 0.2778 0.2484 0.3186 0.2616 0.2652 0.2890

0 0.0500 0.0550 0.0448 0.0590 0.0500 0.0500 0.0500
0.05 0.2998 0.3120 0.2570 0.2874 0.2946 0.2696 0.2590
0.10 0.8180 0.8120 0.7344 0.7970 0.7986 0.7436 0.7704
0.15 0.9904 0.9830 0.9682 0.9828 0.9808 0.9708 0.9800
0.20 0.9999 0.9998 0.9990 1.0000 0.9998 0.9992 0.9998
0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2: Finite sample rejection frequencies with AR(1) errors with coefficient a = −.5
Not Size Corrected Size Corrected

Sample size θ Limit LR LM W LR LM W
n = 100 −0.30 0.8961 0.8696 0.5702 0.9342 0.8592 0.7078 0.8878

−0.25 0.7652 0.7298 0.4180 0.8126 0.7144 0.5632 0.7344
−0.20 0.5740 0.5344 0.2726 0.6348 0.5188 0.4130 0.5272
−0.15 0.3633 0.3350 0.1556 0.4262 0.3218 0.2492 0.3302
−0.10 0.1888 0.1796 0.0856 0.2420 0.1688 0.1512 0.1742
−0.05 0.0836 0.0898 0.0426 0.1376 0.0830 0.0828 0.0918

0 0.0500 0.0534 0.0224 0.0788 0.0500 0.0500 0.0500
0.05 0.0836 0.0822 0.0294 0.0852 0.0766 0.0478 0.0508
0.10 0.1888 0.1764 0.0682 0.1696 0.1676 0.0910 0.1086
0.15 0.3633 0.3240 0.1284 0.3164 0.3126 0.1606 0.2294
0.20 0.5740 0.5102 0.2106 0.5010 0.4986 0.2536 0.4034
0.25 0.7652 0.6686 0.2992 0.6700 0.6596 0.3454 0.5848
0.30 0.8961 0.7854 0.3882 0.7972 0.7770 0.4394 0.7386

n = 500 −0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
−0.25 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 0.9996
−0.20 0.9977 0.9984 0.9928 0.9994 0.9984 0.9950 0.9990
−0.15 0.9495 0.9498 0.9030 0.9642 0.9484 0.9198 0.9572
−0.10 0.6700 0.6662 0.5910 0.7034 0.6604 0.6244 0.6756
−0.05 0.2244 0.2274 0.1942 0.2546 0.2228 0.2194 0.2334

0 0.0500 0.0522 0.0424 0.0582 0.0500 0.0500 0.0500
0.05 0.2244 0.2180 0.1564 0.1996 0.2130 0.1728 0.1768
0.10 0.6700 0.6570 0.5202 0.6410 0.6518 0.5426 0.6130
0.15 0.9495 0.9230 0.8402 0.9192 0.9208 0.8532 0.9082
0.20 0.9977 0.9906 0.9624 0.9922 0.9906 0.9656 0.9910
0.25 1.0000 0.9996 0.9870 0.9998 0.9996 0.9880 0.9996
0.30 1.0000 1.0000 0.9870 0.9998 1.0000 0.9876 0.9998
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Table 3: Finite sample rejection frequencies with AR(1) errors with coefficient a = 0
Not Size Corrected Size Corrected

Sample size θ Limit LR LM W LR LM W
n = 100 −0.30 0.6734 0.6814 0.2786 0.7650 0.6042 0.4184 0.2602

−0.25 0.5191 0.5214 0.1796 0.5930 0.4470 0.2976 0.1586
−0.20 0.3619 0.3626 0.1214 0.4158 0.2922 0.2090 0.0930
−0.15 0.2258 0.2478 0.0684 0.2890 0.1940 0.1338 0.0736
−0.10 0.1265 0.1488 0.0418 0.1874 0.1126 0.0850 0.0648
−0.05 0.0687 0.1068 0.0238 0.1476 0.0766 0.0548 0.0594

0 0.0500 0.0770 0.0234 0.1192 0.0500 0.0500 0.0500
0.05 0.0687 0.0846 0.0254 0.1320 0.0574 0.0432 0.0520
0.10 0.1265 0.1278 0.0496 0.1830 0.0930 0.0724 0.0588
0.15 0.2258 0.2028 0.0778 0.2686 0.1552 0.1022 0.0860
0.20 0.3619 0.2864 0.1264 0.3642 0.2318 0.1556 0.1094
0.25 0.5191 0.3996 0.1938 0.4996 0.3460 0.2266 0.1744
0.30 0.6734 0.4724 0.2672 0.6014 0.4154 0.3026 0.2588

n = 500 −0.30 0.9997 1.0000 0.9982 0.9996 0.9998 0.9992 0.9996
−0.25 0.9943 0.9974 0.9828 0.9994 0.9962 0.9890 0.9984
−0.20 0.9486 0.9666 0.9018 0.9778 0.9616 0.9286 0.9686
−0.15 0.7684 0.7790 0.6712 0.8144 0.7550 0.7128 0.7692
−0.10 0.4349 0.4312 0.3366 0.4608 0.4052 0.3892 0.4086
−0.05 0.1462 0.1446 0.1152 0.1676 0.1318 0.1414 0.1374

0 0.0500 0.0556 0.0386 0.0656 0.0500 0.0500 0.0500
0.05 0.1462 0.1464 0.0824 0.1476 0.1328 0.0956 0.1154
0.10 0.4349 0.4066 0.2322 0.4044 0.3854 0.2500 0.3560
0.15 0.7684 0.6900 0.4366 0.7028 0.6706 0.4652 0.6580
0.20 0.9486 0.8798 0.6078 0.8956 0.8696 0.6264 0.8780
0.25 0.9943 0.9560 0.6660 0.9678 0.9508 0.6836 0.9586
0.30 0.9997 0.9872 0.7262 0.9932 0.9848 0.7402 0.9906
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Table 4: Finite sample rejection frequencies with AR(1) errors with coefficient a = .5
Not Size Corrected Size Corrected

Sample size θ Limit LR LM W LR LM W
n = 100 −0.30 0.2726 0.2682 0.0168 0.2778 0.3806 0.0012 0.1334

−0.25 0.2037 0.1640 0.0122 0.2288 0.2696 0.0008 0.1240
−0.20 0.1472 0.1012 0.0108 0.1886 0.1756 0.0020 0.0990
−0.15 0.1039 0.0574 0.0140 0.1532 0.1112 0.0024 0.0792
−0.10 0.0736 0.0340 0.0228 0.1308 0.0724 0.0086 0.0628
−0.05 0.0559 0.0266 0.0446 0.1236 0.0510 0.0240 0.0536

0 0.0500 0.0280 0.0836 0.1218 0.0500 0.0500 0.0500
0.05 0.0559 0.0330 0.1300 0.1284 0.0602 0.0894 0.0498
0.10 0.0736 0.0464 0.1924 0.1408 0.0704 0.1468 0.0548
0.15 0.1039 0.0618 0.2486 0.1668 0.0924 0.1938 0.0798
0.20 0.1472 0.0716 0.2828 0.1916 0.1058 0.2322 0.0968
0.25 0.2037 0.0890 0.3006 0.2404 0.1326 0.2438 0.1464
0.30 0.2726 0.1020 0.2872 0.2746 0.1524 0.2336 0.1690

n = 500 −0.30 0.8570 0.9352 0.6914 0.9550 0.9220 0.7250 0.6972
−0.25 0.7130 0.8096 0.4902 0.8278 0.7824 0.5328 0.3980
−0.20 0.5231 0.6060 0.3072 0.5922 0.5630 0.3430 0.2104
−0.15 0.3278 0.3708 0.1702 0.3476 0.3334 0.1948 0.1184
−0.10 0.1723 0.1976 0.0872 0.2070 0.1716 0.1058 0.0804
−0.05 0.0796 0.0898 0.0512 0.1264 0.0756 0.0620 0.0590

0 0.0500 0.0630 0.0426 0.1122 0.0500 0.0500 0.0500
0.05 0.0796 0.0850 0.0674 0.1468 0.0708 0.0750 0.0566
0.10 0.1723 0.1578 0.1102 0.2218 0.1368 0.1224 0.0836
0.15 0.3278 0.2828 0.1630 0.3562 0.2578 0.1734 0.1588
0.20 0.5231 0.3928 0.2146 0.4772 0.3654 0.2256 0.2476
0.25 0.7130 0.5100 0.2556 0.6032 0.4830 0.2650 0.3684
0.30 0.8570 0.6256 0.2898 0.7154 0.5988 0.3008 0.5004
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Figure 1: Relative efficiency of θ̂n in the presence of first order AR or MA errors.
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Figure 2: Asymptotic local power functions with serial correlation in the error process.
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