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Abstract

The present paper tests for the existence of multicointegration between real per

capita private consumption expenditure and real per capita disposable personal income

in the USA. In doing so, we exploit the fact that the 
ows of disposable income and

consumption expenditure on the one hand, and the stock of consumers' wealth, which

can be considered as cumulative past discrepancies between the 
ows of income and

expenditure, on the other hand, can be thought of as a stock-
ow model, in which

multicointegration is likely to occur. We apply recently developed I(2) techniques for

testing for multicointegrating relations and �nd supporting evidence for the existence

of multicointegration in this simple bivariate model.
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1 Introduction.

Explaining and modeling of consumer's expenditure has been a long-standing occupation

of several generations of economists as well as econometricians. From the economists' side

a number of prominent theories has been put forward that shaped the economic views on

consumption for years to come. These include, amongst others, the formulation of the

consumption function suggested in Keynes (1936), the permanent income hypothesis (PIH)

of Friedman (1957), and the life-cycle hypothesis of Ando & Modigliani (1963).

From the side of the applied economists and econometricians the doctrine of error-

correction models, that dominates modern time series econometrics, was initially suggested

in Davidson, Hendry, Srba & Yeo (1978). The notion of error-correction mechanisms were

introduced into economics in Phillips (1954) and Phillips (1957) who borrowed the ideas

from the control engineering literature. The error-correction models, which were somewhat

later statistically justi�ed by the theory of cointegration (see Engle & Granger (1987), inter

alia), came about as a response to the fact that the theoretical economic models often only

stipulate the long-run or equilibrium relations between the economic variables. In doing so,

they often fail or are unable to describe the dynamic adjustment towards these equilibrium

relations as well as to take the characteristic features of the actual data into consideration.

Thus, the approach started in Davidson et al. (1978), while taking its inspiration in the

formal theoretical economic models, speci�cally focuses on designing empirical models that

explicitly take the salient features of the data into account. The relevance of the empirical

models are judged on the basis of several design criteria developed for this purpose. This

data-driven approach, which subsequently evolved to what is known as the London School of

Economics (LSE) approach, o�ers a practical way of modeling economic relations in general

and modeling e.g. consumption function in speci�c.

In this paper we model the consumers' expenditure in the US following the LSE tra-

ditions. The motivation of the paper is as follows. Following Davidson et al. (1978), we

assume the existence of the long-run equilibrium relation between consumption expenditure

and disposable income, which are assumed to be well approximated by I(1) processes in the

sequel. In reality, however, this relation need not to be held exactly in every time period.

In other words, we assume that consumption expenditure and disposable income are coin-

tegrated. This means that the resulting savings variable, or cointegration error, de�ned as

the di�erence between consumption expenditure and disposable income, is stationary. In-

tuitively, this is appealing since in general one cannot spend income without earning it and
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saving income without spending it also makes little sense.

Furthermore, suppose that in a given period saving is the increment to household wealth

such that the savings accumulated over time represent a measure of private wealth. Hence,

the three variables: income and expenditure 
ows, and the stock of cumulated savings

(or wealth), taken together form a so-called stock-
ow model. Granger & Lee (1989) and

Granger & Lee (1991) were the �rst to suggest the possible existence of a second cointegrating

relation in stock-
ow type models, i.e. when the 
ow variables cointegrate with the stock

variable (itself being created from the historic 
ows). In our case, this corresponds to

cointegration between the stock of wealth and the 
ows of expenditure and income. Then we

say that the income and expenditure variables are multicointegrated in the sense of Granger

& Lee (1989). Thus, in a bivariate system, multicointegration means that there exist two

cointegrating relations formed by the two original time series and their transformations.

This is opposite to the usual cointegration case where only a single cointegrating relation is

allowed in a model with only two variables. As we have seen, the �rst cointegrating relation

arises between the levels of the 
ow variables, whereas the second cointegrating relation

involves the cumulated equilibrium errors, obtained in the �rst step, as well as the original

variables in levels.

The idea of approximating the stock of wealth by summation of the past discrepancies

between disposable income and consumption expenditure is not new in the econometrics

literature. In fact, Stone (1966) and Stone (1973) can be credited to be the �rst who ap-

proximated the stock of wealth held by consumers by cumulating past savings in his study

of the UK consumers' expenditure. Clearly, the introduction of wealth e�ects into the study

of consumption behaviour of the economic agents seems not to be unwarranted as some (un-

observable to econometrician) wealth stock must undergo some changes when income and

expenditure 
ows fail to match each other. Elaborating on the above mentioned study of

Davidson et al. (1978), Hendry & von Ungern-Sternberg (1981) were the �rst who, next to

the assumed long-run relation between the disposable income and the consumption expendi-

ture, incorporated the measure of wealth into the celebrated error-correction framework by

stipulating existence of the long-run relation between the stock of wealth on the one hand

and the disposable income on the other hand. In other words, using the modern terminol-

ogy, the consumption function, developed in Hendry & von Ungern-Sternberg (1981), can

be considered as a multicointegrating system, which can be statistically tested using already

available techniques.

So far, the literature on multicointegration has been rather limited. Granger & Lee (1989)



3

and Granger & Lee (1991) found support for the presence of multicointegrating relations

existing between sectorial production and sales �gures across a range of US industries and

industrial aggregates. Hence, in this case two cointegrating relations were found amongst the

production and sales variables and the stock of inventory de�ned as the cumulative historic

discrepancies between production and sales.

In succession, Lee (1992), Lee (1996), and Engsted & Haldrup (1999) detected multi-

cointegration in data for US housing. They found a stationary linear relation amongst the


ows of housing units started and completed as well as the stock of housing units under

construction; the latter being de�ned as the history of cumulated quasi-di�erence between

the number of housing units started and completed in a given period.

While Granger & Lee (1989), Granger & Lee (1991), Lee (1992), and Lee (1996) es-

timated the multicointegrating relations using only the original I(1) variables, Engsted &

Haldrup (1999) showed that the statistical inference and estimation of the multicointegrating

relations could be carried out in the framework of the Johansen FIML procedure for I(2)

variables, see Johansen (1995). In order to apply this procedure, we �rst need to transform

the original I(1) 
ow variables into their cumulated stock variants which then become I(2)

series by construction. As advocated by Engsted & Johansen (1999), this transformation

of variables is necessary because the I(1) analysis turns out to be invalid in the presence of

multicointegration.

In the present paper we address the detection and estimation of a possible multicointe-

grating relation in the US consumption data set used in Campbell (1987) by employing the

recent technique developed in Engsted & Haldrup (1999).

The plan of the paper is as follows. In Sections 2 and 3, we provide the formal de�nition

of multicointegration in the sense of Granger and Lee together with a brief description of the

Johansen FIML I(2) estimation technique which we use to make statistical inference as well

as for estimation of the multicointegrating relation as it was originally done in Engsted &

Haldrup (1999). Next, we present the stock-
ow vector error correction models - henceforth

VECM - for the multicointegrating variables in Section 4. The data set and the empirical

results are described in Section 5. We draw conclusions and discuss possible extensions and

limitations of this study in Section 6.
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2 The Statistical Model.

We use the consumption-income example presented above for the formal de�nition of mul-

ticointegration. Suppose that income, yt; and consumption variables, ct; are integrated of

order one. Moreover, assume that the variables in question are cointegrated, i.e. such that

there exists some stationary linear combination of these variables:

st = yt �
1



ct � I(0): (1)

The I(0) variable on the left hand side of (1) ; st; represents the cointegration error. Multi-

cointegration occurs when the cumulated cointegration error, which is an I(1) stock variable

by construction, forms a cointegrating relation CI(1,1) with either one of the original 
ow

variables or both 1:
tX

j=1

�
yj �

1



cj

�
+ �1yt + �2ct � I(0): (2)

Notice that (2) represents the stationary linear combination between the 
ows of consump-

tion and income and the wealth variable which is the cumulated stock of the past discrepancy

between income and consumption.

Furthermore, if we adopt the convention that the generated I(2) variables are denoted in

capital letters,

Yt =

tX
j=1

yj ; Ct =

tX
j=1

cj ; �Yt = yt; �Ct = ct;

then we can write our multicointegrating relation (2) in the form of a polynomial cointegrat-

ing relation

Yt �
1



Ct + �1�Yt + �2�Ct � I(0); (3)

which occurs when I(2) variables cointegrate with their �rst di�erences. Note that both

layers of cointegration are encompassed in (3) :

Observe that in the �rst cointegrating relation (1) we estimate the parameter 
. In

Campbell (1987) the 
 parameter is de�ned as the marginal propensity to consume out of the

hypothetical permanent income y
p
t . Campbell (1987) estimates this parameter in equation

(1) using both a method of the grid-search and the two-step Engle-Granger procedure,

see Engle & Granger (1987). The method applied in this paper can be considered as an

1We assume zero initial values for yt and ct. Such scaling has no implications for the further analysis,

except that proper allowance for deterministic components in the model will be needed.
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alternative estimation method of the parameter of interest. Note that the parameter 
 is

expected to be either equal to one or be a positive fraction, i.e. 
 � 1.

As mentioned by Engsted & Haldrup (1999), the existence of the stationary relation

between the stock and 
ow variables (3) would imply that we can estimate the parameter 


in the �rst step cointegrating relation (1) at the fast rate of consistency, Op(T
�2).

Having de�ned the statistical and economic models, we consider the estimation and in-

ference procedures as well as the VECM representations for the multicointegrating variables.

3 Estimation and Inference Procedures.

Initially2, consider the following unrestricted VAR model of order k for the p� 1 vector of

variables Xt integrated of order two:

Xt = �1Xt�1 + :::+�kXt�k + "t; t = 1; :::; T; (4)

where we assume �xed initial values. The error term is identically, independently distributed

N(0,
). We also assume here that the roots of the characteristic polynomial of (4) either

take value of unity or lie outside the unit circle.

Following Johansen (1995), as an intermediate step we can reparametrize (4) as:

�Xt = �Xt�1 +

k�1X
i=1

�i�Xt�i + "t; (5)

where

� =

kX
i=1

�i � I; �i = �

kX
j=i+1

�j ; i = 1; :::; k � 1:

Finally, after one more rearrangement we arrive at

�2
Xt = �Xt�1 � ��Xt +

k�2X
i=1

�i�
2
Xt�i + "t; (6)

where

� = I �

k�1X
i=1

�i; �i = �

k�1X
j=i+1

�i; i = 1; :::; k � 2:

2The I(2) analysis in VAR models is technically involved. Therefore, in the further discourse we mainly

present the skeleton of the inference and estimation procedures we use. For a recent review of the I(2)

analysis as well as for the further technical details, see e.g. Haldrup (1999) and the references therein.
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The last reformulation (6) is convenient for the subsequent analysis because it displays

rather explicitly the reduced rank conditions that characterize the model with I(2) variables.

Hence, according to Johansen (1995) the I(2) model nested in the unrestricted VAR involves

the following two reduced rank conditions:

�
p�p

= ��
0

�
0

?

��
?

(p�r)�(p�r)

= ��
0

;

where � and � are p�r matrices, and �
?
and �

?
are the respective orthogonal complements

of dimension p � (p� r) with r < p, such that by de�nition we have that �0
?

� = 0 and

�
0

?

� = 0: The matrices � and � have the dimensions (p � r) � s with (p � r) > s. Further

description of an I(2) model requires more notation. Denote � = � (�0�)
�1

such that

P� = ��
0 is the orthogonal projection matrix onto the vector space spanned by the columns

� and correspondingly �0� = I is the identity matrix. Then in addition to already introduced

matrix p � r � we can de�ne the following matrices �1 = �
?
� and �2 = �

?
�
?

of the

corresponding dimensions of p � s and p � (p� r � s) in such a way that �, �1, and �2

provide an orthogonal basis for the p�dimensional vector space. The same holds for the

following matrices �, �1 = �
?
�, and �2 = �

?
�
?
which have dimensions of p� r, p� s, and

p� (p� r � s), respectively.

Using this notation, we can give the condition that rules out the presence of variables

which are integrated of order higher than two, i. e. the following matrix needs to be of full

rank:

�
0

2��2 = �
0

2

(
���0� +

k�1X
i=1

i�i

)
�2:

In the following we will refer to the numbers r; s; and p � r � s as the integration

indices. Given the fact that we have p variables in the system (6), these integration indices,

respectively, indicate the number of I(0), I(1), and I(2) relations present in the model. Thus,

the I(2) model is characterized by the following. There are p � r � s linear combinations

that do not cointegrate and represent the common stochastic I(2) trends:

p� r � s : �
0

2Xt � I(2):

There are s linear combinations of the Xt variables that cointegrate to the I(1) level referred

to as the common stochastic I(1) trends:

s : �
0

1Xt � I(1):
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The remaining r linear combinations of the Xt variables and often its �rst di�erences, �Xt;

cointegrate to the I(0) level:

r : �
0

Xt � Æ�
0

2�Xt � I(0); (7)

where Æ = �
0��2 is the r � (p� r � s) matrix with r � (p� r � s).

It is important to note that for a bivariate I(2) system with Xt = (Yt; Ct)
0

this linear

combination 7 constitutes the only possible polynomially cointegrating relation de�ned in (3)

with � = (1;�1=
)0 and Æ�
0

2 = (�1; �2)
0

: Therefore this relation is of our primary interest.

Hence, we would expect in the multicointegrating system to have one stationary relation3,

r = 1, no common I(1) trends, s = 0, and one common I(2) trend, p� r � s = 1.

In order to address the question of how the models with di�erent integration indices are

related we need the following notation. First, consider the restricted I(1) model without

any I(2) trends. This corresponds to the case when p � r = s; i.e. the matrix �
0

?

��
?
has

full rank. Thus we have only one reduced rank condition left. Therefore, we denote Hr as

a model that has rank(�) � r < p, whereas H0
r denotes the model with the rank(�) = r:

Therefore H0
r is a submodel of Hr or Hr = [

r
i=0H

0
i .

Similarly, we de�ne the more general hierarchical ordering of the models by allowing

for the I(2) relations as well. The model with Hrs involves two reduced rank conditions:

rank(�) = r < p and rank(�0
?

��
?
) � s < (p � r): It nests the sub-models H

0
rs with

rank(�0
?

��
?
) = s such that the various models are related as follows: Hrs = [

s
i=0H

0
ri and

Hr0 � Hrs � ::: � Hrp�r = H
0
r � Hr � Hp:

The relations amongst the various bivariate models with the di�erent integration indices

are viewed best when presented in Table 1, adapted from Johansen (1995).

Recapitulating, the upper-left corner of Table 1 houses the most restricted model H00

with � = � = 0 such that we have only the noncointegrating I(2) variables present. This

corresponds to the VAR in second di�erences, see (6). The unrestricted model placed in

the lower-right corner is Hp with p = 2; where we have only I(0) variables. The remaining

models comprise one or another form of cointegration as discussed above. The exception

is the model H0 in the upper-right corner which contains only the noncointegrating I(1)

variables such that it corresponds to the VAR model in �rst di�erences.

This order of how the various models are nested determines the sequence of the testing

3Observe that by using the I(2) formulation of the problem the single multicointegrating relation involves

the two layers of cointegration that follow from the usual I(1) analysis.
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Table 1: Hierarchy of the various models for p = 2.

r I(2) model I(1) model I(0)model

0 H00 � H01 � H02 = H
0
0 � H0

\

1 H10 � H11 = H
0
1 � H1 � H2

p� r � s 2 1 0 0

Adapted from Johansen (1995).

procedure for the integration indices in our model. We start testing with the most restrictive

model against the unrestricted alternative. In case we reject the hypothesis in question, we

proceed to the less restrictive model and so on until the �rst hypothesis that we cannot

reject. This determines the integration indices.

Notice that here we have ignored the deterministic terms for expositional simplicity.

There are two readily developed parametrizations of the deterministic terms in the I(2)

models such as Rahbek, Kongsted & J�rgensen (1999) and Paruolo (1994). As we will argue

below, each of these parametrizations has its own appealing properties when used for the

data at hand. We review each parametrization in turn starting with the suggestion of Rahbek

et al. (1999).

First notice that from equation (1) we have that if the estimated savings variable has

a nonzero mean then this results in a trend-stationary multicointegrating relation after we

obtain the measure of the wealth stock as an integral of the savings. In order to allow

for a possible trend-stationary multicointegrating relation, we adopt the restrictions on the

deterministic terms suggested in Rahbek et al. (1999). These restrictions allow us to rule

out the nonlinear deterministic trend terms and at the same time to retain at most a linear

trend in each of the I(0), I(1), and I(2) directions.

In the absence of the deterministic terms the process Xt in equation (4) can be given the

following common stochastic trends representation 4:

Xt = C2

tX
s=1

sX
i=1

"i + C1

tX
i=1

"i + C
� (L) "t; (8)

4Abstracting from the nuisance parameters that depend on the initial conditions.
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where

C2 = �2 (�
0

2��2)
�1

�
0

2

�
0

C1 = �
0�C2

�
0

1C1 = �
0

1 (I � �C2) ;

and all the characteristic roots of a matrix lag polynomial C� (L) lie strictly outside the unit

circle.

Based on equation (8), Rahbek et al. (1999) introduce the following model:

Xt = C2

tX
s=1

sX
i=1

"i + C1

tX
i=1

"i + C
� (L) "t + �0 + �1t; (9)

such that linear deterministic trends are allowed in every I(0), I(1), and I(2) directions. Thus,

the I(2) process Xt has a linear trend �1t. As shown in Rahbek et al. (1999), the following

r + s I(1) linear combinations �0Xt and �
0

1Xt possess the linear deterministic trends given

by �0�1t and �
0

1�1t, respectively. Next, the p� r� s common stochastic I(2) trends �02Xt are

with linear trends �02�1t as well. Finally, the r multicointegrating relations �
0

Xt � Æ�
0

2�Xt

are trend-stationary around a linear trend �
0

�1t.

Next we consider the following argument in favor of the model suggested by Paruolo

(1994). Because the data in levels are trending, as seen at Figure 1, their cumulative coun-

terparts are likely to have quadratic trends 5. Hence, the restrictions of Rahbek et al. (1999)

are valid only if the nonlinear quadratic trends cancel out in the resulting system. Unfortu-

nately, the limitations of the available software does not allow us to test this assumption. As

an alternative route, we have considered the VAR model (4) with an unrestricted constant,

i.e.:

Xt = �1Xt�1 + :::+�kXt�k + �+ "t; t = 1; :::; T; (10)

According to Paruolo (1994), this results in the presence of linear and, most importantly,

quadratic trends in the data. This is best seen in the corresponding common stochastic

trends representation of the model given in (10):

Xt = C2

Pt

s=1

Ps

i=1 ("i + �) + C1

Pt

i=1 ("i + �) + C
� (L) "t;

Xt =
1
2
C2t

2 +
�
1
2
C2 + C1 +B

�
t+ C2

Pt

s=1

Ps

i=1 "i + C1

Pt

i=1 "i + C
� (L) "t:

(11)

The model (11) allows for the I(2) processXt with quadratic trends given by
1
2
C2t

2. Next, by

de�ning the I(1) relations as �01Xt we annihilate both the stochastic I(2)- and the quadratic

5This point has been made by Hans Cristian Kongsted.
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deterministic trends such that the resulting I(1) linear combinations have only at most a

linear deterministic trend given by �
0

1C1t. Finally, due to the equality restriction �
0

C1 =

�
0�C2 there are no linear deterministic trends in the multicointegrating relations �0Xt �

Æ�
0

2�Xt.

Notice that the model (11) does not allow for di�erent stochastic and deterministic orders

in either of I(2), I(1), or I(0) directions. In particular, as opposed to the parametrization of

Rahbek et al. (1999) it does not allow for the trend-stationary multicointegrating relations.

Again, within a given model of Paruolo (1994) this remains an untestable assumption.

To summarize, it seems that the available parametrizations of the system with I(2) vari-

ables are somewhat restrictive and, therefore, are not general enough to allow us to test the

assumptions on the deterministic terms that we are involuntarily imposing on the system

by resorting to either of the existing speci�cations in our empirical application. Hence, in

order to assess the legitimacy of the imposed restrictions we need a system for I(2) variables

that would encompass both parametrizations suggested in Rahbek et al. (1999) and Paruolo

(1994) by allowing for the trend-stationary multicointegrating relations and for the quadratic

trends in the data.

Rahbek et al. (1999) and Paruolo (1994) show that in the presence of the imposed re-

strictions on the deterministic terms inference on the integration indices is performed in the

likelihood-based two-step procedure similar to Johansen (1995). Essentially, at the �rst step

we address the reduced rank of � = ��
0 by testing the restricted model Hr against the un-

restricted alternative Hp: For later use in the empirical section, we denote the corresponding

test statistics as Q (r) : Then, by �xing the rank of the matrix � at each of the following

values r = 0; :::; p � 1 we address the reduced rank of the other matrix �
0

?

��
?
= ��

0 by

testing the restricted model Hrs against the alternative Hr;p�r model. Finally, because of

the fact that in practice the reduced rank of the matrix � is unknown and since the models

are nested as discussed earlier, inference on the integration indices is based on the joint

hypothesis of Hrs against the unrestricted Hp model. The relevant test statistics is referred

to as S (r; s).

We have argued above that the bivariate multicointegrating model contains two coin-

tegrating vectors that essentially appear in the form of a single polynomially cointegrating

vector. In the next section we demonstrate how these equilibrium relations can be incorpo-

rated into VECM representations for multicointegrated variables.
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4 The VECM for Multicointegrating Variables.

Engsted & Haldrup (1999) suggest two types of vector error correction models (VECM)

for the multicointegrating variables. The �rst type shows how the 
ow variables react to

deviations from an equilibrium. The second type shows disequilibrium responses in the stock

variables.

Engsted & Haldrup (1999) present the VECM for the general case, potentially embracing

more than two variables. Since we operate in the bivariate system, we know that multicoin-

tegration in such a system implies the following integration indices: r = 1, s = 0, and

p � r � s = 1. This knowledge allows us to simplify signi�cantly the presentation of the

VECM for the multicointegrating variables which is given below.

De�nition 1 The bivariate 
ow VECM representation for the multicointegrating variables:

�xt = �[Qt�1 � Æ�2xt�1]� �1�Qt�1 +�(L)�xt + "t; (12)

where xt = (yt; ct)
0

; Qt =
Pt

j=1 �
0

xj represents the stock of cumulative equilibrium errors

and �(L) =
Pk�2

i=1 �iL
i contains the coeÆcients of the short-run dynamics: The adjustment

coeÆcients � and �1 = �� have the equal dimensions of p � r, with � = �(�0�)�1: The

matrix Æ = ���2 is r � (p� r � s); where � and �2 are de�ned similarly to �:

Notice that this VECM incorporates several control mechanisms, as discussed in Hendry

& von Ungern-Sternberg (1981), for example. For instance, the integral control mechanism,

[Qt�1�Æ�2xt�1], represents the multicointegrating relation. The proportional control mech-

anism, �Qt�1 = �
0

xt; represents the �rst step cointegrating relation between the variables

in levels, and lastly, the derivative control mechanism is given by the lagged �xt's.

De�nition 2 The bivariate stock VECM representation for the multicointegrating variables

�ext = M�[Qt�1 � Æ�2xt�1]� e�1�Qt�1 + (13)

+e�(L)�ext +M�(L)�2��
0

2xt�1 +M"t;

where in addition to the variables and the model parameters de�ned above we have �ext =
(�Q0

t;�x
0

t�2)
0

; M = (�; �2)
0

; e�1 = (�r�M�1) with �r = (1; 0)0; and e�(L) =M�(L)M�1
D
?
(1)
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such that M�1 = (�
0

; �
0

2) and

D(L) =

0@ � 0

0 1

1A D
?
(L) =

0@ 1 0

0 �

1A D(L)D
?
(L) =

0@ � 0

0 �

1A :

The latter VECM representation is worth commenting further on. First, note that

the equilibrium relations are the same as in the former representation. Secondly, the

variables that adjust to the previous period disequilibrium state are the stock variable,

Qt =
Pt

j=1 �
0

xj ; as well as the 
ow variables that appear in the VECM as the �rst di�er-

ence of the I(2) trends, �02xt: Finally, note that the "�" parameters in (13) retain the same

dimension as the parameters without the "�" sign in (12).

Additionally, keep in mind that for both VECM representations we impose the restric-

tions on the deterministic terms (not shown) in accordance with Rahbek et al. (1999).

5 The Empirical Application.

In this study we use the same data set as in Campbell (1987) 6. This data set contains

quarterly data for the period of 1953:2 to 1984:4 with 127 observations. The data are the

seasonally adjusted time series of real disposable income and real total private consumption

expenditure taken from the National Income and Product Accounts (NIPA) with some ad-

justments made by Blinder & Deaton (1985). The data are in per capita values in units of

thousands US$. We want to address this period in order to be able to compare our results

with those of Campbell.

The upper panel of Figure 1 displays the actual values of the real total disposable income,

yt, and the real total private consumption expenditure, ct. As seen, both the time series

develop very synchronously. Given the results of the ADF test reported in Campbell (1987)

and Table 2 that these variables are I(1), this is the �rst sign that they might be cointegrated.

However, we are interested in testing whether the variables in question are multicointegrated.

In order to sort this out, we �rst transform the variables into their cumulative counter-

parts, Yt and Ct; which are shown in the lower panel of Figure 1. Next we use these newly

generated I(2) variables to form a parsimonious bivariate VAR(7) model. Table 3 summa-

rizes the results of both the univariate and multivariate diagnostic tests of the estimated

residuals. The univariate diagnostic tests comprise: FAR8 - test for autocorrelation of most

6This dataset has been used extensively in the literature, for example, in Blinder & Deaton (1985),

Campbell & Deaton (1989), Flavin (1993), and Vahid & Engle (1993).
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Table 2: Results of the ADF test.

Variable Deterministic terms Augmentation t-ratio 5% critical value

yt Constant, Trend 1,5 -2.027 -3.45a

ct Constant, Trend 2 -2.224 -3.45

The critical values are reported after Fuller (1976).

Table 3: VAR (7). Residual diagnostic tests.

Univariate analysis Multivariate analysis

Yt : FAR8( 8, 96) = 1.2282 [0.29] F v
AR8(32,174) = 0.87379 [0.66]

Ct : FAR8( 8, 96) = 1.4550 [0.18]

Yt : Normality �
2(2) = 2.8825 [0.23] Normalityv �2(4) = 12.803 [0.01]

Ct : Normality �
2(2) = 16.952 [0.00]

Yt : FHET (30, 73) = 1.0256 [0.45] F v
HET (90,213) = 0.8521 [0.80]

Ct : FHET (30, 73) = 1.2864 [0.19]

Yt : FARCH4( 4, 96) = 0.2913 [0.88]

Ct : FARCH4( 4, 96) = 0.2305 [0.92]

The corresponding p-values are reported in the square brackets.
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Table 4: VAR(7): Dynamic analysis.

real complex modulus real complex modulus

-0.7265 0 0.7265 0.6528 0.4812 0.811

-0.5342 0.2513 0.5904 0.6528 -0.4812 0.811

-0.5342 -0.2513 0.5904 0.8663 0.287 0.9126

-0.197 0.7467 0.7722 0.8663 -0.287 0.9126

-0.197 -0.7467 0.7722 0.9697 0.05923 0.9715

0.06783 0.6227 0.6264 0.9697 -0.05923 0.9715

0.06783 -0.6227 0.6264 1.005 0 1.005

Eigenvalues of the companion matrix of equation (4).

8 th order (see Godfrey (1978)); Normality - test for the normally distributed residuals (see

Doornik & Hansen (1994); FHET - White (1980) test for heteroscedasticity based on the

original and squared regressors; FARCH4 - Engle (1982) test for the 4
th order AutoRegressive

Conditional Heteroscedasticity. The multivariate test statistics denoted with the superscript

v were derived in Doornik & Hansen (1994) for vector normality, and in Doornik (1995) for

vector autocorrelation and vector heteroscedasticity. The graphics and residual diagnostic

tests were calculated using GiveWin and Pc-Fiml 9.3 , see Hendry & Doornik (1999).

Taken as a whole, it seems that the model residuals do not display autocorrelation,

ARCH e�ects, and heteroscedasticity when judged on the basis of both from the results

of the univariate and the multivariate speci�cation tests. However, their is some deviation

from the normality assumption in the equation for Ct. An additional information can be

obtained from Figure 2, which provides a graphical analysis of the estimated residuals. It

contains the estimated residuals, their correlogram, spectral density, and histogram. As

seen, the deviation from normality in the equation for Ct occurs due to a amall number of

large negative residuals. The most important assumption we require to be ful�lled is the

absence of autocorrelation in the VAR residuals, since it introduces nuisance parameters

in the limiting distribution of the test statistics. This invalidates the asymptotic critical

values that we use in our statistical inference procedure. On the other hand, Gonzalo (1994)

showed that the FIML Johansen procedure is rather robust to minor departures from the

model assumptions due to non-normality.
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Table 5: Test for integration indices.

p� r r S (r; s) S (r)

2 0 49:92** 32:22* 25:39*

47 :5 34 :4 25 :4

1 1 11:67 8:76

19 :9 12 :5

p� r � s 2 1 0

**,* indicate rejection at the 5% and 10% signi�cance levels, respectively.

The asymptotic 95% quantiles are reported in italics, see Table 1 in Rahbek et

al. (1999).

The system dynamics is summarized by the eigenvalues of the companion form of (4),

see Table 4. A priori, in the bivariate multicointegrating model we would expect two unit

roots corresponding to the one common I(2) trend. As seen for the given realization of

the stochastic variables in our model we have one explosive eigenvalue, but it needs not

be signi�cantly di�erent from unity. Hence, we assume it to be a unit root in the sequel.

Furthermore, we have two pairs of comparatively large complex conjugate eigenvalues of

moduli 0.97 and 0.91, respectively. The remaining eigenvalues of rather smaller magnitude

lie at some other di�erent from the zero frequencies. Thus, the unrestricted VAR model

seems to contain at least two unit roots or, possibly, more.

The statistical inference7 of testing sequentially the hypotheses of the restricted submodel

Hrs against the unrestricted alternative Hp yields the results displayed in Table 5.

The empirical results suggest that we have one polynomially cointegrating relation, r = 1;

and one common I(2) trend, p�r�s = 1; and no common I(1) trends, s = 0; in our bivariate

system. These are the values of the integration indices we would have expected to �nd if the

series were multicointegrated. The estimated trend stationary multicointegrating relation

reads:
tX

j=1

(yj � 1:000cj)� 5:253yt � 5:253ct + constant+ trend: (14)

7All I(2) analysis has been performed using the I(2) procedure written by Clara M. J�rgensen for the

CATS in RATS package, see http://www.estima.com/procs/i2index.htm
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Table 6: VECM representations, r = 1, s = 0, p� r � s = 1:.

Multicointegrating relation b�0 = (1;�1:000) ; bÆ = 5:253bÆb�02 = (5:253; 5:253)

Adjustment coeÆcients b�0 = (�0:002; 0:010)

I(1) trend b�1 = 0

I(2) trend b�02 = (1; 1:000)

M -matrix cM =
�b�; b�2�0 =

0@ 1 �1:000

1 1:000

1A
�-matrix b� =

0@ �0:017 �0:005

�0:261 0:369

1A
Flow VECM Stock VECM

Derived adjustment parameters.

b� =

0@ �0:002

0:010

1A cM b� =

0@ �0:012

0:008

1A
b�1 = b�b� =

0@ �0:006

�0:315

1A be�1 =
240@ 1

0

1A� cM b�1
35 =

0@ 0:619

0:321

1A
Rahbek et al. (1999) restrictions on deterministic terms.

Incidentally, we estimated b
 to be exactly 1:000. This means that the 
ows of income and

expenditure variables are cointegrated with the vector b� = (1;�1:000)0. This contrasts the

�ndings of Campbell (1987) who speci�cally reports that the linear combination yt�1:000ct

is non-stationary, see Campbell (1987), Table I p. 12608. The facts that we allow for a linear

trend in the stationary directions and consider a VAR approach with I(2) variables could

account for some of the di�erence.

Furthermore, notice the equal coeÆcients on the 
ow variables that enter the multicointe-

grating relation (14) in form of the di�erenced I(2) trend, �02�Xt: This is due to the fact that

the matrices b� and b�2 that provide subspaces for the I(0) and I(2) directions, respectively,

8In addition, we note here that Campbell (1987), using the two{step Engle{Granger method, obtains the

estimate b
 = 0:941, which corresponds to the cointegrating vector of (1;�1:062): Vahid & Engle (1993) in

Table I report that testing for unit root in the logarithmic transformation of the income-consumption ratio,

(log yt � log ct), with an intercept and three lags in augmentation results in t-statistics of -3.77, which is

signi�cant at the 5% level.
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are mutually orthogonal as noted above. Hence, as summarized in Table 6, additionally tob� = (1;�1:000)0 our estimates of the remaining coeÆcients in the multicointegrating relation

are bÆ = 5:253 and b�2 = (1; 1)
0

such that the orthogonality condition holds, i.e. b�0 b�2 = 0:

Figure 3 displays the estimated multicointegrating vector (14) in deviations from the

linear trend with subtracted mean. It looks reasonably stationary. It is interesting to

compare graphically the original 
ow income and expenditure time series with the estimated

measure of wealth. This is done in Figure 4. Notice that to ease comparisons, in the �gure

we have adjusted the displayed time series to have the same mean and range although not in

the rest of the paper. As noted above, the income and expenditure time series move rather

closely with one another, while at the same time their joint development could be seen

as a cyclical movement around the estimated stock of accumulated savings which is much

smoother than either of the 
ow variables. As the �nal exercise we place the estimated

equilibrium relations in the VECM discussed in Section 4.

Using Table 6 the 
ow VECM looks as follows9:

0@ �yt

�ct

1A =

0@ �0:002

0:010

1A (Qt�1 � 5:253yt�1 � 5:253ct�1)� (15)

�

0@ �0:006

�0:315

1A (�Qt�1) + lagsf�yt;�ctg+

+constant+ trend+ error term:

The stock VECM is

0@ �Qt

��02 (yt; ct)
0

1A =

0@ �0:012

0:008

1A (Qt�1 � 5:253yt�1 � 5:253ct�1) + (16)

+

0@ 0:619

0:321

1A (�Qt�1) + lagsf�yt;�ctg+

+constant+ trend+ error term;

where the stock variable is Qt =
Pt

j=1 (yj � 1:000cj) in both the VECM's:

The magnitude of the adjustment coeÆcients for the multicointegrating control mecha-

9In Table 6 due to the limitations of the software we have neither the standard errors of the estimates

nor the estimated coeÆcients on a intercept and a linear trend.
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nism is much smaller than for the adjustment coeÆcients on the proportional control mech-

anism in either of the two VECM models. This indicates the rather slow adjustment to the

deviations from the multicointegrating equilibrium that takes place. On the other hand,

there is the quite rapid adjustment to the �rst step equilibrium error. Hence the "stock

e�ect" only appears to play a minor role.

In general, it is diÆcult to sign a priori the adjustment coeÆcients due to the complex

simultaneous interaction between the two equilibrium errors, but still it is possible to draw

some conclusions. First consider the 
ow model (15). The positive (though numerically

small) adjustment coeÆcient on the integral control mechanism for the consumption variable

implies that consumption increases in response to the situation when the wealth variable is

above its equilibrium level and vice versa. Additionally, notice that the magnitude of the

income adjustment coeÆcient is rather small as well. The likelihood ratio test for restricting

the latter coeÆcient to zero yields the value of 0.15, which corresponds to p-value 0.70 when

compared with �
2(1) distribution.

Next, we notice that the consumption adjustment coeÆcient for the proportional control

mechanism has the expected sign. This means that consumption rightly adjusts to the past

period equilibrium error between the 
ow variables. As regarding the income adjustment

coeÆcient for the proportional control mechanism it seems to have a counterintuitive sign.

In addition it is rather small compared to the consumption adjustment coeÆcient. Although

we lack the formal testing procedure here, it seems safe to conclude that the income variable

is rather less responsive to the past equilibrium errors represented by the multicointegrating

relation as well as the simple cointegrating relation. Thus it seems that the adjustment in

the 
ow error correction model mainly occurs through the consumption channel.

Considering the stock VECM (16) we notice that the adjustment coeÆcients to the

integral control mechanism have the intuitively expected signs. This means that both the

stock and 
ow variables adjust to correct for past deviations from the estimated equilibrium

relation between the stocks and 
ows in our model. Finally, it should be noticed that the

adjustment coeÆcients for the other cointegrating relation are both positive.

Next we present the estimation results of the model of Paruolo (1994). The obtained

results of inference on the integration indices and estimation of the system with imposed one

multicointegrating relation are displayed in Tables 7 and 8. As seen from Table 7 the rank

determination is problematic as practically every hypothesis is rejected either at the 10% or

5% signi�cance level. As discussed above, this might be due to the restrictive assumptions

on the deterministic terms that we impose. Nevertheless, we proceeded further by imposing
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Table 7: Test for integration indices.

p� r r S (r; s) S (r)

2 0 30:14* 21:49 � � 20:75**

30 :25 19 :79 15 :4

1 1 7:02 � � 5:33 � �

5 :99 3 :8

p� r � s 2 1 0

**,* indicate rejection at the 5% and 10% signi�cance levels, respectively.

The asymptotic 95% quantiles are reported in italics, see Table A1 in Paruolo

(1994).

Table 8: VECM representations, r = 1, s = 0, p� r � s = 1.

Multicointegrating relation b�0 = (1:000;�1:014) ; bÆ = 5:253bÆb�02 = (5:741; 5:664)

Adjustment coeÆcients b�0 = (0:001; 0:011)

I(1) trend b�1 = 0

I(2) trend b�02 = (1:014; 1:000)

M -matrix cM =
�b�; b�2�0 =

0@ 1:000 �1:014

1:014 1:000

1A
�-matrix b� =

0@ 0:000 0:014

�0:193 0:323

1A
Flow VECM Stock VECM

Derived adjustment parameters.

b� =

0@ 0:001

0:010

1A cM b� =

0@ �0:010

0:012

1A
b�1 = b�b� =

0@ �0:007

�0:256

1A be�1 =
240@ 1

0

1A� cM b�1
35 =

0@ 0:746

0:263

1A
Paruolo (1994) restrictions on deterministic terms.
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the restrictions that correspond to the presence of one multicointegrating relation. As seen

from Table 8, both estimates of the parameters of the multicointegration relation and the

estimates of the adjustment coeÆcients in the VECM formulations are very much alike with

those obtained when parametrization of Rahbek et al. (1999) was used, see Table 6. We

display the estimated multicointegrating relation in Figure 5. Given the estimation results,

it looks quite similar to that obtained from the model of Rahbek et al. (1999) as well, see

Figure 3.

6 Conclusions.

Using the same data set as in Campbell (1987), this study has detected the presence of

multicointegration between the consumption expenditure and disposable income 
ows that

was anticipated by Granger & Lee (1989) and Granger & Lee (1991). As it was initailly

suggested by Engsted & Johansen (1999) and implemented in Engsted & Haldrup (1999),

we perform statistical inference and estimation of the multicointegrating relation using the

I(2) technique based on the Johansen (1995) FIML procedure.

The existence of a multicointegrating relation implies that there are two layers of cointe-

grating relations in the bivariate model. We incorporated these two estimated equilibrium

relations in the error correction models for the multicointegrating variables that were initially

proposed by Engsted & Haldrup (1999). It was found that the disposable income responds

to the past disequlibria speci�ed by estimated (multi-) cointegrating relations to the much

lesser degree than does the consumption expenditure variable.

In our study we employed two available parametrizations on the deterministic terms

developed for the I(2) systems in Rahbek et al. (1999) and Paruolo (1994). While both

models have the appealing properties that match certain features of the data at hand, each

of them is based on certain restrictive assumptions. A limitation of the present study is

that we could not apply any formal statistical procedure in order to verify legitimacy of the

imposed restrictions in each of the models. Therefore the tasks for further research are to

develop the theoretical model for I(2) variables that would bridge both models of Rahbek

et al. (1999) and Paruolo (1994) and in doing so would allow comparison of these models

on the basis of formal statistical criteria as well as to include more variables relevant for

modeling of the consumption function that incorporates the multicointegrating relations.



21

References

Ando, A. & Modigliani, F. (1963), `The "life-cycle" hypothesis of saving: Aggregate impli-

cations and tests', American Economic Review 53(1), 55{84.

Blinder, A. S. & Deaton, A. S. (1985), `The time-series consumption revisited', Brooking

Papers on Economic Activity pp. 465{521.

Campbell, J. Y. (1987), `Does saving anticipate declining labour income? an alternative test

of the permanent income hypothesis', Econometrica 55, 1249{1273.

Campbell, J. Y. & Deaton, A. S. (1989), `Why consumption so smooth?', Review of Economic

Studies 56, 357{374.

Davidson, J. E. H., Hendry, D. F., Srba, S. & Yeo, S. (1978), `Econometric modelling of the

aggregate time-series relationship between consumers' expenditure and income in the

United Kingdom', Economic Journal 80, 661{692.

Doornik, J. (1995), `Testing vector autocorrelation and heteroscedasticity in dynamic mod-

els', mimeo, NuÆeld College, Oxford.

Doornik, J. A. & Hansen, H. (1994), `A practical test for univariate and multivariate nor-

mality', Discussion Paper, NuÆeld College, Oxford.

Engle, R. F. (1982), `Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom in
ation', Econometrica 50, 987{1007.

Engle, R. F. & Granger, C. W. J. (1987), `Cointegration and error correction: Representa-

tion, estimation and testing', Econometrica 55, 251{276.

Engsted, T. & Haldrup, N. (1999), `Multicointegration in stock-
ow models', Oxford Bulletin

of Economics and Statistics 61, 237{254.

Engsted, T. & Johansen, S. (1999), Granger's representation theorem and multicointegration,

in R. Engle & H. White, eds, `Cointegration, Causality and Forecasting, Festschrift in

Honour of Clive Granger', Oxford University Press., Oxford.

Flavin, M. (1993), `The excess smoothness of consumption: Identi�cation and interpreta-

tion', The Review of Economic Studies 60(3), 651{666.

Friedman, M. (1957), A Theory of the Consumption Function, Princeton University Press,

Princeton, NJ.



22

Fuller, W. A. (1976), Introduction to Statistical Time Series, New York, Wiley.

Godfrey, L. G. (1978), `Testing for higher order serial correlation in regression equations

when the regressors include lagged dependent variables', Econometrica 46, 1303{1313.

Gonzalo, J. (1994), `Five alternative methods of estimating long-run equilibrium relation-

ships', Journal of Econometrics 60, 203{233.

Granger, C. W. J. & Lee, T. (1989), `Investigaion of production, sales and inventory rela-

tions using multicointegration and non-symmetric error correction models', Journal of

Applied Econometrics 4(Supplement), S145{S159.

Granger, C. W. J. & Lee, T. H. (1991), Multicointegration, in R. F. Engle & C. W. J.

Granger, eds, `Long-Run Economic Relationships. Reading in Cointegration', Advanced

Texts in Econometrics, Oxford University Press, Oxford.

Haldrup, N. (1999), `A review of the econometric analysis of I(2) variables', Journal of

Economic Surveys 12(5), 595{650.

Hendry, D. F. & Doornik, J. A. (1999), Empirical Econometric Modelling Using PcGive 9.0

for Windows, 2nd edn, London: Timberlake Consultants Press.

Hendry, D. F. & von Ungern-Sternberg, T. (1981), Liquidity and in
ation e�ects on con-

sumers' expenditure, in A. S. Deaton, ed., `Essay in the Theory and Measurement of

Consumers' Behaviour', Cambridge University Press, Cambridge.

Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector Autoregressive Mod-

els, Advanced Texts in Econometrics, Oxford University Press, Oxford.

Keynes, J. M. (1936), The General Theory of Employment, Interest and Money, Macmillan,

London.

Lee, T. H. (1992), `Stock-
ow relationships in US housing construction', Oxford Bulletin of

Economics and Statistics 54, 419{430.

Lee, T. H. (1996), `Stock adjustment for multicointegrated series', Empirical Economics

21, 63{639.

Paruolo, P. (1994), `The role of the drift in I(2) systems', Journal of the Italian Statistical

Society 3(1), 93{123.



23

Phillips, A. W. (1954), `Stabilization policy in the closed economy', The Economic Journal

64, 290{323.

Phillips, A. W. (1957), `Stabilization policy and the time form of lagged responses', The

Economic Journal 67, 265{77.

Rahbek, A., Kongsted, H. . C. & J�rgensen, C. (1999), `Trend-stationarity in the I(2) coin-

tegration model', Journal of Econometrics 90, 265{289.

Stone, R. (1966), `Spending and saving in relation to income and wealth', L'industria 4, 471{

499.

Stone, R. (1973), Personal spending and saving in postwar Britain, in H. C. Bos, H. Linneman

& P. de Wol�, eds, `Economic Structure and Development (Essays in Honour of Jan

Tinbergen)', North-Holland Publishing Co, Amsterdam.

Vahid, F. & Engle, R. (1993), `Common trends and common cycles', Journal of Applied

Econometrics 8, 341{360.

White, H. (1980), `A heteroscedastic-consistent covariance matrix estimator and a direct

test for heteroscedasticity', Econometrica 48, 817{838.



24

1955 1960 1965 1970 1975 1980 1985

2500

3000

3500

4000

4500

5000
yt ct

(a) Total real consumption expenditure, ct; total real disposable income, yt; per capita values in

thousands US$, seasonally adjusted.
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(b) The cumulative series of ct and yt; denoted Ct and Yt; respectively.

Figure 1: Data.
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Figure 2: Estimated residuals, their correlogram, spectral density, and histogram.
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Figure 3: Rahbek et al. (1999) speci�cation. Estimated multicointegrating relation,Pt

j=1 (yj � 1:000cj)� 5:253yt � 5:253ct: Detrended with subtracted mean.
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Figure 4: Total real consumption expenditure, ct; total real disposable income, yt; estimated

stock of wealth, Qt =
Pt

j=1 (yj � 1:000cj) : All series are adjusted to have the same mean

and range.
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Figure 5: Paruolo (1994) speci�cation. Estimated multicointegrating relation,Pt

j=1 (yj � 1:014cj)� 5:741yt � 5:664ct: in deviations from the mean.
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