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Abstract

We consider semiparametric frequency domain analysis of cointegration between long memory

processes, i.e. fractional cointegration, allowing derivation of useful long-run relations even among

stationary processes. The approach uses a degenerating part of the periodogram near the origin to

form a narrow band frequency domain least squares (FDLS) estimator of the cointegrating relation,

which is consistent for arbitrary short-run dynamics. Our main theoretical contribution is to derive

the asymptotic distribution theory for the FDLS estimator of the cointegration vector in the sta-

tionary long memory case. The motivating example is the relation between the volatility realized in

the stock market and the associated implicit volatility derived from option prices. An application

to high-frequency U.S. stock index and option data is offered.

JEL classiÞcation : C14; C22; G13

Key words : Asymptotic distribution theory; Financial options; High-frequency data; Long mem-

ory; Long-run relation; Narrow band least squares
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1 INTRODUCTION

Cointegration analysis has been one of the most active areas in the econometrics and time series

literatures in the last 15 years, starting with the seminal contributions by Granger (1981) and Engle &

Granger (1987). Much of this work has been prompted by applications in macroeconomics and Þnance.

Most of the analysis has considered the I (1)− I (0) type of cointegration in which linear combinations
of two or more I (1) variables are I (0). Here, a process is labelled I (0) if it is covariance stationary

and has positive Þnite spectral density at the origin, and I (1) if the once differenced series is I (0) . In

the bivariate case, if yt and xt are I (1) and hence in particular nonstationary (unit root) processes, but

there exists a process et which is I (0) and a Þxed β such that

yt = β
0xt + et, (1)

then xt and yt are said to be cointegrated. Thus, the nonstationary series move together in the sense

that a linear combination of them is stationary and hence a common stochastic trend is shared.

The above notion of cointegration is based on the premise that the Þrst differences of the raw

series are somehow special. In particular, cointegrating relations among unit root processes (whose Þrst

differences are I(0)) are deÞned and studied. However, many economic and Þnancial time series exhibit

strong persistence without exactly possessing unit roots. The basic theory of cointegration offers no

guidance as to the analysis of relations among such series. What is needed is a class of processes that

is more general than I(1) and still admits a criterion for linear co-movement of series. One such class

is that of fractionally integrated processes. Thus, a process is I (d) (fractionally integrated of order d)

if its d�th difference is I (0). Here, d may be any real number, i.e. d = 0 or d = 1 are special cases. For

a precise statement, xt ∈ I (d) if
(1− L)d xt = εt, (2)

where εt ∈ I (0) and (1− L)d is deÞned by its binomial expansion

(1− L)d =
∞X
j=0

Γ (j − d)
Γ (−d)Γ (j + 1)L

j , Γ (z) =

Z ∞

0

tz−1e−tdt, (3)

in the lag operator L (Lxt = xt−1). Following the original idea by Granger (1981), a natural gen-

eralization of the cointegration concept is to assume that the raw series are I (d) and that a certain

linear combination is I (de) , with d and de positive real numbers and de < d. Thus, the errors are of

lower order of fractional integration than the levels. In this case, the series share fractionally integrated

stochastic trends of different orders (I (d) and I (de)), and a linear combination eliminates the largest.
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Clearly, this allows the study of co-movement among persistent series much more generally than in the

standard (exact) unit root based I (1)− I (0) type cointegration case.
Fractional cointegration analysis has been carried out by Cheung & Lai (1993), Baillie & Bollerslev

(1994), Dolado & Marmol (1996), and Dueker & Startz (1998), among others, using parametric methods.

However, Robinson (1994) shows that conventional estimators, and in particular OLS, are inconsistent

when the errors are fractionally integrated. He introduces a semiparametric method, which is later

extended to multiple regressors by Lobato (1997) and further developed by Robinson & Marinucci

(1998) (henceforth RM) and Marinucci & Robinson (2001), to cope with this issue. Their estimators are

consistent for general orders of fractional integration d for the individual series and de for the errors in

the cointegrating relation, and for arbitrary short run dynamics (which would have had to be precisely

and correctly speciÞed in the alternative parametric approaches). In addition, RM provide the limiting

distribution of their estimators of the cointegrating relation for the case d > 1/2, de ≥ 0.
In this paper, we study volatility series measured from both stock index levels (realized volatility)

and options data (implied volatility). Financial volatility series almost universally exhibit strong ser-

ial dependence, but not of the unit root kind, see e.g. Lobato & Velasco (2000), Andersen, Bollerslev,

Diebold & Ebens (2001), and Andersen, Bollerslev, Diebold & Labys (2001). Our motivating application

is the study of the relation between the realized volatility computed from high-frequency index return

data and the associated implied volatility backed out from the prices of options with lives (until expi-

ration) matching the intervals for realized volatility calculation. For univariate stock market volatility

series, Andersen, Bollerslev, Diebold & Ebens (2001) show that the parameter region 0 < d < 1/2 is

relevant. In the present paper, we show that indeed the region d > 0, de ≥ 0, d + de < 1/2 is relevant
for the orders of fractional integration and cointegration in the volatility application, thus extending

the result of Andersen, Bollerslev, Diebold & Ebens (2001) to the multivariate case. In particular, both

the volatility series (implied and realized) and the error term appear to be covariance stationary long

memory processes, and the implied-realized volatility relation is one of stationary fractional cointegra-

tion. The condition d+ de < 1/2 implies that the limiting distributions provided by RM do not apply.

We derive the limiting distribution of the semiparametric estimator for this case. We show that the

resulting distribution is normal, in contrast to RM�s more complicated distributions for the different

subcases in the region d+ de > 1/2. This difference corresponds to what might have been conjectured

from earlier results for long memory processes, e.g. Beran (1994).

Univariate realized volatility analysis has received much attention recently, particularly due to the

work of Andersen, Bollerslev, Diebold & Ebens (2001) and Andersen, Bollerslev, Diebold & Labys

(2001). For the multivariate case, Christensen & Prabhala (1998) studied the forecastability of future
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realized volatility from current implied volatility. Using OLS regressions, they found evidence that

implied volatility does contain signiÞcant information about future realized volatility, but that the

implied forecast is downward biased. Considering the strong persistence in the volatility series, these

inferences warrant further analysis. Thus, it is relevant to inquire whether implied and realized volatility

move together, and in particular are cointegrated. In this case, the notion of fractional cointegration

is required, since volatility although persistent does not exhibit unit root behaviour. If implied and

realized volatility are indeed fractionally cointegrated, then OLS estimation of the relation between the

two may be inconsistent, and the usual estimated standard errors erroneous. Hence, an actual fractional

cointegration analysis is called for.

We implement the semiparametric fractional cointegration method empirically in the implied-realized

volatility application, using our new limiting distribution theory for the estimator. We demonstrate

that indeed implied and realized volatility are fractionally cointegrated, and that the bias in the implied

volatility forecast of subsequent realized volatility is much less than suggested by the OLS analysis from

the literature, and in fact negligible in some of our speciÞcations. On the substantive side, this is evidence

in favor of the forecastability of realized volatility from implied volatility. On the methodological side,

the results show how careful modelling may improve inferences.

The rest of the paper is laid out as follows. In section 2 we set up the fractional cointegration model.

We then show that in the stationary fractional cointegration case, i.e., the above case where the �total

memory� of the model (the sum d+de of the memory of the raw data and the cointegrating error) is less

than 1/2, the estimator of the coefficients of the cointegrating relation is asymptotically normal. Section

3 brießy reviews the relation between the volatility implied in option prices and the volatility realized in

the stock market, as well as the cointegration implications. In section 4 we present our empirical results

using an ultra-high frequency dataset. Section 5 concludes. The proof of the main theorem appears in

the appendix.

2 STATIONARY FRACTIONAL COINTEGRATION

The stochastic process {xt, t = 1, 2, ...} generated by (2) has spectral density

f (λ) ∼ gλ−2d as λ→ 0+, (4)

where g is a constant and the symbol �∼� means that the ratio of the left- and right-hand sides tends to
one in the limit. Such a process is said to possess strong dependence or long range dependence since the

autocorrelations die out at a hyperbolic rate, in contrast to the much faster exponential rate in the weak
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dependence case. The most well-known model satisfying (4) is the fractional ARIMA model of Granger

& Joyeux (1980) and Hosking (1981). For a modern textbook treatment of long memory processes, see

e.g. Beran (1994). The parameter d determines the memory of the process. If d > −1/2 the process is
invertible and possesses a linear (Wold) representation, and if d < 1/2 it is covariance stationary. If d = 0

the spectral density is bounded at the origin and the process has only weak dependence. Furthermore, if

d < 0 the process is said to be anti-persistent, and has mostly negative autocorrelations, but if d > 0 the

process has long memory. Throughout this paper, we shall be concerned with the case 0 ≤ d < 1/2, only.
This interval is relevant for many applications in Þnance, see e.g. Lobato & Velasco (2000), Andersen,

Bollerslev, Diebold & Ebens (2001), and Andersen, Bollerslev, Diebold & Labys (2001). In particular,

it is the relevant region for the volatility processes we study below in our empirical application.

Many estimators of the memory parameter d and the scale parameter g have been suggested in

the literature. Two important semiparametric approaches have been developed, the log-periodogram

estimator by Geweke & Porter-Hudak (1983) and Robinson (1995b) and the Gaussian semiparametric

or local Whittle estimator by Künsch (1987) and Robinson (1995a), recently extended and reÞned

by Lobato (1999) and Shimotsu & Phillips (2002) among others. Estimators based on fully speciÞed

parametric models are considered by Fox & Taqqu (1986) and Dahlhaus (1989) among others. The

semiparametric estimators of the memory parameter assume only (4) for the spectral density and use

a degenerating part of the periodogram around the origin to estimate the model. This approach has

the advantage of being invariant to any short- and medium-term dynamics. The fully parametric

approaches are asymptotically efficient, using the entire sample, but are inconsistent if the parametric

model is speciÞed incorrectly, e.g., if the lag-structure of the short-term dynamics is misspeciÞed.

A natural generalization of the standard I (1) − I (0) cointegration concept is to assume that the
raw data variables are I (d) and that a certain linear combination is only I (d− b) with d ≥ b > 0.

To be more speciÞc, suppose the p raw data series are gathered in zt = (x0t, yt)
0 ∈ I (d1, ..., dp) and

that a certain linear combination of zt is I (de) with de < min (di). We shall then call zt fractionally

cointegrated and write zt ∈ FCI (d1, ..., dp; de). This would occur, for example, if (xt, yt) ∈ I (d) and
et ∈ I (de) with d > de ≥ 0 in the model

yt = β
0xt + et. (5)

Conceptually, an additional condition on the integration orders d1, ..., dp is needed. In particular, it

is necessary that the two largest orders of integration are equal. To extend on the previous example,

suppose (x1t, x2t, yt) ∈ I (d1, d2, d3) and that the variables are indexed in increasing order of magnitude
of di. It would then clearly be necessary that d2 = d3 for x2t and yt to cointegrate. However, no
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restriction is necessarily imposed on d1. To see why, suppose yt − β2x2t ∈ I (d0), where d0 < d2 = d3.
That is, yt and x2t cointegrate to an I (d0) process. Then it would only be possible for x1t to enter

nontrivially in the cointegrating relation if d0 = d1. Otherwise, we may let β1 = 0 and exclude x1t from

the equation. Thus, what is needed is a generalization of the multicointegration concept to allow the

orders of integration to be different, but maintaining a structure that ensures that only variables of the

same integration order cointegrate with each other.

Some authors have estimated fractionally cointegrated models. For instance, Dolado & Marmol

(1996) assume an arbitrary value of d for both the raw data and the errors, and Dueker & Startz (1998)

estimate a fully parametric model of the error correction type. The main drawback of fully speciÞed

parametric models is that they provide inconsistent estimates of the long-run parameters if the model

is not correctly speciÞed, e.g., if the short-run lag structure in the error correction model is incorrect.

Robinson (1994) and subsequently Robinson & Marinucci (1998) and Marinucci & Robinson (2001)

attempt to correct this by considering a semiparametric approach to the estimation of the cointegration

equation (5). However, they only consider the asymptotic distribution theory for the case d > 1/2,

where the raw series are nonstationary. This does not apply for the stationary long memory volatility

series that we consider below. Hence, we develop the necessary theory for the case d ∈ (0, 1/2).

2.1 The Model and Notation

In this subsection, we follow Robinson & Marinucci (1998) in setting out the model and the assump-

tions and present their consistency result. In the following subsection, we develop the new asymptotic

distribution theory for the stationary case d ∈ (0, 1/2). Suppose we observe the random p−vectors
zt = (x

0
t, yt)

0
, t = 1, . . . , n.

Assumption A: The vector process {zt, t = 0,±1, ...} is covariance stationary with spectral density
matrix satisfying

fzz (λ) ∼ ΛGΛ as λ→ 0+,

where G is a p× p real symmetric matrix whose leading (p− 1)× (p− 1) submatrix has full rank
and

Λ = diag
n
λ−d1 , . . . , λ−dp

o
for di ∈ (0, 1/2) , i = 1, ..., p. However, there exists a (p− 1)−vector β 6= 0 and a constant

c ∈ (0,∞) such that

¡−β0, 1¢ fzz (λ)
 −β

1

 = fe (λ) ∼ cλ−2de as λ→ 0+,
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with 0 ≤ de < min (di).

Assumption B: zt admits the Wold representation

zt = µz +
∞X
j=0

Ajεt−j ,
∞X
j=0

kAjk2 <∞,

where the innovations εt satisfy

E (εt| Ft−1) = 0, E (εtε
0
t| Ft−1) = Σ, a.s.,

and εtε0t are uniformly integrable. Here, µz = E (z0), Σ is a constant matrix of full rank, Ft =
σ ({εs, s ≤ t}) is the σ-Þeld of events generated by {εs, s ≤ t}, and k·k is the Euclidean matrix
norm.

Assumption A is a natural multivariate generalization of (4) including the multivariate fractionally

integrated ARMA model as a special case, see also Robinson (1995b) and Lobato (1997). In particular,

it implies that zit ∈ I (di) and et ∈ I (de). Thus, Assumption A follows if zt ∈ FCI (d1, . . . , dp; de).
Notice that even though it is not stated as part of Assumption A, the two largest integration orders

must be equal as mentioned earlier. The rank condition on G ensures no multicollinearity among the

xt variables at the origin, i.e. it restricts the xt from cointegrating among themselves. Assumption B is

a regularity condition which requires that the Þrst and second moments of the innovations in the Wold

representation of zt are martingale difference series.

DeÞne the Discrete Fourier Transform (DFT) of the observed vector {at, t = 1, . . . , n}

wa (λ) =
1√
2πn

nX
t=1

ate
itλ.

If {bt, t = 1, . . . , n} is another observed vector, the cross periodogram matrix between at and bt is

Iab (λ) = wa (λ)w
∗
b (λ) = I

c
ab (λ) + iI

q
ab (λ) ,

where the asterisk is transposed complex conjugation, and c, q indicate the co- and quadrature peri-

odograms, respectively. We then form the discretely averaged co-periodogram

�Fab (k, l) =
2π

n

lX
j=k

Icab (λj) , 1 ≤ k ≤ l ≤ n− 1, (6)

for λj = 2πj/n. If �Fab is a vector we denote the i�th entry �F
(i)
ab , and if it is a matrix we denote the

(i, j)�th entry �F (i,j)ab . We could also have considered a continuously averaged version of (6), but it would

not enjoy the property of being invariant to mean terms.

7



With �F deÞned as in (6) we can consider the Frequency Domain Least Squares (FDLS) estimator

�βm = �F−1xx (1,m) �Fxy (1,m) (7)

of β in the regression (5). If
1

m
+
m

n
→ 0 as n→∞, (8)

then �βm is called a narrow-band FDLS estimator, since it uses only a degenerating band of frequencies

around the origin. We need m to tend to inÞnity to gather information, but we also need to remain in

a neighbourhood of zero, so m/n must tend to zero. Notice that �βn−1 is the OLS estimate of β with

allowance for a non-zero mean in et.

In this setup, RM show the following result.

Theorem 1 (Robinson and Marinucci, 1998) Under Assumptions A, B, (8), and with �βm deÞned

in (7),

�βim − βi = Op
µ³ n
m

´de−di¶
, i = 1, . . . , p− 1, as n→∞.

Notice that under fractional cointegration de < min (di), so the estimator �βm is consistent for β.

Furthermore, if the integration order of the raw data series is common, i.e. di = d for all i = 1, ..., p,

the stochastic order of the estimator varies inversely with the strength of the cointegrating relation

b = d− de. In the case of different orders di, the estimated coefficients on the variables of highest order
of integration converge fastest.

This completes the RM setup and their consistency result. As already noted, no asymptotic distri-

bution theory has been available for the case di ∈ (0, 1/2), which is relevant for our Þnancial volatility
application below. Hence, we now turn to the development of such a theory.

2.2 Limiting Distribution Theory

To derive the limiting distribution of �βm for di ∈ (0, 1/2), we need to strengthen Assumptions A and
B and introduce new assumptions similar to those in Robinson (1995b) and Lobato (1999). As RM, we

Þnd it convenient to use the notation wt = (x0t, et)
0. Henceforth, f (λ) = {fij (λ)}i,j=1,...,p denotes the

spectral density matrix for wt. Note that the cross spectral density between xit and et is fip (λ).

Assumption A�: The spectral density matrix of wt satisÞes

f (λ) ∼ ΛGΛ as λ→ 0+.
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In particular, there exists α ∈ (0, 2] such that¯̄̄
fij (λ)− gijλ−di−dj

¯̄̄
= O

³
λα−di−dj

´
as λ→ 0+, i, j = 1, ..., p− 1, (9)

where gij is the (i, j)�th element of G, which has the same properties as in Assumption A and

gip = gpi = 0, i = 1, ..., p− 1.

Assumption B�: wt is a linear process, wt = µ +
P∞

j=0Ajεt−j , where the coefficient matrices are

square summable
P∞
j=0 kAjk2 < ∞ and the innovations satisfy, almost surely, E (εt| Ft−1) = 0,

E (εtε
0
t| Ft−1) = Ip, and the matrices E (εt ⊗ εtε0t| Ft−1) , E (εtε0t ⊗ εtε0t| Ft−1) are nonstochastic,

Þnite, and do not depend on t, with Ft = σ ({εs, s ≤ t}). Denote the periodogram of εt by J (λ) .

Assumption C: As λ→ 0+

dAi (λ)

dλ
= O

¡
λ−1 kAi (λ)k

¢
for i = 1, ..., p, where Ai (λ) is the i0th row of A (λ) =

P∞
j=0Aje

ijλ.

Assumption D: The bandwith m satisÞes

1

m
+
m1+2α

n2α
→ 0 as n→∞,

with α from Assumption A�.

Some comments on our assumptions are in order. Assumptions A� and C strengthen Assumption A by

imposing a rate of convergence on f (λ) and a smoothness condition similar to those used in parametric

models, see e.g. Fox & Taqqu (1986) or Dahlhaus (1989). Assumption A� is satisÞed with α = 2 if,

for instance, wt is a vector fractional ARIMA process. Here, (9) with gip = gpi = 0, i = 1, ..., p− 1, is
the central assumption of cointegration, restricting the coherencies between the cointegration residuals

and other right hand side variables at the origin. The restriction is quite weak and does not require the

regressors xt and the errors et to be uncorrelated at any frequency, not even at the origin. Thus, our

estimator allows the regressor and error terms to share the same short- and medium-term dynamics,

and even allows long memory in the relation between the two. This is in stark contrast to most

familiar estimation methods, such as OLS and other cointegration methods. In particular, under our

assumptions, the OLS estimator of β is generally inconsistent. Note that under Assumption A� with the

new notation, the condition that the two largest integration orders in zt must be equal is automatically

satisÞed since dy = max (di) by construction.

Assumption B� follows Robinson (1995a) and Lobato (1999) in imposing a linear structure on wt

with square summable coefficients and martingale difference innovations with Þnite fourth moments. It
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is satisÞed for instance if εt form an i.i.d. process with Þnite fourth moments. Under Assumption B� we

can write the spectral density matrix of wt as

f (λ) =
1

2π
A (λ)A∗ (λ) , (10)

where the asterisk is complex conjugation combined with transposition. Assumption D implies (8), so

our estimator is in the narrow-band FDLS class, and if α is high the implied constraint on the bandwidth

m is weak. If, e.g., wt is a vector fractional ARIMA process such that α = 2 we can take m = o(n4/5).

We are now ready to derive the limiting distribution of the narrow-band FDLS estimator of the

cointegrating relation in (5) . The proof is in the appendix.

Theorem 2 Under Assumptions A�, B�, C, D, di + de < 1/2, 0 ≤ de < di < 1/2 for i = 1, ..., p − 1,
and with �βm deÞned in (7),

√
mλdem �Λ(

�βm − β) d→ N
¡
0, cH−1JH−1¢

as n → ∞, where �Λ is the leading (p− 1) × (p− 1) submatrix of Λ and H,J are deÞned in equations
(20) and (36) in the appendix.

Note that the limiting distribution in Theorem 2 is a centered normal, unlike the non-normal distri-

butions arising when di ≥ 1/2 (Robinson & Marinucci (1998) and Marinucci & Robinson (2001)). The
particular result that the asymptotic bias of �βm disappears is due to the key cointegration condition

(9) and gip = gpi = 0, i = 1, ..., p− 1, in Assumption A�. This allows for straightforward inference, e.g.
based on standard t-ratios (no simulation needed). Note also that in the simple two-variable case with

zt ∈ I (d), et ∈ I (de), and �G = g, the asymptotic distribution of �βm in (5) is given by Theorem 2 as

√
mλde−dm

³
�βm − β

´
d→ N

Ã
0,

c (1− 2d)2
2g (1− 2d− 2de)

!
. (11)

The asymptotic distribution (11) is easy to interpret and compare to well-known cases. The para-

meters c and g correspond to var (et) and var (xt). Ordinary full band spectral regression yields the

asymptotic variance c/g in the short memory case. In that case, Brillinger (1981, chap. 7-8) and others

have also considered narrow band analysis and obtained the division by two in the asymptotic variance,

as in (11). This arises since the cross-terms involving et vanish asymptotically in var( �Fxe) (see the proof

of Theorem 2, immediately before (35)). Our Theorem 2 generalizes the analysis to allow long memory

at the origin in the regressors as well as in the errors. Of course, the short memory results appear as

the special case d = de = 0 of Theorem 2.
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The parameters c,G, di, i = 1, ..., p, in the limiting distribution in Theorem 2 can be replaced by

consistent estimates. Many such estimates are available, but the Gaussian semiparametric estimator of

Robinson (1995a) and Lobato (1999) has particularly simple asymptotic properties, and is also employed

by Marinucci & Robinson (2001) to estimate the fractional integration orders in their analysis.

To assess the strength of the cointegrating relation, one could calculate the observed error process

�et = yt − �β0mxt, t = 1, ..., n, and estimate �b = �d − �d�e (assuming a common integration order di = d

for the raw data series) using e.g. the methods mentioned above. Formally, Velasco (2001) shows that

Robinson�s (1995a) Gaussian semiparametric estimator applies for residuals under additional regularity

and bandwidth conditions. In any case, this provides an informal diagnostic.

The condition that di + de < 1/2 for i = 1, ..., p in Theorem 2 includes many relevant cases, both

empirically and from theoretical models, e.g. the case when the raw data series are stationary with long

memory and the error process - the deviations from equilibrium - has only short memory (or is actually

white noise) due to rational expectations.

In the case where di < 1/2 ≤ di+de < 1 for some i, it is conjectured that �βm converges to a function
of the Rosenblatt process like the scalar averaged periodogram estimator in Lobato & Robinson (1996).

It is also conjectured that even though �βm is asymptotically non-normal in this case, it belongs to the

Local Asymptotically Mixed Normal (LAMN) family which has several important implications, one of

them being that Wald, LM, and LR tests on �βm are asymptotically χ2 distributed.

To sum up, Theorem 2 provides the necessary asymptotic distribution theory for the stationary frac-

tional cointegration model, thus complementing the consistency result of Robinson (1994) and Robinson

& Marinucci (1998). We use this in the empirical application below.

3 THE IMPLIED-REALIZED VOLATILITY RELATION

Our motivating application of stationary fractional cointegration analysis is the relation between the

volatility implied in option prices and the subsequent realized return volatility of the underlying asset.

If option market participants are rational and markets are efficient, then the price of a Þnancial

option should reßect all publicly available information about future return volatility of the underlying

asset over the life of the option. Empirical analysis of this hypothesis has typically employed the option

pricing formula of Black & Scholes (1973) and Merton (1973) - henceforth the BSM formula. According

to this, the fair (arbitrage free) price of a European call option with τ periods to expiration and strike
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price k is given by

c (s, k, τ , r, σ) = sΦ (d)− e−rτkΦ ¡d− σ√τ¢ , (12)

d =
ln (s/k) +

¡
r + 1

2σ
2
¢
τ

σ
√
τ

,

where s is the price of the underlying asset, r is the riskless interest rate, Φ is the standard normal c.d.f.,

and σ is the return volatility of the underlying asset through expiration of the option (τ periods hence).

Given an observation c of the price of the option, the implied volatility σIV may be determined by

inverting (12), i.e. solving the nonlinear equation

c = c (s, k, τ , r, σIV ) (13)

numerically with respect to σIV , for given data on s, k, τ , and r. If this is done every period t, a time

series σIV,t results. Each implied volatility σIV,t may now be compared to the actually realized return

volatility of the underlying asset, from the time t where σIV,t is calculated and until expiration of the

option at t + τ . Here, realized volatility is simply the sample standard deviation σRV,t of the realized

return from t to t+ τ .

Christensen & Prabhala (1998) (henceforth CP) considered the regression speciÞcation

yt = α+ βxt + et, (14)

where yt = lnσRV,t and xt = lnσIV,t are the log-volatilities, and α and β are intercept and slope

coefficients. A monthly sampling frequency was employed for xt and yt. The underlying asset was

the S&P100 stock market index, and yt was calculated from daily returns. The options were at-the-

money (kt = st) one-month (τ = 1/12) OEX contracts. CP also presented results without the log

transform, and the difference was negligible. Basic OLS regression in (14) produced a β-estimate that

was signiÞcantly greater than zero and less than unity.

If volatility is persistent and, indeed, fractionally integrated, as empirical litterature suggests (Ander-

sen, Bollerslev, Diebold & Ebens (2001) Þnd fractional integration with d at about 0.35− 0.4), whereas
the forecasting error et in (14) is serially uncorrelated or possesses only short memory, then xt and

yt are fractionally cointegrated. This is in fact what our empirical results below indicate. Thus, all

inferences from OLS must be called into question. In particular, even though OLS is super-consistent

for β in the standard I (1)− I (0) cointegration case, it is generally inconsistent in the case of stationary
fractional cointegration (Robinson (1994), Robinson & Marinucci (1998)). The narrow band analysis is

consistent, and has also been applied recently by Bandi & Perron (2002) to the implied-realized volatility
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relation. However, due to the lack of available asymptotic distribution theory, they rely on subsampling

for inference.

In the present paper, we reexamine the volatility forecasting hypothesis within the relevant stationary

fractional cointegration framework, invoking our new distribution theory for inference. Long memory

warrants an examination of the relation between implied and realized volatility at the long-run frequency.

The condition β = 1 is then a long-run unbiasedness hypothesis. This is a reinterpretation relative to

CP, who considered the stronger conditions of unbiasedness at all frequencies and market efficiency.

They ascribed Þndings of β less than unity to correlation between regressors and errors, induced e.g. by

measurement errors or possible misspeciÞcation of the BSM model. By focusing on a diminishing band

of low frequencies, the role of such correlation problems vanish asymptotically, provided the spectral

density of the measurement errors is dominated by that of the observed variables, i.e. is of lower order

of fractional integration.

4 DATA AND EMPIRICAL RESULTS

4.1 Data

We sample options data from the Berkeley Options Data Base (BODB) (see the BODB User�s Guide

or Rubinstein & Vijh (1987) for a description). We use all quotes from January 1, 1988, to December

31, 1995, for options on the S&P500 index (SPX options). The SPX options are traded frequently

and heavily. When using the BSM formula (12), the SPX options have the advantage over the OEX

contracts considered by CP that they are European style, as assumed in the formula, i.e. there is no

early exercise. Quotes are revised frequently due to the heavy trading and are used here since quotes

data are expected to be more reliable than trading prices. Quotes data are recorded automatically and

instantaneously when quotes are revised, whereas trading prices are recorded manually with a time lag.

This could bias results for high-frequency data. Finally, our sampling period starts after the October

1987 stock market crash, since CP documented a regime shift in the implied-realized volatility relation

around the time of the crash. Volatility was elevated for a period following the crash, and hence we

exclude the remainder of the year 1987.

From the high-frequency options data, a 5-minute return series for the underlying (the S&P500

index) is constructed. Thus, there is a total of 8,189,617 quotes between January 1, 1988 and December

31, 1995, and we select the quotes closest to the 5-minute points during each trading day. These quotes

are associated with time stamps 9:00 AM, 9:05 AM, ..., 2:55 PM, 3:00 PM. This results in a series of

147,022 observations. The average absolute error in matching the desired time stamps is 25.18 seconds.
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The raw mean of the timing errors is 7.87 seconds, with a standard error of the mean 0.6532 seconds.

In the BODB, a simultaneous price of the underlying is recorded for each quoted option price. We use

these underlying index levels to calculate our 5-minute return series.

The high-frequency (5-minute) return series forms the basis for realized volatility calculations. In

particular, we choose a one-week interval and calculate the realized variance

σ2RV,t =
1

K − 1
KX
k=1

(rt,k − r̄t)2 , (15)

where rt,k are the 5-minute annualized returns in week t, and r̄t is the weekly average. The realized

volatility is the square-root of σ2RV,t. In practice, we start Monday morning at 10:00 AM and end Friday

at 3:00 PM to avoid effects of irregular behavior from the Friday close to the Monday opening. Thus,

each estimate is based on up to K = 348 high-frequency return observations. For comparison, Andersen,

Bollerslev, Diebold & Ebens (2001) use 5-minute returns to form daily realized volatilities and have 79

returns in each.

In addition, we need implied volatilities. Here, we use the Monday 10:00 AM quote (according to

the above deÞnition) for the call of shortest maturity and closest to the money. Since options expire at

3:00 PM on the Friday immediately preceding the third Saturday of each month, the sampled options

will have 456 , 9
5
6 , 14

5
6 , 19

5
6 , or 24

5
6 trading days to expiration, except that business holidays may reduce

each of these Þgures slightly. From each sampled quote, an implied volatility is backed out using the

BSM formula (12), as described in the previous section. We correct for dividends on the S&P500 index

as described in Hull (1997, p. 263). Dividend yield data are obtained from Datastream. We use

two different measures of time to expiration to reßect that calendar days are relevant for interest and

dividends, and trading days for volatilities, following Hull (1997, p. 248). This results in a weekly

implied volatility series �σIV,t. However, if the implied volatility �σIV,t in week t is from an option with

one week (d0 = 456 trading days) to expiration then �σIV,t−i corresponds to i+1 weeks (di = 5i+4
5
6 days)

to expiration, i = 0, 1, 2, 3, and in some cases also for i = 4. In the other cases �σIV,t−4 is again from

a one week option, and which case applies depends on when the third Saturday in the relevant month

occurs. We convert this heterogeneous series to another weekly series σIV,t that may be associated with

the series σRV,t of realized volatilities covering homogeneous nonoverlapping weekly (length d0) intervals

by the formula

σ2IV,t−i =
1

di − di−1
¡
di · �σ2IV,t−i − di−1 · �σ2IV,t−i+1

¢
, (16)

starting with σIV,t = �σIV,t for t corresponding to a one week option and applying (16) for i = 1, 2, 3 and

if applicable also i = 4. Here, (16) is an identity for the associated realized volatilities covering interval
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lengths d0, di, and di−1. This identity becomes an approximation for implied (as opposed to realized)

volatilities. In practice, if the RHS of (16) turns out negative, we let σIV,t−i = σIV,t−i−1 for that week.

This occurs in 30 of the 417 weeks in our sample, or about once every 14 weeks. Thus, due to the

approximations involved, our results below on the forecasting performance of weekly implied volatility

are conservative estimates based on the sample at hand. As noted earlier, the effect of measurement

errors vanishes asymptotically.

4.2 Empirical Results

Summary statistics for the two volatility series constructed in Section 4.1 appear in Table 1. Each of the

series is of length 417 weeks, covering the interval January 1988 through December 1995. From Table

1, implied volatility has a higher mean than realized volatility. In the case of American style options,

such a difference would be at least partly attributed to the early exercise premium embedded in implied

volatility. In particular, the BSM formula (12) does not correct for the possibility of early exercise.

However, we have deliberately chosen the S&P500 (SPX) options because they are of European style,

so there is no early exercise premium issue. Hence, the difference in mean volatility in our case must be

attributed to excess hedging costs associated with replicating the options from the underlying (assumed

zero in (12)).

Table 1 about here

The next line in Table 1 shows that implied volatility also has higher variance than realized volatility.

This is inconsistent with the notion that implied volatility is the market�s rational forecast of subsequent

index volatility, i.e., a conditional expectation (see Section 3). In effect, we have only a noisy estimate

of true implied volatility, due to the approximation in (16), among others, and as already noted, the

assessment of the implied-realized volatility relation is conservative in any given sample, even if it is

precise in large samples.

The third line in Table 1 shows that there is very little skewness in realized and implied volatility.

Realized volatility is slightly positively skewed, and implied volatility is slightly negatively skewed,

but the magnitudes are negligible. The next line in Table 1 shows that realized volatility is not very

leptokurtic, consistent with the Þndings in Andersen, Bollerslev, Diebold & Ebens (2001). However, the

table also shows that implied volatility in fact is somewhat leptokurtic. This difference is an interesting

addition to the picture of the properties of volatility which has not been noted in the literature. Thus,
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our results so far complement those of Andersen, Bollerslev, Diebold & Ebens (2001) who Þnd that log

volatilities are indeed Gaussian.

Figures 1-2 about here

The sample autocorrelation functions for the realized and implied volatility series are exhibited in

Figures 1 and 2. For both series, the decay is very slow, with signiÞcant autocorrelations even beyond

the 50th lag. Even when autocorrelations drop below the upper 95% conÞdence limit shown in the

Þgures, they all remain positive. This is consistent with the hypothesis of long memory in volatility and

with the results of Andersen, Bollerslev, Diebold & Ebens (2001).

Next, in Table 2 we turn to the analysis of the memory properties for each individual volatility

series. First, the impression of highly signiÞcant autocorrelation functions for both realized and implied

volatility is conÞrmed by the Box-Pierce statistics with 4 or 24 lags (roughly one and six months) in the

Þrst two lines of the table. The second part of the table shows Gaussian semiparametric (henceforth

GSP, see Robinson (1995a)) estimates of the fractional integration parameter d for each series, and for

different choices of the bandwidth parameter m.

Figures 3-4 about here

Figures 3 and 4 show the log periodograms for both series plotted against the log Fourier frequencies

and both exhibit negative linear trends at the long frequencies (i.e. the periodograms have peaks at

the long frequencies), thus reinforcing the impression of long memory series. The chosen bandwidths

are n0.5 = 20, n0.6 = 37, and n0.7 = 68, corresponding roughly to the log frequencies −1 to 0, up to
which the negative linear trend in Figures 3 and 4 is most pronounced. Returning to Table 2, all the

estimates are below 1/2, but signiÞcantly greater than 0 (asymptotic standard errors in parentheses).

This suggests that both realized and implied volatility are covariance-stationary long memory series.

Table 2 about here

To be sure that the long memory evident in the volatility series does not in fact reßect a unit root,

we also in the last part of Table 2 exhibit standard augmented Dickey-Fuller unit root tests with 0 and

4 lags. These tests complement the GSP estimates and show clearly that the volatility series are not

unit root processes.

The results so far are consistent with the notion that realized and implied volatility both are driven by

stationary but fractionally integrated series. The interesting question is how closely they move together.

Table 3 about here
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Under the long-run unbiasedness hypothesis, we would expect the series to follow each other closely.

In Table 3, we turn to the analysis of the potential stationary fractional cointegration relation between

the two series. The Þrst line of the table shows the results of the OLS regression

yt = α+ βxt + et (17)

of realized on implied volatility. The parameter of interest, β, is estimated to be 0.38, but viewing OLS

as a special case of FDLS, we have the bandwidth parameter m = n− 1 (n = 417 is the number of time
series observations), and this is too much for calculating standard errors under the maintained hypothesis

(based on Table 2) of long memory in the individual volatility series. The point estimate, however, is

similar to those in the literature, and suggests that implied volatility is a downward biased forecast

of realized volatility. Of course, the properties of OLS are called into question when the possibility of

fractional cointegration is recognized. Note the high estimated order of integration of the OLS residuals

(0.31 to 0.39, depending on bandwidth), i.e. the residuals possess long memory.

Turning to lower bandwidth parameters m for the estimation of the parameter of interest, β, we Þnd

much larger point estimates. Following Robinson & Marinucci (1998) (see also Marinucci & Robinson

(2001)), we actually place considerable weight on the estimates resulting from low values of m, such as

m = 3 or m = 6, and only consider estimation with up to m = 15 (RM consider m = 3, 4, 6 for their

sample sizes of n = 116 and n = 138). For example, for m = 15 we Þnd �β in excess of 0.85, i.e. more

than twice the value from OLS, and the estimate is signiÞcantly greater than zero. Here, the asymptotic

standard errors of �βm are calculated using the new asymptotic distribution result in Theorem 2, with

the results from Table 2 (we have chosen bandwidth 68, since the results are quite close and this choice

yields results closest to those in the literature) for d. For m = 15 or less, �βm is insigniÞcantly less than

unity, whether using me = 20, 37, or 68 for the bandwidth parameter to estimate de (this enters the

formula from Theorem 2 for the standard error of �βm).

From the residual analysis, we cannot reject the null hypothesis that implied and realized volatility

indeed are stationary fractionally cointegrated. That is, the residuals are of lower order of fractional

integration than the volatility series themselves, de < d and de + d < 1/2. In fact, our results are

consistent with the even stronger relation that de = 0. Thus, de is insigniÞcant in Table 3 for m = 15

and lower, whether using bandwidth me = 20, 37 or 68 for estimating de.

Figures 5-6 about here

Here we have chosen the same bandwidths as in the estimation of the memory parameter of the

raw data. The log periodogram vs. log Fourier frequency plots do not give any clear guidance to the
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choice of bandwidth for the residuals. For example, the plots using m = 3 and m = 15 (to estimate

β and generate the residuals) are given in Figures 5 and 6. The results indicate that the cointegration

error process exhibits only short memory, so that all long memory properties in volatility are common

features for implied and realized volatility.

Considering different bandwidthsm for the estimation of β, we note a monotonicity, with a tendency

towards higher �βm for lowerm. Thus, the more we focus the analysis on the long frequencies, the less the

data that we use to extract information about the long term relation between the series is contaminated

by short term noise, which could include measurement errors. For m = 3, we Þnd �β = 0.89 and with a

rather narrow conÞdence band which contains unity. Clearly, these results leave the possibility of β = 1

very likely, consistent with the notion that implied volatility from option prices is an unbiased forecast

of the subsequently realized index volatility in the long run. This is obviously in stark contrast to the

raw OLS results in the Þrst line of the table, with �β = 0.38. It should be noted in this connection that

the usual (inconsistent) OLS standard error for �β (not reported in the table) is 0.033. Clearly, inferences

on volatility relations may be heavily misleading if the possibility of stationary fractional cointegration

is ignored.

5 CONCLUSION

Option market efficiency implies a coefficient of unity in the implied-realized volatility relation. The

ordinary regression estimate is less than one-half. We show that the implied and realized volatility series

are stationary fractionally cointegrated. When accounting for this, the revised estimate is more than

twice as large as before, and insigniÞcantly less than unity. This shows the need to account for long-run

relations even among stationary series. In effect, the evidence is in favor of a long-run unbiasedness

hypothesis, which is a weaker condition than market efficiency.

We employ the semiparametric frequency domain least squares estimator by Robinson (1994). This

estimator has been used by Robinson & Marinucci (1998) and Marinucci & Robinson (2001) in the case

of nonstationary series. By using a degenerating part of the periodogram near the origin, the approach

is invariant to short-run dynamics, which would have to be speciÞed correctly in a parametric procedure.

In our stationary fractionally integrated case, an asymptotic distribution theory for the estimator of

the cointegrating relation has been missing. We have provided and proved the necessary new theory in

this paper. It is noteworthy and useful that our asymptotic distribution is normal, in contrast to the

more complicated distributions arising in the nonstationary case.
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APPENDIX: PROOF OF THEOREM 2

We now turn to the proof of Theorem 2. Following Robinson (1995a) and Lobato (1999), the proof

of asymptotic normality of �Fxe = �Fxe (1,m) Þrst approximates the cross periodogram between xit and

et by Ai (λ)J (λ)A∗p (λ), where J (λ) is the periodogram of εt by Assumption B�, and then invokes a

central limit theorem for martingale difference arrays.

Proof of Theorem 2. We want to examine each of the terms in

√
mλdem �Λ(

�βm − β) =
√
mλdem �Λ �F

−1
xx (1,m) �Fxe (1,m)

=
n
λm�Λ �F

−1
xx (1,m) �Λ

on√
mλde−1m

�Λ−1 �Fxe (1,m)
o
. (18)

Using linearity of Re (·) and Theorem 1 of Lobato (1997), which is implied by our assumptions, we

conclude that

�Fik − Fik = op
³p

Fii
p
Fkk

´
, 1 ≤ i, k ≤ p− 1.

Thus, the Þrst term in (18) is

λm�Λ �F
−1
xx (1,m) �Λ

p→ λm�Λ�Λ
−1λ−1m H

−1�Λ−1�Λ = H−1 (19)

by the Continuous Mapping Theorem, where

Hik =
gik

1− di − dk , 1 ≤ i, k ≤ p− 1. (20)

Note that the leading (p− 1)× (p− 1) submatrix of G (and thus H) is invertible by Assumption A.
For the remaining part of the proof we look at the convergence in distribution of

√
mλde−1m

�Λ−1 �Fxe (1,m) .
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Applying the Cramèr-Wold device, we need to examine (η is an arbitrary (p− 1)× 1 vector)

η0
√
mλde−1m

�Λ−1 �Fxe (1,m)

=

p−1X
i=1

ηi
√
mλdi+de−1m

�Fip (λm)

=

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re (Iip (λj))

=

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re
¡
Iip (λj)−Ai (λj)J (λj)A∗p (λj)

¢
(21)

+

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re
¡
Ai (λj)J (λj)A

∗
p (λj)

¢
. (22)

By (C.2) of Lobato (1999), which is implied by our assumptions, the Þrst term, i.e. expression (21), is

(21) = Op

Ã
p−1X
i=1

ηi
√
mλ−1m

1

n

·
m1/3 (logm)

2/3
+ logm+

√
m

n1/4

¸!

= Op

Ã
p−1X
i=1

ηi
1√
m

·
m1/3 (logm)2/3 + logm+

√
m

n1/4

¸!

= Op

Ã
(logm)

2/3

m1/6
+
logm√
m

+
1

n1/4

!
→p 0.

The second term above, expression (22), can be written

(22) =

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re

Ai (λj) 1

2πn

¯̄̄̄
¯
nX
t=1

εte
itλj

¯̄̄̄
¯
2

A∗p (λj)


=

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re

Ã
Ai (λj)

1

2πn

nX
t=1

εtε
0
tA

∗
p (λj)

!
(23)

+

p−1X
i=1

ηi
√
mλdi+de−1m

2π

n

mX
j=1

Re

Ai (λj) 1

2πn

nX
t=1

X
s6=t

εtε
0
se
i(t−s)λjA∗p (λj)

 . (24)

Now write (23) as

(23) =

p−1X
i=1

ηi
√
mλdi+de−1m

1

n

mX
j=1

Re
¡
Ai (λj)A

∗
p (λj)

¢
(25)

+

p−1X
i=1

ηi
√
mλdi+de−1m

1

n

mX
j=1

Re

Ã
Ai (λj)

Ã
1

n

nX
t=1

εtε
0
t − Ip

!
A∗p (λj)

!
, (26)
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where (25) is bounded by

sup
i
O

√mλdi+de−1m

1

n

mX
j=1

|fip (λj)|
 = sup

i
O
³√
mλdi+de−1m

m

n
λα−di−dem

´
= O

µ
m1+2α

n2α

¶
→ 0

by Assumptions A� and D. For (26) we use the fact that εtε0t−Ip is a martingale difference sequence with
respect to the Þltration (Ft)t∈Z , Ft = σ ({εs, s ≤ t}), such that in particular n−1

Pn
t=1 εtε

0
t−Ip = op (1).

Then (26) is bounded by

sup
i
op

√mλdi+de−1m

1

n

mX
j=1

|fip (λj)|
 = op

µ
m1+2α

n2α

¶
→p 0

by Assumptions A� and D.

We return to (24),

p−1X
i=1

ηi
√
mλdi+de−1m

1

n2

mX
j=1

Re

Ai (λj) nX
t=1

X
s6=t

εtε
0
se
i(t−s)λjA∗p (λj)


=

nX
t=1

ε0t
X
s6=t

p−1X
i=1

ηi

√
m

n2
λdi+de−1m

mX
j=1

Re
³
A0i (λj) e

i(t−s)λj Āp (λj)
´
εs

=
nX
t=1

ε0t
t−1X
s=1

ct−s,nεs,

deÞning

ctn =
1

2πn
√
m

mX
j=1

θj cos (tλj) ,

θj =

p−1X
i=1

ηiλ
di+de
m Re

¡
A0i (λj) Āp (λj) +A

0
p (λj) Āi (λj)

¢
.

So, ztn = ε0t
Pt−1
s=1 ct−s,nεs is a martingale difference array with respect to (Ft)t∈Z , and we can apply

the CLT if

nX
t=1

E
¡
z2tn
¯̄Ft−1¢− p−1X

i=1

p−1X
k=1

ηiηkcJik →p 0, (27)

nX
t=1

E
¡
z2tn1 (|ztn| > δ)

¢→ 0, δ > 0, (28)

see Hall & Heyde (1980, chap. 3.2). A sufficient condition for (28) is

nX
t=1

E
¡
z4tn
¢→ 0. (29)

21



First, we show (27),

nX
t=1

E
¡
z2tn
¯̄Ft−1¢ =

nX
t=1

E

Ã
t−1X
s=1

t−1X
r=1

ε0sc
0
t−s,nεtε

0
tct−r,nεr

¯̄̄̄
¯Ft−1

!

=
nX
t=1

t−1X
s=1

ε0sc
0
t−s,nct−s,nεs (30)

+
nX
t=1

t−1X
s=1

X
r 6=s

ε0sc
0
t−s,nct−r,nεr. (31)

By (D.10) and (D.11) of Lobato (1999), (31) has mean zero and variance

O

nÃ nX
s=1

kcsnk2
!2
+

nX
t=3

t−1X
u=2

Ã
u−1X
s=1

kcu−s,nk2
u−1X
s=1

kct−s,nk2
! . (32)

Since kθjk = O (1) by construction,

kcsnk = O
 1

n
√
m

mX
j=1

kθjk
 = O

µ√
m

n

¶
,

and since
Pk

j=1 |cos (sλj)| = O (n/s) another bound is

kcsnk = O
 1

n
√
m

mX
j=1

kθjk |cos (sλj)|
 = O

µ
1

s
√
m

¶
.

The latter bound for kcsnk is better when s > n/m. Thus, we Þnd that
nX
s=1

kcsnk2 = O

[n/m]X
s=1

kcsnk2 +
nX

s=[n/m]+1

kcsnk2


= O

 n

m

µ√
m

n

¶2
+
1

m

nX
s=[n/m]+1

s−2


= O

¡
n−1

¢
,

implying that the Þrst term of (32) is O
¡
n−1

¢
. The second term of (32) is bounded by

O

nÃ nX
s=1

kcsnk2
![n/2]X

s=1

s kcsnk2
 ,

see Robinson (1995a, pp. 1646-1647) or Lobato (1999, p. 151). The summand in the last sum is

O
³
n−2sm+ (sm)−1

´
. Choosing the Þrst bound when s ≤ £n/m2/3

¤
, the last sum is

O

[n/m
2/3]X

s=1

sm

n2
+

[n/2]X
s=[n/m2/3]+1

1

sm

 = O

µ
1

m1/3

¶
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and (32) = O
¡
n−1 +m−1/3¢.

We still need to show that the mean of (30) is asymptotically equivalent to
Pp−1
i=1

Pp−1
k=1 ηiηkcJik.

Thus,

E (30) =
nX
t=1

t−1X
s=1

E
¡
tr
¡
c0t−s,nct−s,nεsε

0
s

¢¢
=

nX
t=1

t−1X
s=1

tr
¡
c0t−s,nct−s,n

¢
=

nX
t=1

t−1X
s=1

mX
j=1

mX
k=1

1

4π2n2m
tr
¡
θ0jθk

¢
cos ((t− s)λj) cos ((t− s)λk)

=
nX
t=1

t−1X
s=1

mX
j=1

1

4π2n2m
tr
¡
θ0jθj

¢
cos2 ((t− s)λj) (33)

+
nX
t=1

t−1X
s=1

mX
j=1

mX
k 6=j

1

4π2n2m
tr
¡
θ0jθk

¢
cos ((t− s)λj) cos ((t− s)λk) . (34)

Notice that, since kθjk = O (1),

(34) = O

 nX
t=1

t−1X
s=1

mX
j=1

mX
k 6=j

1

n2m
cos ((t− s)λj) cos ((t− s)λk)


and, using that

Pn
t=1

Pt−1
s=1 cos ((t− s)λj) cos ((t− s)λk) = −n/2, we bound (34) byO

³Pm
j=1

Pm
k 6=j

¡
n2m

¢−1
n
´
=

O (m/n). Now,

tr
¡
θ0jθj

¢
= tr
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i=1
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ηiηkλ
di+dk+2de
m Re

¡
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∗
i (λj)Ap (λj)

¢
Re
¡
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0
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=
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i=1
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k=1

ηiηkλ
di+dk+2de
m 4π2 (fpp (λj) fik (λj) + fip (λj) fkp (λj) + fpk (λj) fpi (λj) + fpp (λj) fki (λj))

by deÞnition of f (λ). The second and third terms are of smaller order than the Þrst and fourth terms

by Assumption A�, so (33) reduces to

nX
t=1

t−1X
s=1

mX
j=1

1

n2m

p−1X
i=1

p−1X
k=1

ηiηkλ
di+dk+2de
m (fpp (λj) fik (λj) + fpp (λj) fki (λj)) cos

2 ((t− s)λj) . (35)

Notice that

2π

n

mX
j=1

(fpp (λj) fik (λj) + fpp (λj) fki (λj)) ∼
Z λm

0
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∼
Z λm

0
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so that we can rewrite (35) as

(35) ∼
p−1X
i=1

p−1X
k=1

ηiηk

Ã
nX
t=1

t−1X
s=1

cos2 ((t− s)λj)
!

1

πnm
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λm
1− di − dk − 2de

=

p−1X
i=1
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k=1

ηiηk
n

4πm
gikc

λm
1− di − dk − 2de ,

since
Pn−1
t=1

Pn−t
s=1 cos

2 (sλj) = (n− 1)2 /4. Thus, we Þnally arrive at

(35) =

p−1X
i=1

p−1X
k=1

ηiηk
1

2
gikc

1

1− di − dk − 2de =
p−1X
i=1

p−1X
k=1

ηiηkcJik,

where

Jik =
gik

2 (1− di − dk − 2de) , 1 ≤ i, k ≤ p− 1, (36)

and we have shown (27).

To show (29),

nX
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E
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t=1
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Ã
t−1X
s=1

ε0sct−s,nεtε
0
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Ã
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,

for some constant C > 0, by Assumption B�. This expression can be bounded by O
³
n
¡Pn

t=1

°°c2tn°°¢2´ =
O
¡
n−1

¢
, which completes the proof of asymptotic normality of �Fxe.

Hence, we have shown that
√
mλde−1m

�Λ−1 �Fxe
d→ N (0, cJ) (37)

and the theorem follows using (18), (19), and (37) and applying the Slutsky Theorem.
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Table 1: Summary Statistics
Realized volatility Implied volatility
yt = lnσRV,t xt = lnσIV,t

Mean −2.642928 −2.035616
Variance 0.122568 0.200101
Skewness 0.585426 −0.916736

Excess Kurtosis 0.457148 2.807389
This table reports summary statistics for log realized and log implied volatility.

Table 2: Fractional Integration Order
Realized volatility Implied volatility
yt = lnσRV,t xt = lnσIV,t

Box-Pierce (lags)a

Q (L = 4) 394.7∗∗ 136.8∗∗

Q (L = 24) 1211∗∗ 649.4∗∗

GSP (bandwidth)b
�d (m = 20) 0.48468

(0.11180)
0.46281
(0.11180)

�d (m = 37) 0.44758
(0.08220)

0.45273
(0.08220)

�d (m = 68) 0.41620
(0.06063)

0.35033
(0.06063)

ADF (lags)c

t (L = 0) −11.079∗∗ −14.843∗∗
t (L = 4) −4.6995∗∗ −5.3166∗∗

aBox-Pierce tests of the signiÞcance of the autocorrelation function. Two asterisks indicate signiÞcance
at the 1% level in the asymptotic χ2 (L) distribution.
bGSP are Gaussian semiparametric estimates of the fractional integration order as described in Robinson
(1995a). Numbers in parentheses are asymptotic standard errors using

√
m( �d− d)→d N (0, 1/4).

cADF are Augmented Dickey-Fuller tests of the null of a unit root. Two asterisks indicate signiÞcance
at the 1% level where the critical value is −3.44 (constant term included).
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Table 3: Fractional Cointegration Analysis
Bandwidth �αm �βm s.e.(�βm)

�de
me = 20 me = 37 me = 68 me = 20 me = 37 me = 68

m = n− 1 −1.8628 0.38325 − - − 0.38996
(0.11180)

0.33443
(0.08270)

0.31102
(0.06063)

m = 15 −0.91075 0.85094 0.33816 0.21970 0.18609 0.10991
(0.11180)

0.10048
(0.08270)

0.09479
(0.06063)

m = 9 −0.93154 0.84072 0.59762 0.26944 0.22107 0.11400
(0.11180)

0.10330
(0.08270)

0.09752
(0.06063)

m = 6 −0.93049 0.84124 0.63190 0.29297 0.24026 0.11378
(0.11180)

0.10315
(0.08270)

0.09738
(0.06063)

m = 3 −0.83362 0.88882 0.29858 0.25772 0.22412 0.09856
(0.11180)

0.09284
(0.08270)

0.08669
(0.06063)

This table reports semiparametric estimates of the stationary fractional cointegration relation (17) for
different bandwidths. Bandwidth m = n − 1 corresponds to OLS. The standard error for �βm is based
on the new asymptotic distribution result Theorem 2. The estimated fractional integration orders of
the residuals �de are GSP estimates with bandwidth me = 20, me = 37 and me = 68, respectively. For
the integration orders of the raw series (used in the calculation of standard errors of �βm), the results
for bandwidth 68 from Table 2 were used.

Figure 1: Autocorrelation function up to lag 100 for log realized volatility
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Figure 2: Autocorrelation function up to lag 100 for log implied volatility
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Figure 3: Log periodogram vs log Fourier frequencies for log realized volatility
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Figure 4: Log periodogram vs log Fourier frequencies for log implied volatility
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Figure 5: Log periodogram vs log Fourier frequencies for residuals with m=3
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Figure 6: Log periodogram vs log Fourier frequencies for residuals with m=15
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