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Abstract
An estimator of the covariance, termed co-range, is proposed. It is based on high

and low prices, in contrast to conventional covariance estimators based on open/close
prices. The main properties of the new estimator are derived. The co-range appears to
be superior to the conventional covariance estimator based on open/close prices in terms
of mean squared error and mean absolute deviation. Assuming triangular arbitrage in
the foreign exchange market, the co-range may be computed from daily high and low
prices.
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1 Introduction

The difference between the daily high and low of the log price, the price range, has been used
in the academic literature to measure volatility, see e.g. Alizadeh, Brandt & Diebold (2002),
Yang & Zhang (2000) and Beckers (1983) among others. Several advantages of the price range
as a volatility proxy have been proposed. First of all, data on the price range are available for
a variety of assets and dates a long way back. Second, under certain assumptions, it is more
efficient than the squared daily return, see Parkinson (1980). Finally, it appears to be robust
to some kinds of market microstructure effects, see Alizadeh et al. (2002).
The basic idea of the range boils down to measuring volatility by a combination of extremum

estimators (the difference between the high and the low). In this paper, we propose the co-
range as a proxy for the covariance between the returns on two assets. The co-range is similar
to the price range in the sense that it makes use of �the difference between the high and the
low�. But, in contrast to the price-range, high-frequency or tick-by-tick data are required
for the computation of the co-range in most cases. However, using triangular arbitrage in
the foreign exchange market, the co-range may be readily constructed from individual price
ranges1.
By simulations, we show that the co-range does provide a superior estimator of the covari-

ance, compared to conventional estimators based on open/close prices.
In section 2, we give an introduction to the area of range-based volatility estimation and

provide a brief overview of the literature. Section 3 presents the co-range in a general setting,
and section 4 presents the co-range in the context of foreign exchange rates. The performance
of the co-range is explored by simulations in section 5. Section 6 shows how the model under-
lying the range-based volatility estimators may be extended to a more realistic setting with
dependent returns. Section 7 concludes. Appendix is in section 8.

2 Range-based volatility estimation

The theoretical framework employed in this paper draws on Feller (1951) and Parkinson (1980).
In Feller (1951), the density function of the range of a Brownian Motion is derived and an
unbiased estimator of the diffusion constant is proposed. Parkinson (1980) develops this result
to estimate the diffusion constant for a Þnancial asset.
More formally, it is assumed that the ln(·) of the asset price follows an arithmetic Brownian

Motion with zero drift and volatility σP

dP = σPdW (1)

P (t) is the natural logarithm of the asset price, W (t) is a standard Wiener process. Equa-
tion (1) describes the evolution of the log-price within a time interval, 0 ≤ t ≤ T, of length T .
The range can be expressed as

lP =

µ
sup

0≤t≤T
P (t)− inf

0≤t≤T
P (t)

¶
(2)

We adopt the notation that sup0≤t≤T P (t) refers to supremum of the log-price process over
the interval, 0 ≤ t ≤ T, and inf0≤t≤T P (t) refers to inÞmum of the log-price process over the

1We are indebted with Frank Diebold for this suggestion.
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same interval. In this setup, the range represents the difference between the natural logarithm
of the daily high and low prices. Parkinson (1980), drawing on the results of Feller (1951),
proves that

E

µ
1

T

l2P
4 ln(2)

¶
= E

¡bσ2
P

¢
= σ2

P (3)

E

µ
1√
T

r
π

8
lP

¶
= E (bσP ) = σP (4)

Hence, properly scaled versions of the squared range and the range, provides unbiased esti-
mators of the standard deviation and the variance of the price process, respectively. Parkinson
(1980) compares the high/low estimator to the conventional estimator based on open/close
prices

eσ2
P =

(P (T )− P (0))2
T

,

and he shows that the relative efficiency of the estimators is

MSE(bσ2
P )

MSE(eσ2
P )
= 0.20367 (5)

Combinations of the high/low estimator with the open/close estimator have been proposed by
Garman & Klass (1980), Ball & Tourus (1984), and Yang & Zhang (2000).
The range-based volatility estimator (3) is biased in the presence of a non-zero drift term

in the Brownian Motion for dP . Rogers & Satchell (1991), Kunitomo (1992), and Yang &
Zhang (2000) introduce range-based volatility estimators in the presence of a drift term.
In practice, it is not possible to extract the true sup0≤t≤T P (t) and inf0≤t≤T P (t), due to

discrete price observations, and the range adopted in empirical applications of (3) and (4) is

lP = max
t∈{0,1,2,...T}

P (t)− min
t∈{0,1,2,...,T}

P (t)

Because

sup
0≤t≤T

P (t) ≥ max
t∈{0,1,2,...T}

P (t) and inf
0≤t≤T

P (t) ≤ min
t∈{0,1,2,...,T}

P (t)

it follows that, in practice, (3) is a downward biased estimator for σ2
P , see Beckers (1983).

Adjustments for this discretization bias have been suggested, see Rogers & Satchell (1991) and
Rogers (1998).
We would like to emphasize that the constant volatility model for the log price in (1) is not,

in general, an appropriate model for asset prices. In fact, there seems to be sound empirical
and theoretical evidence supporting a non-constant or time-varying volatility of asset returns,
see e.g. Andersen & Bollerslev (1997). However, it is not clear how frequently the volatility
changes, but a fundamental assumption of this paper is that the variance-covariance matrix
of asset returns is constant over some finite period of time, deÞned as the interval 0 ≤ t ≤ T.
We think of the interval as one trading day. Several theoretical and empirical volatility models
adopt this assumption, and some stochastic evolution of the diffusion constant in (1) may be
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postulated to make the volatility time-varying, see e.g. Taylor (1986). Recently, Alizadeh et al.
(2002) used the daily price range to estimate a stochastic volatility model where the volatility
during the day is constant but the daily volatility evolves stochastically from day to day.
Data on the price range is available for many assets and for a long period of time. Combined

with Parkinson (1980)�s result on the relative efficiency of the price range relative to the
squared daily return, this has made the price range an attractive volatility estimator. However,
compared to the realized volatility estimator proposed by Andersen, Bollerslev, Diebold &
Labys (2001a), the price range is an inefficient estimator of the volatility under the assumption
of a Brownian Motion process, see Andersen & Bollerslev (1998, p. 898, note 20). Hence if we
have access to high-frequency data and if the Brownian motion is the maintained model, then
the realized volatility estimator is superior to alternative estimators.
In contrast, the ranking of the volatility estimators is unknown in the presence of mar-

ket microstructure effects. Recent work look into the potential microstructure-distortions of
realized volatility estimators, see Andersen, Bollerslev, Diebold & Labys (2000), Andreou &
Ghysels (2001) and Bai, Russell & Tiao (2000). It is far from clear which volatility estimator
should be used in the presence of microstructure noise, because the problem is difficult to
handle theoretically and because micro structure noise is not well-deÞned.
In related work, Brandt & Diebold (2001) develop multivariate range-based variance and

covariance estimators and compare them to realized volatility estimates in the presence of
market micro structure noise.

3 Co-range: General case

In contrast to the conventional setup in the literature on the price range, we employ a multi-
variate framework. We consider two assets, where the log of the asset prices follow a bivariate
Brownian Motion2, and we allow for the possibility that asset returns are correlated.

dP = σPdW (6)

dQ = σQdZ (7)

E

µ·
dW
dZ

¸¶
=

·
0
0

¸
(8)

E

µ·
(dW )2 dWdZ

dWdZ (dZ)2

¸¶
=

·
dt ρP,Qdt

ρP,Qdt dt

¸
σP,Q = σP · σQ · ρP,Q (9)

P and Q denote log-prices of asset �P� and �Q�, respectively, in terms of the same numeraire,
e.g. US Dollars. Hence we can interpret dP and dQ as continuously compounded returns. The
parameters of the model above, σP , σQ and ρP,Q, stay constant during the trading day, but
may vary from day to day3.

2In the set up of the paper, we are assuming a zero drift in the Brownian Motions. Moreover, we do not
introduce any correction for the discretization bias. The motivation for this choise is twofold. Firstly, the
notation and the computation of the co-range is more tractable and perhaps more elegant when assuming a
zero drift. Secondly, for many Þnancial assets only daily high, low and close prices are available. Therefore, it
is not possible to introduce any correction for the drift. See Rogers & Satchell (1991), Kunitomo (1992), and
Yang & Zhang (2000).

3For simplicity assume that the close price on day d− 1 is equal to the open price on day d.
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Suppose we would like to estimate the variance-covariance matrix between the returns on
�P� and �Q� on a daily basis over the last years. Many databases contain intradaily high and
low prices on Þnancial assets in addition to open and/or close prices. Conventional estimates
based on open and close prices are given by

eσ2
P =

(P (T )− P (0))2
T

eσ2
Q =

(Q(T )−Q(0))2
T

(10)

eσP,Q =
(P (T )− P (0)) (Q(T )−Q(0))

T
(11)

where e denotes estimates based on open/close prices. For the model above these estimates
correspond to maximum likelihood estimates.
In contrast, estimates of the variances based on high and low prices, denoted by b , are

given as

lP =

µ
sup

0≤t≤T
P (t)− inf

0≤t≤T
P (t)

¶
bσ2
P =

1

T

l2P
4 ln(2)

bσ2
Q =

1

T

l2Q
4 ln(2)

(12)

see Parkinson (1980). lP , the difference between the high and low log-price, corresponds to the
(log)-price range. To our knowledge, no range-based estimates have been proposed to estimate
σP,Q. The contribution of this paper is to propose a range-based estimator of σP,Q, which is
superior to the conventional covariance estimator based on open/close prices, eσP,Q.
Assume that we observe continuous4 sample paths of P and Q on an interval, 0 ≤ t ≤ T,

of length T. The variance-covariance matrix of asset returns is deÞned as

Ω = E

µ·
(dP )2 dPdQ

dPdQ (dQ)2

¸¶
=

·
σ2
P σP,Q

σP,Q σ2
Q

¸
dt

The following theorem proposes a new estimator of the covariance, termed co-range.

Theorem 1 Assume that two continuous time processes P and Q are governed by the processes
from (6)-(9). The processes are observed on an interval 0 ≤ t ≤ T, of length T. Choose a beta-
vector

(βP ,βQ) βP ∈ R\{0}, βQ ∈ R\{0}.

Define the co-range, with the associated beta-vector (βP ,βQ), of two continuous-time processes
as

bσP,Q(βP ,βQ) =
1

T

l2βPP+βQQ
− l2βPP

− l2βQQ

8 ln(2)βPβQ
(13)

The co-range is an unbiased estimator of σP,Q = σP · σQ · ρP,Q.
4This is clearly an unrealistic assumption due to the discreteness of Þnancial markets, but we come back to

this issue in section 5.
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Proof. Consider a process Y, deÞned by

Y = βPP + βQQ βP 6= 0, βQ 6= 0 (14)

Y is governed by a Brownian Motion:

dY = d(βPP + βQQ) = βPσPdW + βQσQdZ

It follows that the Þrst two moments of dY may be expressed as

E [d(Y )] = 0 (15)

E
£
d(Y )2

¤
= β2

Pσ
2
Pdt+ β

2
Qσ

2
Qdt+ 2βPβQσPσQρP,Qdt

=
¡
β2
Pσ

2
P + β

2
Qσ

2
Q + 2βPβQσPσQρP,Q

¢
dt (16)

Applying the results of Parkinson (1980), it follows that l2Y , the squared range of Y , provides
an unbiased estimator of the variance

1

4 ln(2)
E(l2Y ) = Tβ

2
Pσ

2
P + Tβ

2
Qσ

2
Q + T2βPβQσPσQρP,Q

where

lY = sup
¡
βPP + βQQ

¢− inf ¡βPP + βQQ¢
Taking the expected value of (13),

E

"
1

T

l2βPP+βQQ
− l2βPP

− l2βQQ

8 ln(2)βPβQ

#

=
β2
Pσ

2
P + β

2
Qσ

2
Q + 2βPβQσPσQρP,Q − β2

Pσ
2
P − β2

Qσ
2
Q

2βPβQ
= σP · σQ · ρP,Q.

The co-range is a linear combination of three squared ranges: The range of βPP, the range
of βQQ and the range of βPP + βQQ. Notice that the range of βPP + βQQ cannot be inferred
from the range of βPP and the range of βQQ. The sample path for βPP + βQQ is needed in
order to compute price range for βPP +βQQ, so in other words, tick-by-tick data are required
for computation of the co-range in equation (13).
DeÞned in terms of clean prices (not log-prices), Y corresponds to

eY = y = pβP qβQ

which is a geometric average of the prices p and q with weights βP and βQ, respectively. It
does not have an exact economic interpretation. However, we know that5

ln

·
βP

p(t)

p(t− 1) + βQ
q(t)

q(t− 1)
¸
≈ βP ln

·
p(t)

p(t− 1)
¸
+ βQ ln

·
q(t)

q(t− 1)
¸
= ∆Y, βP + βQ = 1

Therefore, ∆Y may be interpreted as the (approximate) log-return on the portfolio consisting
of assets �P� and �Q� with corresponding weights βP and βQ.

5See e.g. Campbell, Lo & MacKinlay (1997, p. 12). For simplicity we are using discrete time notation.
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Definition 1 The range-based estimator of Ω is defined as

bΩ = µ bσ2
P bσ2

QPbσ2
PQ bσ2

Q

¶
where bσ2

P and bσ2
Q are given in (12) and the co-range, bσ2

PQ, is defined in Theorem 1.

The co-range satisÞes the properties described in the Proposition below.

Proposition 1 The co-range is symmetric in the sense that

bσ2
P,Q(βP ,βQ) = σ

2
Q,P (βQ,βP )

The co-range is a generalization of the range-based volatility estimator

bσ2
P,P (βP ,βQ) = bσ2

P

Proof. Symmetry follows straightforwardly because the range of βPP + βQQ is equal to
the range of βQQ+ βPP :

lβPP+βQQ = lβQQ+βPP

The generalization follows from

bσ2
P,P (βP ,βQ) =

1

T

l2βPP+βQP
− l2βPP

− l2βQP

8 ln(2)βPβQ

=
1

T

¡¡
βP + βQ

¢
lP
¢2 − β2

P l
2
P − β2

Ql
2
P

4 ln(2)2βPβQ

=
1

T

l2P
4 ln(2)

= bσ2
P

Theorem 2 In the bivariate case, the estimated variance-covariance matrix, bΩ, is by con-
struction positive semi-definite.

Proof. See section 8.1.

Theorem 3 In cases with more than two assets, the estimated variance-covariance matrix, bΩ,
is not by construction positive semi-definite.

Proof. This is shown by simulation (see below).

It is rather puzzling that in the bivariate case, the estimated variance-covariance matrix
is positive semi-deÞnite, whereas in cases with more than two assets, the estimated variance-
covariance matrix is not positive semi-deÞnite by construction.
Consider a portfolio with three assets and deÞne the estimated variance-covariance matrix

as follows

bΩ =
 �σ2

1 �σ12 �σ13

�σ12 �σ2
2 �σ23

�σ13 �σ23 �σ2
3


We use the following Proposition:
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Proposition 2 Let A be an n× n symmetric matrix. Then A is positive definite if and only
if all the principal minors of A are non-negative.bΩ has 3 Þrst-order principal minors, the elements on the main diagonal, which are non-
negative by construction. The matrix has also 3 second-order principal minors¯̄̄̄µ

�σ2
1 �σ12

�σ12 �σ2
2

¶¯̄̄̄
,

¯̄̄̄µ
�σ2

1 �σ13

�σ13 �σ2
3

¶¯̄̄̄
and

¯̄̄̄µ
�σ2

2 �σ23

�σ23 �σ2
3

¶¯̄̄̄
but we know from Theorem 2 that these principal minors are non-negative. Finally, bΩ has one
third-order principal minor which is¯̄̄bΩ¯̄̄ = �σ2

1�σ
2
2�σ

2
3 + 2�σ12�σ13�σ23 − (�σ13)

2 �σ2
2 − �σ2

1 (�σ23)
2 − �σ2

3 (�σ12)
2 (17)

From (the proof of) Theorem 2, we learned that the implied correlations

ρimpliedab =
�σabp
�σ2
a�σ

2
b

=
�σab
�σa�σb

, b 6= a (18)

obey

−1 ≤ ρimpliedab ≤ 1 (19)

We substitute the expression for the implied correlations (18) into (17):¯̄̄bΩ¯̄̄ = �σ2
1�σ

2
2�σ

2
3 + 2ρ

implied
12 �σ1�σ2ρ

implied
13 �σ1�σ3ρ

implied
23 �σ2�σ3 −³

ρimplied13 �σ1�σ3

´2

�σ2
2 − �σ2

1

³
ρimplied23 �σ2�σ3

´2

− �σ2
3

³
ρimplied12 �σ1�σ2

´2

= �σ2
1�σ

2
2�σ

2
3

µ
1 + 2ρimplied12 ρimplied13 ρimplied23 −

³
ρimplied13

´2

−
³
ρimplied23

´2

−
³
ρimplied12

´2
¶

So the sign of
¯̄̄bΩ¯̄̄ is equal to the sign ofµ
1 + 2ρimplied12 ρimplied13 ρimplied23 −

³
ρimplied13

´2

−
³
ρimplied23

´2

−
³
ρimplied12

´2
¶

(20)

There are no restrictions on the implied correlations except from (19). Hence the sign of
¯̄̄bΩ¯̄̄

may become negative if e.g. ρimplied13 = ρimplied12 ≈ 1, ρimplied23 ≈ −1. In Table 4, see section 9, we
give a simple numerical example of a violation of

¯̄̄bΩ¯̄̄ ≥ 0 in discrete time6. We consider three

assets and the corresponding log-prices. Three prices are observed per day and all transactions
occur simultaneously. In this exampleµ

1 + 2ρimplied12 ρimplied13 ρimplied23 −
³
ρimplied13

´2

−
³
ρimplied23

´2

−
³
ρimplied12

´2
¶
< 0,

and hence bΩ is not positive semi-deÞnite. The example in Table 3 serves as a proof of Theorem
3.

6The example can easily be extended to continuous time by interpolating between prices.
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Intuitive remarks on the co-range. Below, we describe why the co-range may be a su-
perior covariance-estimator compared to the estimator based on open/close prices.
Consider two sample paths of log prices P and Q in panel a) of Figure 1. The returns (the

Þrst difference of the log-prices) seem to be perfectly negatively correlated, but the ordinary
covariance estimator based on open/close prices (that is the price corresponding to time 1 and
9) yields an estimate of

eσP,Q = (P (9)− P (1)) (Q(9)−Q(1))
8

= 0

whereas the co-range, using the beta-vector of (βP , βQ) = (1, 1), yields an estimate of

bσP,Q(1,1) =
1

8

l2P+Q − l2P − l2Q
8 ln(2)

=
1

8

02 − 42 − 42

8 ln(2)
= −0.72

In this case, the co-range estimator seems to be superior to the return-based estimator, because
it captures the negative comovement. Consider panel b) in Figure 1. The returns from the two

Figure 1: Intuition of the co-range.

assets seem to be positively correlated. The covariance-estimator based on open-close prices is

eσP,Q = ¡
PA/B(9)− PA/B(1)

¢ ¡
PB/C(9)− PB/C(1)

¢
8

= 0

and the co-range estimator yields

bσP,Q(1,1) =
1

8

l2P+Q − l2P − l2Q
8 ln(2)

=
1

8

(((12 + 14)− (8 + 10))2 − (14− 10)2 − (12− 8)2
8 ln(2)

= 0.72
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The two stylized examples clearly illustrate that the co-range is indeed able to capture the
daily comovements of the two assets: On days with high intradaily co-variation and where
daily returns are low, the co-range is superior to the covariance-estimator based on open/close
prices.

4 Co-range: Foreign Exchange market

As noted below Theorem 1, computation of the co-range requires the use of tick-by-tick data.
However, as suggested by Frank Diebold, the co-range may be computed without the use of
tick-by-tick data in the case of foreign exchange rates. This idea is developed in Brandt &
Diebold (2001). This is important because tick-by-tick data are not available for that many
assets, and if they are available, data typically span only a few years. In contrast, daily high
and low prices are available for most foreign exchange rates (FX) for a long time period. We
recast the model from section 3 in terms of foreign exchange rates. PA/B and PC/B denote
log-exchange rates of currency A and C, respectively, in terms of currency B. Hence we can
interpret dPA/B and dPC/B as continuously compounded returns in units of currency B.

dPA/B = σA/BdW (21)

dPC/B = σC/BdZ (22)

E

µ·
dW
dZ

¸¶
=

·
0
0

¸
, σA/B,C/B = ρA/B,C/B · σA/B · σC/B (23)

E

µ·
(dW )2 dWdZ

dWdZ (dZ)2

¸¶
=

·
dt ρA/B,C/Bdt

ρA/B,C/Bdt dt

¸
(24)

Further, we assume that triangular arbitrage holds perfectly:

pA/B(t)

pC/B(t)
= pA/C(t) ∀t

At every point in time, we can infer the price pA/C from the two prices pA/B and pC/B. For-
mulated in log-prices, the triangular arbitrage condition above, reads

PA/B(t)− PC/B(t) = PA/C(t) ∀t (25)

Corollary 1 describes a version of the co-range that does not require tick-by-tick data.

Corollary 1 Assume that two continuous time processes (21)-(24) describe the evolution of
the log-exchange rates PA/B and PC/B. Further, assume that triangular arbitrage holds perfectly
in the sense of equation (25). The co-range, with the beta-vector of (1,−1), see Theorem 1, is

bσA/B,C/B(1,−1) =
1

T

l2PA/C
− l2PA/B

− l2PC/B

−8 ln(2)
The co-range is an unbiased estimator of σA/B,C/B = σA/B · σC/B · ρA/B,C/B.

Proof. Apply the co-range (see Theorem 1) with beta-vector (1,−1) to PA/B and PC/B :

bσA/B,C/B(1,−1) =
1

T

l2PA/B−PC/B
− l2PA/B

− l2PC/B

(−1)8 ln(2) (26)
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Precluding triangular arbitrage

PA/B − PC/B = PA/C
reduces (26) to

bσA/B,C/B(1,−1) =
1

T

l2PA/C
− l2PA/B

− l2PC/B

−8 ln(2)
and the Corollary follows immediately.
In contrast to the general formula for the co-range, see Theorem 1, the assumption of

absence of triangular arbitrage possibilities in Corollary 1 circumvents the use of tick-by-tick
data. This idea of using triangular arbitrage in order to back out covariances was developed in
Andersen, Bollerslev, Diebold & Labys (2001b, p. 15). In the context of option prices, Lopez
& Walter (2001, p. 7) use the idea to compute implied covariances between exchange rates
from implied variances on individual exchange rates.
The assumption of absence of triangular arbitrage opportunities does not hold perfectly,

due to transactions costs and other frictions in the market. However, we believe the assumption
is rather robust. In fact, precluding triangular arbitrage boils down to the law of one price
which is one of the most fundamental valuation principles in Þnance.

5 Simulation evidence on the co-range

To assess the properties of the co-range as a covariance estimator, we perform an extensive
simulation analysis. In the design of the simulation experiment, we aim at replicating foreign
exchange rates.
For the purpose of performing simulations, we discretize the bivariate Brownian Motion

model, (21)-(24).

Design of simulation experiment Consider two log exchange rates, PA/B and PC/B, that
follow a bivariate random walk with homoskedastic and contemporaneously correlated innova-
tions

PA/B(t) = PA/B(t− 1) + e(t) t = 1, 2, 3, ..., T PA/B(0) = PA/B

PC/B(t) = PC/B(t− 1) + v(t) t = 1, 2, 3, ..., T PC/B(0) = PC/B·
e(t)
v(t)

¸
∼ nid

µ·
0
0

¸
,

·
σ2
A/B σA/B,C/B

σA/B,C/B σ2
C/B

¸¶
(27)

ρA/B,C/B =
σA/B,C/B
σA/BσC/B

where7

PA/B(t) = ln
£
pA/B(t)

¤
PC/B(t) = ln

£
pC/B(t)

¤
7The random walk process (discrete time version of Brownian motion) for the log-prices follows from the

assumption that prices follow a geometric Brownian motion. Strictly speaking, this would imply that the
random walk process contains a drift, (µ − 1

2σ
2), but we abstain from this fact here. The drift is probably

negligible.
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σ2
A/B and σ

2
C/B denote the variance of the log-returns for positions in �A/B� and �C/B�,

respectively. T denotes the number of returns observed per day.
The innovations are simulated by a Choleski decomposition of the covariance matrix in

(27):

·
e(t)
v(t)

¸
=

 σA/B 0

σA/B,C/B

σA/B

r
σ2
C/B −

σ2
A/B,C/B

σ2
A/B

 · x(t)
y(t)

¸

=

"
σA/Bx(t)

σC/BρA/B,C/Bx(t) + σC/B
q
1− ρ2

A/B,C/By(t)

#

where ·
x(t)
y(t)

¸
∼ nid

µ·
0
0

¸
,

·
1 0
0 1

¸¶
The general set up of the simulation experiment is8:

� T ∈ {2880, 1440, 480}. This is approximately equivalent to observing the price every {30
sec, 60 sec, 180 sec}, if we assume that the market is open 24 hours;

� The number of simulated trading days (or Monte Carlo replications) equals 100.000;
� σA/B is chosen such that a position in A/B has an annual (250 days per year) return
volatility (standard deviation) of 9.52% per year;

� σC/B is chosen such that a position in C/B has an annual (250 days per year) return
volatility (standard deviation) of 15.87% per year;

� ρA/B,C/B ∈ {±0.99,±0.8,±0.5,±0.2, 0}.

We believe, the chosen parameter values are �representative� for the foreign exchange
markets. As the focus of this simulation experiment is on the behavior of the co-range, we
consider a wide range of parameters for the correlation coefficient, ρA/B,C/B, ranging from
−0.99 to 0.99.
We compare two types of variance and covariance-estimators based on ranges and open/close

prices, respectively. In Table 1, range-based estimators appear in column 2 and return-based
estimators appear in column 3. The estimators correspond to equations (10) - (12) and The-

Moment Range-based estimator Open/close-based estimator

σ2
A/B bσ2

A/B =
1
T

l2
A/B

4 ln(2)
eσ2
A/B =

(PA/B(T )−PA/B(0))
2

T

σ2
C/B bσ2

A/B =
1
T

l2
C/B

4 ln(2)
eσ2
C/B =

(PC/B(T )−PC/B(0))
2

T

σA/B,C/B bσA/B,C/B(1,−1) =
1
T

l2
A/B−C/B

−l2
A/B

−l2
C/B

−8 ln(2)
eσA/B,C/B = (PA/B(T )−PA/B(0))(PC/B(T )−PC/B(0))

T

Table 1: Estimators used in the simulation experiment

8We do not specify starting prices for each day, P̄ and Q̄, because they do not affect the simulation results.
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orem 1. The only difference is that the estimators above are based on a discrete sample of
prices. Hence, in this section, T refers to the number of return observations per day. Only
results for the estimates of σA/B,C/B are reported. The simulations for the variance estimates
are completely in line with the theoretical Þndings of Parkinson (1980) and may be obtained
from the authors.
For each estimator we compute the Bias, the Mean Squared Error (MSE) and the Mean

Absolute Deviation (MAD). We also deÞne three relative efficiency measures where the bench-
mark is the returns-based estimates:

Relative MSE =
MSE(Range-based estimator)

MSE(Daily returns estimator)
(28)

Relative MAD =
MAD(Range-based estimator)

MAD(Daily returns estimator)
(29)

Relative Bias =
Bias(Range-based estimator)

Bias(Daily returns estimator)
(30)

Results Table 5-7 contain the simulation results for the covariance-estimates. Each table
summarizes the outcome of 9 Monte Carlo experiments where all parameters are constant
except from ρA/B,C/B. The number of return observations per day is 2880 in Table 5, 1440 per
day in Table 6, and 480 per day in Table 7.
In contrast to range-based variance estimator, we are not able to decide a priori whether

we expect a positive or negative bias for the co-range. The reason is that three ranges enter
the co-range with different signs and hence there are two opposing forces affecting the bias:

bσA/B,C/B(1,−1) =
1

T

l2A/B−C/B − l2A/B − l2C/B
−8 ln(2) =

1

T

Positive biasz }| {
−l2A/B−C/B

Negative bias

+
z }| {¡
l2A/B + l

2
C/B

¢
8 ln(2)

(31)

On the other hand, we have a strong prior on the shape of the correspondence between
the correlation coefficient between asset returns, ρA/B,C/B, and the bias of the co-range. A
fundamental assumption underlying this prior is that the bias of the range-based volatility
estimator is decreasing in the true volatility9.

∂
£
Bias

¡bσ2
A/B

¢¤
∂σ2

A/B

< 0, Bias
¡bσ2

A/B

¢
= E

¡bσ2
A/B − σ2

A/B

¢
Assume that we keep everything constant except from ρA/B,C/B (which is the case in the

simulation experiments). The source of the negative bias,
³
l2A/B + l

2
C/B

´
, is constant, whereas

the source of the positive bias, −l2A/B+C/B, decreases with ρA/B,C/B because the variance of
sum of log-returns

V ar(
¡
PA/B(t)− PC/B(t)

¢ ¡
PA/B(t− 1)− PC/B(t− 1)

¢
) = σ2

A/B + σ
2
C/B − 2ρA/B,C/BσA/BσC/B

9Remember that Bias
³bσ2

A/B

´
< 0, so

∂[|Bias(bσ2
A/B)|]

∂σ2
A/B

> 0.
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is decreasing in ρA/B,C/B (the role of the term, l
2
A/B+C/B, is to estimate the sum of the log-

returns above). Hence we expect that the bias of the co-range is inversely10 related to the
correlation coefficient ρA/B,C/B. Table 5, 6 and 7 contain the bias for the co-range and the
inverse relationship between ρA/B,C/B and the bias appears clearly.
Second, and most importantly, it appears from Table 5, 6 and 7 that the co-range dominates

the estimator based on daily returns in terms of relativeMSE and relativeMAD. The relative
MSE stays around 0.2, which indicates that the efficiency result from Parkinson (1980) holds
also for the co-range. It is important to note that this result holds for the general case ie. with
and withour triangular arbitrage conditions.

6 Range-based volatility estimation in the presence of

dependent returns

Parkinson (1980) adopts a Brownian Motion process for the log-price of a Þnancial asset.
This process has been widely applied in theoretical Þnance but it is inconsistent with several
empirical facts on Þnancial returns. One implication of the model is that volatility of returns
is constant over time. As already mentioned, this assumption is at odds with the empirical
evidence of time-varying volatility. Another implication is that high-frequency returns are
normally distributed, which is in sharp contrast to the empirical evidence of more fat-tailed
distributions. This section explores the potential for extending the univariate range-based
volatility estimator to a setting with time-varying volatility and heavy-tailed returns.11

It is noteworthy that the entire literature on range-based volatility estimation adopts the
Brownian Motion model even though the seminal paper by Feller (1951) did not adopt this
model. The following quotation from Campbell et al. (1997) expresses the widely held belief
that range-based volatility estimation only carries through in a constant volatility environment:

�Other researchers have used the difference between high and low prices on a
given day to estimate volatility for that day (Garman & Klass (1980), Parkinson
(1980)). Such methods implicitly assume that volatility is constant over some
interval of time� From Campbell et al. (1997, p. 481).

Below we show by asymptotic means, that range-based volatility estimation may be uniÞed
with time-varying volatility. Feller (1951) deÞned

pn = r1 + r2 + r3 + ...+ rn

where rk�s is a sequence of independent identically distributed random variables with E(rk) = 0
and V ar(rk) = 1. The asymptotic (n → ∞) distribution of the range of pn was derived by
Feller (1951) by use of the property that pn obeys a FCLT

12

1√
n

[zn]X
j=1

rj =
1√
n
p[zn] →W (z)

10In fact, one can show that this applies for any beta-vector (with non-zero elements) associated with the
co-range.

11For simplicity, we concentrate on the univariate case.
12Feller(1951) did not phrase it like this, because the FCLT was not named in 1951. [n] denotes the largest

integer that is less than or equal to n.
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where W (z) is a standard Brownian Motion.
Hence it is possible to relax the assumptions on rk as long as pn obeys a FCLT. In partic-

ular, we would like to point out that the empirical regularities of Þnancial returns (volatility-
dependence and fat tails), may be allowed for in the process driving Þnancial returns13. The-
oretically a FCLT must hold and, for the range-based volatility estimator to work in practice,
the number of return observations used in the computation of the range-based volatility es-
timate must be sufficiently large such that 1√

n
p[zn] provides a reasonable approximation to

the Wiener process W (z). As an example we consider a GARCH(1,1) process with normally
distributed innovations:

Pt+1 − Pt = rt

rt = σtut ut ∼ nid(0, 1) (32)

σ2
t = ω + αr2

t−1 + βσ
2
t−1 ,ω > 0, α+ β < 1 (33)

σ2
p =

ω · (Return obs)
(1− α− β) = 3.6e−5 (34)

From Proposition 2.2 in Davidsson (2002), it follows that rt obeys a FCLT and hence

1√
n
p[zn] =

1√
n

[zn]X
j=1

rj → E(σt)W (z) (35)

In other words, in the case of GARCH(1,1) returns, if n is sufficiently large, Feller (1951)�s
range-based volatility estimator provides an estimator of the unconditional variance σ2

p =
E(σ2

t ) =
ω

1−α−β .We perform a simulation experiment to explore how the range-based volatility
estimator behaves in the presence GARCH(1,1)-returns. The constant term in the conditional
variance equation14 for the GARCH(1,1) process, ω, is chosen according to

σ2
p =

ω · (Return obs)
(1− α− β) = 3.6e−5 (36)

so the unconditional daily variance of the return, σ2
p, is equal to 3.6e

−5. In this way, σ2
p is

kept constant such that we are able to focus exclusively on the impact of the number of
price observations per day. Table 2 compares the performance of the range-based estimator
of σ2

p to the open/close-estimator based on the daily squared return. (Return obs) denotes
the number of return observations per day. The bias of the daily estimator in Table 2 is,
as expected, negligible compared to the range-based estimator. However, the relative MSE
amounts to 0.2604 for 50 price observations per day and decreases towards the theoretical
asymptotic value15 of 0.20367. The message from this experiment is that the efficiency result
for the range-based volatility estimator, see Parkinson (1980), may also apply to more realistic
settings. Equation (35) holds if n, the number of price observation per day, is very large
(theoretically n approaches inÞnity). However, the simulations indicate that the result seems
to hold even for moderate numbers of return observations per day.

13Siddiqui (1976) points out that the range-based volatility estimator of Feller (1951) can be extended to
allow for correlation among rk�s.

14In the lower part of Table 2, the GARCH process is speciÞed.
15See equation (5).
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Monte Carlo Experiment
Return obs 50 250 600 1000 5000

Bias(bσ2
P ) −8.464e−6 −4.276e−6 −2.933e−6 −2.326e−6 −1.126e−6

Bias(eσ2
P ) 5.515e−8 −2.580e−8 −7.908e−8 −3.953e−8 −4.844e−8

Relative Bias −1.535e2 1.658e2 3.710e1 5.884e1 2.325e1

Relative MSE 0.2604 0.2378 0.2213 0.2139 0.2043
Relative MAD 0.5980 0.5403 0.5140 0.5036 0.4872
Pt+1 − Pt = rt
rt is generated from the GARCH(1,1) model in (32)-(36) with

α = 0.15, β = 0.8, ω =
σ2

p(1−α−β)

(Return obs)
, σ2

p = 3.6e
−5

Monte Carlo replications = 1000000

Table 2: Monte Carlo experiment for the range in the presence of dependent returns (Normal
distribution)

GARCH processes are able to capture the time-varying volatility, which is typically found
in Þnancial returns. However, a fat-tailed distribution for the innovations ut in (32) is often
required to account for excess kurtosis in data. Hence, we change the simulation experiment
accordingly: The innovations in the GARCH model follow a standardized t-distribution with
5 degrees of freedom (other things stay the same)

rt = σtut ut ∼ Standardized t(df = 5) (37)

By Proposition 2.2 in Davidsson (2002), a FCLT holds for this process, and hence use of
the range-based volatility estimator is justiÞed. Table 3 shows the results of the simulation

Monte Carlo Experiment
Return obs 50 250 600 1000 5000

Bias(bσ2
P ) −9.476e−6 −5.134e−6 −3.448e−6 −3.138e−6 −1.576e−6

Bias(eσ2
P ) 6.792e−8 6.109e−8 5.018e−7 −1.426e−7 5.205e−9

Relative Bias −1.395e2 −8.404e1 −0.6870e1 2.200e1 −3.027e2

Relative MSE 0.4358 0.3717 0.2363 0.2846 0.2495
Relative MAD 6.640e−1 6.013e−1 5.622e−1 5.441e−1 5.066e−1

Pt+1 − Pt = rt
rt is generated from the GARCH(1,1) model in (37) and (33)-(36) with

α = 0.15, β = 0.8, ω =
σ2

p(1−α−β)

(Return obs)
, σ2

p = 3.6e
−5

Monte Carlo replications = 1000000

Table 3: Monte Carlo experiment for the range in the presence of dependent returns (t-
distribution)

experiment. Introduction of the t-distribution slightly worsened the performance of the range-
based volatility estimator, but even with 600 price observations, the relative MSE is close to
the theoretical value of 0.20367. Relative MSE never gets below 0.5, indicating that even in
this setting, the range-based volatility estimator is superior to squared returns.
This section illustrated that the empirical facts of dependent and fat-tailed returns may be

incorporated into the theoretical model underlying range-based volatility estimators.
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7 Concluding remarks

We propose a new estimator of the covariance of Þnancial returns based on high/low prices,
termed co-range. For the foreign exchange market, the co-range may be computed from indi-
vidual high and low prices. Simulations indicate that the co-range is approximately 5 times
more efficient than the estimator based on open/close prices, paralleling the efficiency result
from Parkinson (1980) in the univariate case. The empirical properties of range-based variance
and covariance proxies are explored in Brunetti & Lildholdt (2001) for foreign exchange rates.
In univariate GARCH models, the range-based volatility estimator has been found to enter

the conditional variance equation signiÞcantly, see Lin & Rozeff (1994) and Chen (1997). Sim-
ilarly, the explanatory power of the co-range in the conditional variance/covariance equation
of multivariate GARCH models is an interesting topic for future research16.
The range-based estimate of the bivariate variance-covariance matrix may be used in the

context of stochastic volatility models. Alizadeh et al. (2002) estimates a univariate range-
based stochastic volatility model for foreign exchange rates, and the co-range could be an
important ingredient in multivariate extensions. For that purpose, it would be relevant to
construct a positive semi-deÞnite range-based estimate of the variance-covariance matrix in
cases with more than two assets. However, that would probably be difficult to unify with
unbiased estimation of the covariances.
Indirectly, the co-range provides an estimate of the correlation coefficient. In the notation

of section 4, a (co)-range-based estimate of the correlation coefficient is

bρA/B,C/B = bσA/B,C/B(1,−1)qbσ2
A/Bbσ2

C/B

The properties of this correlation estimator should be explored.

8 Appendix

8.1 Proof of Theorem 2

We make use of two properties

bΩ is positive semideÞnite⇔ the eigenvalues of bΩ, λ1 and λ2, are non-negative

and ¯̄̄bΩ¯̄̄ = λ1λ2

16The authors are currently working in this direction.
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If we show that λ1 > 0 and
¯̄̄bΩ¯̄̄ ≥ 0, then it follows that bΩ is positive semideÞnite.

First assume that the sample paths for P and Q are non-constant. Then the eigenvalues are

λ1 =
bσ2
P + bσ2

Q +

r¡bσ2
P − bσ2

Q

¢2
+ 4

³bσP,Q(βP ,βQ)

´2

2

λ2 =
bσ2
P + bσ2

Q −
r¡bσ2

P − bσ2
Q

¢2
+ 4

³bσP,Q(βP ,βQ)

´2

2

The Þrst eigenvalue

λ1 =
bσ2
P + bσ2

Q +

r¡bσ2
P − bσ2

Q

¢2
+ 4

³bσP,Q(βP ,βQ)

´2

2
≥
bσ2
P + bσ2

Q +
q¡bσ2

P − bσ2
Q

¢2

2
= bσ2

P > 0

and hence

λ1 > 0

because of the assumption of non-constant sample paths. Now we are proving that the deter-
minant is non-negative¯̄̄bΩ¯̄̄ = ¯̄̄̄µ bσ2

P bσP,Q(βP ,βQ)bσP,Q(βP ,βQ) bσ2
Q

¶¯̄̄̄
= bσ2

Pbσ2
Q −

³bσP,Q(βP ,βQ)

´2

≥ 0

This is equivalent to

bσ2
Pbσ2

Q −
³bσP,Q(βP ,βQ)

´2

≥ 0
or

1 ≥
³bσP,Q(βP ,βQ)

´2

cσ2
P
cσ2
Q

= ρ2
implied

Showing that
¯̄̄bΩ¯̄̄ is non-negative amounts to showing that the implied squared correlation

coefficient between the returns of the two assets is less than or equal to unity, which is equivalent
to

−1 ≤ ρimplied =
bσP,Q(βP ,βQ)qbσ2

Pbσ2
Q

=
l2βPP+βQQ

− l2βPP
− l2βQQ

2βPβQ

q
l2P l

2
Q

≤ 1

or

−1 ≤|{z}
A

ρimplied =
bσP,Q(βP ,βQ)qbσ2

Pbσ2
Q

=
l2βPP+βQQ

− l2βPP
− l2βQQ

2
q
l2βPP

l2βQQ

≤|{z}
B

1
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Some notation is needed now. DeÞne

sup(βPP + βQQ) = (P
h(βP ) +Qh(βQ)) (38)

inf(βPP + βQQ) = (P
l(βP ) +Ql(βQ)) (39)

sup βPP = P
high(βP ) (40)

inf βPP = P
low(βP ) (41)

sup βQQ = Q
high(βQ) (42)

inf βQQ = Q
low(βQ) (43)

Note the difference between e.g. P h(βP ) and P high(βP ): P h(βP ) denotes the value of βPP , where
sup(βPP + βQQ) is attained, whereas P

high(βP )denotes the value of βPP where sup βPP is
attained. First we prove A.

Proof of A We need the following properties

P h(βP ) +Qh(βQ) ≥ P high(βP ) +Qlow(βQ) (44)

P h(βP ) +Qh(βQ) ≥ P low(βP ) +Qhigh(βQ) (45)

P l(βP ) +Ql(βQ) ≤ P low(βP ) +Qhigh(βQ) (46)

P l(βP ) +Ql(βQ) ≤ P high(βP ) +Qlow(βQ) (47)

To clarify (44), note that by deÞnition

P h(βP ) +Qh(βQ) ≥ βPPt + βQQt ∀t

Let us choose t such that βPPt = P
high(βP ). Then

P h(βP ) +Qh(βQ) ≥ P high(βP ) + βQQt ∀t (48)

By deÞnition we know that

βQQt ≥ Qlow(βQ) (49)

Combining (48) and (49), we get

P h(βP ) +Qh(βQ) ≥ P high + βQQt ≥ P high(βP ) +Qlow(βQ)

which yields equation (44). In a similar way (45)-(47) follow straightforwardly. By (44) and
(46) it follows that

(βPP + βQQ)
range = P h(βP ) +Qh(βQ) − ¡P l(βP ) +Ql(βQ)

¢
≥ P high(βP ) +Qlow(βQ) − ¡P low(βP ) +Qhigh(βQ)

¢
which reduces to

(βPP + βQQ)
range ≥ (βPP )range −

¡
βQQ

¢range
(50)
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when

(βPP )
range = P high(βP ) − P low(βP )¡

βQQ
¢range

= Qhigh(βQ) −Qlow(βQ)

Similarly using (45) and (47)

(βPP + βQQ)
range = P h(βP ) +Qh(βQ) − ¡P l(βP ) +Ql(βQ)

¢
≥ P low(βP ) +Qhigh(βQ) − ¡P high(βP ) +Qlow(βQ)

¢
which implies

(βPP + βQQ)
range ≥ ¡βQQ¢range − (βPP )range (51)

Combining equations (50) and (51), yield

(βPP + βQQ)
range ≥ ¯̄¡

βQQ
¢range − (βPP )range¯̄⇔

[(βPP + βQQ)
range]2 ≥ ¯̄¡

βQQ
¢range − (βPP )range¯̄2 (52)

We would like to prove that

−1 ≤ 1

2

[(βPP + βQQ)
range]2 − ((βPP )range)2 −

¡¡
βQQ

¢range¢2q
((βPP )

range)
2 ¡¡
βQQ

¢range¢2
(53)

which can be rearranged to

−2 (βPP )range
¡
βQQ

¢range
+ ((βPP )

range)
2
+
¡¡
βQQ

¢range¢2 ≤ [(βPP + βQQ)range]2¯̄
(βPP )

range − ¡βQQ¢range¯̄2 ≤ [(βPP + βQQ)range]2
This condition is satisÞed by Equation (52), and hence equation (53) has been proved.
Finally, we need to address the situation where one or both sample paths are constant. If

one sample path is constant and the other one is non-constant, it follows immediately thatbσ2
PQ = 0

and bσ2
P = 0 and bσ2

Q > 0

and hence ¯̄̄bΩ¯̄̄ = 0 λ1 = 0 λ2 = cσ2
Q

and in this case, the variance-covariance matrix is positive semi-deÞnite.
If both sample paths are constant bσ2

PQ = 0

and bσ2
P = bσ2

Q = 0

and hence ¯̄̄bΩ¯̄̄ = 0 λ1 = λ2 = 0

In this case, too, the variance-covariance matrix is positive semi-deÞnite.
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Proof of B Rewrite ρimplied as

ρimplied

=
l2βPP+βQQ

− l2βPP
− l2βQQ

2
q
l2βPP

l2βQQ

=
1

2

¡¡
P h(βP ) − P l(βP )

¢
+
¡
Qh(βQ) −Ql(βQ)

¢¢2 − ¡P high(βP ) − P low(βP )
¢2 − ¡Qhigh(βQ) −Qlow(βQ)

¢2

(P high(βP ) − P low(βP ))
¡
Qhigh(βQ) −Qlow(βQ)

¢
=
1

2

(a+ b)2 − c2 − d2

cd

We are going to make use of the following properties, which follow immediately from the
deÞnitions in (38)-(43).

0 ≤ a = P h(βP ) − P l(βP ) ≤ P high(βP ) − P low(βP ) = c

0 ≤ b = Qh(βQ) −Ql(βQ) ≤ Qhigh(βQ) −Qlow(βQ) = d

In particular, we would like to prove that

max ρimplied = 1 (54)

st. 0 ≤ a ≤ c (55)

0 ≤ b ≤ d (56)

This constrained maximization problem may be solved by forming the Lagrange-function,
writing up the Kuhn-Tucker Conditions etc. However the solution of the maximization problem
is straightforward. If the maximization problem has a solution it must belong to one of the
four cases:

1. (a < c, b < d)

2. (a = c, b < d)

3. (a = c, b < d)

4. (a = c, b = d)

Suppose that the solution belongs to the case of 1). Then it is clear that the objective
function may be increased by increasing a and/or b due to the fact that,

∂ρimplied
∂a

=
∂ρimplied
∂b

=
a+ b

cd
≥ 0

and this is a contradiction to the claim in 1).
Analogously, solutions belonging to case 2) and 3) may be ruled out.
Now, if a solution to the maximization problem exists, it must belong to 4). The objective

function turns out to be constant subject to the restriction from 4)

f(a, b)|(a,b)=(c,d) =
1

2

c2 + d2 + 2cd− c2 − d2

cd
= 1

and hence we have proved (54)-(56), which completes the proof of B.
This completes the proof of Theorem 2.
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9 Tables

Log-prices of individual assets
Asset No. 1 2 3
Time 1 0.051682210 1.2096253 −0.16374717
Time 2 −1.6755751 −0.23525380 0.32486793
Time 3 0.97597537 −0.29329586 −2.5099104
Min −1.6755751 −0.29329586 −2.5099104
Max 0.97597537 1.2096253 0.32486793

Sums of log-prices
Asset No 1 + 2 1 + 3 2 + 3
Time 1 1.2613075 −0.11206496 1.0458781
Time 2 −1.9108289 −1.3507071 0.089614123
Time 3 0.68267951 −1.5339350 −2.8032062
Min −1.9108289 −1.5339350 −2.8032062
Max 1.2613075 −0.11206496 1.0458781

Implied correlations

ρimplied12 = 0.096981634 ρimplied13 = −0.86774917 ρimplied23 = 0.53054398

Expression in equation (20)µ
1 + 2ρimplied12 ρimplied13 ρimplied23 −

³
ρimplied13

´2

−
³
ρimplied23

´2

−
³
ρimplied12

´2
¶
= −0.13316762

Table 4: Numerical example illustrating the properties of the estimated variance-covariance
matrix in the trivariate case. The beta-vector used for the computation of the co-range is
(βa, βb) = (1, 1).

Monte Carlo Experiment
ρzw -0.99 -0.80 -0.50 -0.20 0.00 0.20 0.50 0.80 0.99

Bias(bσ2
A/B,C/B(1,−1)) 1.6e−6 1.1e−6 8.0e−7 1.2e−7 3.4e−8 -4.4e−7 -8.2e−7 -1.4e−6 -1.6e−6

Bias(eσ2
A/B,C/B) 9.8e−8 8.7e−8 4.7e−8 -2.8e−7 -4.9e−9 -2.6e−7 -2.1e−7 -2.7e−7 -4.0e−7

Relative Bias 1.7e1 1.3e1 1.7e1 -4.2e−1 -6.9 1.7 3.9 5.2 4.0
Relative MSE 2.0e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.0e−1 2.0e−1 2.0e−1

Relative MAD 4.8e−1 4.9e−1 5.0e−1 5.1e−1 5.2e−1 5.1e−1 4.9e−1 4.8e−1 4.8e−1

σ2
A/B = 3.6e

−5

σ2
C/B = 1.0e

−4

Monte Carlo replications = 100, 000
Return observations per day = 2880

Table 5: Monte Carlo experiment for the co-range
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Monte Carlo Experiment
ρzw -0.99 -0.80 -0.50 -0.20 0.00 0.20 0.50 0.80 0.99

Bias(bσ2
A/B,C/B(1,−1)) 2.2e−6 1.7e−6 1.1e−6 3.8e−7 6.1e−8 -6.0e−7 -1.2e−6 -1.6e−6 -2.3e−6

Bias(eσ2
A/B,C/B) 4.9e−8 3.0e−7 8.0e−9 -1.8e−7 -3.9e−8 -4.5e−7 -3.5e−7 1.8e−7 -7.7e−7

Relative Bias 4.5e1 5.6 1.4e2 -2.2 -1.6 1.3e 3.4e -9.1e1 3
Relative MSE 2.0e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.1e−1 2.0e−1 2.0e−1 2.0e−1

Relative MAD 4.8e−1 4.9e−1 5.0e−1 5.1e−1 5.2e−1 5.1e−1 4.9e−1 4.8e−1 4.9e−1

σ2
A/B = 3.6e

−5

σ2
C/B = 1.0e

−4

Monte Carlo replications = 100, 000
Return observations per day = 1440

Table 6: Monte Carlo experiment for the co-range

Monte Carlo Experiment
ρzw -0.99 -0.80 -0.50 -0.20 0.00 0.20 0.50 0.80 0.99

Bias(bσ2
A/B,C/B(1,−1)) 3.6e−6 3.0e−6 1.8e−6 6.4e−7 9.7e−8 -6.7e−7 -1.9e−6 -2.9e−6 -3.8e−6

Bias(eσ2
A/B,C/B) 3.3e−9 -5.7e−8 1.7e−7 -1.1e−7 1.5e−7 -1.6e−7 -1.1e−7 -1.8e−7 -4.4e−7

Relative Bias 1.1e3 -5.2e1 1.1e1 -6.0 6.7e−1 4.3 1.7e1 1.7e1 8.6
Relative MSE 2.0e−1 2.0e−1 2.1e−1 2.1e−1 2.1e−1 2.0e−1 2.0e−1 2.0e−1 2.0e−1

Relative MAD 4.9e−1 4.9e−1 5.0e−1 5.1e−1 5.1e−1 5.0e−1 4.8e−1 4.8e−1 4.9e−1

σ2
A/B = 3.6e

−5

σ2
C/B = 1.0e

−4

Monte Carlo replications = 100, 000
Return observations per day = 480

Table 7: Monte Carlo experiment for co-range
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