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Abstract

Seasonality has been a major research area in economics for several decades. The
paper asses the recent development in the literature on the treatment of seasonality in
economics, and divides it into three interrelated groups. The Þrst group, the Pure Noise
Model, consists of methods based on the view that seasonality is noise contaminating
the data or more correctly contaminating the information of interest for the economists.
The second group, the Time Series Models, treats seasonality as a more integrated part
of the modeling strategy, with the choice of model being data driven. The third group,
EconomicModels of Seasonality, introduces economic theory, i.e. optimizing behavior
into the modeling of seasonality.



1 Introduction
1.1 Overview
Seasonality has been a major research area in economics for several decades. Starting
with Sims (1974) andWallis (1974), and continuing with two conferences organized by
Arnold Zellner in 1976 and 1981, see Zellner (1978) and Zellner (1983), the foundation
was created for an upsurge in the interest of economists and econometricians in the
proper treatment of seasonality within economics. The literature on the treatment of
seasonality in economics can be divided into three interrelated groups. The Þrst group,
the Pure Noise Model, consists of methods based on the view that seasonality is noise
contaminating the data or more correctly contaminating the information of interest for
the economists - a view dating back at least to Jevons (1862) see Hylleberg (1986). The
second group, the Time Series Models, treats seasonality as a more integrated part of
the modelling strategy, but in a time series fashion i.e. with the choice of model being
data driven. The third group, Economic Models of Seasonality, introduces economic
theory, i.e. optimizing behaviour into the modeling of seasonality. Obviously, the three
groups are interrelated.
The most prominent method in the Þrst group are the methods applied to create

ofÞcial seasonally adjusted data published by the statistical ofÞces. The applications in
economics of seasonally adjusted time series published by the ofÞcial data gathering
statistical ofÞces are widespread. The most commonly applied ofÞcial seasonal adjust-
ment procedure has for many years been the X-11 method developed at the US Bureau
of the Census, see Shiskin & Musgrave (1967). The X-11 procedure is described in
Hylleberg (1986),reprinted inHylleberg (1992). The procedure has now been replaced
in some places by X-12, which no doubt is a major improvement over X-12. X-121 is
described by Findley, Monsell, Bell, Otto, and Chen, see Findley, Monsell, Bell, Otto &
Chen (1998) in the Journal of Business and Economic Statistics 1998, which also pub-
lish discussions by Cleveland, Maravall, Morry and Chhab, Wallis, Ghysels, and Hylle-
berg. In some countries and in the EU statistical ofÞce , �Eurostat� TRAMO/SEATS
developed by Victor Gomez and Augustin Maravall, see Gomez & Maravall. (1996)
are applied as well2. In the following we will not discuss the ofÞcially applied proce-
dures, but refer to the excellent treatment in the recent book by Ghysels and Osborn,
seeGhysels & Osborn (2001)3.
A much simpler Þlter often applied to clean up the data in empirical econometric

work is seasonal dummy variables, which are added to the regression equations, see
Lovell (1963), or the seasonal difference Þlter applied by Box & Jenkins (1970). The
seasonal differencing of Box and Jenkins assumes that there are unit roots at the sea-
sonal frequencies in the autoregressive representation, and they recommend that the
seasonal difference Þlter is applied until the transformed series are stationary. Tests
for seasonal unit roots/seasonal integration are suggested by Dickey, Hasza & Fuller
(1984), Hylleberg, Engle, Granger & Yoo. (1990), Canova & Hansen (1995), Taylor
1X-12 can be downloaded from the Bureau of Census webside http://www.census.gov/srd/www/x12a/
2see also http://www.modeleasy.com/tramosea.htm
3The text book by Ghysels and Osborn treats several of the topics discussed in the below in detail and the

book is recommended for those who want a thorough introduction into these areas
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(1998), and Koop & VanDijk (2000), among others, and Arteche (1998), and Arteche
& Robinson (2000), Gil-Alana & Robinson (1997) has extended the analysis to frac-
tionally integrated or seasonally long memory models.
The Þltering may also take place in the frequency domain, i.e. after a Fourier

transformation of the data, as in Band Spectrum Regression, suggested by Engle (1974)
and Engle (1980), and discussed in Hylleberg (1977), Hylleberg (1986), and Bunzel &
Hylleberg (1982). Obviously, the general idea of band spectrum regression is almost
identical to the now fashionable idea of the application of band pass Þlters, see Baxter
& King (1999). The application of band pass Þlters, which is especially popular in the
Real Business Cycle literature, is most often done to concentrate the attention on the
business cycle components, and remove the higher and lower frequency components4.
The second group consists of Þve interrelated modeling approaches. The Þrst ap-

proach was basically suggested by Box & Jenkins (1970) and the basic model is a mul-
tiplicative extension of the ARIMAmodel. The extension is based on adding stationary
autoregressive- and invertible moving average lagpolynomials with coefÞcients speci-
Þed at the seasonal lags to the original model in a multiplicative way and to seasonal
differences as well as Þrst differences to render the series stationary. The second ap-
proach, the unobserved components models, specify ARIMA models for the additive
trend cycle component and seasonal ARIMA models for the additive seasonal com-
ponent, and may be considered a restricted version of the general seasonal ARIMA
model. These so-called UCARIMA models were advocated and applied by Nerlove
(1967), Nerlove, Grether & Carvalho (1979), Engle (1978), Harvey & Todd (1983),
Maravall & Pierce (1987), and Harvey & Scott (1994)).
A third approach is based on time varying parameter models presented and dis-

cussed in Hylleberg (1986), based on earlier work of Pesando (1972), Gersovitz &
MacKinnon (1978), and Trivedi & Lee (1981). Later on the periodic autoregressive
model or PAR model was introduced into econometrics by Osborn (1988), Osborn &
Smith (1989), Osborn (1990), Osborn (1991), Franses (1991), Franses (1993), Franses
(1994), Franses (1995), Franses (1996), and Franses & Kloek (1995).
The fourth and closely related approach is based on the evolving seasonals models,

originally suggested by E.J., Terrell & Tuckwell (1970), but reintroduced into econo-
metrics by Hylleberg & Pagan (1997) as ßexible models nesting several of the seasonal
time series models such as the periodic model and the seasonal unit root model. The
basic idea behind the evolving seasonals models is to decouple the existence of the
seasonal pattern, established via additive cosine and sine terms from the nature of the
seasonal pattern, established via the time varying coefÞcients to the additive cosine and
sine terms. The ßexibility of the evolving seasonal models has recently been exploited
by Koop & VanDijk (2000) to construct a Bayesian test for seasonal integration.
Finally, the Þfth approach is based on the idea that seasonality should be treated in

a multivariate context. The idea, due to Granger in the early eighties and forcefully pre-
sented in Engle & Granger (1987), was that although a set of timeseries is integrated
and each contains a unit root at the long run frequency, a linear combination of the
series may not contain such a unit root. Hylleberg et al. (1990), Engle, Granger, Hylle-
4In most cases the band pass Þltering is done in the time domain, but the analysis and the choice of the

proper Þlters are done in the frequency domain.
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berg & Lee (1993), and Engle, Granger & Hallman (1989) extended this concept to
the seasonal frequency. Later on, the theory of seasonal cointegration model has been
analysed by Osborn (1993), Lee (1992), Johansen & Schaumburg (1999) and Cubadda
(2000).
Cointegration may also be considered season by season leading to periodic coin-

tegration see Birchenhal, Bladen-Howell, Chui, Osborn & Smith (1989), Boswijk &
Franses (1995), Franses (1993), Franses (1996), Franses & Kloek (1995), and recently
Osborn (2000) suggest a framework in which to make the choice between seasonal and
periodic cointegration.
Another alternative to modeling the common seasonal characteristics of economic

time series by seasonal cointegration, requiring seasonal integration, is through so-
called seasonal common features introduced by Engle & Hylleberg (1996) and further
developed by Cubadda (1999).

1.2 The DeÞnition of Seasonality
In Hylleberg (1992, p. 4) seasonality in economic time series is deÞned as �the sys-
tematic, although not necessarily regular, intra-year movement caused by the changes
of the weather, the calendar, and timing of decisions, directly or indirectly through the
production and consumption decisions made by agents of the economy. These decisions
are inßuenced by endowments, the expectations and preferences of the agents, and the
production techniques available in the economy.�
The deÞnition stresses both the characteristic features of the seasonal components,

their causes, and the economic contents.

2 Applied Seasonal Models
2.1 The Noise Models
2.1.1 Seasonal Dummies.

The use of seasonal dummy variables to Þlter quarterly and monthly times series data is
very popular in econometric applications. The dummy variable method was promoted
by Lovell (1963) and it is designed to take care of a constant stable seasonal component.
The popularity of the seasonal dummy variable method is partly due to its simplicity
and the ßexible way it can be used. By use of the famous Frisch &Waugh (1933) result,
extended by Lovell, it can be shown that the OLS coefÞcient estimator is the same
irrespective of whether the seasonal dummies have been introduced into the regression
as in the quarterly model

yt = β0 + x !tβ + δ1d1t + δ2d2t + δ3d3t + εt , t = 1, 2, ...., T (1)

where xt is a vector of explanatory variables observed in period t, and d jt , j = 1, 2, 3 is
a seasonal dummy variable with a value of one for t = j, j+4, j+8, ...... and otherwise
zero, or whether yt and xt or just xthave been seasonally adjusted by regressing them
on the seasonal dummies and the constant term before running a regression using the
seasonally adjusted data and no seasonal dummies.
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The application of seasonal dummies may be justiÞed in some cases, but many
economic time series exhibit a changing seasonal pattern implying that the seasonal
dynamics at best show up in the general dynamic speciÞcation of the model, but often
are buried in the errors, see Hylleberg, Jørensen & Sørgensen (1993).

2.1.2 Seasonal Integration and Seasonal Fractional Integration.

A simple Þlter often applied in empirical econometric work is the seasonal difference
Þlter (1 − Ls), where s is the number of observations per year, where typically s =
2, 4, 12 or 52, see Box & Jenkins (1970). The seasonal differencing of Box and Jenkins
assumes that there are unit roots at all the seasonal frequencies in the autoregressive
representation, and they recommend that the seasonal difference Þlter is applied until
the transformed series is stationary. The seasonal difference Þlter can be written as
(1− Ls) = (1− L)(1+ L + L2 + ......+ Ls−1),where the long run or zero frequency
unit root is in the Þrst factor and the seasonal unit roots are in the seasonal summation
Þlter S(L) = (1+ L + L2 + ......+ Ls−1). The seasonal summation Þlter has the real
root −1 if s = 2, the real −1, and the two complex conjugate roots ±i if s = 4, and
one real and Þve pairs of complex conjugate roots if s = 12 etc.
Many empirical studies have applied the so-called HEGY test developed by Hylle-

berg et al. (1990) [HEGY] and Engle et al. (1993) for quarterly data and extended to
monthly data by Franses (1990) and Beaulieu & Miron (1993). These tests are exten-
sions of the well known Dickey- Fuller test for a unit root at the long-run frequency
Dickey & Fuller (1979). Another test where the null is no unit root at the zero fre-
quency is suggested by Kwiatkowski, Phillips, Schmidt & Shin (1992) [KPSS] and
extended to the seasonal frequencies by Canova & Hansen (1995).
The existence of seasonal unit roots in the data generating process implies a varying

seasonal pattern where � summer may become winter�. In most cases such a situation
is not feasible and the Þndings of seasonal unit roots should be interpreted with care
and taken as an indication of a varying seasonal pattern where the unit root model is a
parsimonious approximation and not the true DGP.
Recently, Arteche (1998) and Arteche & Robinson (2000) among others have ex-

tended the analysis to seasonal long memory or fractionally integrated models, for
which a seasonal fractional difference Þlter would be appropriate in the Box-Jenkins
spirit. Their estimation methods rely heavily on previous results from the analysis of
standard (non-seasonal) long memory or fractionally integrated models, see Granger &
Joyeux (1980), Hosking (1981), Geweke & Porter-Hudak (1983), Robinson (1995b),
and Robinson (1995a).
One source of such fractionally integrated models is the aggregation of stationary

dynamic models. Granger (1981) showed that aggregating many AR(1) models with
random coefÞcients leads to a time series with long memory. Long memory models
may also be the result of aggregation over time. Recently, this idea has been extended to
the seasonal case by Lildholdt (2001) who considers aggregation of stationary seasonal
AR models and also has an extensive simulation study. Common examples of such
aggregated models are production, price indices, and many other macroeconomic and
Þnancial time series.
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Seasonal Unit Roots In the standard unit root literature a time series is said to be
integrated of order d if its d�th difference has a stationary and invertible ARMA repre-
sentation. Hylleberg et al. (1990) generalized this to seasonal integration and deÞned
a real-valued stochastic process {yt , t = 0,±1, ...} to be integrated of order d at fre-
quency ω if its spectral density satisÞes

f (ω + λ) ∼ g |λ|−2d as λ→ 0, (2)

where g is a positive constant, the symbol �∼� means that the ratio of the left- and
right-hand side tends to 1, ω is a seasonal frequency, and d is a non-negative integer. In
case of quarterly data ω =

!
0,π, π2 ,

3π
2

"
where the frequency is measured in radians.

When convenient the seasonal frequency may also be presented as a fraction of a total
circle i.e. as a fraction of 2π , or as θ =

!
0, 12 ,

1
4 ,
3
4

"
, hence ω = 2πθ . Such a series is

denoted yt ∼ Iθ (d), and an example is the process yt =
#
1− L4$ εt , εt ∼ i id #0, σ 2$

which is integrated of order 1 at frequencies θ =
!
0, 12 ,

1
4 ,
3
4

"
.

In general, consider the autoregressive representation

φ (L) yt = εt , εt ∼ iid
%
0,σ 2

&
(3)

where φ (L) is a Þnite lag polynomial. Suppose φ (L) has all its roots outside the
unit circle except for possible unit roots at the long-run frequency ω = 0 correspond-
ing to L = 1, semiannual frequency ω = π corresponding to L = −1, and annual
frequencies ω =

!
π
2 ,
3π
2

"
corresponding to L = ±i . The standard unit root litera-

ture considers the estimation and testing of hypotheses regarding the long-run unit root
L = 1, and much of this work has now been generalized to include the seasonal cases
L = −1 and/or L = ±i .
Dickey et al. (1984) [DHF] suggested a simple test for seasonal unit roots in the

spirit of the Dickey & Fuller (1979) test for long-run unit roots. They suggested esti-
mating the auxiliary regression#

1− Ls$ yt = φyt−1 + εt , εt ∼ iid
%
0,σ 2

&
(4)

for seasons s = 2, 4, 12. The DHF test statistic is the �t-value� corresponding to π ,
which is non-standard distributed and thus tabulated in Dickey et al. (1984). This test,
however, is a joint test for unit roots at the long-run and all the seasonal frequencies, for
instance the polynomial

#
1− L4$ can be written as (1− L) (1+ L) (1− i L) (1+ i L)

and it has the roots L = {±1,±i}.
In order to overcome the lack of ßexibility in the DHF test, Hylleberg et al. (1990)

reÞned this idea. By use of the result that any lag polynomial of order p, φ(L), with
possible unit roots at each of the frequencies ω = 0,π, [π/2, 3π/2] can be written as

φ(L) =
4'
k=1

ξ k+(L)(1− δk(L))
δk(L)

+ φ∗(L)+(L) (5)

δk(L) = 1− 1
ςk
L, ςk = 1,−1, i,−i

+(L) = -4k=1δk(L)
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where ξ k is a constant and φ∗(z) = 0 has all its roots outside the unit circle, it can be
shown that in the case of a quarterly time series, (3) can be written in the equivalent
form

φ∗(L)y4t = π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + εt (6)

This is a generalized version of (4) where

y1t =
%
1+ L + L2 + L3

&
yt (7)

y2t = −
%
1− L + L2 − L3

&
yt

y3t = −
%
1− L2

&
yt

y4t =
%
1− L4

&
yt .

Notice that in this representation φ∗ (L) is a stationary and Þnite polynomial if φ (L)
from (3) only has roots outside the unit circle except for possible unit roots at the
long-run, semiannual , and annual frequencies.
The HEGY tests of the null hypothesis of a unit root are now conducted by simple

�t-value� tests on π1 for the long-run unit root, π2 for the semiannual unit root, and �F-
value� tests on π3,π4 for the annual unit roots. As in the Dickey-Fuller and DHF cases
the statistics are not t or F distributed but have non-standard distributions, which for
the �t�are tabulated in Fuller (1976) while critical values for the �F� test are tabulated
in Hylleberg et al. (1990).The test for the complex unit roots may also be conducted by
two tests based on the �t-value� on π3 and the�t-value� on π4. The �t-value� on π3 has
a distribution as the DHF test with lag 2, provided π3 = 0. Hence the test for complex
unit roots using the �t-values� on π3 and π4 starts by testing π4 = 0, by the�t-value�
on π4, which under the null has a distribution tabulated by Hylleberg et al. (1990), and
continue by testing π3 = 0 as in the DHF case. The �F − value� can be show to be
the sum of the squared �t-values� on π3 and π4 The �t − tests� are almost never used
and that may be due to the fact that the �t − tests� cannot be saved by augmenting
with lagged values of y4t in case of autocorrelation as shown by Burridge & Taylor
(2001) Tests for combinations of unit roots at the seasonal frequencies are suggested by
Ghysels, Lee & Noh (1994). See also Ghysels & Osborn (2001), who correctly argues
that if the null hypothesis is four unit roots i.e the proper transformation is (1 − L4),
the test applied should be an �F�− test of π i , i = 1, 2, 3, 4 all equal to zero.
As in the Dickey-Fuller case the correct lag-augmentation in the auxiliary regression (6)

is crucial. The errors need to be rendered white noise in order for the size to be close
to the stipulated signiÞcance level, but the use of too many lag coefÞcients reduces the
power of the tests.
Obviously, if the data generating process, the DGP, contains a moving average com-

ponent, the augmentation of the autoregressive part may require long lags, see Hylle-
berg (1995). As is the case for the DF test, the HEGY test may be seriously affected
by moving average terms with roots close to the unit circle, but also one time jumps
in the series, often denoted structural breaks in the seasonal pattern and noisy data
with outliers may cause problems as shown by a number of authors, such as Franses

6



& T.Vogelsang (1998), Ghysels & .Lee (1996), Ghysels et al. (1994), Taylor Taylor &
Smith (2001), Taylor & Smith (2001), Canova & Hansen (1995), Breitung & Franses
(1998), Hassler & Rodrigues (2000), Lopes and Montanes (2000), Harvey & Scott
(1994), Haldrup, Montanes & Sanso (2000), Kunst & Reuter (2000) and others.
The sensitivity of the HEGY test to so-called structural breaks has led to exten-

sions, such as the one suggested by Hassler & Rodrigues (2000). They Þrst examine
the behaviour of several seasonal unit root tests in the context of structural breaks, and
show that the HEGY test and an LM variant of the HEGY test Breitung & Franses
(1998) or Rodrigues (2000)) are asymptotically unaffected by a Þnite seasonal mean
shift. However, in Þnite samples both these tests suffer from severe size and power dis-
tortions. To correct for this Hassler & Rodrigues (2000) propose a new break corrected
LM type test, which has asymptotic distributions already tabulated in the literature, but
is robust to seasonal mean shifts. Furthermore, it is shown by a Monte Carlo exper-
iment that although the test assumes the break point is known a priori, it is robust to
misspeciÞcation of the break time even in Þnite samples.
An alternate procedure was suggested by Canova & Hansen (1995) who extended

the KPSS test to the seasonal case. The KPSS test for a unit root at the zero frequency
is based on a state space representation of the process, often called the structural or
unobserved components model, such as

yt = τ t + /t (8)
τ t = τ t−1 + et

where et is white noise with variance σ 2e and the errors et and /s are independent for all
t and s. The null hypothesis of no unit root is parameterized as H0 : σ 2e = 0. Canova
& Hansen (1995) extend the test to the seasonal case by constructing similar models
as (8) for the zero frequency unit roots to each of the seasonal unit roots, see below in
Section 2.2.3.
The CH test is an LM type test based on the residuals from the auxiliary regression

yω = Gα + Xβ + e (9)

where the regressand, yω,ω = 0,π,or π/2 is a transformation of the observed variable
leaving only the potential unit root in the series, and the regressors are deterministic
seasonal terms (G) and other non-stochastic terms (X) present under the null hypothe-
sis. In Canova & Hansen (1995) the Þrst difference of the series is used as the regres-
sand in order to remove a unit root at the zero frequency, but it is shown by Hylleberg
(1995) and Hylleberg & Pagan (1997) that the regressand must also be free of seasonal
unit roots at frequencies other than the one being under investigation in order for the
assumption that the T ×1 error term to be of the form e = u+τCωξ where u and ξ are
independent white noise errors. The known T × T matrix Cω projects ξ into a process
with a unit root at frequency ω.
Then Canova & Hansen (1995) test the hypothesis H0 : τ = 0, i.e. the null is no

unit root at the frequency ω, against the alternative of a unit root, and the test statistics
suggested by Canova & Hansen (1995) is

Lω = 1
T �σ 2 �e

!CωC !ω �e (10)
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for frequencies ω = 0,or π, or π2 ,
%
3π
2

&
. Here �e are the OLS residuals from the

regression (9) and �σ 2 is a consistent estimate of the long-run variance of et . The
distribution of the Lω-test is non-standard but depends only on the number of unit
roots being tested, and is tabulated in Canova & Hansen (1995).
Besides the problems caused by the test being conditional on assumptions about

the integratedness at other frequencies, the introduction of lagged dependent variables
into the auxiliary regression may cause problems for testing for seasonal unit roots, see
Hylleberg (1995) and Canova &Hansen (1995) unless sufÞcient care is exercised when
choosing the speciÞc lags in the augmentation which do not conßict with the seasonal
unit roots. SpeciÞcally, the use of lag 1 when testing for a semiannual unit root may
ruin the test.
Recently, some authors have begun developing an optimality theory for seasonal

unit root tests. Though no uniformly most powerful test has been proposed, several at-
tempts have been made applying other optimality criteria. The CH test is extended by
Caner (1998) who uses a parametric correction for autocorrelation instead of the non-
parametric correction employed by CH. Thus he is able to prove that his test is Locally
Best Invariant Unbiased (LBIU). In a Monte Carlo study this property is demonstrated
to hold also in Þnite samples as his test shows considerable power gains over the CH
test. A related approach is considered by Tam & Reinsel (1997) who develops a LBIU
test and a Point Optimal Invariant (POI) test for a seasonal unit root in the MA rep-
resentation corresponding to seasonal overdifferencing. Thus their null hypothesis is
that of seasonal trend stationarity. By simulations it is shown that the LBUI test is ap-
proximately uniformly most powerful since its power curve is very close to the power
envelope.
In Hylleberg (1995) it is argued that the CH test and the HEGY test complements

each other but Kunst & Reuter (2000) considering the problem of choosing between
the Caner test, the CH test, and the HEGY test, using a Bayesian decision setup and
Monte Carlo experiments show that the gains of such combinations over just applying
the HEGY test is small in most cases.
While unit root testing in the case of semiannual and quarterly data is relatively easy

to perform in practice, and doable in case of monthly observations, it is not possible
in practice to handle cases where the auxiliary regressions contain more than twenty
regressors as would be the case for weekly or daily data.5
The results of a number of studies testing for seasonal unit roots in economic data

series suggest the presence of one or more seasonal unit roots, but often not all required
to the application of the seasonal difference Þlter, (1−Ls), advocated by Box& Jenkins
(1970) or the application of the seasonal summation Þlter, S(L), should be modiÞed
by applying a Þlter which removes the unit roots at the frequencies where they were
found, and not at the frequencies where no unit roots can be detected. Another and
maybe more satisfactory possibility would be to continue the analysis applying the
theory of seasonal cointegration which is the subject of section 2.2.5.
5Notice, that sometimes the techniques are used to detect weekly effects in daily data, but here at most 7

�seasons� are considered, and not 52 or 365.

8



Seasonal fractional integration Recently, Arteche (1998) and Arteche & Robinson
(2000) have extended the analysis to include non-integer values of d in the deÞnition
(2) of an Iω (d) process. In particular, let {yt , t = 0,±1, ...} be a real-valued stochastic
process with spectral density satisfying (2) for any real number d ∈

%
−12 , 12

&
. Then

the fractionally integrated process is said to have strong dependence or long memory
at frequency ω since the autocorrelations die out at a hyperbolic rate in contrast to the
much faster exponential rate in the weak dependence case. The parameter d determines
the memory of the process and its parameter space d ∈

%
−12 , 12

&
is chosen to ensure

that the process is stationary and invertible, i.e. has a one-sided linear representation.
If d = 0, then the spectral density is bounded at ω, and the process has only weak
dependence. For proofs of these properties and many more, see e.g. Granger & Joyeux
(1980) or Hosking (1981).
When ω = 0, the process has standard long memory and when ω is a seasonal

frequency the process is said to have seasonal long memory. Many estimators of the
memory parameter d and the scale parameter g have been developed in the standard
long memory context, Robinson (1994b), Baillie (1996), and Beran (1994) provide
overviews of both theoretical and empirical results in the area of (standard) long mem-
ory processes in econometrics and time series analysis up to about 1995. Basically
there are two estimation methods. The semiparametric method (developed in Geweke
& Porter-Hudak (1983),Robinson (1995b) or Robinson (1995a) and later improved by
Phillips (1999), Andrews & Guggenberger (2000), Shimotsu & Phillips (2000b), and
Shimotsu & Phillips (2000a)) assumes only the model (2) for the spectral density and
then uses a degenerating part of the periodogram around ω to estimate the model. It
therefore has the advantage of being invariant to any dynamics at other frequencies,
e.g. when estimating standard long memory models the estimator is invariant to short-
run dynamics. Some estimators based on fully speciÞed parametric models have been
developed in the probabilistic literature (e.g. Fox & Taqqu (1986), Dahlhaus (1989),
Robinson (1994a), and Nielsen (2001) ), which are muchmore efÞcient using the entire
sample, but will be inconsistent if the parametric model is speciÞed incorrectly.
One of the two commonly used semiparametric estimators is the Log Periodogram

Estimator originally introduced by Geweke & Porter-Hudak (1983) and extended to
seasonal long memory in Porter-Hudak (1990). Taking logs in (2) and inserting sample
quantities we get the approximate regression relationship

ln
#
I
#
ω+ λ j

$$ = c +−2d ln #λ j $+ error (11)

where λ j = 2π j
n are Fourier frequencies and I

#
λ j
$ = 1

2πn

((()n
t=1
%
yt − −

y
&
eitλ j

(((2 is
the periodogram of the observed process {yt , t = 1, ..., n}. The estimator �d is deÞned
as the OLS estimator in the regression (11) using j = ±1, ...,±m, where m = m (n)
is a bandwidth number which tends to inÞnity as n → ∞. Under suitable regularity
conditions including {yt} being Gaussian and a restriction on the bandwidth Arteche &
Robinson (2000) showed consistency and asymptotic normality of the estimator.
The Gaussian Semiparametric Estimator (or local Whittle estimator) is attractive

because of its nice asymptotic properties and very mild assumptions. The estimator is
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deÞned as the pair
%
�g, �d
&
that minimizes the (local Whittle likelihood) function

Q (g, d) = 1
m

m'
j=1

*
log gλ−2dj + λ

2d
j
g
I
#
ω + λ j

$+
. (12)

One drawback compared to log-periodogram estimation is that numerical optimization
is needed. However, this estimator does not require the Gaussianity condition and
Arteche & Robinson (2000) showed that

√
m
% �d − d& d→ N

%
0, 14

&
, an extremely

simple asymptotic distribution facilitating easy asymptotic inference.
The problem with the semiparametric approach is that only

√
m-consistency is

achieved in comparison to
√
n-consistency in the parametric case. Thus, the semi-

parametric approach is much less efÞcient than the parametric one since mn → 0.
A more practical difÞculty with the application of long memory seasonal models

or seasonally fractional models is caused by estimating several d-parameters. Even
in the standard long memory model with only one d parameter, difÞculties may arise,
but in case of quarterly data where there are three possible d parameters, the testing
procedure becomes very elaborate, with a sequence of clustered tests as in Gil-Alana
& Robinson (1997).

2.1.3 Band Spectrum Regression and Band Pass Filters

A natural way to analyse time series with a strong periodic component seems to be
in the frequency domain, where the time series is represented as a weighted sum of
cosine and sine waves. Hence, the time series are Fourier transformed and time do-
main tools as autocovariance functions and crosscovariance functions are replaced by
frequency domain counterparts such as spectra and cross spectra, where the spectrum
is the Fourier transformation of the autocovariance functions, and the autocovariance is
the inverse Fourier transformation for the spectrum6. In the 1960s, frequency domain
analyses applying spectra etc. were considered a very promising new tool of analy-
sis, after the introduction of spectral analyses into economics by Granger & Hatanaka
(1964). However, partly due to the often short economic times it proved less advanta-
geous to do the actual empirical analysis in the frequency domain than expected and
even if some of the concepts of frequency domain analysis have been used as an ana-
lytical effective tool, the actual modeling of economic time series is often not done in
the frequency domain but in the time domain.
In some cases, though, the arguments in doing the analyses in the frequency domain

are only based on the lack of convenient computer programs which may handle com-
plex series. However, today such arguments are invalid, as the most popular computer
programs do handle complex variables.
In the so-called Real Business Cycle literature it has become common practice to

Þlter out components like the trend and also components with short periods like the
seasonal component and concentrate on the so-called business cycle component. This
6In practice, estimation of the spectra often takes place as a histogram approximation or smoothing of the

periodogram across adjacent frequencies. The periodogram is obtained as the norm of the Fourier transform
time series.
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is done by applying Band Pass Filters, which ideally should leave only the business
cycle component in the series. For a recent discussion of Band Pass Filters, see Bax-
ter & King (1999). However, application of such Þlters dates back a long time, see
Hannan (1960). The application of Band Spectrum Regression was further developed
and analysed by Engle (1974), Engle (1980), Hylleberg (1977), Hylleberg (1986), and
Bunzel & Hylleberg (1982).

The Band Spectrum Regression. Band spectrum regression is based on a frequency
domain representation of the time series. Let us assume that we have data series with T
observations in a T×1 vector y and a T×k matrix X related by y = Xβ+ε.where ε is
the disturbance term and β a kx1 coefÞcient vector. The Þnite Fourier transformations
of the data series are obtained by premultiplying the data matrices by a T × T ´matrix
1,with the k + 1 row equal to

1k = 1√
T

!
1, e

2πik
T , e

2π i2k
T , ..., e

2πi(T−1)k
T

"
. (13)

The 1 matrix is complex and a Hermitian unitary matrix, i.e. 1 = 1@ and
1@1 = I where 1@ is the transposed complex conjugate matrix of 1. Hence, the
OLS estimate of the transformed series

1y = 1Xβ +1ε (14)

is then the same as the original OLS estimate. Let us premultiply the transformed
model by a diagonal T xT matrix A with zeros and ones on the diagonal to obtain

A1y = A1Xβ + A1ε (15)

The effect of having zeros in the diagonal of A is to plug out the corresponding fre-
quency components in the Fourier transformed data series7. Hence, by an appropriate
choice of zeros in the main diagonal of A the exact seasonal frequencies8 i.e. in the
quarterly case the (k + 1)th diagonal element of A where2πkT = π/2, π, and 3π/2
for k = 0, 1, ...., T − 1, may be Þltered from the series. In case of a varying seasonal
pattern, frequencies in a band around the exact seasonal frequencies may be Þltered
from the series as well. In order for the estimates of the coefÞcients to be real the A
matrix must be symmetric around the other diagonal9.
An obvious advantage for the band spectrum regression representation is that the

model in (15) lends itself directly to a test for the appropriate Þltering as argued in
7Notice, that A must be symmetric around the southwest -northeast diagonal in order for the coefÞcient

estimates to be real.
8In case only the exact seasonal frequencies i.e π and π/2 in the quarterly case are removed OLS on

(15) will produce coefÞcient estimates which are identical to those obtained by adding quarterly seasonal
dummies to the regression equation.
9The fact that most regression programs are unable to handle complex variables as in (15) implies that

the Þltered data should be transformed back to the time domain before applying the least squares algorithm.
The inverse Fourier transformation of the transformed Þltered variables in the model is obtained by premul-
tiplying (15)with 1.

11



Engle (1974). In fact the test is just the well known so-called Chow test applied to the
stacked model written under the alternative as,

A1y
(I − A)1y

-
=
,
A1X 0
0 (I − A)1X

-,
βA
β I−A

-
(16)

+
,

A1v
(1− A)1v

-
with the null hypothesis as H0 : βA = β I−A = β.

The Band Pass Filters Most of the literature on the use of band-pass Þlters is con-
nected to the Real Business Cycle literature following Hodrick & Prescott (1980),
Prescott (1986), and Kydland & Prescott (1990). The focus of that literature is the
business cycle component, and the ideal band-pass Þlter is a Þlter which leaves out all
the components not connected to the business cycle often deÞned as components with
periods between 4 quarters and 32 quarters.
Obviously, similar procedures could be applied to leave out only the seasonal com-

ponents. The ideal seasonal band-pass Þlter is a Þlter that passes through the non
seasonal components of the economic series.
Following Baxter & King (1999) let us deÞne a polynomial in the lag operator

a(L) = )K
k=−K ak Lk which is symmetric and where weights add up to zero i.e.

a(1) =)K
k=−K ak = 0.

Applying this polynomial to a zero-mean time series, yt , we get a new time series
y∗t = a (L) yt = )K

k=−K ak yt−k . In the frequency domain the time series yt can be
expressed as an integral of random periodic components yt =

. π
−π φ(ω)dω,where the

φ(ω) are mutually orthogonal for different ω. The Þltered time series can be expressed
as

y∗t =
/ π

−π

K'
h=−K

ahe−iωhφ(ω)dω =
/ π

−π
α (ω)φ (ω) dω (17)

where α (ω) is the frequency-response function i.e. the function indicating to what
extent y∗t responds to yt at the frequency ω. I.e. α (ω) is the weight attached to the
periodic component φ(ω). The frequency response function may be applied to design
Þlters that isolate the speciÞc frequencies of the series in the frequency domain.
Consider an ideal band-pass Þlter, that passes through only frequenciesω ≤ ω ≤ ω.

This Þlter will have a frequency-response function given by

β(ω) =
0
1 f or ω ≤ ω ≤ ω
0, otherwise. (18)

Denoting the representation of the ideal time domain Þlter b(L) = )∞
h=−∞ bhLh we

get the frequency response function by taking an inverse Fourier transformation of
β(ω) in (18) or

bh = 1
2π

/ π

−π
β(ω)eiωhdω (19)
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which evaluated yields the weights

bh =
0 ω−ω

π , h = 0
sin(ωh)−sin(ωh)

hπ , h = 1, 2, ... (20)

However, the ideal Þlter b(L) =)∞
h=−∞ bhLh is an inÞnite moving average, and

in practice we are forced to apply an approximate Þnite moving average Þlter such as
a(L) =)K

k=−K ak Lk with frequency response function αK (ω) =
)K
k=−K ake−iωk .

If the optimization criteria are based on the quadratic 1
2π
. π
−π |β(ω)− αK (ω)|2 dω

it can be shown that the optimal approximate Band Pass Filter is a(L) =)K
k=−K bkLk

for a given truncation K . Hence, the optimal approximating Band Pass Filter a(L) is
constructed from the ideal Band Pass Þlter b(L) by letting the weights be equal within
the truncation lag i.e. ak = bk for k = 0,±1, ..± K .
The effects of the truncation with lag length K are to loose 2K observations at each

end of the sample. However, a large K implies a better approximation. In fact a small
K may result in admitting substantial components just above ω and below ω, an effect
called leakage, while the frequency response may be both below the unit frequency
response (compression) and above (exarcerbation). A similar effect will be present at
the frequencies where the frequency response is zero, ideally. Hence, there exists a
trade-off between large and small K !s for a given sample size T .
Obviously, the frequency components in the interval ω ≤ ω ≤ ω may be removed,

and the frequency components outside be contained by applying the Þlter 1− b(L), or
rather 1−a(L), instead of a(L). In addition, a proper combination of Band Pass Þlters
may remove frequency components around some or all of the seasonal frequencies.
Whether one applies Þltering in the frequency domain as in Band Spectrum Regres-

sion or in the time domain as in Band Pass Þltering the actual success of the Þltering
depends on the choice of bandwidth or K , and the spectral characteristics of the series
at hand. Even a small leakage in the Þlter may give rise to severe disturbances if the
spectrum of the Þltered series has mass at particular frequencies.

2.2 The Time Series Models
2.2.1 The Box-Jenkins model.

In the traditional analysis of Box and Jenkins see Box & Jenkins (1970) the time series
were made stationary by application of the Þlters (1−L) and/or (1−Ls) = (1−L)(1+
L + L2 + L3 + ......Ls−1) as many times as was deemed necessary from the form of
the resulting autocorrelation function. After having obtained stationarity the Þltered
series were modelled as an Autoregressive Moving Average model or ARMA model.
Both the AR and the MA part could be modelled as consisting of a non seasonal and
seasonal lag polynomial. Hence, the so-called Seasonal ARIMA model has the form

φ(L)φs(Ls)(1− Ls)D(1− L)d yt = θ(L)θ s(Ls)εt (21)

where φ(L) and θ(L) are invertible lag polynomials in L,while φs(Ls) and θ s(Ls) are
invertible lag polynomials in Ls .
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In light of the results mentioned in the section on seasonal unit roots the modeling
strategy of Box and Jenkins may easily be reÞned to allow for situations were the
nonstationarity exists only at some of the seasonal frequencies.
The model in (21) lends itself to a straightforward extension to the multivariate

case, but unless constraints are invoked the model will not be identiÞed in the tra-
ditional econometric sense of the word. In Zellner & Palm (1974) the Box-Jenkins
model and the traditional econometric modeling techniques are combined and Plosser
(1978) extends the approach to the seasonal case. The simultaneous modeling of both
the seasonal and the nonseasonal components applying time series as well as econo-
metric techniques is further developed in Hylleberg (1986), which also contains a long
list of references.

2.2.2 The �Structural� or Unobserved Components Model.

When modeling processes with seasonal characteristics, complicated and high ordered
polynomials must be applied in the ARMA representation, see Hylleberg (1992). As an
alternative to this the Unobserved Components (UC) model was proposed. The model
can in its most general form be speciÞed as

Yt = µt + γ t + εt , (22)

where µt is the trend-cycle component and γ t the seasonal component, and εt is the
irregular component. It is assumed that the µt and St can be modelled as two distinct
ARMA processes

AC (L) µt = BC (L) vt and (23)
AS (L) γ t = BS (L)wt

where the processes vt , wt and εt are assumed to be independent, serially uncorre-
lated processes with zero means and variances σ 2v , σ 2w and σ 2ε. This class of model is
also called Unobserved Components Autoregressive Integrated Moving-Average Mod-
els (UCARIMA) by Engle (1978).
Substituting (23) into (22) it is seen that the UCmodel equivalently can be speciÞed

as

AC (L) AS (L) Xt = BC (L) AS (L) vt (24)
+ BS (L) AC (L)wt
+ AC (L) AS (L) εt .

From this, and the results of Granger & Morris (1976) it is seen that the UCARIMA
model is a general ARIMA model with restrictions on the parameters. The restrictions
may be derived from the estimated parameters of the unconstrained ARIMA model.
Alternatively, the UC model may be speciÞed as a so-called structural model following
Harvey (1993).
The structural approach is based on a very simple and quite restrictive modeling

of the components of interest such as trends, seasonals and cycles. The model is often
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speciÞed as (22) The trend is normally assumed only to be stationary in Þrst or sec-
ond differences whereas γ t is stationary when multiplied by the seasonal summation
operator. In the Basic Structural Model (BSM) the trend is speciÞed as

µt = µt−1 + βt−1 + ηt (25)
β t = βt−1 + ζ t

where each of the error terms is independent and normally distributed.10 The seasonal
component is speciÞed as

S (L) γ t =
n−1'
j=0
γ t− j = wt (26)

where s is the number of periods per year and where wt ∼ N
#
0, σ 2w

$
.11,12 The BSM

model can also be written as

yt = ξ t
+2

+ wt
S (L)

+ εt , (27)

where ξ t = ηt −ηt−1+ ζ t−1 is equivalent to an MA(1) process. Expressing the model
in the form (27) makes the connection to the UCARIMA model in (24) clear.
Estimation of the general UC model is treated in Hylleberg (1986) and follows the

same lines as the Box-Jenkins modeling procedure. Thus, the modeling procedure may
be criticized on similar grounds as the general ARIMA models.
The statistical treatment in the structural approach is based on the state space for-

mulation and the problems of specifying the ARMA models for the components is
avoided by a priori restrictions. Harvey & Scott (1994) argue that the type of model
above which has a seasonal component evolving relatively slowly over time can Þt most
economic time series. Nonetheless, the model presuppose a trend component with a
unit root and a seasonal component with all possible seasonal unit roots present13.

2.2.3 The Time Varying Parameter Models and the Periodic Models

The periodic model extends the nonperiodic time series models by allowing the param-
eters to vary with the seasons. The periodic autoregressive (PAR) model assumes that
the observations in each of the seasons can be described using different autoregressive
models, and the same goes for the periodic extensions to the MA and ARMA models.
Most of the research undertaken sofar has focused on PAR models Franses (1996).
10If σ2ξ = 0 this collapses to a random walk plus drift. If σ2η = 0 as well it corresponds to a model with a

linear trend.
11This speciÞcation is known as the dummy variable form, since it reduces to a standard deterministic

seasonal component if σ2w = 0.
12Specifying the seasonal component this way makes it is slowly changing by a mechanism that ensures

that the sum of the seasonal components over any s consecutive time periods has an expected value of zero
and a variance that reamins constant over time.
13The consumption function advocated by Harvey & Scott (1994) and found using the structural approach

is identical to a consumption function obtained by the seasonal cointegration approach provided a common
cointegration vector applies at the zero frequency and at all the seasonal frequencies.
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Consider a quarterly times series yt which is observed for N years. The PAR(h)
model can be written as

yt = µs + φ1s yt−1 + ...+ φ ps yt−h + εt (28)

for s = 1, 2, 3, 4 and t = 1, 2, ..., T = 4N , or as

yt =
4'
s=1

µs Ds,t +
4'
s=1

φ1s Ds,t yt−1 + ...+
4'
s=1

φhs Ds,t yt−h + εt (29)

where Ds,t are seasonal dummies. The model may be estimated by Maximum Like-
lihood or OLS but under normality of the error process and with Þxed starting values
the parameter estimates are equal. Testing for periodicity in (29) amounts to testing
the following hypothesis H0 : φis = φi for s = 1, 2, 3, 4 and i = 1, 2, ..., p. This
hypothesis can be tested with a likelihood ratio test which is asymptotically χ23p under
the null, irrespective of any unit roots in yt , see Boswijk & Franses (1995). The order
of the PAR(p) model can be found using an information criterion or using a general-to-
speciÞc approach on (29).
It has been shown that any PAR model can be described by a non-periodic ARMA

model Osborn (1991). In general, however, the orders will be higher than in the PAR
model. For example, a PAR(1) corresponds to a non-periodic ARMA(4,3) model. Fur-
thermore, it has been shown that estimating a non-periodic model when the true DGP
is a PAR can result in a lack of ability to reject the false non-periodic model Franses
(1996). Fitting a PAR model does not prevent the Þnding of a non-periodic AR pro-
cess, if the latter is in fact the DGP. It practice it is thus recommended that one starts
by selecting a PAR(p) model and then tests whether the autoregressive parameters are
periodically varying using the method described above.
A major weakness of the periodic model is that the available sample for estimation

N = n/s where s is the number of seasons, can be small. Furthermore, the identiÞ-
cation of a periodic time series model is not as easy as it is for non periodic models
since the periodic models have similarities with vector AR(MA) models. However, the
models are easily estimated under the assumptions above, and standard type tests can
be used to test the speciÞcation.
The periodic models can be considered special cases of what is referred to as the

Time-Varying Parameter models, see Hylleberg et al. (1990).14 These are regression
models of the form

Yt = X !tβ t + ut
with seasonally varying coefÞcients, which in the most general form are speciÞed as

B (L)
#
βt − β̄

$ = Aγ t + ξ t (30)

14In Hylleberg & Pagan (1997) it is also noted that the PAR models impose certain restrictions on the
evolving seasonals model.
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This model can be written in state-space form and estimated using the Kalman Þlter. A
special case of (30) is the systematic nonrandom varying parameter model where

β t = Aγ t
This model, in principle, constitutes no estimation problems if γ t is known and the
number of observations for each season is large.15
However, γ t is seldom known and the number of observations for each season may

often be small. The latter problem can be addressed by restricting the parameters. A
sensible assumption is that the parameters varies smoothly over the seasons. This as-
sumption was used by Gersovitz & MacKinnon (1978) applying Bayesian techniques.
An alternative way to smooth the variation in the coefÞcients consists of restricting
them to lie along low-ordered polynomials. Estimation of this model can be done us-
ing a method like the one suggested by Almon (1965) for distributed lag models.

2.2.4 The Evolving Seasonals Model

The evolving seasonals model was promulgated by Hannan in several articles in the
1960s, see E.J. et al. (1970). The model was revitalized by Hylleberg & Pagan (1997)
and used to nest many of the most commonly applied seasonal models. Recently, the
model has been used by Koop & VanDijk (2000) to analyze seasonal models from a
Bayesian perspective.
The evolving seasonals model for a quarterly time series is based on a representa-

tion like

yt = α1t cos(λ1t)+ α2t cos(λ2t)+ 2α3t cos(λ3t)+ 2α4t sin(λ3t) (31)
yt = α1t + α2t cos(π t)+ 2α3t cos(π t/2)+ 2α4t sin(π t/2)
yt = α1t(1)t + α2t(−1)t + α3t [i t + (−i)t ]+ α4t [i t−1 + (−i)t−1]

where λ1 = 0, λ2 = π, λ3 = π/2, cos(π t) = (−1)t , 2 cos(π t/2) = [i t + (−i)t ],
2 sin(π t/2) = [i t−1+ (−i)t−1], i2 =−1, while α jt , j = 1, 2, 3, 4 is a linear function
of its own past, and a stochastic term, e jt , j = 1, 2, 3, 4. For instance

α1t = ρ1α1,t−1 + e1t , (32)
α2t = ρ1α2,t−1 + e2t ,
α3t = ρ3α3,t−2 + e3t ,
α4t = ρ4α4,t−3 + e4t

In such a model, α1t(1)t = α1t represents the trend component with the unit root at
the zero frequency, α2t(−1)t represents the semiannual component with the root −1,
while α3t [i t + (−i)t ]+ α4t [i t−1+ (−i)t−1] represents the annual component with the
complex conjugate roots ±i . In Hylleberg & Pagan (1997) it is shown that the HEGY
15The same thing goes for the PAR model, for which γ t is equal to seasonal dummies and where Xt

consists of lagged values of the dependent variable.
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auxiliary regression in (6) rewritten as (1 − L4)yt = D(L)εt = )∞
h=0 dhεt−h has an

evolving seasonals model representation with

e1t = εt
4
D(1) = εt

4

'
h
dh (33)

e2t = εt
4
D(−1)(−1)t = (−1)tεt

4

'
h
dh(−1)h (34)

e3t = e4t = εt
2(at + bt )

'
h
(−1)hd2∗h (35)

+ εt−1
2

'
h
(−1)hd2∗h+1

where at = i t + (−i)t and bt = i t−1 + (−i)t−1.
From (31) to (35) it is seen that the HEGY auxiliary regression is an evolving

seasonals model with α3t = α4t and the errors in the models for α j t , j = 1, 2, 3
perfectly correlated. A unit root at a given frequency implies that the corresponding
ρ j , j = 1, 2, 3 is one. However, as α j t , j = 1, 2, 3 are not observed they must be
estimated. Hylleberg & Pagan (1997) shows that

α1t = y1t
4
+ I (0) (36)

α2t = −y2t
4(−1)t + I (0)

α3t = −y3t
2(at + bt ) + I (0)

where y jt , j = 1, 2, 3 is deÞned in Section 2.1.3 and I (0) means a stationary error.
Inserting these expressions in(32) produces

(1− L)y1t = y4t = π1y1,t−1 + I (0) (37)

(1+ L2)y2t = −y4t = π2(−y2,t−1)+ I (0)
(1+ L2)y3t = −y4t = π3(−y3,t−2)+ I (0)

where π j = ρ j − 1, j = 1, 2, 3.
As the terms in the HEGY auxiliary regression are uncorrelated one may perform

the HEGY test by three regressions y4t = π1y1,t−1 + I (0), y4t = π2y2,t−1 + I (0),
and y4t = π3y3,t−2 + I (0) and testing null of π j = ρ j − 1 = 0, j = 1, 2, 3 against
the alternative that the π !j s are less than zero. For j=3 the test assumes that π4 =
0 i.e. y3,t−1 is not in the HEGY regression16. But from (37) above it is seen that
16The HEGY �F� test is based on a regression of the form

y4t = π3y3,t−2 + π4y3,t−1 + I (0)
where the null is that (1 + L2)y3t is stationary and the alternative is that is that the model for y3t has the
form (1± γ 1L + γ 2L2)y3t = error.
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these regressions are exactly the regressions produced by the evolving seasonals model
provided the errors (??) are perfectly correlated.
The Canova-Hansen test may also be presented in the framework of the evolving

seasonals model as shown by Hylleberg & Pagan (1997). Rewriting (36) and adding
(32) with ρ j = 1, j = 1, 2, 3 produces three state space models

x1t = y1t
4
= α1t + I (0) (38)

α1t = α1,t−1 + e1t
x2t = −y2t

4(−1)t = α2t + I (0)
α2t = α2,t−1 + e2t
x3t = −y3t

2(at + bt) = α3t + I (0)
α3t = α3,t−1 + e2t

Applying a KPPS procedure as in Section 2.1.3. to each of the three state space
models implies seasonal unit root tests which coincide with the Canova-Hansen tests
under their assumption that no other root exists in the data than possibly at the fre-
quency under consideration. However, applying the KPPS procedure directly to (38)
has the advantage that unit root at the other frequencies does not matter, as shown by
Hylleberg & Pagan (1997).
The PAR(p) may also be developed within the evolving seasonals model. Consider

a simple version of (29) such as

yt =
4'
s=1

φs Ds,t yt−1 + εt (39)

As Ds,t is a seasonal dummy variable taking the value 1 in the s�th quarter and zero
elsewhere we can write the seasonal dummies as

D1,t = [1+ bt − (−1)t ]/4 (40)
D2,t = [1− at + (−1)t ]/4
D3,t = [1− bt − (−1)t ]/4
D4,t = [1+ at + (−1)t ]/4

and it can be shown, see Hylleberg & Pagan (1997) that (39) implies an evolving sea-
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sonals models such as (31) with α3t = α4t and

α1t = κ1 + κ2at + κ3bt + κ4(−1)t
4

α1,t−1 + εt4 (41)

α2t = −κ4 − κ2at + κ3bt − κ1(−1)t
4

α2,t−1 + (−1)
tεt
4

α3t = κ4 − κ2at − κ3bt − κ1(−1)t
4

α3,t−1 + (−1)tεt
2(at + bt )

κ1 = φ1 + φ2 + φ3 + φ4, κ2 = −φ2 + φ4 (42)
κ3 = φ1 − φ3, κ4 = −φ1 + φ2 − φ3 + φ4 (43)

Hence, it is shown that several of the most popular seasonal models may be repre-
sented in the context of an evolving seasonals models17.
Koop & VanDijk (2000) applies the evolving seasonals model (31) to nest the

HEGY and CH auxiliary regressions as

φ∗ (L) y4t = π1y1,t−1 + π2y2,t−1 + π3y3,t−2 + π4y3,t−1 (44)
+ α1t + α2t cos(π t)+ 2α3t cos(π t/2)+ 2α4t sin(π t/2)+ εt

α j t = α j + a j,t−1 + e jt , j = 1, 2, 3, 4
σ 2j = var(e jt), j = 1, 2, 3, 4 (45)

where a drift term has been added to the state equations18

2.2.5 Seasonal Cointegration, Periodic Cointegration and Common Sea-
sonal Features

The idea that the seasonal components of a set of economics time series are driven by
a smaller set of common seasonal features seems a natural extension of the idea that
the trend components of a set of economic time series are driven by common trends.
In fact, the whole business of seasonal adjustment may be interpreted as an indirect
approval of such a view.
If the seasonal components are integrated the idea immediately leads to the concept

of seasonal cointegration, introduced in the papers by Engle et al. (1989), Hylleberg
et al. (1990), and Engle et al. (1993). In case the seasonal components are stationary
the idea leads to the concept of seasonal common features see Engle & Hylleberg
(1996), while so-called periodic cointegration, see Birchenhal et al. (1989), Boswijk &
Franses (1995), Franses (1993), Franses & Kloek (1995), Franses (1996), and Osborn
(2000) consider cointegration season by season.
17From the evolving seasonals model representation of the PAR model it is seen that the PAR model

assumes that the seasonals and also the stochastic trend evolve as a periodic model.
18In their empirical work the only drift term allowed is in the state equation containing α1t .
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Seasonal Cointegration Seasonal cointegration exists at a particular seasonal fre-
quency if, at least one linear combination of series seasonally integrated at the particu-
lar frequency, is integrated of a lower order. For ease of exposition we will concentrate
on quarterly time series integrated of order 1, but the theory is easily extended to daily,
weekly or monthly data and to higher orders of integration. Quarterly time series may
have unit roots at the annual frequency π/2 with period 4 quarters, or at the semiannual
frequency π with period 2 quarters, and at the long run frequency 0. The cointegra-
tion theory at the semiannual frequency where the root on the unit circle is real is a
straightforward extension of the cointegration theory at the long run frequency. How-
ever, the complex unit roots at the annual frequency leads to the concept of polynomial
cointegration where cointegration exists if one can Þnd at least one linear combination
including a lag of the seasonally integrated series which is stationary.
In Hylleberg et al. (1990) and Engle et al. (1993) seasonally cointegration was

analysed along the path set up in Engle & Granger (1987). Consider the quarterly VAR
model

- (L) Xt = εt , t = 1, 2, ....T (46)

where- (L) is an pxp matrix of lag polynomials of Þnite dimension, Xt a px1 vector
of observations on the demeaned variables, while, while the px1 disturbance vector
is εt ∼ N I D (0,8). Under the assumptions that the p variables are integrated at the
frequencies 0, π/2 (3π/2), and π , and that cointegration exists at these frequencies as
well, the VAR model can be rewritten as seasonal error correcting model

9(L)X4t = -1X1,t−1 +-2X2,t−1 +-3X3,t−2 +-4X3,t−1 + εt (47)
-1 = α1β !1,-2 = α2β!2,-3 = α4β!4 − α3β !3,-3 = α4β!3 + α3β !4

where the transformed px1vectors X j,t , j = 1, 2, 3, 4 are deÞned as in (7), and
where Z1t = β !1X1t , and Z2t = β !2X2t contain the cointegrating relations at the long
run and semiannual frequencies, respectively, while Z3t =(β !3 + β!4L)X3t contains
the polynomial cointegrating vectors at the annual frequency. In Engle et al. (1993)
seasonal and non-seasonal cointegrating relations were analyzed between the Japanese
consumption and income estimating the relations for Z jt , j = 1, 2, 3 in the Þrst step
following the Granger-Engle two step procedure.
The well known drawbacks of this method, especially when the number of vari-

ables included exceeds 2, is partly overcome by Lee (1992) who extended the Maxi-
mum Likelihood based methods of Johansen (1988) for cointegration at the long run
frequency to cointegration at the semiannual frequency π .
To adopt the ML based cointegration analyses at the annual frequency π/2 with the

complex pair of unit roots ±i, is somewhat more complicated, however.
To facilitate the analysis a slightly different formulation of the seasonal error cor-

recting model is given in Johansen & Schaumburg (1999). In our notation the formu-
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lation is

9(L)X4t = α1β !1X1,t−1 + α2β !2X2,t−1 + α∗β !∗X∗,t + α∗∗β!∗∗X∗∗,t + εt (48)
2α∗ = α3 + iα4, 2α∗∗ = α3 − iα4,β∗ = β3 + iβ4,β∗∗ = β3 − iβ4
X∗,t = (Xt−2 − Xt−4)+ i(Xt−1 − Xt−3) = −X3,t−2 − i X3,t−1
X∗∗,t = (Xt−2 − Xt−4)− i(Xt−1 − Xt−3) = −X3,t−2 + i X3,t−1

The formulation in (48), which is just a reformulation of (47)19, writes the error
correcting model with two complex cointegrating relations Z∗,t = β !∗X∗,t and Z∗∗,t =
β!∗∗X∗∗,t corresponding to the complex pair of roots ±i.
Notice, (47) and (48) shows the isomorphi between polynomial lags and complex

variables. The general results may be found in Johansen & Schaumburg (1999) and
Cubadda (2000). The relation between the cointegration vector βm and polynomial
cointegration vector βm(L) is

βm(L) =
0

βm if ωm = 0,π
[Re(βm)− Im(βm)] cos(ωm)−Lsin(ωm ) for ωm ∈ (0,π) (49)

Brillinger (1981) extend the canonical correlation analysis to the case of complex
variables and illustrates it similarities. Based on these results Cubadda (2000) then
applies the usual Johansen approach based on canonical correlations to obtain tests for
cointegration at all the frequencies of interest i.e. at the frequencies 0 and π with the
real unit roots ±1 and at the frequency π/2 with the complex roots ±i.
Hence for each of the frequencies of interest the likelihood function is concentrated

by a regression of X4t and X1,t−1, X2,t−1 or the complex pair (X∗,t , X∗∗,t) on the other
regressors, resulting in the complex residual matricesU∗,t and V∗,t with complex con-
jugatesU∗∗,t and V∗∗,t respectively. After having purged X4t and X1,t−1, X2,t−1 or the
complex pair (X∗,t , X∗∗,t) for the effects of the other regressors the cointegration anal-
ysis is based on a canonical correlation analysis of the relations betweenU∗,t and V∗,t .
The product matrices are SUU = T−1

)T
t=1U∗,tU !∗∗,t , SVV = T−1

)T
t=1 V∗,t V !∗∗,t ,

and SUV = T−1)T
t=1U∗,t V !∗∗,t and the Trace test of r or more cointegrating vectors

is found as T R = −2T)p
i=r+1 ln(1 −1λi) where1λ1 > 1λ2 > .....1λp are the ordered

eigenvalues of the problem (((λSVV − SVU S−1UU SUV ((( = 0 (50)

The corresponding ( possibly) complex eigenvectors properly normalized are ν j , j =
1, 2...., p where the Þrst r vectors forms the cointegrating matrix β.
Critical values of the trace tests for the complex roots are supplied by Johansen &

Schaumburg (1999) and Cubadda (2000), while the critical values for cointegration at
the real root cases are found in Lee (1992) and Osterwald-Lenum (1992).
Furthermore, tests of linear hypothesis on the polynomial cointegration vectors may

also be executed as χ2 test, similar to the test applied in the long run cointegration case.
19(47) is obtained from (48) by inserting the deÞnitions of α∗,β∗, X∗,t , and their complex conjugates

α∗∗,β∗∗, X∗∗,t , and order the terms.
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Periodic cointegration In order to present some of the important concepts applied
in the literature, see Franses (1996) , Osborn (2000), and Ghysels & Osborn (2001) let
us deÞne the observations of the s quarter in year τ , s = 1, 2, 3, 4, τ = 1, 2, ....N as
ysτ while the 4x1 vector Yτ = (y1τ , y2τ , y3τ , y4τ , ) contain the observations from year
τ . Consider the VAR model

+4Yτ = -Yτ−1 +
k−1'
j=1
9 j+4Yτ− j +Uτ , (51)

Uτ �N I D(0,8U )

where - and 9 j are 4x4 coefÞcient matrices, 8U a 4x4 covariance matrix, and
+4 = (1− L4) where L operates on the seasonal index s and not on τ . Hence

Lmysτ =


ys−m,τ ,m = 0, 1, 2, 3

ys−m+4,τ−1,m = 4, 5, 6, 7
ys−m+8,τ−2,m = 8, 9, 10, 11

etc

The VAR model in (51) is written in error correction form and the number of coin-
tegrating relations between the 4 series, one for each quarter, is determined by the rank
of -. Following Osborn (2000), we then have the following three deÞnitions:
yt , t = 1, 2....., T = 4N is Integrated, yt �I (1), if rank(-) = 3 and the three

cointegrating relations are y2τ− y1τ , y3τ− y2τ , and y4τ− y3τ i.e. the quarterly changes
are the cointegrating relations.
yt , t = 1, 2....., T = 4N is Periodically Integrated, yt �PI (1), if rank(-) = 3

and the three cointegrating relations are y2τ − β1y1τ , y3τ − β2y2τ , and y4τ − β3y3τ
with at least one β j *= 1, j = 1, 2, 3.
yt , t = 1, 2....., T = 4N is Seasonally Integrated, yt �SI (1), if rank(-) = 0,

which imply - = 0. Hence there is no cointegration between the series for the indi-
vidual seasons s = 1, 2, 3, 4.20
From Engle & Granger (1987) we have that two Integrated series yt �I (1) and

xt �I (1) are Cointegrated if there exist a linear combination yt − βxtwhich is sta-
tionary. The vector (1,−β) is called the cointegration vector. In the notation above
the series yt �I (1) and xt �I (1) are (Nonperiodically) Cointegrated if each pair of an-
nual series ysτ , xsτ are cointegrated with the same cointegration vector (1,−β) for all
s = 1, 2, 3, 4.
In the section on seasonal cointegration we deÞned zero frequency cointegration

between two variables integrated at the zero frequency, yt �I0(1) and xt �I0(1), as ex-
isting if the transformed variables y1t and x1t , see (7) cointegrate, semiannual cointe-
gration between two variables integrated at the semiannual frequency, yt �I 1

2
(1) and xt

�I 1
2
(1),exist if the transformed variables y2t and x2t , see (7) cointegrate, while annual

20In Hylleberg and al. (1990) this form of integration is denoted �Integration at frequency 0, 1/4, 1/2�
Iθ (1), θ = 0, 1/4(3/4), 1/2. Hence a Seasonally Integrated in the sense of Osborn series has unit roots at
all the frequencies 0,π/2, (3π/2),and π .
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cointegration between two variables integrated at the annual frequency, yt �I1/4(1) and
xt �I1/4(1),exist if the transformed variables y3t and x3t and x3,t−1, see (7) polynomi-
ally cointegrate. Annual cointegration may also be expressed in terms of the complex
transformations, in fact Annual cointegration exist if the complex pairs (y∗,t , x∗,t) and
(y∗∗,t , x∗∗,t) cointegrate.
Full Periodic Cointegration exist, see Osborn (2000) if each pair of annual pro-

cesses ysτ , xsτ cointegrate with cointegration vector (1,−βPs ), but not all βPs = βP ,
for s = 1, 2, 3, 4. Partial Periodic Cointegration exist, see Osborn (2000) if some but
not all annual processes ysτ , xsτ for s = 1, 2, 3, 4.
Based on these deÞnitions Osborn (2000) obtain a series of results, which are sum-

marized in Table 1

Table1 Cointegration possibilitiesc

Two Processes Long Full Annual Semi Full Partial
x y Run Seasonal Cointe- Annual Periodic Periodic

Cointe- Cointe- gration Cointe- Cointe- Cointe-
gration gration gration gration gration

CI FSC I ASC I SASC I FPCI PPCI

I (1) I (1) + - - - - -
P I (1) PI (1) + - - - - -
I (1) PI (1) - - - - - -
SI (1) SI (1) + + + + + -
I 1
2
(1) I 1

2
(1) - - - + - -

I 1
4
(1) I 1

4
(1) - - + - - -

Iθ (1) Iθ∗(1) - - - - - -
P I (1) SI (1) - - - - +a +
I (1) SI (1) + b - - - - +

a)FPC I between xsτ and (1+ L + L2 + L3)ysτ , s = 1, 2, 3, 4
b) CI between xsτ and (1+ L + L2 + L3)ysτ , s = 1, 2, 3, 4
c) A + indicate a cointegration possibility, a - indicate that no cointegration is possible
Osborn (2000) also suggest a series of test for choosing between the different coin-

tegration possibilities.

Common Seasonal Features Although economic time series often exhibits non-
stationary behaviour, stationary economic variables exists as well, especially when
conditioned on some deterministic pattern, such as linear trends and seasonal dum-
mies, breaks etc. However, a set of stationary economic times series may also exhibits
common behaviour, and for instance share a common seasonal pattern. The technique
for Þnding such patterns, known as Common Seasonal Features are based on earlier
contributions deÞning common features by Engle & Kozicki (1993) and Vahid & En-
gle (1993). The Common Seasonal Features were introduced by Engle & Hylleberg
(1996), and further developed in Cubadda (1999).
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Consider a multivariate autoregression written in error correcting form as

+Yt =
p'
j=1
Bj+Yt− j +-vt−1 + ;zt + εt , (52)

t = 1, 2, ...., T
where Yt is kx1 vector of observations on the series of interest in period t and the
error correcting term is -vt−1. The vector vt contain the cointegrating relations in
case of cointegration at the zero frequency, and the of cointegrating relations is equal
to the rank of -. If no cointegration exist - has full rank equal to k and the series
are stationary. In the quarterly case the vector zt is a vector of trigonometric sea-
sonal dummies, such as {cos(2πht/4 + 2π j/T ), h = 1, 2; j ∈ (−δT ≤ j ≤ δT ),
sin(2πh4 + 2π j/T ), h = 1, 2; j ∈ (−δT ≤ j ≤ δT ), j *= 0, when h = 2}. The
use of trigonometric dummy variables facilitate the �modelling� of a varying seasonal
pattern as proper choice of δ takes care of the neighbouring frequencies to the exact
seasonal frequencies, see Hylleberg (1986). Notice, that if δ = 0, the trigonometric
dummies deÞned above are equivalent to the usual seasonal dummies as described in
Section 2.1.2.
The implication of a full rank of the kxm matrix ; equal to min[k,m] is that you

need different linear combinations of the seasonal dummies in zt to explain the seasonal
behaviour of the variables in Yt . However, there are common seasonal features in these
variables we don�t need all the different linear combinations, and the rank of - is not
full. Hence, a test of the number of common seasonal features can be based on the rank
of -,see Engle & Hylleberg (1996)
The tests is a reduced based on a reduced rank regression similar to the test for

cointegration described earlier. Hence the hypothesis tested using a canonical corre-
lation analysis between of zt and +Yt , where both set of variables are purged of the
effect from the other variables in (52)
This kind of analysis has proved useful in some situations, but is difÞcult to ap-

ply, if the number variables is large, and the results sensitive to the lag-augmentation,
similarly to the case of cointegration. In addition, the somewhat arbitrary nature of the
choice of zt poses difÞculties.

2.3 The Economics of Seasonality
Many economic time series have a strong seasonal component, and it is obvious that
economic agents must react to that. Producers know that the demand for their products
varies over the year, and the consumers know that certain products are only available at
some periods or at least are cheaper in some periods than in others. Hence, the seasonal
variation in economic time series must be an integrated part of the optimizing behaviour
of economic agents, and the seasonal variation in economic time series must be a result
of the optimizing behaviour of economic agents, reacting to exogenous factors such as
the weather, the timing of holidays etc.
Hence, the mere fact that economic agents react and adjust to seasonal movements

on the hand and inßuence them on the other, imply that the application of seasonal
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data in economic analysis may widen the possibilities for testing theories about eco-
nomic behaviour. The relative ease at which the agents may forecast at least some of
the causes of the seasonality may be quite helpful in setting up testable models for
production smoothing for instance.
However, apart from what is caused by the easiness of forecasting exogenous fac-

tors the type of optimizing behaviour and the agents reactions to a seasonal phenomena
may be expected not to differ fundamentally from what is happening in a nonseasonal
context. However, the recurrent characteristic of seasonality may be exploited. Such
a recurrent characteristic may have important effects on adjustment cost etc. seen in
relation to adjustments to other cyclical but less regular phenomena. The recurrent
characteristic may also have effect on the short and long run reaction to seasonal phe-
nomena. In the short run the farmers may adapt to the weather conditions in a passive
way, but in the longer run investments in more effective species of grain, irrigation etc.
may change or smooth the effect of the weather.
In the following we will discuss how agents react and interact when faced with

seasonal ßuctuations.
There is no real dominating approach found in the literature although there are two

main branches - the Real Business Cycle approach (e.g. Christiano & Todd (2000),
Chatterjee & Ravikumar (1992), or Braun & Evans (1995) These all work with an
utility optimizing consumer faced with some feasibility constraint. Christiano & Todd
(2000) also discuss whether this conventional RBC model is sensible to the approxi-
mations usually done in these model. A different approach is Ghysels (1988), Miron &
Zeldes (1988) and Miron (1996) who examines whether Þrms actual smooth produc-
tion.
Often the situation can be seen as though states changes in accordance with the sea-

sons, past actions etc. whereafter the agents must decide on what to do. The problem
can be made concrete by assuming that we can write the problem as an expected proÞt
maximization

max
{xt }∞t0

E0
∞'
t=t0

f (xt , yt )

subject to some constraints

yt+1 = g (xt , yt , εt+1)
where xt is vector containing e.g. sales or production controlled by the Þrm, and yt is
a vector of states such as interest rates, storage capacity, inventory as well as the direct
seasonality i.e. average temperature. and the εt+1 is a stochastic term.
If this problem obeys certain condition of regularity (see for instance Stokey, Lucas

& Prescott (1989)) this can be rewritten as a recursive problem. For concreteness,
let the discount factor be constant and as before let the objective function be additive
separable. In addition let the seasonal shock have a Markov property.
We can then rewrite the problem as a Bellman problem

V (x) = max
y
[ f (x, y)+ βE [V (g (x, y, ε)) |x ]]
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This functional equation has almost always a solution, and we can derive a rule
of how the Þrm should choose xt given the state yt Unfortunately, the problem is in
general too complicated to be given an analytical solution, and it is often necessary to
Þnd the solution by an iterative algorithm. See Rust (1996) and Judd (1998).
Todd (1990) provides a framework to obtain analytic solutions using the linear

quadratic approach. The main idea is to have the objective function being quadratic
and the transition equations being linear, and to model seasonality by a periodic repre-
sentation. However, the linear quadratic approach is quite restrictive.
Nonetheless, this approach is widely used for mainly two reasons. Firstly, the pro-

cedure is after all general enough to capture a very broad set of problems. Secondly,
when the decision is derived from the model, the Euler equations, the Þrst order con-
ditions, provide estimable econometric equations. If data is available for some of the
states and the Þnal decisions it is possible to test whether the model is compatible with
actual observed behaviour, see Rust ( ).
In an intertemporal dynamic model a common result is that the presence of season-

ality in an exogenous variable may induce power in the spectrum of the endogenous
variables both at the seasonal and non- seasonal frequencies. The reason for this is that
agents in general will react to changes in their environment as well as in their informa-
tion set, when they know that actions today will effect the future. An examples which
describes the intuition behind this result is the adjustment cost in production, e.g. if
there is large cost associated with training workers, it may not be a good idea to Þre
workers in period with low sale, if the sales are expected to rise in the future.
There are several papers which illustrate this fact, Ghysels (1988) set up an in-

tertemporal production model, with the above mentioned adjustment costs and an ex-
ogenous seasonal pattern introduced into the demand. It is then shown that seasonality
is affecting the endogenous part of the model, not only at the seasonal frequencies but
at all frequencies. This also illustrate the danger of applying preÞltered seasonal ad-
justed data. In some cases it is shown that the distortions may be small, however, see
Christiano & Todd (2000).
Osborn (1988), extended Hall (1978) by including seasonal varying components

into the utility function. The model is then tested with data from the U.K., and even
though the model is rejected it still does better than the standard model.
A production smoothing model is analyzed in Ghysels (1988), Miron & Zeldes

(1988) and Miron (1996), but the empirical evidence is negative, as the hypothesis of
production smoothing is rejected. A Þnding which could be caused by the use of to
aggregated data.
However, both these empirical Þndings may also be due to misspeciÞed models.

The functional forms may be too restrictive or perhaps the agents may not have all the
information that model builder normally assume.
A rather new approach, called Robust Control, advocated by Hansen & Sargent

(2000), attacks this problem. The idea is to allow for the fact that the agent thinks
the model could be misspeciÞed, and hence uses the information set available to him
and allow for the uncertainty. Thus, the agent is assumed to think of the model as a
possible misspeciÞed model of the real model. It could be interesting to see this applied
to models with seasonal characteristics.
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3 Conclusions
Seasonality has been a major research area in economics for several decades. The
paper asses the recent development in the literature on the treatment of seasonality in
economics, and divides it into three interrelated groups. The Þrst group, the Pure Noise
Model, consists of methods based on the view that seasonality is noise contaminating
the data or more correctly contaminating the information of interest for the economists.
The second group, the Time Series Models, treats seasonality as a more integrated
part of the modeling strategy, with the choice of model being data driven. The third
group, Economic Models of Seasonality, introduces economic theory, i.e. optimizing
behaviour into the modeling of seasonality.
The recent development has been quite promising, where increasingly, the treat-

ment of seasonal economic timeseries in economics is an integral part of the modelling
process, and where there is an increased awareness that use of preseasonally adjusted
data very easily leads to errors and in addition throw away valuable information. The
next step in the development should be a more elaborate integration of economic theory
into the modelling process. A development which is as needed in the area of modelling
seasonal economic time series as it is in most other areas of econometrics, if not all.
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