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Abstract

A dynamic model of agricultural household behaviour in less developed coun-
tries in the presence of credit constraints and income uncertainty is developed.
The production side of the model takes into account the irreversible and in-
divisible nature of non-stationary agricultural investment options, thereby
combining the standard intertemporal consumption model with features from
the real option pricing literature. The model framework represents an inter-
esting dynamic alternative to the static household models in the literature.
It is shown that the model can be solved by use of dynamic programming
routines, and numerical results are obtained for a variety of parameter values.
Several interesting results emerge: First, the consumption policy functions
of the agricultural household can become highly non-linear, violating the
standard result that increased wealth implies increased consumption. This
has implications for empirical estimation. Secondly, increasing uncertainty
does not in general reduce the average propensity to consume, or increase the
propensity to save. Thirdly, increased variation of income only to a limited
extent carries through to variation in consumption. Fourthly, the effects of
shocks to income depend crucially on the timing of shocks. And finally, re-
ducing uncertainty does not reduce poverty significantly, whereas agricultural
extension services and cash transfers are more likely to do so.
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1 Introduction

The present paper provides a theoretical framework for modelling the in-
tertemporal behaviour of the agricultural household in the presence of credit
constraints and income uncertainty. In particular, the irreversible and in-
divisible nature of non-stationary agricultural investment options is taken
into account. Previously, the theoretical literature has treated the issue of
consumption smoothing under credit constraints and income uncertainty sep-
arately from the investment issue. However, there is empirical evidence of
an interaction between these.

To pick out just one example: Data from a household survey in Nicaragua
in 1996, covering approximately 1500 agricultural households, support the
widely held belief that peasants in less developed countries are severely re-
stricted in their access to credit.! Among the surveyed households, only
10% reported that they had access to credit. With respect to savings, 49%
of the households were found to have a positive stock of domestic animals,
which are to a large extent used as a substitute for financial savings.? Out
of these households, 40% sold animals during 1996, and “investment other
than land purchase” was advanced as the underlying reason by 42% of the
households, whereas 29% of the sales were for consumption purposes. Fur-
thermore, 56% per cent of the households with domestic animals reported a
positive accumulation rate of animals during the years 1990-96.

These figures clearly indicate that when farmers are credit constrained,
both investment and consumption motives become important determinants
of saving behaviour. Savings are used both to finance investments and to
smooth consumption. The lack of credit for consumption smoothing purposes
is particularly important, considering the often highly uncertain agricultural
income and the lack of markets for risk. The severeness of missing loans
for investments is amplified through the often indivisible and irreversible
nature of agricultural investments. Examples include the investment in a
well, which is clearly both indivisible and irreversible, whereas the purchase
of other farm equipment is perhaps only irreversible to a certain degree,
but obviously still indivisible. Education and training are yet other options
which can be thought of as investments which are both fully irreversible and,
to some extent, indivisible.

When credit markets fail, the separability between production and con-
sumption decisions breaks down. This has long been recognised in the lit-
erature and has caused the emergence of “agricultural household models”,

Unformation about the survey can be found in Davis, Carletto, and Sil (1997).
2This is especially the case among the poorer households, which only derive very limited
current income from domestic animals due to inefficient breeding methods.



see e.g. Singh, Squire, and Strauss (1986) or Sadoulet and de Janvry (1995).
However, most of these models are static models of limited value for under-
standing the process of development, which is indeed an important objective
of development economics.

On the other hand, standard intertemporal consumption models with
exogenous income and credit constraints, as analysed by e.g. Deaton (1991),
though dynamic and perhaps suitable for the case where wage labour is
the primary source of income, are not particularly relevant for analysing
rural households where income from farm production contributes significantly
to total household income. This requires a model which incorporates both
production and consumption behaviour.

Recent investment theory, see e.g. Dixit and Pindyck (1994), has empha-
sised the option nature of investments arising from irreversibility, indivisibil-
ity, and uncertainty, together with leeway in the timing of investments. This
paper extends the standard intertemporal consumption model with features
from this literature to provide a dynamic alternative to the existing static
household models.

Two previous studies, Rosenzweig and Wolpin (1993) and Fafchamps and
Pender (1997), have attempted to analyse the implications of indivisible and
irreversible investments for household behaviour when credit constraints are
present. However, the models used are not explicitly dynamic in the sense
that the investment decision is a “once and for all” decision with the cost and
the quality of the investment being independent of time, thereby eliminating
the option value aspect. Furthermore, both papers are aimed at empirical
estimations and therefore pay less attention to the theoretical mechanisms at
work in the models. Thus, the model in this paper is a theoretical extension
of these models to a fully dynamic set-up by incorporating a true value of
waiting and allowing for repeated investments.

More specifically, the model in this paper incorporates the following fea-
tures: First, farmers in less developed countries are imitators rather than
innovators. This is captured by an exogenous process of technology growth.
Secondly, to capitalise on existing techniques, the farmer has to invest in
equipment and/or education. These investments are both indivisible and ir-
reversible, and they must be recurred every time the farmer wishes to increase
his state of technology. Thirdly, the farmer is credit constrained, implying
that production and consumption decisions must be analysed simultaneously.
In order to invest, the farmer must save and thereby give up or postpone con-
sumption. Finally, income is uncertain and risk sharing devices are absent,
thereby creating a motive for precautionary saving.

It is shown that the model can be solved by use of dynamic program-
ming routines, and numerical results are obtained for a variety of parameter



choices. Several interesting results emerge. First, the policy functions of
the agricultural household can become highly non-linear, violating the stan-
dard result that increased wealth implies increased consumption. This has
important implications for empirical estimation. Secondly, increasing un-
certainty does not in general reduce the average propensity to consume, or
increase the propensity to save, and it might cause increased investment ac-
tivity. Thirdly, increased variation of income only to a limited extent carries
through to variation in consumption. Fourthly, the effects of shocks to in-
come depend crucially on the timing of shocks. Finally, reducing uncertainty
does not reduce poverty significantly, whereas agricultural extension services
and cash transfers are more likely to do so.

In Section 2, a deterministic version of the model is presented. The re-
sults of the numerical simulations are presented and interpreted in Section
3. Section 4 introduces uncertainty into the model, and the numerical sim-
ulations for the stochastic version of the model are contained in Section 5.
Section 6 contains a discussion of the model and its properties, and compares
it to related models in the literature. This section also contains directions
for future research. Finally, Section 7 concludes the paper. The Appendix
contains proofs of the propositions in the paper.

2 The Deterministic Model

This section presents the deterministic version of the household model. The
consumption side of the model resembles very closely the standard set-up
from the dynamic consumption models with buffer-stock saving, see e.g.
Miller (1974), Mendelson and Amihud (1982), Zeldes (1989), Deaton (1991),
and Carroll (1997). However, the standard consumption model is in this
paper extended with a production side inspired by the optimal-stopping lit-
erature, see e.g. Dixit and Pindyck (1994).

Specifically, the farmer maximises infinite horizon utility given by the
following time separable utility function:

U=> (1+8) "u(c)
t=0

where 6 > 0 is the subjective rate of discount. Throughout the paper, it will
be assumed that the current-period utility function, u, is given by:

e . >0 A np#l
u(cepr) =
log (Ct+1) , o n=1



For n > 1, it is assumed that « (0) = lim,, ,ou(c;) = —oo and ' (0) =
lim,, ot (¢;) = +00.

Production by the farmer in period ¢ depends solely on his current level of
installed technology, ©,. To simplify, it will be assumed that the production
function exhibits constant returns to scale in ©;:

Yy =F <@t) = 9O,

where ¥y is some positive constant. The farmer has the option to increase his
level of technology by investing in the current level of exogenous technology
in the economy, 0, which grows at the rate of o > 0:

0, = (1+ ) b,

The timing of the problem is the following: The farmer enters period ¢
with a given level of wealth (or cash) and with installed technology ©; .
Wealth is then divided between consumption, investment, and savings. The
investment decision is a discrete choice between investing in the currently
available level of the exogenous technology, 8, 1, and refraining from investing
altogether. In case the latter is chosen, the level of installed technology
remains unchanged, i.e. ©; = ©, ;. However, if an investment is undertaken,
then ©; = 0, 1. The cost of investment is given by:

] wibq Fwe (91&71 —01) if Or=0,4
w0 ={; i/ ©,=6

where wq are wy are non-negative constants. A positive value of wq implies
that the investment contains an indivisible element, whereas a positive value
of wy 1mplies the existence of an adoption cost which is increasing in the size
of the technology change. Income, 7, is realised at the end of period ¢ and
together with savings, s¢, and the exogenous rate of interest, r, it determines
the amount of wealth, (1 4 r) s;+y©y, to be carried into the following period.
The timing of events is summarised in Figure 1.

The credit constraint implies that savings must be non-negative in all
periods:

StZO s tZO

Furthermore, it is assumed throughout that 6 > r > «. The technical
importance of these assumptions will become clearer in the following sections.
However, the assumption of a relatively impatient agent, 6 > r, is a fairly
standard assumption in the literature and can be found in Deaton (1990),
Deaton (1991), Carroll (1997), and Fafchamps and Pender (1997).

The above set-up is formalised, and properties of the model and the so-
lution approach are analysed in the following subsections. The numerical
simulations of the model are presented in Section 3.
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Figure 1: Timing of events

2.1 The Optimisation Problem

To simplify notation, it is instructive to define a vector of variables: z; =
(st,04,0;) for t > 0. The optimisation problem of the farmer can then be
stated formally as a sequence problem:

sup D (1+8) w2 z00) (1)
{ze+1120 =0
st Zt+1 EP(ZO, t:0,1,2,...
20 € Z

where 7Z 1s some subset of ]Ri to be characterised later.> Since ¢y =

(147) s+ yOy — 8411 — w (O 1, ©), current-period utility takes the form:

U'(Ztuzt+1) =
(L4 7) 80+ 40 — $01 — w (0111,0)) ", n>0An#1
(2)
1Og ((1 + 7") St + y@t — Stp1 — W <®t+17 ®t>) , n= 1

The correspondence, I' : Z — Z, describing the feasible set is given by:

Ot1 € {04, 0}
r (Zt) =< 241 €L Sy tw <®t+17 @t) < (1 + 7") s¢ + Y0y (3>
8t+1 = (1 + Oé) Qt

The constantly growing technology creates an unboundedness of the prob-
lem in (1)-(3) which complicates the analysis. In order to be able to char-
acterise the solution to the problem more specifically and to apply dynamic
programming techniques, it is instructive to first impose a normalisation on
the problem.

SRQ_ will be taken to be the subspace of R' containing all non-negative vectors of size I.
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2.2 The Normalised Problem

The problem in (1)-(3) is normalised by considering (1 + oz)ft z¢ instead of
2¢. This implies that the normalised state of exogenous technology becomes
constant, 0, = (1+ oz)ft 0; = 0y. It can therefore be treated as a parameter,
leaving only two variables: s, and ;.

Thus, define Z; = (8, (:)t) for ¢ > 0. The sequence problem in (1)-(3) can
then be rewrlitten in terms of Z;:

sup Z ﬂt& <5t, 5t+1> (4>
t=0

{Zt+1120
st Hael(3), t=0,1,2, ...
Zo € Z

where Z C ]Ri. The parameter 3 is defined as:

(1 + Oé)(lfn)

= <1 5
b 1406 (%)
where the inequality follows from the assumptions that n > 0 and 6 > «.

The redefined current-period utility, u, is given by:

u (2157 g/15+1) =
o (1-m) Y A - o~ ~ 17’]7
(1+1377 7 [(1+ l)J:;ryet — 811 — @W(O4yq, @t)} . n>0An#£1
(6)
log [ Hrlit;ry@t — St41 — a}<ét+17 ét)} ; n=1

where the expression in square brackets is ¢;;. The correspondence I' is

defined as:

() - {ez Suar € {(1+) " 60 (1+.0) 60} } )

~ (1+7’)§t+y(:)t ~ N ~
Sty1 < o = @(O441,04)

Finally, the cost of investment, &, becomes:
(D<ét+17 (:)t) =(1+ O‘)il [wlgo + wa(fo — ét)} (8)

if ét+1 =(1+ oz)f1 0o, and zero otherwise.



Now, consider the set Z. In the most general case, Z is just ]Ri. And
since the normalised problem in (4)-(8) is well defined for all Z, € R?%, a
unique supremum function 9* : RZ — R exists.*

However, a sequence problem of the above type does typically not allow
for an analytical solution. Therefore, dynamic programming techniques and
numerical solution methods must be applied if a solution to the problem is
to be further characterised. For this purpose, Z must be restricted to some
compact set in R?. The following Proposition shows that such a restriction
is feasible without violating the original formulation of the problem.

Proposition 1 5; < max {§t,1, (1+ 04)71 (w1 + wy) 90} for allt > 1.

Proof. See Appendix. m

Proposition 1 implies that given an initial level of (normalised) savings
which exceeds the maximum (normalised) cost of investment, it will never
be optimal to choose a higher level of (normalised) savings in the future.
The proof of Proposition 1 relies on the assumption that 6 > r > «, and it
implies that for any choice of §™% > (1 + oz)f1 (w1 + wy) by, a set Z can be
constructed as:

(9)

Z:{@@)EM: 6 € [0,(1+ )" o] }

§ € [0, 5mar]

such that for any Z € Z, the range of the correspondence T can be restricted
to the compact set Z without loss of generality.

2.3 The Dynamic Programming Approach

To solve the problem by use of numerical methods, it is useful to work with a
formulation of the problem in terms of dynamic programming. Thus, consider
the following functional equation:

#(2) = sup [4(37)+B0(2)] all 2€Z (10)

31el(5)

4This follows from the fact that: i) T (3;) is non-empty for all 5, € R2;ii)0 < 8 < 1; and
ili) current-period utility, %, is bounded from below by 0 when 7 < 1, and bounded from
above by 0 when 11 > 1. For the case of n =1, it is easy to show that: chsio 8'a (C141) <
Sto B (k') for some positive constant k and & = (1 + 04)71 (14+7)30+01+ 04)72 y0o.
This implies that S°7°) 84 (Guy) < (1 — B) "log (¢1) + B (1 — 6)72 log (k), which serves
as an upper bound for the value function when 1 = 1.



where @ (£, ') and T (2) are given by (~6) and (7), respectively, and Z is given
by (9). Define the mapping T : V — V by:

(T'0) (2) = sup [a(2,2) + B0 ()] (11)

eT(Z)

where V is some space of functions. Thus, the mapping T" associates with
cach function © € V the function 7% € V.

The idea underlying the solution method is to start with an initial guess on
a value function, vy : 7, — R, and substitute it into the right-hand side of (11).
The maximisation then yields a new value function, v; = Tvy, which again
can be substituted into the right-hand side of (11). Under certain conditions,
such successive iterations will eventually lead to at least an approximation
of the true value function, v*. The following Proposition states under which
conditions this will actually be the case when n < 1.

Proposition 2 Let n < 1. In addition, let Z be given by (9) with §™%* >
(14+0) " (w4 ws)bo, and let it : Z — R and T : Z — R be given by (6)
and (7), respectively. The mapping T defined in (]1) is then a contraction
mapping, taking the space of bounded functions v L — R, with the sup
norm, wnto itself: T : B(Z) — B(Z), Furthermore, T has a unique fized
point, U € B(Z), which is identical to the unique solution, v*, of the sequence
problem in (4)-(8). Finally, for all iy € B(Z):

|75 — ) < B 30— . n=0,12.. (12)

Proof. See Appendix. m

Proposition 2 implies that starting with any initial guess on a value func-
tion in the space of bounded functions on Z, successive iterations on the
functional equation (11) will yield estimates which come closer and closer to
the true value function, ¥, which satisfies (10).

The fact that the feasible correspondence T is not lower hemicontinuous
at all points implies that standard results, such as those found in Stokey and
Lucas (1989) where the mapping T takes the space of bounded, continuous
functions into itself, cannot be applied. The value function will in general be
discontinuous at some points when n < 1. Thus, Proposition 2 extends the
standard contraction property to the case of merely bounded value functions.

To prove a similar property for the case of n > 1, it is necessary to
deal with the problem that the value function will tend to minus infinity as
savings, §, and technology, (:), tend to zero. This will violate the properties of
the mapping, apart from being impossible to handle numerically. Technically,



this can be dealt with by introducing a lower bound on either savings or
technology. Thus, define Z; by:
a \min, -1
Zo= 4 (5,6) eR2: O € [@, (L+a) QO} (13)
3 c [gmm) gmam]
where §™" > 0 and @min >0. If §Nmm = @min — 0, then Zb and Z coincide.’
Furthermore, the correspondence I' must be modified accordingly:

T, (%) = (14)

{N E Z ét+1 == {maX{émm,<1—|—OA)71 ét} 7<1+Oé>7190} }
ft+1 b - o ~

St11 < wﬁt;ﬂ — @(Ory1,0)
Then it is straightforward to prove an analogue to Proposition 2 where the
mapping 1" can be shown to operate on the space of bounded and continuous
functions:

Proposition 3 Let p > 1. In addition, let Z be given by Zy, in (13) with
§m > (14 a) " (wy +ws) b and either: i) ™" > 0; or i) §™" > 0,
Furthermore, let it - Z — R and T : Z — R be given by (6) and (14),
respectively. The mapping T defined by (11) is then a contraction mapping,
taking the space of bounded, continuous funclions v : 7, — R, with the sup
norm, into itself: T : C’(Z) — C’(Z) Furthermore, T' has a unique fized
point, U € C’(Z), which is identical to the unique solution, v*, of the sequence
problem in (4)-(8) with (7) replaced by (14). Finally, for all % € C(Z):

T8 — || < 8" |50 — | , n=0,1,2,.. (15)

Proof. See Appendix. m

Remark 4 3 5 € (0,1) A € (0,1) such that the value function is continu-
ous and the contraction properties of Proposition 3 apply.

The intuition underlying Proposition 3 and Remark 4 is that the cost
of foregone consumption becomes relatively high compared to future utility
when [ is small and/or 7 is high. In this case, the agent will never choose to
invest if this implies zero current consumption, and the proof of Proposition
3 can then be applied to show that the value function is continuous.

SWhen §m" > 0, Proposition 1 is modified such that & <
max{§;_1, (1 + 04)71 (w1 + ws) O + 3™} for all ¢ > 1.



What are the implications of 1) and ii) in Proposition 37 First, imposing
a lower bound on normalised technology implies that as the distance between
installed and exogenous technology becomes large, where “large” depends on
the value of @min chosen, installed technology starts to grow at the same rate
as exogenous technology. Secondly, assuming a lower bound on 5 implies a
lower (and growing) bound on s. The agent is required to hold a minimum
amount of savings each period, and the size of this amount is given by ™",
That is, the agent is restricted from spending all his income on consumption
and investments. Since §™" can be chosen arbitrarily small, this restriction
seems less at odds with the original formulation than assuming the existence
of a lower bound on normalised technology. However, it turns out that the
former restriction is the most natural to implement in the numerical simula-
tions, as will become evident in Section 3.

What is the relationship between the solution to the sequence problem
on Z and Zb?G Consider how the value function behaves as the lower bounds
on savings and technology tend to zero, i.e. as Zy is extended to Z. Since the
value function must be non-decreasing in both 5 and (:), it will be smaller at
the extra points included in the state space, and decreasing towards minus
infinity as Zy is increased to Z. By assumption, it will take on the value minus
infinity at § = © = 0 since the only feasible strategy here is to consume zero
for all future periods. However, as @min ig decreased, the value function
will also change at interior points in the state space, namely at those points
where future dynamics will take the agent to the lower boundary of (:), Le.
points where the agent is “caught” in a poverty trap. Increasing the lower
bound on © will tend to increase the value function at these points, since
the consequences of a decreasing sequence of © become less severe. As §mn
is decreased, it will tend to increase the value function at all interior points,
since a smaller value of ™" corresponds to enlarging the options available
to the agent at all points, and this will certainly not make him worse off.
Thus, imposing a lower bound on savings tends to affect the value function
more broadly, whereas a lower bound on technology will only affect values at
those states belonging to the poverty trap.

2.4 Characterisation of the Solution

The investment decision of the model can be interpreted as a repeated optimal-
stopping problem, where “stopping” corresponds to “changing technology”.

SRemember that the sequence problem is always well defined on both Z and Z, for all
71 > 0, and that the solution to the sequence problem will always satisfy the corresponding
functional equations.

10



The difference between this problem and standard optimal-stopping problems
is that the stopping problem in this model is a repeated decision problem.
The option to invest is not “killed” when an investment is undertaken, but
is immediately replaced by a new option. Furthermore, the stopping prob-
lem is an integral part of a more general utility maximisation problem and
can therefore not be solved separately. However, the fact that the problem
resembles an optimal-stopping problem can (in some cases) still be used to
characterise the solution a priori; a characterisation which in turn can be
used to speed up the subsequent numerical simulations. For this purpose, it
is instructive to define normalised “cash on hand” at the beginning of period
t+1 by:

57t2<1+7")§t+yét

The value function can then alternatively be expressed with  and O as argu-
ments: 7(Z, (:)) Now, let o5 (%, (:)) denote the optimal value obtained from
investing in new technology in the current period. Similarly, let " (%, (:))
denote the optimal value of continuing with the installed technology. Then
for the case of wy = 0, the following result can be established:

Proposition 5 Let wy = 0. Given some feasible & > w1 + (1 + a) §™",
either:

1. 5%, 0) > 0P (%,0) for all © € [0™" (14 a) " by]; or
9. f}cont<577 (:)) < @Stoi”(jj’ (:)) fOT‘ all (:) € [émm’ (1 + Oé)il 80]; or
9.3 6 € [0 (14 a) 0] such that: i) 1(5,0)) = i3, ©);

i) 5°"(%,0) > #%(%,0) for any © € (0',(1+a) ' 6o]; and iii)
et (%,0) < 9¥P(%,0) for any © € [O™" 0.

where ©@Mn >0 and §™" > 0.

Proof. See Appendix. m

Proposition 5 says that for those cash levels where both continuing with
the installed technology and investing in new technology might be optimal,
depending on the level of (:), there will be a single point, which will be referred
to as the “stopping point”, where the value of continuing exactly matches
the value of investing. At higher levels of technology, continuing will be
strictly preferred, whereas investing is strictly preferred at lower levels. The
Proposition has several interesting implications.

11



First, given Z, if the stopping point, e’ , can be localised, the optimal
investment decisions for all remaining levels of installed technology follow
directly.

Secondly, given Z, the consumption choices will be independent of O for
all ® < ©. At these states, the agent will enter the following period with
the highest possible technology, and since investment cost is independent of
the level of installed technology, his current cash holdings net of investment
cost will also be independent of o. Thus, his optimal consumption choices
in the current and the following periods must be identical for all 0 <o.

Thirdly, it follows directly from the second implication that, given Z, the
value function must be constant for all © < ©'. Together with the two first
implications, this result can be used to speed up the numerical algorithm
considerably, as described in Section 3.

Thus, the policy correspondence for investment will be single-valued on
Z, except possibly on a set of measure zero. For each value of Z, there will
be at most a single point where both investing and not investing might be
optimal. However, since the numerical solutions will be restricted to a grid
of technology levels (and cash levels), it is unlikely that they will come up
with any such points. In case they do, it is more likely due to numerical
imprecision than because an exact stopping point has been localised.

The policy correspondence for saving (consumption) is of course non-
single valued at the same set of points, but it might in addition be non-
single valued at a larger set. This is the case when there exist different, but
equally optimal, future investment patterns. However, as for the investment
correspondence, the numerical procedures are not likely to detect this.

The fact that policy functions do not generally exist precludes the use
of analytical methods for solving the problem, and it restricts the range of
feasible numerical techniques. Thus, more traditional value function iteration
must be relied on. The approach used in Deaton (1991), where iterations are
undertaken in terms of an indirect policy function, cannot be applied in
the current set-up since policy functions do not generally exist. However,
since the numerical solutions will in all likelithood yield single-valued policy
correspondences, they will be referred to as policy functions in what follows.

Before turning to a description of the numerical techniques, consider the
implications of the first order conditions of the problem. In each period,
marginal utility of consumption must satisfy:

1+7r

i (¢,) = max {a’ < Teor  gmin _ (6, ét1)> Y (@H)} (16)

1+«

min

That is, either no savings in excess of § are carried forward, in which

case consumption equals cash net of investment cost, or positive savings are

12



carried forward, in which case the standard FEuler property holds. Thus, since
g(l+7r)(1+ oz)f1 < 1, the evolution of marginal utility of consumption (and
thereby consumption) can be described by a smoothly increasing (decreasing)
process which is reset whenever savings are brought to zero.

3 Numerical Simulations

Due to the contraction mapping properties of the optimisation problem, as
stated in Proposition 2 and 3, it can be solved by use of numerical meth-
ods.” Choosing a relevant set of starting values for 3, the set 7 is given by
(9) or (13). Supplying an initial, bounded function, ¥y, into the functional
equation (11), the maximisation will yield #; as an improved guess on ¥/
(= 9*). Proceeding with such iterations, the estimate of # improves and
converges towards ©'. The iterative procedure is stopped when some conver-
gence criterion is first satisfied. As a result, the value function © (£) and the
corresponding policy functions: ¢ (%), §(£), and S) (£) are obtained.

Several procedures for solving these kinds of problems exist. However, the
non-smoothness and the potential discontinuity of the value function limit
the range of appropriate methods. These issues will be discussed more fully
in Section 5.4, but as a consequence of this complexity, a simple discrete grid
value iteration procedure is applied in this paper.

3.1 Deterministic Algorithm

As mentioned in Section 2.4, the normalised value function can be expressed
as a function of the current installed technology level, ©, and cash on hand,

Z. Now, a discrete grid over # is created by letting Z™* = §™* (1 4+ r) +
y(1+ oz)f1 0o and choosing n, equally spaced grid points.® For technology,

"The normalisation on §; is not necessary for obtaining a numerical approximation to
the solution of the infinite horizon problem described above. One could truncate time and
solve a finite time horizon problem involving three variables, 8;, ©;, and s; (or z;). The
number of periods, however, has to be fairly large (several hundreds), and because the
transition functions are complex, the maximisation step will be slow. Hence an algorithm
using this approach will not work fast on each time step. And the large number of periods
needed for a good approximation is likely to be larger than the corresponding number of
iterations in the infinite horizon approach described in the following,.

¥Note that choosing £™%% = §m%% (1 +7) +y (1 + 04)71 0o yields grid points where the
implicit value of § exceeds §™%*, In practice, these points are irrelevant since they will
never be chosen from grid points satisfying § < §™%%, and they can therefore be discarded
ex-post. Alternatively, it is straightforward to show an analogue to Proposition 1 saying

that Z; < max {:Et,l, (1+ 04)71 0o [(1+7) (wy +w2) —l—y]} for all ¢ > 1, and this directly
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©, it seems natural to choose the grid as (1 + oz)f1 o, (1+ oz)f2 0o, etc.,
since only prior to the first investment can installed technology take on values
outside this grid. Furthermore, since the number of grid points must be finite,
it automatically implies a lower bound on (:), thereby satisfying assumption 1)
in Proposition 3. Thus, a discrete grid set, Zg = Zgg X ng, with dimensions
ng X N, can be defined as:

~ grmax  ggmar ~max | _ 7

T e {—, s T }—ng

& 0 0 0 ~
@ E { L 0 . 0 } — Zgg

(H+a)™07 (1)~ " (14a)!

Zy=1 (#,0)cR? :

At each grid point, Z, = (Z,, (:)g), in every iteration, the algorithm solves
the following optimisation problem:

Uny1 (29) = Inax {f}i&tﬁ) (29) 767(;?{ (29)}

where 0577 is the optimal value of continuing with the installed technology

given by:

B (%) = max  [@(&)+ B0, (3)] dl Z €Z, (17)

n+1 = B
#pelgont(zg)

with (:)’g given by:

and ¢:

whereas f‘;‘mt is defined as:
Temt (z,) = {5:’ € Ly : yO, < &), <

ensuring that ¢ > 0 and §' > 0.
Similarly, @Ztﬁ is the optimal value of changing technology given by:

it (3) = max  [a(¢)+ B, (3)] (18)

justifies the imposition of an upper bound on Z.
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for all Z, with Psmp( s) # 0. In this case, @’ (14+a) 'y and:

QN?g - w180 - CU2<80 - ég> . 57; - yé;

~/
¢ =

1+a 1+7r
whereas f‘gt‘)p is defined by:
Pstop<zg)
. s - ., (1 Py — wifo — wa(0p — © .
{$;€Z yo! a:’g§< +7) (% wll+0a wa (0o g>)+y®;}

In the case of wy = 0, use of Proposition 5 can be made to speed up the
maximisation step. In each iteration, the maximisation is performed first for
the highest possible level of installed technology, (1 + oz)f1 0y, starting at the
lowest possible level of cash on hand and proceeding upwards in cash to ™"
At each grid point, (17) and (18) are solved. The algorithm then proceeds to
the next technology level, (1 + oz)f2 0o, and performs the same calculations
— with one important exception: At this and lower technology levels in the
algorithm, it is checked at each cash level larger than the investment cost
whether it is optimal to invest at the preceding higher technology level with
identical z. If this is the case, Proposition 5 implies that it must also be
optimal at the current state, and that the optimal consumption levels must
be identical. Therefore, the maximisation step is skipped for these points;
the optimal choices for the higher technology level and same cash level are
simply copied. This implies that for most of the states where investment is
optimal, maximisation can be avoided. This reduces the computation time
by 50-70%.

Through each iteration step, the value functions converge due to the
contraction mapping properties of the problem. The iteration procedure is
stopped when a measure of the change from ¥, (Z;;) to Un41 (%) is below
some pre-specified convergence criterion, €. The measure chosen, VU, is the
average, relative, squared deviation over all grid points:

Ng Ng ~

vo o3 S e (19)

i=1j ’Un ZZJ)’

There are three motivations for this choice. First, to have a single criterion
for the entire grid set. Secondly, because the solution may be discontinuous,
the value function may at these points change a lot from iteration to iteration,
in particular in the beginning. Since it is needed to determine the point of
discontinuity quite precisely, more weight is put on avoiding large changes
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than minor ones. Hence the squared deviations. Finally, the measure should
be independent of the exact level of the value function and therefore the
squared deviations are scaled by |0y, (Z;;)].

With a value function estimate in the range of 0 to 35, setting ¢ < 0.00001
implies that the iterations are stopped when the average absolute change is
less than 0.015.

The grid approximation implies that consumption is in each state re-
stricted to a limited set of values. The coarseness of this set depends on
the coarseness of the grid in cash on hand. Thus, consumption cannot be
optimised freely and hence the value function estimate will inevitably be an
underestimate of the true value function. Furthermore, due to the discrete-
ness of the feasible consumption set, non-optimal, non-smooth evolution in
consumption policy is likely to appear in the numerical results in the cases
where optimal consumption levels have a magnitude similar to the minimum
distance between possible consumption levels.

Given the obtained value and policy functions, time series simulations
can be produced by picking initial states of interest.

The program that solves the optimisation problem and produces time
series simulations of optimal consumption, technology, and saving levels is
written using Borland’s Turbo Pascal. The program is run as a control appli-
cation in Borland’s Delphi 3. Depending on parameters and grid coarseness,
the results of the deterministic problem can be obtained in a few minutes on

a PC of type Pentium IIT with a 700-MHz processor and 256 Mb RAM.

3.2 Simulation Results

The parameters in the deterministic model are: 7, a, r, 6, wy, we, y, and
fp. However, since it is virtually impossible to present results for more
than a small number of the derived parameter combinations, a non-negligible
amount of discretion is unavoidable in the process of selecting the simulations
to run and the results to present. The task is to pick out a few interesting
and /or representative values of the parameters. Furthermore, decisions must
be made regarding the mode of presentation such that the mechanisms and
the results of the model are most clearly revealed.

TABLE 1
BENCHMARK PARAMETER VALUES IN DETERMINISTIC MODEL

n Qo T o} w1 Wo Y 0o

0.5 0.03 0.05 0.07 2 0 1 1
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Figure 2: Value function

The benchmark values of the parameters to be used in the simulations of
the deterministic model are listed in Table I. Deviations from these values
will be explicitly specified when considered. Furthermore, figures will be
presented in terms of normalised variables, unless otherwise stated.

To illustrate some of the practical problems involved in the numerical
iterations on the value function, Figure 2 contains the resulting value function
from an iteration using the benchmark parameter values. Figure 3 presents
the same value function for a smaller range of cash values.

It should be apparent from these Figures that the value function does not
display any of the “standard” properties of continuity, concavity, and differ-
entiability. The largest discontinuities are found for small levels of installed
technology along the line where cash on hand is just sufficient to cover the
cost of an investment, i.e. at £ = 2. As T reaches 2 from below, the agent
receives an extra option, namely the option to invest in the current period.’
For small levels of installed technology, using this option strictly dominates
any other feasible strategy, even though it requires zero consumption in the
current period. Therefore, the value function “jumps” at these points. At
higher levels of installed technology, the agent prefers to postpone the in-
vestment one or more periods and to use his current technology to enjoy
reasonable levels of consumption until then.

The discontinuities at & = 2 “spill back” and yield other discontinuities
at lower cash levels. More precisely, discontinuities can be located at combi-
nations of # and © where foregoing consumption for two or more periods will
precisely enable the agent to undertake an investment at the end of these

®More formally, the feasible set is not lower hemicontinuous at & = 2.
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Figure 3: Value function

periods. Eventually, these discontinuities will die out as the cost of foregone
consumption starts to exceed the gains from a (less distant) future invest-
ment. The resulting shape of the value function resembles that of a “winding
staircase”.

Thus, the discontinuities are caused by the assumptions of indivisible in-
vestments and credit constraints, together with the discrete nature of time
in the model. Their magnitudes depend on the parameters determining the
cost of investment, i.e. w; and wq, and the relative importance of current
and future consumption, i.e. 1 and 6. As stated in Proposition 3 and Re-
mark 4, there exist values of the parameters at which the discontinuities
disappear. Though continuous in these cases, the value function will still be
highly non-smooth, implying that iteration methods relying on parametric
approximations of the value function are virtually impossible to apply.

From an economic point of view, the policy functions for consumption,
saving, and investment are more interesting. As for the value function, these
could be visualised in three dimensions. However, since they turn out to be
even less smooth than the value function, it is more instructive to use contour
plots.

Figure 4 presents consumption functions for four different levels of in-
stalled technology. The imprecision arising from the grid approximation is
reflected in the small upward steps of the functions. The consumption func-
tion for © = 0.4 clearly illustrates the discontinuity of the value function at
T = 2, where consumption suddenly drops to zero.

While the discontinuities of the value function disappeared at higher levels
of technology and cash on hand, this is not the case for the policy function.
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Figure 4: Consumption

Instead, a highly “sawtoothed” pattern emerges. Consider, e.g., the case of
© = 0.59. In this case, there is a discontinuity at > 2. The intuition is
that the relative cost of zero consumption is too high at 6 = 0.59. Thus,
the agent prefers to postpone the investment at & = 2 . However, as T is
further increased, it will eventually reach a level where the value of stopping
equals the value of continuation. This is the optimal-stopping nature of
the problem. But though investing this period becomes optimal, it still
implies lower current consumption in order to finance the investment. The
remaining discontinuities in Figure 4 can be explained in a similar way: As
cash increases, it becomes optimal to decrease the remaining time to an
investment, even though this implies lower consumption in the remaining
periods before the investment.

Up to a certain level of cash, Z*, everything is consumed, ¢ = (1 + oz)f1 T.
This level depends on installed technology and is always lower than the level
of income next period. It thus reflects the consumption smoothing motive of
the agent.

The case of © = 0.68 is considered more fully in Figure 5. It follows
from the Figure that investing becomes optimal around & = 2.4, though this
implies lower current consumption. As cash is further increased to a level
around 3.8, the investment ceases to be optimal. At yet higher levels of
cash, investing is once more the optimal strategy. Fxplaining these changes
in strategy is not straightforward. They reflect the relative effectiveness of
savings and investments as means of creating and redistributing income over
time, taking into account that the investment decision today is only part of
a larger investment plan.
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Figure 5: Consumption and investment, © =0.68

It should be stressed that Iigure 5 presents a rather special case; a level
of installed technology where investing in new technology is just about to
become worthwhile. For most values of installed technology, there will be a
single optimal stopping point.

Clearly, if the initial levels of cash and installed technology are too low,
the agent might not find it worthwhile to save for a future investment. The
cost in terms of foregone consumption is too large, and the agent instead
maximises utility with respect to consumption given a future constant stream
of non-normalised income. Due to impatience, the optimal strategy will then
be to run down any initial assets, and then equalise consumption to income
in all future periods.'® Thus, the poverty trap is in some sense “voluntary”;
the agent “chooses” not to save for future investments.

The poverty trap is therefore of the same nature as the one in Galor and
Zeira (1993), where poor individuals cannot overcome the threshold needed
for investment, but different from the type in Barro and Sala-I-Martin (1995),
which is due to scale properties of the production function.

Figure 6 presents the case of n = 1.5. The picture is virtually the same
as before. However, two aspects deserve comments. First, for the lowest
technology level, the presence of a poverty trap is visible. At a cash level
around 1.1, consumption drops dramatically, reflecting that an agent in this
state finds it worthwhile to escape the poverty trap by saving for a future
investment. Secondly, consumption functions, though still sawtoothed, ap-

10Tn the numerical simulations, however, as normalised technology reaches the lower
bound, non-normalised income starts to grow at the rate of «, implying a similar growth
rate of non-normalised consumption.
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Figure 6: Consumption, n = 1.5

pear “Hatter” than in the case of n = 0.5, reflecting the lower intertemporal
elasticity of substitution, 1/n. Thus, a smoother evolution of consumption is
observed at n = 1.5, even though a higher n also works to decrease .

Figure 7 presents simulations of consumption, savings, cash on hand, and
installed technology. It appears that both consumption and savings follow
a very cyclical pattern where high consumption is enjoyed at the beginning
of a cycle, whereas savings accelerate towards the end of a cycle. These
cyclical shapes reflect the countervailing forces of the accumulation motive
and impatience. These motives interact to produce a cyclical pattern where
most of the saving for an investment is undertaken in the periods immediately
before the investment.

It is straightforward to check that an agent starting with § = 0 and
e = (1+ oz)f1 09 will invest at a future point in time. This implies that
any agent that finds it optimal to invest once will repeat investing at future
points in time. Eventually, such “thrifty” agents will enter a deterministic
investment cycle. To see this, remember that as long as the agent carries
positive savings, (16) implies that ¢ (and ¢) must be declining over time.
Thus, in order to increase consumption as technology increases, the agent
must run down assets when an investment is undertaken, thereby resetting
the Euler property of consumption paths. This implies that the normalised
optimisation problem becomes identical after each new investment. Thus,
a stable (or absorbing) cycle emerges in the simulations; a cycle which can
be considered as the steady state dynamics of the model. Of course, the

21



2.8

|| — — Installed technology
— - Cosh on hand
— -~ Consumption y

2.4

2.0

Technology, Cash, Consumption, Savings
0.4
T

0.0

32

Periods

Figure 7: Simulations of technology, cash, consumption, and savings

properties of these cycles will depend crucially on the involved parameters.
Table II presents characteristics of the cycles for varying values of n:

TABLE II
SENSITIVITY OF PERIOD LENGTH AND CONSUMPTION WITH RESPECT TO 7
n 0.5 0.95 1.05 L5
7 14 14 15 15
c 0.80 0.81 0.82 0.82

Note: Remaining parameter values as in Table [. § and € as defined in text.

where P is the investment period length, and ¢ is average consumption
out of income, defined as:

1 c 1 c
C_nzg_nzy (20)
where the summation is over the number of simulated periods, n.'! It is seen
that the length of the investment cycle increases as n increases. This is due
to the lower intertemporal elasticity of substitution. The cost of foregone
consumption in the current cycle is too high, causing the agent to choose a
longer period between investments.

Figure 8 compares savings and consumption for n = 0.5 and n = 1.5. As
mentioned above, the consumption profile is obviously smoother with higher

'Tn the deterministic model, it is in principle sufficient to sum over a single steady state
cycle.
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7, le. savings are initially higher and do not accelerate as much as with
n = 0.5.

Varying the parameter values in the cost function does not produce any
surprising results, cf. Table III. Lowering the fixed cost of investment, wy,
drastically reduces the time period between investments. However, adding a
positive variable cost, wy, has only a minor effect on the average length.

TABLE III

AVERAGE LENGTH OF CYCLE
(wbw?) (171> (270> (271>
P 894 13.97 14.75

Note: p as defined in text.

4 The Stochastic Model

This section presents a stochastic version of the model from the previous
sections. Uncertainty is introduced through the income function given by:

Yt = mOy
or using normalised variables:

gt = mtét

23



where m, is an 1.1.d. continuous, stochastic variable with compact support
M = [m,m], where m > 0, m < co, E (m) = p, and V (m) = 0*. The farmer
is assumed to maximise expected utility.

Uncertainty could be introduced in a number of other ways, e.g. through
the growth process of technology and/or the return to savings. However, the
present type of uncertainty is sufficiently simple to allow most of the analyt-
ical results from the previous sections to go through without major changes.
And still, the uncertainty introduces the precautionary saving motive.

The functional equation under uncertainty becomes:

7 (3,m)= max [ 57 m +ﬂ/ i (m’)] (21)

#'el'(z,m)

where Z = (8, (:)), and F' is the distribution function of m. Furthermore, % is

defined by:

w(z,2,m) =
L) [(Lnetm®  ~  ~ay ]t
T [ T —s—w(@,@)} , n>0An#1
(22)
log |40 — 5~ 5(6,0) n=1

where the expression in square brackets is ¢¢,1. J and JJ((:) (:2) are defined as
in the deterministic case. The correspondence [':ZxM — Z is now defined

by:

e ¢ {(1 +a)'6,(1+a)" 90}

PEm =322 a (L4+7)5+mb| - (8,6

(23)

where Z C R?.'*  As in the deterministic case, it is possible to restrict
attention to a compact set:

Proposition 6 3 5"9" < oo such that if 59 < §™% where 5™ > M9t then
S¢ < 8™ for allt > 0.
Proof. See Appendix. m

Proposition 6 says that when (normalised) savings are sufficiently large,
the agent will choose to decrease savings next period, independent of the

12 A sequence problem analogous to the one in the deterministic case can be formulated,
but is omitted. Again, the value function o* will be well defined for all (3o, mg) € Rf_ x M,

since @ and T satisfy the needed measurability requirements.
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current income realisation, 1.e. he will choose consumption and investment
expenditures in excess of income and interest earned. The reason is that
when savings are sufficiently large, they become the single determinant of
consumption. Future investment cost and income realisations have negligi-
ble influence on future consumption, and hence uncertainty is of little im-
portance. Due to relative impatience, it will always be optimal to decrease
the level of savings in such a situation.

More formally, Proposition 6 implies that for any choice of s
5Mah a compact set Z can be defined by (9) such that for any Z € Z, the range
of the correspondence I' can be restricted to Z without loss of generality.

Define the mapping 71" : V-V by:

mar above

m

(T%) (3,m) = max la(g,z’,m)w/ 5(2,m)dF (m) (24)

z'el(2,m) m

where V is some space of functions. Then the following result can be estab-

lished:

Proposition 7 Let ) < 1, and let X = Z x M where Z is given by (9) with
s™ satisfying Proposition 6. In addition, let u : ZxZxM— R and
T': Zx M— Z be given by (22) and (23), respectively. The mapping T
defined by (24) is then a contraction mapping, taking the space of bounded
functions © : X — R, with the sup norm, into itself: T : B(X) — B(X).
Furthermore, T has a unique fixed point, v € B (X), which corresponds to

the unique solution of the corresponding sequence problem. Finally, for all
tp € B(X):

|75 — 8] < 8 i — 3, n=0,1,2,.. (25)

Proof. See Appendix. m

When n > 1, the state space must be redefined as in the deterministic
case. Thus, Z must now be given by Z;, in (13). Furthermore, the feasible
correspondence must be restricted to operate on this set:

. ©c {max{(:)mm,(l—l—oz)fl(:)} ,(1—|—oz)71€0}
2/ € Zb . _ ~ ~ ~
{ § < B - 0(0',0)

Then the following result can be established:
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Proposition 8 Let n > 1, and let X =Z x M where Z is gqen by Zy, in
(18) with §™ satisfying Proposmon 6 and either: i) @mm >0 and m > 0;
or i) §™ > 0. In addition, let @ : ZXxTXxM—RandT :ZxM — Z be
given by (22) and (26), respectively. The mapping T defined by (24) is then
a contraction mapping, taking the space of bounded, continuous functions
#: X — R, with the sup norm, into itself: T : C(X) — C(X). Furthermore, T
has a unique fixed point, v € C’(}NS), which corresponds to the unique solution
of the corresponding sequence problem. Finally, for all vy € C’(X) :

[T — ] < 8 i — 3, n=0,1,2,.. (27)

Proof. See Appendix. m

4.1 Characterisation of the Solution

As in the deterministic case, the value function can be expressed solely as a
function of installed technology, ©, and cash on hand, . And in the case of
we = 0, a result similar to the one in Proposition 5 holds:

Proposition 9 Let wy = 0. Given some feasible & > wify + (1 + a) §™",
etther:

1. 5%, 0) > 0P (%,0) for all © € [0™" (14 a) " by]; or
2. 5(#,0) < 07(,0) for all © € [0, (1 +a) " fo; or

3.3 6 € [0 (1+a) "0 such that: i) vcom(a: Q) = *7(%,0');
ii) 9°"(%,0) > 9(%,0) for any O € <~@ (14 a) " 6o); and iii)

et (z, @) < vtoP(Z, @) for any © € [@mm Q).
where ©@Mn >0 and §™" > 0.

Proof. See Appendix. m

The implications for policy functions and value functions are similar to
those of the deterministic case and can again be used to speed up the nu-
merical solutions.

The evolution of marginal utility of consumption can in the stochastic
case be described by:

[~ ~ 57* ~min ~ O a 1+
o (e = mae (i (L2~ 57— 5(8.,6,.1)) L

L (Ct+1)}
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5™ are carried forward, in which case

Again, either no savings in excess of §
consumption equals cash net of investment cost, or positive savings are car-
ried forward, in which case the standard Euler or martingale property holds.
Thus, the evolution of marginal utility of consumption, and thereby con-
sumption, can be described by a martingale process which loses its memory

whenever savings are brought to zero.

5 Numerical Simulations

Proposition 7 and 8 imply that the numerical iterations can be undertaken
on the compact set Z x M with Z given by (9) or (13) for some §m%
isfying Proposition 6. However, s™* might have to be very large to satisfy
Proposition 6, a problem that will be addressed in Section 5.2 below. First,

sat-

a more detailed description of the stochastic algorithm will be presented.

5.1 Stochastic Algorithm

Let Z = ng X Zgg be a n, X ng grid defined as in the deterministic case.

That is, for a given value of zm:!?

D P je{m7w’_”753mm}zzgm
g = (357 )E S @E{ o0 o } .

(1+a)“9’ At 10 (a) [ 2%

Stochastic income is introduced into the model through the variable my,
which is given a truncated normal distribution with mean equal to one, stan-
dard deviation ¢ € [0,0.3], and truncated at three standard deviations from
the mean. The restrictions on ¢ ensure that m > 0.

Given the distribution of m;, normalised income, mt(:)t, is approximated
for each value of © in the grid Zgg. This is done by constructing ny vectors:
D(7 | (:), 7, gy) for Oc Zgg. Fach vector gives the concentrated probabilities
of a grid of income realisations. The concentrated probability is obtained by
integrating over the density area on both sides of the grid point. The dis-
tance between the income realisations in the grid corresponds to the distance
between grid points in the grid over cash, ng. And since income realisations
have been restricted to an interval of width 2 - 30(:), the number of elements

13 As in the deterministic case, it is straightforward to prove that an upper bound on
exists.
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in each vector, D(7 | (:), 7,9x), 1s given by:

n, = 2 - integer (30®> +1 (28)

9x

where g, = &M% /n, is the distance between grid points in the cash grid, ng.
At each grid point, Z, € Z,, in every iteration, the stochastic algorithm
solves:

(U <§g) = max {626(:}17 (29) 76701(?% (29)}

where 0577 is the optimal (expected) value of continuing with the installed

technology, and 1722%’ is the optimal (expected) value of changing technology.

0e 1s computed in the following way: Installed technology next period
is given by: © = max{(l + oz)f1 o, (1 4+ @) "6, }. Optimisation can then
be undertaken by finding the optimal level of expected cash on hand next
period, Z., since the distribution of cash on hand next period follows from
and the distribution of income, D(7 | (:), T, Gx)-

More formally, given @', let ) ,, be the lowest possible cash state next

period defined by:
o . i — 300
Ty = Integer | ——— 4+ 1] - g,

Gz

and let the feasible set of choices for expected cash on hand next period be
given by:

Feont (~\ _ )~ ~ a ~ 579 (1 +T) ~
q)g (Zg)—{a?;ezgm@/§$;§1_l_—a+@/

when continuation has been chosen. Then for all Z, € Zg, et 1s given by:

) = max {a@) 48] (6 min (3, + 5 0. 57))
BLedeont(zg) J=0
%, é’,az«;)} (29)

where the probability p(Z),, + 7 g | Zg, e’ ,&.) over &’ is implied by the
choice of expected cash, 7., and is given by the (5 + 1) element of the

><p (iéow +] : gSE

corresponding probability vector of income:

p (jéow +] gﬂ? 297(:)/757:3) - Dj+1 (g ‘6/70_79%)
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The “min”-operator in (29) is included to ensure that the value function is
not evaluated outside the grid. In case the choice of Z, implies that positive
probabilities are assigned to values of & above 2™, the probability is con-
centrated on £™* instead. Finally, savings and consumption can be derived
as residuals: & = (14+7)"' (&, —©) and & = (14+a) " Fg— 5.
The value of changing technology, ntﬁ’ , 1s obtained as follows Let (IDStOP (%)

be the feasible set of choices for expected cash on hand next period, ., When
stopping has been chosen:

7 () -
80 (1 + 7") (QN?g - w180 - CU2<80 - ég)) + 80

: < ¥ <
14— 99— 14+«

~/
QTQ

Then for all Z, € Z where (IDStOP (25) # O

622(:? (’gg): ma‘x { ( )+ﬂzny 1~ (® mln{ajlow_l_j gz, L maﬂ?})

#Ledy'P(2g)
~ AN )
Zgu @ 7'176) }

where ©' = (1 —I—oz)f1 0o, and Z),,, and p(Z),, + 7 9« | Eg,(:)’ Z.) are as
defined above. Savings and consumptlon can in this case be derived as: §' =
(14+7) ' (F—-(1+a) ") and @ = (1 +a) ' (&, w190—w2(90—@g))—s
Proposition 9 can be used to speed up the algorithm when wy = 0. The
iterations converge due to the contraction property and will be stopped when
the convergence measure in (19) becomes less than some pre-specified level.

Xp (jéow +] ‘Gz

Due to the calculation of expectations, the algorithm works somewhat
slower than in the deterministic case. Time series simulations can be pro-
duced from the obtained policy functions by use of a random number gener-
ator to simulate the shocks to income.

5.2 Truncation Problems

™% and thus £™*  at which Proposition

6 applies might be too large to be of any practical relevance. However,
Proposition 6 simply gives suflicient values of (normalised) savings at which
an increase in savings will never take place. The actual level of § where this

As mentioned above, the values of §

starts to be the case is likely to be somewhat smaller.
Thus, a truncation of the cash grid is chosen. In general, such truncations
may affect the solution, in particular close to the truncation limit. Typical
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results are sub-estimations of the value function and inaccurate estimates
of the optimal policies. However, as long as the probabilities of income
realisations implying optimal policy choices outside the truncation limit are
small, the truncation will not significantly affect the results well within the
limit.

Alternatively, the truncation point could be set close to the maximum
level of savings implied by Proposition 6, and a very coarse grid could then
be used in those regions where cash on hand is much higher than investment
cost. Yet another approach would be to approximate the value function and
the policy functions in states outside a limited state space by using simple
functional approximations. Both of these approaches will imply increased
computation time as they increase the complexity of the maximisation step.
To get an idea of the potential gain of implementing one of these approaches,
the optimisation problem was solved twice, with the truncation being five
in the first run and six in the second. In both cases, the parameter values
from Table I were used, together with o = 0.3. Evaluating the outcome
of these optimisations, it was found that the increase in the value function
obtained by increasing the truncation level was nowhere above 0.1%, even at
points close to the truncation limit. Likewise, the policy function was hardly
affected at all: Only in high technology states very close to the truncation
limit (x;; > 4.5) did consumption decrease by more than 1%, and never by
more than 10%. And additional increases in the truncation limit will have
a decreasing effect on the estimations. Given these very limited effects, it
was chosen to apply the simple truncation approach. However, a higher n
implies a higher precautionary saving motive and hence the truncation limit
is increased with n, cf. Table IV.

TABLE IV
TRUNCATION POINTS
7 0.5 0.95 1.05 1.5
rmer 6 7 8 8

5.3 Simulation Results

The same set of benchmark parameter values is used in the stochastic simu-
lations, together with p = 1.

Figure 9 presents consumption functions for the case of ¢ = 0.1. Com-
pared to the deterministic case, the picture is less sawtoothed. Spikes in the
consumption functions are only observed when the level of installed technol-
ogy is close to, or lower than, the level where reinvestments are undertaken.
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Figure 9: Consumption, n = 0.5 and ¢ = 0.1
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Figure 10: Consumption, n = 0.5 and ¢ = 0.3

No spikes are found at the higher levels of installed technology, where the
time to investment is longer.

Increasing the variance obviously diminishes the number of spikes, cf.
Figure 10. Uncertainty seems to stabilise consumption. In case of low or no
uncertainty, the agent is more capable of planning his future investments.
This implies that he might respond to, say, a positive shock by decreasing
consumption since this will decrease the time to the next investment. When
uncertainty is high, he will not be able to plan with the same certainty, thus
causing him to opt for a stable consumption pattern instead.

The sawtoothed picture can also be partly eliminated by increasing 7
instead of ¢. This is visualised in Figure 11. However, the reason is now a
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Figure 11: Consumption, n = 1.5 and ¢ = 0.1

different one. When the intertemporal elasticity of substitution is low, 7 is
high, the agent prefers a stable consumption pattern. Even though the small
variance in income allows him to adjust his investment and consumption
plans in response to shocks, he is not willing to do so and typically reacts by
adjusting his savings instead. This is also reflected in the relative flatness of
the consumption function compared to the case of n = 0.5. As an example,
consider the case of © = 0.74 in Figure 11. The consumption function is
virtually horizontal between £ = 0.5 and £ = 1.6. With high 7, savings tend
to be more volatile, whereas consumption will be more volatile at low 7.

By further increasing the variance in the case of n = 1.5, the consump-
tion functions in Figure 12 are obtained. Now, virtually no spikes are left.
Thus, a combination of highly variable income and a low intertemporal elas-
ticity of substitution almost completely removes the sawtoothed pattern of
consumption.

For both n = 0.5 and n = 1.5, increasing uncertainty does not seem to
influence the policy functions dramatically, especially not for relatively high
levels of installed technology. Thus, in accordance with the literature, the
precautionary motive for saving appears to be small. One reason behind
this result might be that the amount saved for investment serves a dual role
as both buffer-stock saving and investment saving. Thus, the need to hold
precautionary balances in excess of savings for investments is small.!*

14This might also be used to explain the small role of precautionary saving in wealth
accumulation found by Lusardi (1998) in US data. If agents are credit constrained and save
to finance indivisible consumption durables, the savings may serve a precuationary purpose
as well. Agents do not hold additional precautionary balances, but instead postpone the
purchase of durable goods in case of negative income shocks.
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Figure 12: Consumption, n = 1.5 and ¢ = 0.3

When comparing Figures 9 and 10 with 11 and 12, it is also evident
that an agent with a higher value of n consumes less of the average income
at high levels of technology and more of the average income at low levels
of technology. This is again due to the lower intertemporal elasticity of
substitution. It causes the agent to save relatively more when income is
high, i.e. when technology is high, and relatively less when income is low,
i.e. when technology is low. The effect is most pronounced at e = 0.4,
where consumption is more than twice as high for n = 1.5 as for n = 0.5. In
these states, technology is unusually low for an agent still opting for a future
investment. Normally, there would have been a chance to re-invest before
technology had deteriorated to this level. Hence such an agent is on a slow
and uncertain course back towards an improved technology. Uncertainty and
the preference for a constant consumption level over time imply that an agent
with a higher 1 does not force himself forward as much as an agent with a
lower 7.

One common characteristic of the presented policy functions is their rel-
ative flatness, which implies that consumption does not respond much to
income shocks. As mentioned above, the flatness depends both on the elas-
ticity of intertemporal substitution and the uncertainty of income. Further-
more, the option to invest makes current consumption less attractive, and
causes a lower marginal propensity to consume than in models without the
investment option, see e.g. Deaton (1991).

However, for low levels of technology, the consumption functions become
more sawtoothed as cash holdings increase to around the cost of investment.
At these levels of technology, consumption responds both positively and neg-
atively to variations in income. Thus, the reaction to income shocks in terms
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Figure 13: Consumption, n = 0.5 and ¢ = 0.1

of consumption and savings will depend crucially on the timing of shocks. In
the beginning of a cycle, only negative shocks will affect consumption. Later
in the cycle, the agent will react to shocks by adjusting savings. He is now
on the flat part of the policy functions. Towards the end of a cycle, the agent
is again likely to adjust his consumption in response to a shock.

As in the deterministic case, a level of cash on hand exists such that
up to this level everything is consumed. However, comparing Figure 4 and
Figure 10, it is seen that for © = 0.92 this level of cash is highest in the
deterministic case. This is to be expected due to the precautionary motive
in the stochastic case. However, for lower levels of technology, the picture
is reversed. The level of cash at which everything is consumed is highest
in the stochastic case. This seemingly counter-intuitive result is explained
by the investment motive. In the stochastic case, the ability to plan future
investments 1s limited, and hence the investment motive matters less at low
levels of cash, leaving only the precautionary motive. In the deterministic
case, future investment dates are known and cause the agent to forego current
consumption in favour of faster investments and higher future consumption.

Figure 13 is included to yield a more complete picture of the consumption
functions for the case of n = 0.5 and ¢ = 0.1. As cash on hand increases,
consumption at lower levels of technology “catches up” and tends to “over-
shoot” consumption at higher levels of technology, even though cash is used
partly to finance an investment in the present period when current technol-
ogy is low. The overshooting is due to the fact that the expected horizon to
the next investment is then longer at low levels of current technology.

The catching up effect is also visible when comparing © = 0.72 with © =
0.97 in Figure 13. Whereas the consumption function for © = 0.97 exhibits
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Figure 14: Poverty trap (the legend reports consumption relative to expected
income next period including interest on savings), n = 0.95 and ¢ = 0.3

the standard concave shape, well known {rom the model in Deaton (1991),
the corresponding function for © = 0.72 has a strictly convex part around
Z = 2. This reflects how the importance attached to a future investment is
shifted towards current consumption as the financing of the investment has
been secured.

In the above consumption functions, technology levels are too high for the
poverty trap to appear. Figure 14 illustrates the poverty trap of a stochastic
problem. The poverty trap consists of states where the agent does not find
it worthwhile to save for a future investment. It is illustrated in the Figure
by those states where the peasant finds it optimal to consume more than
his expected income for the next period, including interest on savings. From
such states, the agent plans voluntarily to run down his savings and never
invest. Note that the agent can be brought into the poverty trap by one or
more negative shocks to income and likewise be lifted out of the trap by one
or more positive shocks. This is, however, only likely to happen for states
rather close to the rim of the dark area in Figure 14, where consumption
is close to expected income next period. Sensitivity analyses revealed that
there was virtually no poverty trap for low values of 1, e.g. 7 = 0.5, but the
trap increased strongly with increases in 7, reflecting that as the coeflicient of
intertemporal substitution decreases, the willingness to forego consumption
now in favour of future gains decreases. Increasing the level of uncertainty
had only a marginal effect on the size of the poverty trap, but it definitely
increases the probability of being lifted in and out of the poverty trap.
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Figure 15: Consumption and investment, n = 1.5, ¢ = 0.3, and © =0.68

Note that an agent standing at the rim of the poverty trap expects the
same level of cash in the next period. Since his technology has at the same
time declined, he does not expect to escape the trap. In Figure 14 he will
expect to enter the dark area. However, by consuming less than the life
cycle motive would dictate him in a model without savings, he keeps his
investment option alive in case of a positive income shock. Thus, the mere
chance, though it might be small, of high income realisations and future
investments has a positive effect on savings. This is also true for agents right
outside the dark area of Figure 14.

As in the deterministic case, there may exist such “windows”, cf. Figure
15, where it is more favourable for an agent to postpone investment and
instead enjoy a rather large consumption level now and in the nearest future.
In fact, an agent within the window of Figure 15 with & > 2 expects to invest
within one or two periods. As stressed in the discussion of the deterministic
case, the result is only present for a small subset of the state space, and it
reflects that the decision whether to invest now, i.e. to stop, or to wait, i.e.
to continue to hold the option, is a very tight one at these points.

The implications of uncertainty in this model can be analysed in at least
two ways. First, obtained policy functions for consumption, saving, and in-
vestment can be compared for different parameter values, as was done above.
Secondly, simulations can be compared under different kinds of uncertainty
by using either single simulations or some average across agents or periods.

Even though policy functions might be identical for different levels of
uncertainty, simulations are likely to lead to different realised behaviour.
Agents face shocks of different magnitude and will therefore end up taking
different routes in the state space. This might influence realised average
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Figure 17: Simulations of g, ¢, and s, n = 1.5 and ¢ = 0.3

consumption, the length of the investment cycle, etc. Even though shocks
average out, their dynamic effects are not likely to do so.

Analysing uncertainty by use of only one of the approaches mentioned is
likely to yield an incomplete picture. A priori, it cannot be precluded that
the two approaches will yield different conclusions regarding the implications
of uncertainty. Thus, for the sake of completeness, the second approach will
be considered below.

Figures 16 and 17 present simulated paths of (normalised) income, con-
sumption, and savings. The “kinked” nature of the corresponding policy
functions in Figures 10 and 12 implies that for the most relevant cash on
hand levels, only negative shocks to income will have a significant effect on
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consumption. Positive shocks will instead lead to higher savings and faster
investment. This asymmetry is illustrated by the drops in consumption in
Figure 16 around periods 21 and 53, and around period 43 in Figure 17. At
the cycle level, a much smoother consumption pattern is observed for n = 1.5
than for n = 0.5. This in spite of identical variance of income.

Table V contains average statistics for different combinations of parame-
ter values. p and ¢ are defined as in the deterministic case, now just summing
over a much larger number of observations. 5, is the average level of nor-
malised savings held in the period following an investment.

TABLE V
SENSITIVITY OF PERIOD LENGTH, CONSUMPTION, AND SAVING WITH RESPECT TO ¢ AND 7
o 0 0 0 0.2 0.2 0.2
T 0.03 0.05 0.07 0.03 0.05 0.07
P 14 14 15 15.11 14.74 14.56
c 0.79 0.81 0.85 0.83 0.85 0.88

541 0.045 0.083 0.157 0.128 0.175 0.222

Note: #=0.95 and pu=1, remaining parameter values as in Table I. p, & and 511 as defined in text.

The Table shows that as the interest rate increases, average consumption,
¢, increases. This is due to the extra income from holding savings. However,
the effect on the period length is less clear. In the deterministic case, higher
interest rates imply that holding savings become a relatively better tool for
generating income, thereby increasing the period length. In the stochas-
tic case, the higher interest rates allow the agent to replace his strategy of
precautionary saving in part with a strategy of precautionary investment.

More surprisingly, higher uncertainty has a positive effect on average
consumption, whereas the effect on the period length depends crucially on
the interest rate. The explanation has to be found in the fact that under
higher levels of uncertainty, the agent is saving relatively more in the first
periods of a cycle, as indicated by the last row in Table V, thereby generating
a higher stock of savings. This allows for both faster investment and higher
average consumption as r is increased.

A series of solutions was obtained for various levels of growth in tech-
nology, i.e. for various levels of a. The results are reported in Table VI.
FEvidently, the average investment cycle, p, decreases as growth in technology
increases. The explanation is two-sided. Technology growth makes investing
more attractive, but at the same time also more expensive. The effect of the
latter is very evident when evaluating the extent of the poverty trap in the
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Figure 18: Simulations of y/© and ¢/©, n = 0.5 and ¢ = 0.3

model. For agents with a poor technology, increased technology growth only
implies that the cost of investment is sooner beyond their reach. Thus, for
the peasant ever to be able to invest, either his initial savings or technol-
ogy must be higher. A shorter investment cycle requires a faster build up
of savings. This is reflected in ¢. Note that the lower average normalised
consumption does not imply a lower non-normalised consumption. Faster
technology growth and more frequent investments will imply higher average
income.

TABLE VI
SENSITIVITY OF PERIOD LENGTH AND CONSUMPTION WITH RESPECT TO o
o' 0.03 0.04 0.05 0.06
D 14.74 12.22 10.71 9.65
c 0.85 0.77 0.72 0.67

Note: n=0.95, u=1, and 0=0.2. Remaining parameter values as in Table I. p and & as defined in text.

Figures 18 and 19 present simulated paths of ¢/© = E/(:) and y/© = g/é
for n = 0.5 and n = 1.5. Clearly, consumption is somewhat smoother than
income, and smoothest when 7 is high. As mentioned above, consumption is
asymmetric in the sense that mostly negative shocks to income are transmit-
ted to consumption. This happens because savings are used to smooth out
positive shocks. Thus, co-movement of income and consumption is primar-
ily observed when income is low. However, positive shocks to income might
affect consumption towards the end of a cycle.
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Figure 19: Simulations of y/© and ¢/©, n = 1.5 and 0 = 0.3

Table VII presents the standard deviation of ¢/© for various combinations
of o and 7. It appears, that the standard deviation of detrended consumption
decreases as 7 is increased and o decreased. More interestingly, the increases
in standard deviation as ¢ increases are relatively small, reflecting the fact
the policy functions get smoother as ¢ is increased, cf. the discussion above.
Thus, the increase in the variance of consumption is less than would perhaps
be expected a priori.

TABLE VII
STANDARD DEVIATION OF INCOME AND CONSUMPTION
n\o 0.1 0.2 0.3
0.5 0.12 0.13 0.15
0.95 0.07 0.09 0.13
1.05 0.07 0.09 0.11
1.5 0.05 0.07 0.10

Note: p=1, remaining parameter values as in Table I.

5.4 Alternative Solution Methods

The numerical solution approach used in this paper is a rather simple and,
one may say, primitive one. Performing the maximisation step of the al-
gorithm in a number of states, varying between 50,000 and 80,000 in each
iteration, assures a very good approximation of the value and policy func-
tions, but is somewhat cumbersome in terms of computation time. A number
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of alternative methods are often recommended, see e.g. Judd (1998). These
include functional approximations of the value function using polynomials,
Fourier approximations, or neural networks. Using such approximations, it
is often possible to reduce the number of maximisation steps performed and
still generate good solutions. They do, however, require fairly well-behaved
value functions, i.e. value functions should be smooth and preferably con-
cave. The less well behaved the value functions are, the more parameters
must be used in any sort of approximation. This increases computation time
and reduces accuracy.

In the initial phases of this work, polynomial representations of the value
function were used. While convergence of the polynomials was rather fast,
the approximation turned out to be bad. It became clear that the value
function in this case is sometimes discontinuous, and never well behaved, in
the regions of interest. As a result, this approach was abandoned.

Another alternative to the present value function iteration is to iterate on
the policy function by use of a state transition matrix and a payoff function.
This is in many cases a much more rapid approach, and it typically generates
accurate solutions. However, to be able to illustrate and accurately catch the
effect of discontinuities in the value and policy functions, a very fine grid,
i.e. a large number of states, is needed. This results in a state transition
matrix of gross dimensions between 2.,500,000,000 and 6,400,000,000 cells.
Because the problem is stochastic, this matrix has non-zero entries in a large
part of these cells. Hence it is difficult to condense the matrix significantly.
Furthermore, it is likely to be computational cumbersome because the size
of the structure forces the computer to use part of the hard disk as memory.
This will also be the case during the iterations. Using the hard disk as
memory greatly reduces the speed of calculations. Hence the benefits of
policy iteration become questionable.

6 Discussion

This section contains a discussion of some of the assumptions in the model
and a comparison of the model and its implications with related models in
the literature. It also provides several suggestions for future research.

6.1 A Word on Technology and Savings

The peasant considered in this model will in general not hold savings in a
bank account or in terms of financial assets. Instead, he will accumulate
liquid wealth in assets like cattle, pigs, goats, or other assets easily managed
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and converted into cash. Thus, the interest rate r in the paper reflects
the pay-off from wealth allocated to this use. Note that with this kind of
saving there is an implicit replacement problem, which it is assumed that
the peasant solves optimally, i.e. the interest rate r is the interest earned on,
say, cattle for meat production when breeding and slaughtering is performed
optimally and the cash realised is reinvested in the same activity or portfolio
of activities.'®

The development of technology in which the peasant can invest is mod-
elled in a very simple fashion as a single exponential process. As crude as
this formulation is, it can still capture essential parts and dynamics of reality.
One could argue that a third-world peasant would simply not have the know-
how to make use of the newest technology, and hence will always need to buy
an older and less productive technology than the newest available. This crit-
icism, however, relies on a much too rigid interpretation of the technology
process. A more flexible and relevant interpretation is that the technology
process represents the technology that the peasant can buy given his current
capacity.'® As time goes by, he learns more and more from using his own
technology and from observing others with similar and better technologies.
Therefore, the technology that he potentially can make use of becomes more
and more advanced and profitable. The cost function, however, reflects that
there will still be a cost related to buying and installing the new technology;
a cost which may depend on the difference between currently installed and
new technology.

The fact that the peasant cannot buy technologies at a lower level than
the maximum is of course a simplification. A natural extension of the model
would be to allow the agent to acquire any technology level between ©,
and ;. However, in some sense it seems reasonable to assume that not all
intermediate levels of technology are available, or at least not relevant.

Another critique could be that the model works with only one type of
technology. Again, this is a very rigid interpretation. In fact, the only impli-
cation of the model in that respect is that the investment adds a new tech-
nology component to the existing stock of capital; a component which allows
for a certain productivity increase. Examples are in plenty: An improved
irrigation system, equipment for soil preparation or weed control, genetically
improved seeds or animals, improved transportation vehicles which improves
his contact to markets, and many other possible investments.

I5A similar approach is used in Fafchamps and Pender (1997), where cash (or liquid
wealth) enters the current income function additively.

16This also implies that the technology process is in some sense “agent-specific” and
can be interpreted as a reduced form of a more structural setup. It could thus be partly
endogenised in a richer (and more complicated) model.
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6.2 The Savings-Growth Nexus

The empirical literature generally supports a (weak) positive relationship
between saving rates and growth rates at the aggregate level, see e.g. Gerso-
vitz (1988) or Deaton (1990). Neither the standard life-cycle theory nor the
buffer-stock models of consumption are able to explain this relationship at
the microeconomic level.

In a standard life-cycle model of consumption, growth in income at the
individual level creates a motive for dissaving (the life-cycle motive), and
thus cannot explain the empirical findings. At the aggregate level, these can
be explained if growth takes place between, instead of within, generations,
thereby causing the younger generations to save more.!”

Compared to the life-cycle model, the buffer stock models in, e.g., Deaton
(1991) and Carroll (1997) introduce an extra motive for saving, namely the
precautionary motive, arising from the uncertain income in combination with
convex marginal utility and/or credit constraints. Deaton (1991) analyses
consumption smoothing in the case of non-stationary (growing) income. He
finds that savings tend to collapse at zero and that no accumulation takes
place during booms. The motive for dissaving arising from consumption
smoothing tends to outweigh the need for precautionary saving arising from
uncertainty in income. However, the model in Deaton (1991) does not include
production and thus lacks an investment motive for saving. The causality
runs solely from growth to saving.

The model in this paper incorporates the accumulation motive explicitly
and thereby introduces a causality from savings to investments; a link which
is able to generate a positive level of savings even when growth in income
is expected. The fact that investments have to be financed out of savings
creates a motive for saving which is counteracted by the motive for dissaving
arising from the growth in income over time. Actually, the model is consistent
with the empirical findings; an increase in « (the growth rate) is likely to be
assoclated with an increase in the average propensity to save.

Thus, by including the accumulation motive in addition to the life-cycle
and precautionary motives, the model of this paper is believed to yield a
richer model of saving (and consumption) behaviour at the microeconomic
level than the previous consumption models. The implications of the three
different saving motives are clearly visible in the obtained results. First, the
accumulation motive is visible in the increasing average balances of savings
held during an investment cycle. Secondly, the life cycle motive is reflected
in the convex shapes of savings within a cycle. Due to impatience, saving
is primarily undertaken in the periods immediately before an investment.

17See Deaton (1992) for a comprehensive treatment of this aspect of the life-cycle theory.
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This yields a cyclical pattern of both consumption and savings. Thirdly, the
precautionary motive works to yield a positive level of savings at the end
of a cycle, as well as higher initial savings at the beginning of a cycle when
income uncertainty is high.

Note the role played by the credit constraint. It never ceases to affect the
behaviour of agents, even though income is constantly growing. Actually,
the growth causes the credit constraint to bind, since the impatience of the
agent implies that he wishes to spend future income today but is prevented
from doing so by the credit constraint.

6.3 The Role of Uncertainty

It is instructive to compare the role played by uncertainty in the present
model with that of uncertainty in “pure” consumption models and “pure”
investment models.

In the literature on investment under uncertainty, as developed by Dixit
and Pindyck (1994) and applied to less developed countries by e.g. Servén
(1997), it is emphasised throughout that uncertainty works to decrease in-
vestment activity when investments are irreversible. The argument is the
following: When investments are impossible to reverse and the (expected)
value of an investment changes over time, there exists a “value of waiting”.
The cost in terms of foregone current income from the investment is typically
outweighed by the value from being able to avoid projects that turn out to be
unprofitable. In addition, there might be an expected increase in the value of
the investment. Thus, “waiting” reduces uncertainty and increases expected
pay-off from the investment option.

However, the above set-up does not fully capture the importance of uncer-
tainty to an agricultural household. Farmers are indeed likely to face differ-
ent investment options, e.g. machinery, education, new production methods,
ete., which are (partly) irreversible. And the values of these investments are
also likely to change over time, where “value” captures the net present value
arising from their addition to the productive capacity of the farm, i.e. to the
human and/or physical capital stock. But this is not the whole story — there
is an additional source of uncertainty. Farmers have a current income which
is highly stochastic. And waiting is not likely to reduce this type of uncer-
tainty; an uncertainty which is caused by weather, prices, or other factors
outside the control of the farmer. However, investments might affect the dis-
tribution of current income, and thus might serve to reduce this uncertainty;
if not in a strict variance sense, then by reducing the risk of low outcomes,
which are particularly harmful in the case of credit constraints. This aspect
is not captured by the pure investment models. They typically assume risk
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neutrality and thus attach no value to a reduction of this sort of risk. But it
is indeed a relevant aspect in a model of an agricultural household.

In dynamic consumption models, on the other hand, the role of uncer-
tainty is basically to cause buffer-stock saving when precautionary motives
are present. Thus, only ex-post mechanisms are used to smooth consump-
tion. The agent has no option to affect the distribution of income. This
seems a rather unreasonable assumption in an agricultural set-up.

Contrary to this, the option to invest in the present model might be
considered as an ex-ante mechanism to smooth consumption. Hence the
option introduces the risk reducing aspect of investments often neglected in
the investment literature.

Rosenzwelg and Wolpin (1993) and Falchamps and Pender (1997) are
probably the most successful among the very few previous attempts to ex-
tend the dynamic consumption model with aspects from dynamic investment
theory. However, their (empirical) dynamic houschold models both assume
a single, constant investment option, thereby omitting a value of waiting.'®

FEven though there is no uncertainty directly attached to the investment
in the model in this paper, there is still a value of waiting arising from
the growth in technology.! Furthermore, by allowing for repeated invest-
ments, the present model extends the set-up of both Rosenzweig and Wolpin
(1993) and Fafchamps and Pender (1997), as well as the general set-up in
the investment-under-uncertainty literature. This extension is reasonable in
the case of agricultural households and provides a fuller dynamic incentive
structure than the case of a simple non-repeated investment option.

Servén (1997) documents a negative correlation between uncertainty and
investment activity for Africa. He explains it in terms of the “traditional”
argument from the investment-under-uncertainty literature that higher un-
certainty causes lower investment activity. However, as a result of the above
discussion, it seems more likely that credit constraints are to blame for the
low investment activity, which then keeps agents in a poverty trap where
downside risk is high and financial institutions therefore unwilling to supply
credit.

Actually, the standard investment-under-uncertainty set-up cannot ex-
plain a long-run link between high uncertainty and low investment activity.
It only explains why, in the short run, uncertainty tends to postpone invest-
ments. In the long run, uncertainty should actually imply a higher level of

1The only value of waiting in these models comes from the emergence of extra cash
holdings; a precautionary motive which is typically very small, since the investments tend
to reduce the risk of low income realisations.

In case of wa = 0, the net present value of the investment is given by
(14+7) " [(1+a) (r' —w) —r1]©, which is, at least initially, growing in ¢.
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aggregate investment since uncertainty tends to increase the value of invest-
ment options. The model of this paper, on the other hand, is consistent with
a long-run negative correlation between investment activity and uncertainty.

A more elaborate model could increase the value-of-waiting aspect by
introducing uncertainty into the growth process of technology. This could
also be achieved by modelling income as an autoregressive process: A low
current realisation of income then implies that income is likely to be lower
in the near future. This makes current investments relatively less attractive.
However, the increased model complexity caused by such extensions would
further complicate the interpretation of the dynamic mechanisms, without
adding much additional insight. In addition, autocorrelation in income im-
plies an additional dimension in the state space and hence strongly increasing
problems of dimensionality in the numerical solutions.

6.4 Policy Implications

Being an attempt to provide a new dynamic framework for modelling agri-
cultural households, the model of this paper is not intended to provide imme-
diate policy implications. However, at least three points deserve comments
here.

First, the derived policy functions for consumption and saving seem to
have immediate implications for the estimation of household policy func-
tions. If the underlying mechanisms of this model have any empirical rel-
evance, then a simple relationship between consumption and, e.g., wealth,
income, and technology cannot be expected to emerge from a microecono-
metric analysis. The marginal propensity to consume out of income might
even be negative in some states. This is contrary to the findings in standard
consumption theories such as the life-cycle theory, the permanent income
hypothesis, and the buffer-stock model. The highly non-linear and state-
dependent policy functions seem to favour direct estimation of the structural
model, as done in Rosenzweig and Wolpin (1993) and Fafchamps and Pen-
der (1997). These methods do not rely on consumption being monotone in
income and/or cash. This is indeed a relevant concern to politicians aiming
at influencing consumption and saving through various policy measures.

Secondly, an implication of the model is that an estimation of utility
function parameters should proceed with caution since saving for investment
might be confused with precautionary saving. Thus, if the investment motive
is not taken into account when estimating a model of consumption and saving,
a high value of 7 and/or a low value of § (high /) are likely to be obtained.

Thirdly, the model suggests that it is possible to help poor households
out of the poverty trap by simple cash transfers. The transfer has to be of a
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sufficient size, otherwise it is simply consumed. Policies aiming at reducing
uncertainty are not likely to have significant effects in the short run, but
may speed up investments in the long run. Thus, reducing uncertainty does
reduce the poverty trap significantly. Extension of agricultural research and
teaching may help to reduce investment cost and thereby increase the speed
with which the households can acquire new technology.

6.5 Extensions and Future Research

Since the present paper is to be viewed as a first attempt to provide a more
fruitful dynamic framework for the modelling of agricultural households, an
important objective 1s to sketch how further research might proceed from
here.

Rosenzweig and Wolpin (1993) argue that the dual role of assets as pro-
duction factors and as a means of intertemporal consumption smoothing is
often ignored in the literature. The present model incorporates two types of
assets: a) the installed technology, which can only be used for production;
and b) savings, which are used for both consumption smoothing, investment,
and production through the generation of interest. Though savings seem to
fulfil a dual role, this could be made more explicit by either: i) introduc-
ing an extra asset which is more divisible and liquid than technology and
contributes directly to production; ii) making the interest earnings a strictly
concave function of the amount saved, corresponding to decreasing returns to
scale in this asset; or iil) making savings a direct argument in the production
function, an approach followed by Fafchamps and Pender (1997).

These extensions should be relatively straightforward. However, it is un-
clear what additional insight is to be gained from them. Perhaps, individuals
will be less willing to smooth consumption by use of savings and will have
less incentive to invest. But this effect could perhaps also be captured by
a higher rate of interest. Of course, more detailed effects could be obtained
with three different assets.

Alternatively, shocks to the productive capacity of the farm could be
introduced. Hurricanes, earthquakes, etc. are not uncommon phenomena in
many less developed countries, and they might erode the productive base of
an agricultural household. A simultaneous shock to capital and income is
much worse than a “simple” shock to income. If income depends crucially on
a vulnerable stock of capital, shocks have a much more persistent effect. As
an example, consider the African Masai with his herd of cattle. A shock to
his income will typically be due to a shock to his capital stock, e.g. disease
and death of cattle. The effect is of long range and perhaps devastating.
A peasant with a major income component from land may also suffer from
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income variability, but since land does not suddenly disappear, ignoring a
few extreme events, his source of wealth is a much less risky one.

The production side of the model can also be extended by a slightly more
general production function, perhaps allowing for the use of other inputs
in production. However, if these input decisions are not of an explicitly
intertemporal nature, the central mechanisms of the present model are likely
to go through without major changes.

Furthermore, as discussed above, it would be a natural extension of the
model to allow the agent to choose investments from the whole spectrum
between his current installed technology level and the prevailing exogenous
state of technology.

A cost function which has a higher adjustment cost could also be a vi-
able extension of the model. However, if the normalisation of the model is
to go through, it puts some restrictions on feasible functional forms. One
alternative could be:

w .
w(O,0; 1) =wil 1 + 52 (01 —©i1)" if ©,=0,,
¢
Estimating the model using the methodology from Rosenzweig and Wolpin
(1993) and Fafchamps and Pender (1997) is an obvious empirical extension,
though it does require a suitable data set.

7 Conclusion

In this paper, an intertemporal agricultural household model is constructed
by combining the standard intertemporal consumption model with extended
features from the literature on investment under uncertainty, thereby pro-
viding a dynamic alternative to the existing static household models, and
extending the theoretical foundations underlying the empirical work on in-
tertemporal household behaviour. The model takes the first step to provide
an alternative framework for analysing the intertemporal implications of un-
certainty and credit constraints for consumption, saving, and investment be-
haviour. It is argued, by use of Nicaraguan data, that such intertemporal
aspects are indeed relevant to agricultural households in less developed coun-
tries.

By considering a normalised version of the model and showing that the
state space can be bounded appropriately, it is shown how a solution can be
obtained by use of dynamic programming techniques. Minor modifications of
the standard Contraction Mapping Theorem are needed to accomplish this
step, due to a lack of lower hemicontinuity of the feasible correspondence.
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This implies a discontinuous value function for some parameter values. Fur-
thermore, the optimal-stopping nature of the investment decision leaves value
function iteration as the only feasible solution method, but can, on the other
hand, be used to provide a priori characterisations of the value functions in
some special instances. As in the standard dynamic consumption models
under credit constraints, marginal utility follows a martingale process which
loses its memory whenever assets are run down.

The numerical simulations reveal highly sawtoothed consumption func-
tions. This reflects how changes in wealth affect the investment horizon and
thereby current consumption. The sawtoothed pattern is partly removed as
either the variance of income is increased or the elasticity of intertemporal
substitution decreased, reflecting that the ability to plan future investments
and the willingness to respond to intertemporal incentives are decreased, re-
spectively. This implies that increased variation of income is only to a limited
extent passed on to consumption. Other results include: 1) the precautionary
saving motive appears to be small, perhaps reflecting that investment savings
serve an additional role as buffer-stock savings; ii) consumption out of cash
on hand tends to be higher for low elasticities of intertemporal substitution,
since such agents are less susceptible to the benefits of faster investments;
iii) consumption functions appear to have much flatter parts than in stan-
dard consumption models, reflecting the preference for using investments
to increase future consumption at the expense of current consumption; iv)
uncertainty can increase the average propensity to consume and speed up
investments, since the eagerness to build up precautionary balances yields
higher interest income, and because investments themselves might serve a
precautionary role; and v) the effects of shocks to income on consumption
and saving depend crucially on the timing of the shocks.

By explicitly incorporating three motives for saving, the model is able to
yield richer dynamics than standard buffer-stock consumption models with
only two motives. The model is able to explain both the existence of savings
in case of non-stationary income and a positive correlation between growth
rates and saving rates. Hence this model seems better suited for analysing
the still puzzling relationship between saving and growth. Furthermore, the
role of uncertainty is more appropriately considered than in both the dy-
namic consumption models with exogenous income, which do not allow for
ex-ante actions to affect the uncertainty, and the models of investment under
uncertainty, where the role of uncertainty is merely to postpone investments.
Finally, by incorporating a true value of waiting and repeated investment
options, the model seems more appropriately specified than the few existing
(empirical) alternatives in the literature, in addition to providing insights
into the mechanisms of these models. Though the model might appear too
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simple in several respects, it is still a very useful first attempt to simulta-
neously model the intertemporal consumption and production aspects of an
agricultural household.

Even though deriving policy implications is not a specific aim of the
present paper, the resulting policy functions do bear immediate relevance
for the estimation of consumption functions and parameters of household
models. By suggesting several roads for future research, it is furthermore
hoped that the methodology laid out in this paper can be a useful point of
departure for more theoretical and empirical research on the intertemporal
aspects of agricultural household behaviour, and thereby contribute to more
successful future policy implementation.

Appendix

Proof of Proposition 1. It must be shown that: i) for any § >
(1+ oz)f1 (w1 + wy) by, it will be suboptimal to choose §;y1 > §; and ii)
for any §, < (14 oz)f1 (w1 + wa) by, it will be suboptimal to choose §441 >
(1 + 04)71 (w1 + CUQ) 80.

Ad 1). Assume that 8§41 > § > (1+ oz)f1 (w1 + ws) p. To show that
this choice of §;,1 cannot be part of an optimal strategy, the implications of
this initial choice will be derived, and it will be shown that there exists an
alternative strategy with s, < 5 which yields strictly higher utility.

Se41 > § implies ¢y < (14 oz)f1 [(r — )8 + y(:)t], and two future sce-
narios are then possible: a) §; > 0 for all j > 2; and b) §y,; > 0 for
j=2,3,..,7 —1and 8., =0 for some j' > 1.

In case of the first scenario, the first order conditions of the problem imply
that consumption must satisfy:

1
- 1 1 +r n N 1 -
=z (135) o S Taain 30

for all j > 1. However, strictly higher consumption in all periods can then
be obtained by choosing §;y; = §; and O¢y; = (1 + oz)f1 Ory;-1 for all 5 > 0.
In this case:

- . T—Q _ y(:)t < 5t+j*1
Cttj = St ;=
I1+a (14 «) (14 a)

(31)

for 7 > 2. This shows the suboptimality of the first scenario.
In case of the second scenario, consumption must satisfy (30) for j =
2,3, ...,7'. In this case, the strategy of §;1; = §; and Oy, = (1 + oz)f1 Oryj1
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for j =1,..,7/ — 1, and ét+j’ = (1+ oz)f1 0y is feasible and can sustain a
strictly higher path of consumption, given by (31), for the periods ¢ + 1
through ¢ + 7. Furthermore, the agent will enter period ¢ + j' + 1 with
maximum technology and with no less savings than if he was to follow the
strategy of the second scenario. Thus, the second scenario cannot be optimal
cither. This implies that 8,1 > § > (1 + oz)f1 (w1 + wy) Oy cannot be part
of an optimal strategy.

Ad ii). This step is accomplished in a similar fashion. Choosing 841 >
(14 ) " (w1 4 wa) o implies &1 < (1+ ) " [(1 +7) 5:4+yOi—(wi + ws) Oy
and a subsequent consumption pattern given by one of the two scenarios
above. However, choosing §;,1 = (1+ oz)f1 (w1 + wy) by, implying &1 =
(1+ oz)f1 [(1+7)5 + y(:)t — (w1 + ws) O], and otherwise following the al-
ternative strategies from above will again yield strictly higher utility. This
completes the second part of the proof.

Proof of Proposition 2. Let Z be a compact set given by (9) for some
gmar > (} + oz)f1 (w1 + wy) by, and let B(Z) be the space of bounded func-
tions ¥ : Z — R with the metric p (04, 92) = [Ty — Og|| = sup;.4 |01 (2) — Dy (2)]

for all ©y,79 € B(Z). The structure of the proof is the following: First, it
is shown that B (Z) is a complete metric space. Secondly, it is shown that
the mapping 7' defined by (11) is a contraction mapping, taking the space
of bounded functions into itself. Together with the completeness of B(Z),
this ensures that 1" has the desired properties. Finally, it is shown that o'
corresponds to the unique solution of the sequence problem, v*.

To show that B(Z) is a metric space, it must be shown that the sup norm

is a metric on the set of bounded functions. That is, for all ¥y, 79, 73 € B(Z),
the following conditions must hold:

e |3y — Do) >0, and ||y — Do|| = 0 if and only if 7, = Ds;
o ||ty — Dy = ||y — D1 ]]; and
o ||ty — D] < |[|Ty — Do + [|T2 — 5

The first two conditions are satisfied by inspection, and the third one can
be verified by noting that for any z € Z:

101 (2) — 93 (2)] < |01 (2) = Do (B)] + |02 (2) — U3 (2)]
< Dy — Do 4 ||Tg — s (32)

and since (32) holds for all Z, it follows that:

|01 — D3]] < (|01 — D] + [| D2 — T
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Thus, B (Z) is a metric space.

To show that B(Z) is also complete, it must be shown that any Cauchy
sequence {0,} in B(Z) converges to an element © in B(Z). This involves
three steps: 1) to find a candidate function @5 ii) to show that {#,} converges
to ¥ in the sup norm; and iii) to show that © &€ B(Z) First, since {0,} is a
Cauchy sequence, then for any Z € Z and for each ¢ > 0, there exists an M.

such that for n,m > M.:
|Tn (2) = O (B)] < ||On — Tl <&

Thus, the sequence {0, (£)} of real numbers is a Cauchy sequence, and by
completeness of the real numbers, it has a limit point © (£). Let the candidate
function be given by these limit points. Secondly, fix £ > 0 and use the fact
that {#,} is a Cauchy sequence to choose N, such that ||#, — 0y, < &/2 for
all n,m > N.. Now, for arbitrary Z € Z and all m > n > N., the following
must hold:

[ (2) = O (2)| + [0m (2) = 0 (2)]
|5 = || + [ (2) = 2 (2)]
£/24 |0 (2) — 0 (2)| (33)

And since 9y, (2) converges to ¥ (Z), then for each Z, m can be chosen such
that the last term in (33) is less than £/2. Thus, |8, — 7| < £ for all n > N..
And since the choice of £ was arbitrary, it follows that {0, } converges to ¥ in
the sup norm. Thirdly, the boundedness of ¥, together with ||7, — 7| < e
for all n > N,, implies that ¥ is bounded. Thus, B (Z) is a complete metric
space.?"

Now, since % is bounded on Z, the operator T' defined by:
(T'9) (2) = sup [a(2,%) + B0 (Z)]

#'el(z)

() = (3)

IAIA A

takes the space of bounded functions on Z into itself: T L B(Z) —>B(Z)

Furthermore, if w,7 € B(Z) and ¥ (2) > w (%) for all Z € Z, then for any
z € Lt

W(5.2) + B0 (2) 2 6(5.7) + P (2)
forall # €T (2). Therefore:

sup [ (2,2) + B0(2)] > sup [a(Z,2) + pw (2)]
#el(2) Fel(2)

20A slightly more general result is proved in Dunford and Schwartz (1958), whereas the
proof above resembles the one found in Stokey and Lucas (1989) for the space of bounded
and continuous functions.
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for any # € Z. This implies that (T'9) (£) > (Tw) (%) for all € Z. Thus,

since for any 0y, 7y € B(Z):
01 (2) < 3(2) + |01 — o
for all Z € Z, it follows that for all 5 € Z:
(T'91) (2) < T (T + |0y — Bo]) (2)

where (7, + |01 — Dg||) (£) is the function defined by: ¥y (£)+ ||y — D2||. Thus,
forall zZ € Z:

(Tt1) (2) < sup [a(Z,2) + 0 (02(F) + |01 — D2]))]

- ;) i (2. 2) + 5% ()] + 5 | —

- TR+l -l (31)
And similarly:

(T5) (2) < (T0) (3) + 6 |s — (35)

for all % € Z. Now, (34) and (35) imply that for any oy, 7, € B(Z):

|0y — T, || < B1]01 — s

Thus, T is a contraction mapping with modulus 3, taking B(Z) into itsell.
Now, since B(Z) is a complete metric space, it follows from the Contrac-
tion Mapping Theorem, see Kolmogorov and Fomin (1~970> or Stokey and

Lucas (1989), that 7" has a unique fixed point, ¢ € B(Z), and that for any
0o € B(Z):

T80 — )| < A" 50— 7| ., n=0,1,2,..

Finally, it must be shown that 9’ corresponds to ©*, the unique solution to
the sequence problem in (4)-(8).*" First, any sequence {Z};-, in Z is called
a plan. For any 2y € Z, let:

I (z0) = {275,

be the set of feasible plans from Zp. Let {Z} = {Z,%1, 22, ...} denote an
element in IT (Z).

%t+1 Ef(gt), t:0,1,}

2IThe following proof is a standard one. Similar proofs can be found in, e.g., Stokey
and Lucas (1989).
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The supremum function ©*, which must be finite for any %y € Z, is the
unique function satisfying:

B > m S g, al (3} eli(z) (36)

Nn—00 <

n—1
i (%0) < lim > Bu(% Zna)+e, some {Z}€ll(%) (37)
=0

n—00 4

for all o € Z and any £ > 0.

Ifto: 7 — R, where |0 (Z)] < oo for all Z € Z, satisfies (10), then for
every z € Z, ¥ satisfies the following properties for all Z’ € T (2) and for some
5" € T'(%) and any ¢ > 0:

(2, 7) + B (2) (38)

>
< (52 +p0(F") + e (39)

It remains to show that © satisfies (36) and (37). Now, for any %y € Z, the
function v satisfies:

v (%) > a(Z, 7))+ B0 (%)
n—1
> Zﬂiﬂ (Zis Ziv1) + B0 (Zn)
i=0

for all {£} € II(%). And since 0 < 8 < 1 and |# (£)| < oo for all £ € Z, the
latter term will converge to zero as n approaches infinity. That is:

n—1
U (%) > r}g{}(} z; B (4, Ziy1)
1=

for all {£} € II (%). Thus, ¥ satisfies (36). .
Since ¥ satisfies (39), then for any Zp € Z and any sequence {1}, where
i, > 0, there exists some {£} € II(Zy) such that:

17<’§t) S ﬂ'(£t7'§t+l)+ﬂl~} <2t+1)+/’bt+17 t:0717

and therefore:

—_

n—

17 (50) < ﬂ’& (gi,§i+1) + A" (gn) € (Nl + By + ... + ﬂn—lun>

%

Il
o
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Now, for any arbitrary € > 0, let p, = % (1—)e. Then Z?;ol B <e/2
for all n > 0, 1.e.:

¥ (%0) < Zﬂiﬂ (%, Ziv1) + 870 (%) + 5

And for sufficiently large n: 5" (2,) < 5. Thus:

-1
E ZZ, ZZ+1 + ¢

=0

for some sufficiently large n, which means that ¢ satisfies (37). Thus, ¥/
corresponds to ©0*. This completes the proof of Proposition 2.

Proof of Proposition 3. The structure of the proof is the following:
First, it 1s shown that the mapping 1" takes the space of bounded functions
on Z, into itself. Secondly, it is proven that the policy correspondence is
upper hemicontinuous; a result which is used to show that T takes the space
of bounded and continuous functions into itself. Finally, it is verified that the
Contraction Mapping Theorem applies to T'. This yields the desired results.

The mapping 1" was defined by:

(T'0) (2) = sup [a(2,2) + B0 (2)] (40)

Z'el(2)

where T (2) is non-empty and compact for any Z € L. First, if §™" > 0,
then, since r > a, & = (1 + oz)f1 (r —a) §™" > 0 is a feasible strategy for all
© > 0 and § > §". Secondly, if @™ > 0, then & = =(1+a) Ly@min >
is feasible for all © > O™ and 3 > 0. This implies that the value function
is bounded from below. Since it is also bounded from above, then, for any
v e B (Zb) the mapping T in (40) yields another bounded function, 7T :
B(Zb) — B(Zb) Hence ¢ = 0 can never be an optimal choice.

Thus, the proof of Proposition 2 applies in this case as well. However, in
the following it will be shown that when n > 1, the mapping T" operates on
the space of bounded and continuous functions, C(Z).

Ifo e C’(Zb), then @ (2, 2") 4+ 89 (Z) is continuous in Z’. This implies that
the maximum in (40) is attained, and therefore the policy correspondence:

G(2) = {z eT(3): (T%) (3) =a (7)) + B0 (g/)} (41)

is non-empty. Now, since G (2) C T (2) and f( ) is compact, then G (2) must
be bounded. And suppose that z/, — 2’ and Z, € G () for all n. This implies
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that Z/ € T (2) all n, and since T (2) is closed, then 2’ € T (2). Furthermore,
since % (Z, Z,,) + 80 (£,,) is constant for all n, it must equal @ (Z, 2') + 59 (Z')
due to continuity. This implies that 2z’ € G ( ). Thus, G (2) is closed. Now,
since 7 (2) is both bounded and closed, it is compact. This holds for all Z in
Zb, implying that G is non-empty and compact.

To show that G is also upper hemicontinuous, it must be shown that at
any z € Zb, for every sequence {Z,} converging to Z, and every sequence
{2/} such that Z, € G (%,) for all n, there exists a subsequence of {#,}, call
it {Z’;k}, which converges to 3 € G (2).

First, consider any 7 € Z, such that (14+7r)8+ y0 — (1 + ) smn £
w1§0—|—w2(90—(:)). And let {Z,} be any sequence converging to Z. Then choose
Z € G (2,) for all n, i.e. the Z)’s are maximisers. Now, since T (2) is upper
hemicontinuous, there exists a subsequence {2’ } converging to Z/ with Z' €
I'(%). In the case of a £ where (1 4 1) 5490 — (1 + ) §™" #£ w190—|—w2(90 ),
T (2) is also lower hemicontinuous at Z. This implies that for any el (2),
there exists a subsequence {z } such that z; — 2" with Z] € T (Z,) for
all k. Now, since u(znk, Zn, ) —I—ﬂv( k) > u(znk, Zn, ) —I—ﬂv( ) for all k,
then @ (Z,2')+p0 (') > 4 (z Z") 4+ B0 (") due to continuity of the functions.
This holds for all 2 € T' (%), which implies that 2 € G (2).

Then consider the case of a 7 € Z, where (14+7r)5+ yO — (1+ ) smn =
wibo + we(Gp — (:)) And let 2™ be a feasible choice of 7 at 7 where an
investment is made, ie. 2" € f(N) But since 2" implies ¢ = 0, it
follows from above that 2" ¢ (N;( ). Thus, without loss of generahty, such
points can be excluded from the feasible set. Then for all other 2" € P( )
there exists a subsequence {an} such that z — 2" with Z € P( Zn,,) for
all k. Again, continuity can be used to establish that @ (Z,2") + 5o (Z') >
w(Z,2") 4 p0 (2") for all these 2’ € T (£). This implies that ' € G (2). Thus
G is upper hemicontinuous.

The fact that G is upper hemicontinuous can then be used to show that
the mapping T yields a continuous function. Consider any Z € Zy and any se-
quence {Z,} converging to Z. It has to be shown that (T9) (Z,) — (T%) (2).
Assume that this is not the case. Thus, there exists ¢ > 0 and a subse-
quence {Z,, } such that: |(T?) (Z,,) — (TD) (2)] > e for all k. Furthermore,
there exists Z, € G (an) such that (T7) (2,,) = @ (Zn,, 2, ) + 0 (5, ) for
all k. The fact that G is upper hemicontinuous implies that there exists
a subsequence of {2’:7»19} which converges to ¥ € G (N) This implies that

(TD) (2) =u(£,2) + P0(Z), and continuity of & (an, z ) + pv ( k) implies
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that:

lim (1) (%) = lim {@ (3,2, )+ 00 (2.)}

= @(5,7)+ B0 (F)
= (17)(2)

which contradicts the initial assumption. Thus, (7'9) (£) must be continuous,
and the mapping T therefore takes the space of bounded and continuous
functions into itself.

Finally, by the proof of Proposition 2, 1" is a contraction mapping with
modulus §. And since C (Zb) is a complete metric space, see Stokey and
Lucas (1989), T satisfies the Contraction Mapping Theorem. Thus, 7" has a
unique fixed point, 7' € C(Zb), and for any ¥ € C(Zb):

|T"0g — || < 8" |0 — || , n=0,1,2..
which completes the proof. B

Proof of Proposition 5. First, when wy = 0, the value of stopping,
o5toP (g, (:)), is constant for all © € [(:)mm, (1+ oz)f1 o). Secondly, the value of
continuing, 9" (Z, (:)), must be strictly increasing in (:), since strictly higher
) implies strictly higher income next period and thereby strictly higher con-
sumption possibilities. Thus, given #, there exists a © € [@™ (1+ oz)f1 0]
which separates the stopping region from the continuation region, unless con-
tinuing or stopping is optimal for all O e [(:)mm, (1+ oz)f1 0o], 1.e. case 1) or
ii) in the Proposition. Furthermore, to show that 9°"(z, (:)’) = U5 (Z, (:)’)
when neither 1) nor ii) applies, it is sufficient to show that 9°"(Z;, (:)) is also
continuous in © € [@™" (1+ oz)f1 0o)-

Continuity of f)com(it,(:)) in © € [(:)mm, (1+ oz)f1 o] requires that for
ecach ©¢ € [(:)mm, (1+ oz)f1 o] and any £ > 0, there exists § > 0 such that
|5¢ (3, ©%) — ¢ (F,0)] < e for any O € [@™" (14 a) '] such that
|6 — 0 < 6.

To see that continuity holds, note that strictly positive consumption must
be part of an optimal continuation strategy for any O e [(:)mm, (1+ oz)f1 0]
when Z > w16 + (1 + a) 8™, since @ (¢;) — oo as ¢ — 0 and positive con-
sumption is feasible without restrictions on future investment options. Now,
given § > 0, consider any 6% 0" € [(:)mm, (1+ oz)fl%] such that ©¢ < @
and ](:)“ — (:)b] < 6. When 6 is chosen sufficiently small, current consumption
under any ©% can be decreased by 16y compared to consumption under
©%. This makes the value function next period no less under ©% than under
©F. This is because the extra interest income next period, éy, compensates
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sufficiently for the income differential due to ©¢ being smaller than . And
the current loss in utility can be made arbitrarily small by appropriate choice
of 6. Thus, for any £ > 0, there exists 6 > 0 such that:

1~}cont<a~j7 éa) _ 1~}cont<a~j7 éb) <

a(emt(z,00) — a(Emt(F,0%) — r1oy)| <&

where 5f0"t (z, (:)b) 1s optimal consumption under a continuation strategy given
Z and ©°. This establishes continuity of #°"(z,©). m

Proof of Proposition 6. It must be shown that there exists a 579" <
oo such that if 5y < 5™ > §h0" then 5, < §M% for all t > 0. To do this, it is
sufficient to show that there exists §* < oo such that if 5; > §*, then 5,1 < §;.
Then §"9" can be defined by §"9" = (1+a) ' [(1+7) 5 +m (1 +a) " 6o
To show that $* exists, it is sufficient to show that there exists a §* such that:

(r—a)§ +gym=
1+«

(42)

Ciy1 =

for all §, > §*, where g™ =m (1 + oz)f1 Bo.
First, consider a corresponding deterministic problem where the agent is
endowed with initial wealth:

Wy =(14+a) " F=04a) 14+~ (r—a) ' (1+r)om™,

where @™ = (w1 +wy) (1 + oz)f1 0o, the maximum cost of investment. That
is, the term (r — oz)f1 (14 7) @™ is the present value of paying for an invest-
ment each period. The agent receives zero income each period and wealth, w;,
is divided between consumption and savings. Thus, wealth evolves according
to:

Wy = (14 ) (1+7) [y — G
In such a model, current consumption is given by:

_— 1_g%<1+a)*%<1+7~>% -
H (1+ 04)71 (1+7) !

B _ﬂ%(l—l—a)*%(l—l—r) 1—|—7"§_1—|—7"J}mm
E (1 (L+a) ' (1+7) ><1+Oét r—o > )

see e.g. Carroll (1997).
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Clearly, consumption in the stochastic model will be no less than in this
deterministic model since stochastic income is bounded from below by zero,
and total investment cost will always be smaller than (r — oz)f1 (14+7r)ame.

It only remains to show that there exists a value s* such that the right
hand side in (43) exceeds the right hand side in (42) for all values of §; > §*.
These values of §; should thus satisfy:

1 _ N . ~
U T

1+a —

where K is some constant depending on the parameters. Using the fact that
g=(1+ (5)71 (1+ oz)lfn, the inequality simplifies to:

5> K(l+a)

which is obviously satisfied for all §; larger than some $*. B

_ Proof of Proposition 7. Let X = Z x M be the compact space where
Z is given by (9) for some §M% satisfying Proposition 6, and let B (X) be

the space of bounded functions ¥ : X — R with the metric p (9y,79) =

|9y — Dy|| = supzg |01 (&) — 0y (2)| for all 94,79, € B(X). Then B(X) is a
complete metric space by arguments analogous to those used in the proof of
Proposition 2. The rest of the proof is also similar in structure to that of
Proposition 2. First, it is shown that the mapping 7" defined by (24) is a
contraction mapping, taking the space of bounded functions into itself. This
implies that 7' is a contraction mapping with the desired properties. Fi-
nally, it is argued that ¢’ corresponds to the unique solution of the sequence
problem, v*.
Now, since % and © are bounded, the mapping 1" defined by:

00 Gon) = o [tz Zn) 45 [ "y dF ()

z'el'(z,m)

takes B(X) into itself.?? Furthermore, if © (3,m) > @ (%, m) for all (3,m) €

22Throughout, it is implicitly assumed that the integral is well defined, and that the
mapping yields an integrable function. One way to ensure this is to use the approach
outlined by Denardo (1976). He defines an operator, instead of an integral, which is the
same as the integral if the latter exists, and otherwise substitutes ¢ with the integrable
function @ (> @) which yields the smallest possible value of the integral. Since such
problems of measurability are mostly theoretical curiosities, and of no practical relevance,
they are not treated further in this paper. For any reasonably specified value function,
the integral is well defined and the mapping will yield another integrable function.
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Z x M, it follows that:

/mﬂ(é,m)dF(m) > /mﬁ)(é,m)dF(m)

m m

for all # € Z. And for any (2,m) € Z x M:

w(z, 2, m) —I—ﬂ/ v (2, m)dF (m') > a(Z,2,m) —I—ﬂ/ w (2, m')dF (m)

forall # e T (£, m). This implies:

sup l& (2,2 ,m) + ﬂ/mf} (Z',m')dF (m’)] >
#1eP(z,m) m B
sup l& (2,2',m) + ﬂ/ @ (Z',m')dF (m')

Z'el'(2,m) m

which again implies that (T'0) (2,m) > (Tw) (2,m) for all (Z,m) € Z x M.
And, since for any o,7, € B(X):

01 (2,m) < 02(2,m) + |01 — Oe|

for all (2,m) € Z x M, it follows that for all (2,m) € Z x M:
(T'01) (2,m) < T (02 + |1 — De]) (2, m)

where (Dy + ||01 — 92]|) (2,m) is a function defined by ©5(Z, m) + || — ]|

Thus, for all (2,m) € Z x M:

(Pi) (2, m)
< o (oG 2m 8 [ ) + i~ rl) dr o)
— o [azZmp [ n ) dr ) + 51— )
Ty Gom) + B ] (14)
And similarly:
(P52) (5,m) < (T) (5,0) + 8 s — o] (15)
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for all (2,m) € Z x M. Now, (44) and (45) imply that for any 01,0y € B(X):

|10y — Ty || < B0y — s

Thus, T' is a contraction mapping with modulus (3, taking B(X) into itself.
Now, since B(X) is a complete metric space, it again follows from the

Contraction Mapping Theorem that 7" has a unique fixed point, ¥ € B(X).

Furthermore, for any 9y € B(X):
|T"0g — 0| < 8" ||Do — || , n=0,1,2,..

It remains to be shown that ¢’ corresponds to the supremum function,
©*, from the corresponding sequence problem. Since this proof requires a
lot of extra notation, without providing much additional insight, the reader
is referred to Chapter 9 in Stokey and Lucas (1989), where a more general
proof of this is provided. m

Proof of Proposition 8. First, it is argued that the mapping T" takes
the space of bounded functions on X = Zyx M into itself. Secondly, this result
is extended to the space of bounded and continuous functions. Finally, the
Contraction Mapping Theorem is applied to show the remaining results of
the Proposition.

The mapping 1" was defined by:

(T5) (Z,m) = sup lu (2,7.m) + 5/ 5, m)dF (m)|  (46)

el (5,m) m

where T (£, m) is non-empty and compact for any 2 € Zy. If 5™ > 0 and
r > a, then @ = (1 + oz)f1 (r — ) §™" > 0 is a feasible strategy for all ©>0
and § > §™". Alternatively, if ©™" > (, then & = (1+ a)flm(:)mm > 0 is
feasible for all © > O™ and 3 > 0. Since it is also bounded from above,

then, for any v € B (X),N the mapping T in (46) yields another bounded

function, T : B(X) — B(X). Choosing ¢ = 0 can therefore never be optimal.
To show that (T0) (2,m) is also continuous if ¥ (2,m) € C(X), one can

proceed as in the proof of Proposition 3 by noting that f;n o (2, m)dF (m')

is independent of m and continuous in 2’ when o (£',m’) € C (X)
This latter property is shown by considering a sequence z, — Z'. It
follows, that

<

[Tt myar oy~ [ ) ar o

m m

[ 16 G = @) G
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And since Z/ — #', a compact set X = ID X M can be constructed such that
Z €D, 2 eD, and DC Z,. Now, since ¥ (2, m') is continuous on X, it
must also be uniformly continuous on X, since X is compact. This implies
that for every € > 0, there exists an N, such that:

|0 (Z,m")—v(Z,m)| <e

for all n > N. and all m’ € M. Thus, fff) (Z',m')dF (m') must be continu-
ous in Z' when ¥ (Z',m/) € C(X)

Finally, it follows from the proof of Proposition 7 that T is a contraction
mapping with modulus . Thus, the Contraction Mapping Theorem can be
applied to complete the proof. m

Proof of Proposition 9.

This proof is completely analogous to the proof of Proposition 5. The
only change is that the deterministic value functions are now replaced by
expected value functions. ®
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