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Abstract.
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1. Introduction.

Due to the effects of the assumption of a unit root in a variable on both the econometric method used and

the economic interpretation of the model examined, it is quite common to pre-test the data for unit roots.

This is typically done by either (or both) testing variables one by one for unit roots or by examining

cointegrating rank using Johansen (1988) tests or their asymptotic equivalent.

In testing variables one by one, commonly the t-test method of Dickey and Fuller (1979) is employed.  This

method is asympotically optimal when the data is stationary and is a natural statistic to consider.  However

in the unit root case there are many other tests available have greater power.  Elliott et. al (1996) showed

that there is no uniformly most powerful test for this problem and derived tests that were approximately

most powerful in the sense that they have asymptotic power close to the envelope of most powerful tests for

this problem.

This paper considers a model where there is one series that potentially has a unit root, and that this series

potentially covaries with some available stationary variables.  In a model similar to the one examined here,

Hansen (1995) demonstrated that in a model with no deterministic terms that no uniformly most powerful

test for a unit root in the presence of stationary covariates exists and that power gains are to be had from

using these covariates.  He suggested covariate augmented Dickey Fuller (CADF) tests and showed that

these tests had greater power than tests that ignored these covariates1.

This paper extends the results in Hansen (1995) in a number of ways.  First, we show that the point optimal

tests implicit in the power envelope derived in Hansen (1995) and computed when all nuisance parameters

are known are feasible when these parameters are not known.  We also extend the results by deriving the

power envelope in the more empirically relevant cases of where constants and/or time trends are also

included in the regression.  We propose tests that are feasible to construct with data and attain the power

envelope at a point.  These tests have good power at other points as well.  We then show that these are

natural tests to report in justifying the unit root assumption in the popular method of identifying structural

vector autoregressions from long run restrictions (as suggested by Blanchard and Quah (1989)).

The paper is set up as follows.  In the next section the model is introduced, and the power bounds for the

problem are established.  In the third section, tests which feasibly attain these power bounds at a point are

derived and discussed.  Section four examines the tests empirically using Monte Carlo methods.  A fifth

section discusses the tests as they relate to identifying structural VAR’s from long run restrictions.  The

final section concludes.  All proofs are contained in an appendix.

                                                          
1  There is also a discussion of this work in Caporale and Pittis (1999).
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2. Model and Power Envelopes.

Consider the model
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and A(L) is

a finite polynomial of order k in the lag operator L.  For the constructed test statistics we will assume that

A1. |A(z)|=0 has roots outside the unit circle.

A2. et is a martingale difference sequence satisfying a multivariate invariance principle, i.e.
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s t , where W1(.) is a univariate standard Brownian Motion on C[0,1],

V(.) is and mx1 standard Brownian Motion, Σ is positive definite and ⇒  denotes weak convergence.

A3. u0 = 0p(1).

Define [ ]'')1()( , xttyt uuLu ρρ −=  with spectral density at frequency zero (scaled by 2π) Ω, so we

have Ω Σ= − −A A( ) ( ) '1 11 1  where we can partition this after the first column and row so that
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(we partition Σ similarly). We will further define R2 = δ‘δ where 2/12/1 ' −−Ω= yyyxxx ωωδ  is an mx1 vector

of correlations between the x’s and the quasi difference of y at frequency zero.  The R2 value will represent

the contribution of the stationary variables as it is zero when these variables are not correlated in the long

run with the shocks to (1-ρL)yt at the zero frequency and one if there is perfect correlation.

In this paper we consider five cases indexed by superscript i (i=1,2,3,4,5) for the deterministic part of the

model (where parameters are free unless otherwise stated)
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Case 1: 010 == yy ββ and 010 == xx ββ .

Case 2: 01 =yβ and 010 == xx ββ .

Case 3. 01 =yβ and 01 =xβ .

Case 4: 01 =xβ .

Case 5: No restrictions.

Each of these cases can be characterized by the restriction ( ) 0)1(2 =−+ βim SI  where β = [β0' β1']', Si is a

2(m+1)x2(m+1) matrix where S1=0, 
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identity matrix.

This represents a fairly general set of models in which we have a VAR in the model of x and the quasi

difference of y.  We wish to test that the parameter ρ is equal to one (yt has a unit root) against alternatives

that this root is less than one.  Following the general methods of King (1980, 1988) we will examine

Neyman Pearson tests for this hypothesis. Following the application of these methods to testing for unit

roots in Elliott, Rothenberg and Stock (1996), Elliott (1999)) we will examine Neyman Pearson tests for

this hypothesis under simplifying assumptions, and then in the following section we will derive general tests

that are asymptotically equivalent to these optimal tests.

With the assumption that A(L)=I (so that  Ω=Σ) and assuming the et are normally distributed and uy0=0 we

will examine tests against the local alternative that c = c <0 where ρ = +1 c T/  and ρ = +1 c T/  with

c, c  fixed (we will suppress the dependence of ρ on T in the notation).

The likelihood ratio test statistic for the hypothesis is given by
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where D- is the Moore Penrose inverse of D.

The test has rejection regions of the form { }bcxy i
tt <−Λ ),1(:, ρ  where b is a critical value.

Case 1: No Deterministics.

The model above is similar to that of Hansen (1995) when there are no deterministic terms (S1 =0) in the

model.  In this case we have )()(ˆ ruru tt = and

Theorem 1.

For the model in (1) and (2) with A(L)=I, et independent N(0,Σ) random variables and  A3 holding  then

with ρ = +1 c T/  and ρ = +1 c T/  with c, c  fixed as T → ∞ then the most powerful test of H0: c=0

vs. Ha: c= c <0 has asymptotic power function

[ ]),(),,(Pr),,( 2212 RcbRccRccP <= ψ  

where

∫∫

∫ ∫

−
+





−

−+

−−=

)()(
1

2)(
1

)2(

)()(2)()2(),,(

212

2
12

2
2

11
2

1
221

λλλλ

λλλλψ

dWW
R

RcdW
R

Rccc

dWWcdWcccRcc

cc

cc

and ),( 2Rcb is a constant depending on c  and R2.

This is apart from a scale factor the same as that reported in Hansen (1995)2.  A number of features are

noteworthy.  Firstly, the dependence of the test on c  indicates that no uniformly most powerful test is

available for this problem, power depends on the choice of the alternative.  Second, the test is the sum of

nonstandard functionals of Brownian motions and a mixed normal term.  Third, the test depends on the

                                                          
2 We also have a notational difference in that our R2 is defined in Hansen (1995) as 1-R2.  We changed the
notation to accord with the usual use of R2.
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parameter R2, which summarizes the extent to which the covariates are correlated with the correctly

differenced yt at the zero frequency.  A value of R2=0 indicates the case where δi=0 for all i, the case where

none of the x variables are correlated with the y variable at the zero frequency (so the second line of the

limit expression is zero).  In this case the result in Theorem 1 is equivalent to Theorem 1 of Elliott et. al

(1996), thus the most powerful tests coincide asymptotically with tests which do not use the information in

the covariates.

Figure 1a examines the power envelopes3 derived in Theorem 1 (these replicate the results of Hansen

(1995)).  As can be seen, the power envelope when R2=0 is the lower bound power - this is the relevant

envelope if no covariate information is employed (as derived in Elliott et. al. (1996)) and is equivalent to

the case where no useful covariate information is available.  When R2 is greater than zero, the power

attainable increases above this lower bound.  This indicates that using covariates has the potential to greatly

increase the power of tests for a unit root, as indicated by Hansen (1995).  The closer is R2 to one, the more

powerful the optimal test4.

Cases 2-5: Constant and/or Time Trends Included.

The more interesting cases practically are those where β is not fully known.

Theorem 2.

For the models in (1) and (2) with A(L)=I, et independent N(0,Σ) random variables, A3 holding  with

ρ = +1 c T/  and ρ = +1 c T/  with c, c  fixed as T → ∞ then the most powerful test of H0: c=0 vs.

Ha: c= c <0 invariant to deterministic terms  have asymptotic power functions

[ ]),(),,(Pr),,( 222 RcbRccRccP ii <= ψ  

where

Case 2: ),,(),,( 2122 RccRcc ψψ =

Case 3:

                                                          
3 The power envelope is the power of a test with alternative c  =c for each c (thus is a different test at each
alternative, and is the envelope of power functions of the point optimal tests).
4 The asymptotic results are not appropriate at R2=1, which is readily seen from the limit expression which
would not be finite at this point.
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the case i.

Figures 1b through to 1d asymptotically approximate the power envelopes for cases 3 through 5

respectively (case 2 is equivalent to case 1).  When R2=0, the stationary covariates do not help in the testing

procedure and the power of the invariant tests are equivalent to those derived in Elliott et. al. (1996).  This

means that in case 3 there is no loss of power asymptotically when βy0 is unknown, and in cases 4 and 5

there is a loss of power compared to case 1 where the deterministic terms are known (Cases 4 and 5 have

identical power functions when R2=0, and correspond to the case in Elliott et. al. (1996) of the inclusion of

a constant and time trend).
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When R2 is nonzero, power functions are affected by not knowing the deterministic part of the model. We

also have that the optimal test depends on R2, the extent to which the stationary covariates are correlated

with (1-ρL)yt in the long run.  Comparing Figures 1a to 1b we see the effect of not knowing the constant

terms.  This effect is relatively small, for example when R2=0.5 and c=-5 the power envelope in the

constants known case is 70% whilst when the constants are unknown this power is 62%.  However both

these powers are substantially above that of the case where no covariates are employed, where the power

envelope attains a power of 32%.

As in the case where there are no covariates, the effect on the power envelopes for the case where the trend

terms (coefficients on time trends) are not known is quite large.  In the case mentioned above, where R2=0.5

and  c= -5 the maximal power in case 4 is 33%, far below the 62% when only coefficients on the constants

are known.  When the coefficient on the trend in the xt regressions is known, this power rises to 36%.

Notice though that the maximal power in this case even when constants and coefficients on the time trend

are estimated is (just) above that for the case where stationary covariates are ignored and the coefficient on

the time trend is known.  In general the power losses from not knowing the coefficient on the trends in the xt

regressions is small, between zero (when R2 is small) and 6% or so (when R2 is large).

There is clearly the potential for much to be gained in terms of power from exploiting stationary covariates

in constructing tests for a unit root.  The construction of tests that achieve these gains is addressed in the

next section.

3. Feasible Tests.

In this section we will derive families of  tests that asymptotically attain the power bounds derived above at

pre-specified points.

The model is as in equations (1) and (2) with assumptions A.1, A.2 and A.3.  As in the previous model we

consider four cases for the deterministic component of the model. For each case define
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and 1~ −Ω is a consistent estimate of Ω−1 under the null.
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Run VAR’s (for r= ρ ,1)

)(~)(~),(~ rerurLA t
i
t =

and construct the estimated variance covariance matrices
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then the proposed test is

[ ]( ))()(~)1(~),1(~ 1 ρρρ +−ΣΣ=Λ − mtrTi

This test will have asymptotic power that achieves the power bound at c  under the assumptions

Theorem 3.

For the model in (1) and (2) with β=0 with assumptions A1, A2 and A3 holding then as T → ∞

cRccii −⇒Λ ),,(),1(~ 2ψρ .

Thus the critical values for the test depend on the alternative chosen ( c ) and R2 .  The feasible test in the

case of β=0 asymptotically achieves the highest power possible at c .  We have chosen here to let c  = -7

for cases 1 and 2 and c  =-13.5 for cases 3 and 4 (which follows the choice of Elliott et. al . (1996), which

was shown in this case of R2=0 to be a choice that ensures maximal power at power 50%).  In principle and

practice we could choose different values for c  depending on R2, however as R2 rises above zero lack of

power is becoming less problematic so it seems reasonable to us to choose c  for the worst case scenario.

Asymptotic critical values for the test for selected values of R2 are given in Table 1.  In practice we still

require knowledge of the value for R2.  This can be estimated consistently from the data without knowledge

of ρ  .  The method we suggest is the following

a) estimate ρ from a regression of yt on yt-1, deterministics and lags of changes in yt.

b) run the VAR  )ˆ(det)ˆ()ˆ,( ρρρ tt ezLA +=
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(choose deterministics appropriate to the case in each of these steps).

c) estimate ')ˆ,1(ˆˆ)ˆ,1(ˆˆ 11 −− Σ=Ω ρρ AA  where ∑
+=

−=Σ
T

kt
tt eeT

1

1 )'ˆ(ˆ)ˆ(ˆˆ ρρ

d) estimate yyyxxxyxR ωωω ˆ/'ˆˆˆˆ 12 −Ω= .

We then propose using the critical value for the estimated !R 2 .  The estimate of Ω̂  can be used for

constructing the local estimates of the deterministic part in equation (3). This is valid asymptotically as this

is a consistent estimator.  For values of R2 between the ones given in Table 1, interpolation can be used to

estimate the critical value.

4. Evaluation of the Tests.

4.1. Large Sample Evaluation.

Figures 2a to 2d examine the power of the feasible test for each of the four different cases (specification of

the deterministic part of the model).  The figures give the results for R2 = 0.1, 0.5 and 0.8.  Accompanying

the power curves are the power envelopes for the case given.  In figures 2a and 2b it is seen clearly that very

little power is lost by using a point optimal test.  The feasible point optimal test has power that lies almost

on top of the power envelope.  This is very similar to the results of Elliott et. al. (1996), where for the case

of R2=0 this was found to be true.  A similar result is true also when R2 = 0.5.  Here, the difference between

the power envelope and the asymptotic power of the feasible test is small for alternatives further from the

null, but a little larger for alternatives close to the null.  For R2 large this is even more apparent. Overall,

even though allowing the choice of c  to depend on R2 may allow us to further minimize the difference

between the power curve and power envelope, we do not pursue this here.

In figures 2c and 2d, where time trends are included in the y regression (cases 4 and 5), there is some

difference between the power attainable by the point optimal tests and the power envelope (where in both

these cases c  =-13.5).  As in Elliott et. al. (1996) when R2 is close to zero this is not apparent, but becomes

more apparent as R2 gets large.  The difference comes are relatively close alternatives.  To the extent that

very large values for R2 are probably not too relevant empirically, this may not be too much of a problem.

The suggestion from these graphs appears to be that the most useful choice of c  in practice may depend on

R2.  We also examined the power curves for the case where c  =-7 to perhaps improve the closeness of the

power curves to the envelopes for these near alternatives.  When this alternative is chosen this indeed

happens, however the tradeoff is that the power curves for R2 small are not as close to the envelope for
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more distant alternatives.  We recommend choosing c  =-13.5 as power is more of a concern when R2   is

small.

4.2.  Small Sample Evaluation.

We will examine various special case models in samples of 100 observations.  Along with the above tests,

we report results for the commonly applied test of Dickey and Fuller (1979) and also the PT test of Elliott et.

al (1996) as well as the Hansen (1995) CADF test.

Tables 2 through 4 report results of simulations of the model in (1) and (2) for each of the cases (models for

the deterministics) respectively where A(L)=I (and this is known), et is normally distributed with variances

equal to 1 and covariance equal to the value of δ reported in the Table.  Results are reported for various

values of δ. Size is given in the row corresponding to ρ  =1 and (empirical) power against the indicated

alternatives in the following rows.  When there are no deterministic terms in the model the DF and PT single

equation tests do similarly well (see Elliott et. al. (1996) for a discussion of this).  In the test proposed here,

when R2=0 power and size are comparable to the univariate tests indicating that even in small samples little

may be lost by including extraneous information and doing the system test.  As δ increases (R2 increases),

size remains well controlled whilst power rises considerably.  Consider the case of the true ρ  being equal

to 0.96, the PT test has power around 23% whilst if R2 =0.25 the system test has power equal to 34%,

roughly a 50% gain.

When a constant is included, the PT statistic gains in power over the Dickey and Fuller (1979) t test are very

large.  Again, when R2=0 the test proposed here has similar size and power to the PT statistic indicating that

little is lost adding extraneous stationary covariates.  In general, size is less well controlled, especially for

R2 close to one (where the asymptotic theory would no longer be relevant,  however it would not be

expected that such models would be appropriate for real world data) .  There is some evidence of power

losses from not knowing the constant term.  At a value of ρ  = 0.96 the power when the constant is known

(or zero) power is 49% compared to the unknown constant power of 45% when δ=0.7 (R2=0.49).    Even so,

power for the test with the constant unknown is quite high in many cases, and is far beyond that achievable

when covariates are not employed.

Similar results are found for the partially detrended (case 4) and detrended (case 5) models.  In both of

these cases we have power when using covariates to be substantially greater than when relevant covariates

are ignored (for example, in case 4 when ρ =0.9, power of the test proposed here when δ=0.5 (R2=0.25) is

20% for the Dickey and Fuller test and is 49% for the test with covariates employed.  Overall, there is some

loss of power from including the time trend in the xt equations, which can be seen from comparing tables 4
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and 5.  In the case of ρ  = 0.96 and δ=0.5 the power drops form 52% in case 3 to 49% in case 4.  As

indicated by the asymptotic results presented above, these losses are fairly small but not insignificant.

The effect of estimating R2 in the computation of the test is examined in tables 6 and 7 (for cases 3 and 5

respectively).  Here the results when R2 is estimated are repeated from Tables 3 and 5 on the right hand side

panels, whilst the same results using the critical value chosen using the true R2  are given in the left hand

panels.  There is very little difference, even in a sample of 100 observations.  Most of the differences in size

and power are at the third decimal place.  It is only for case 5 when R2 is a little larger that there is much of

an effect, but the effect is minor (in these cases there is a small power loss from estimating R2).

Tables 8 and 9 compared the CADF test of Hansen (1995) with the feasible test derived here (again for the

leading cases 3 and 5 respectively).  The CADF test augments the usual Dickey and Fuller (1979) test with

lags, leads and the contemporaneous values of xt.  In this table, with no serial correlation, this amounts to

including xt as a regressor in the ADF regression and then constructing the t-test of the unit root hypothesis

as normal.  As shown in Hansen (1995) this test also depends on R2.  In the comparison we use the same

value of R2 to compute critical values for each of the tests.  In the first column of the CADF results, where

R2=0, we have essentially the same results as the Dickey and Fuller (1979) test in Tables 3 and 5 that

ignores the covariates.  This should be the case, the included xt variable in the ADF regression has a

population coefficient of zero in this case.   Likewise, the first column of the ! ( , )Λ 1 ρ test matches with the

PT test for the reasons we have described.  This gives an insight into the difference in the two approaches,

the difference between the CADF and ! ( , )Λ 1 ρ  is similar to the difference between the Dickey and Fuller

(1979) approach and the Elliott et. al. (1996) approach.  When R2>0, we see that the ! ( , )Λ 1 ρ test

outperforms the CADF test in terms of power, although is slightly worse in size performance.  The increases

in power can be quite large.  In the case 3 when δ =0.3 (R2= 0.91) the power of the ! ( , )Λ 1 ρ test is two to

three times that of the CADF test for alternatives closer than 0.88.  For case 5 the effects are not as

dramatic, but still power gains of 50% or so are available from using the covariates test proposed here over

the CADF test.

5. Unit Root Tests and Long Run Structural VAR Estimation.

Blanchard and Quah (1989) derive a method for identifying structural VAR’s from restrictions placed on

the spectral density of the data at frequency zero when there are known unit roots in the system.  Consider

the bivariate version of the model considered in this paper when we impose that the root ρ is equal to unity,
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where C(L)=A(L)-1.  This model is not identified in the usual sense as we can write for any invertible K

matrix C L C L KK D Lt t t( ) ( ) ( )ε ε η= =−1  .   Since there exist an infinity of choices of K the model is

not uniquely identified.  In this bivariate system we require a single restriction so that the rotation K is

unique for the model to be identified (this would be the order condition).

In such systems, yt is permanently affected by shock(s) since it is an integrated process.   On economic

grounds, it may be interesting to identify the model such that only one of the structural shocks has a

permanent effect on yt .  In Blanchard and Quah (1989) this argument meant that demand shocks could not

have a permanent effect.  In King et. al (1991) cointegration was used to imply a smaller number of

permanent shocks than total shocks.  In such cases it is possible to identify the model as the cumulated sum

of the structural impulse responses, D(1), will be triangular as only one of the shocks has a long run effect

on yt.

For the model above, the identification scheme would set d12(1)=0 where this is the (1,2) component of

D(1).  Since5 the spectral density of the data at frequency zero (scaled by 2π) is Ω = D D( ) ( )'1 1  this

amounts to taking the choleski decomposition of the estimated matrix !Ω .  Such a restriction is only

interesting and useful in identification when the off diagonals for Ω are indeed nonzero, this is the case

when R2>0 also.

The crux of this approach to identification clearly is that yt indeed does have a unit root.  If instead there

were no permanent effects then we would interpret D(1) differently and would have no reason to make this

matrix triangular.  So in practice a useful hypothesis test to report in undertaking this method would be a

test for a unit root in yt.  Further, when the imposed restriction is indeed informative, then R2>0 and hence

we are exactly in the cases where the tests of this paper yield power gains over univariate testing.

Typically, such tests for a unit root to provide evidence of the validity of this restriction are undertaken

                                                          
5 We are using the usual identification from this literature so [ ] IE tt ='ηη .
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using Dickey Fuller (1979) tests (see Gali (1999) for example), which neither use the full information in the

model nor are they the most powerful univariate tests.  The tests derived in this paper provide a natural test

of the basic identification assumption of the Blanchard and Quah identification scheme.

By way of illustration we apply the tests derived here and other common tests to the Blanchard-Quah

dataset.  The data is quarterly data on income and unemployment for the US from 1950:2 to 1987:4, where

unemployment is the stationary variable xt and income is the yt variable.  Table 10 applies the various tests

to this data - the univariate tests are the frequently applied augmented Dickey and Fuller (1979) (DF) test,

the DF-GLS test of Elliott et. al. (1996) and the test statistic derived here.  We include constants and time

trends in both unemployment and income6 so the tests are from case 5.  Results are presented for lags from

1 to 8.  Except for very short lag lengths (which are most likely too short and hence the tests are not

correctly sized), the DF test does not reject - it is not close to the 5% critical value.  The DF-GLS test

similarly does not come close to rejecting.  The ),1(~5 ρΛ test rejects at 7 lags, although is close for a few

other lag lengths.  Overall we would probably still conclude that it fails to reject, although we would be

worried if the seven lag model is relevant (Blanchard and Quah used eight lags).

6. Conclusion.

Typically in economics correlation between the variables is the rule rather than the exception.  Often these

are implied by theory.  Either way, this information can be extremely valuable in testing assumptions that

are ancillary to the modeling process.  This appears to be especially true in the case of testing for a unit

root.  Hansen (1995) showed this with tests he developed based around the statistic of Dickey and Fuller

(1979).  In a related paper Horvath and Watson (1995) showed that power gains are available when there

are known cointegrating relationships (which are then stationary variables).  We have shown here that even

greater gains are possible.  The statistics are simple to implement and yield extremely large gains in power

when the covariates are relevant.

The statistics we generate, useful in many areas, are directly applicable to testing the unit root assumption in

the identification of structural VAR’s from long run restrictions.  These restrictions do not make sense

unless there is a process with a unit root in the model, yet typically very low power tests are used to

                                                          
6 Blanchard and Quah included a time trend in unemployment on the grounds that it was increasing over the
sample.  They had the equivalent of a time trend with a break for the oil shocks in income.  We do not
include a 'known' break such as this, however not including the break if it were truly there (tests which
search for such a break typically fail to reject the hypothesis of no break) biases us away from rejecting the
unit root.
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examine this assumption.  The tests derived here will have much better power at detecting the mistaken use

of this procedure.
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Appendix.

Lemma 1.  Distribution results.

Under the Assumptions of the model in (1) and (2) with A1, A2 and A3 we have
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the first column.  The result then follows setting ρ =1+c/T from Phillips (1987). Part (b) follows from Chan
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Proof of Theorems 1 and 2.

The proof for Theorem 1 is a special case of that for Theorem 2 where terms relating to the deterministics
are zero, so we proceed in the general case.  Throughout we use r for results general for ρ , ρ and 1.
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as stated in Theorem 1.

For the other cases, extra terms arise from the final two terms in equation (A1).  Defining cr=T(r-1) we have
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Proof of Theorem 3.
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Finally, following steps analogous to those in the proof of Theorem 2 we have that
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Applying the convergence results in lemma 1 completes the result.

Finally, it remains only to show part (a), that estimating the VAR coefficients assuming the largest root for
yt is r does not matter asymptotically.
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The second of these terms is op(1) as typical terms involve ∑ −
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and the third and fourth terms cancel obtaining the result in (a).
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Figure 1c:
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Figure 1d:
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Figure 2a:
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Figure 2b:
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Figure 2c:

Power and envelope constant and trend in y, constant only in x
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Figure 2d:
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Table 1: Asymptotic Critical Values (Distribution in Theorem 3)
R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cases 1,2 3.34 3.41 3.54 3.76 4.15 4.79 5.88 7.84 12.12 25.69
Case 3 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99
Case 4 5.70 5.79 5.98 6.38 6.99 7.97 9.63 12.6 19.03 39.62
Case 5 5.70 5.77 6.00 6.40 7.07 8.15 10.00 13.36 20.35 41.87

Notes:  Critical values were computed using 1500 steps as approximations to the Brownian Motion terms in
the limit theorem representations and 60000 replications.  The critical values reported are for tests of size
5% with c =-7 for cases 1, 2 and 3 and c  = -13.5 for cases 4 and 5.

Table 2: Small Sample results - No Deterministics (case 1)
DF PT ),1(~1 ρΛ

δ = 0 0 0 0.3 0.5 0.7 0.9
R2 = 0 0 0 0.09 0.25 0.49 0.81

ρ
1 0.05 0.048 0.051 0.049 0.05 0.05 0.044

0.98 0.117 0.113 0.119 0.132 0.153 0.195 0.306
0.96 0.237 0.229 0.239 0.276 0.342 0.493 0.848
0.94 0.407 0.396 0.407 0.463 0.576 0.782 0.992
0.92 0.594 0.581 0.59 0.655 0.774 0.926 0.999

0.9 0.758 0.744 0.748 0.807 0.896 0.977 1
0.88 0.878 0.865 0.867 0.905 0.954 0.993 1
0.86 0.947 0.939 0.936 0.957 0.981 0.998 1

Notes: Based on 20000 replications of the model with T=100, normal errors as discussed in the text.  The
system test is implemented with R2 estimated.

Table 3: Small Sample results - Constant Included (case 3)
DF PT ),1(~3 ρΛ

δ = 0 0 0 0.3 0.5 0.7 0.9
R2 = 0 0 0 0.09 0.25 0.49 0.81

ρ
1 0.054 0.059 0.064 0.061 0.06 0.054 0.039

0.98 0.075 0.138 0.145 0.154 0.167 0.192 0.254
0.96 0.105 0.273 0.285 0.308 0.355 0.445 0.716
0.94 0.159 0.453 0.466 0.499 0.572 0.709 0.946
0.92 0.235 0.64 0.648 0.685 0.759 0.875 0.991

0.9 0.332 0.795 0.797 0.825 0.879 0.951 0.998
0.88 0.448 0.899 0.897 0.914 0.943 0.981 1
0.86 0.573 0.956 0.951 0.959 0.974 0.992 1

Notes: As per Table 2 with a constant included.
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Table 4: Small Sample results - Constant Included in both, Time in Y regression (case 4)
DF PT ),1(~4 ρΛ

δ = 0 0 0 0.3 0.5 0.7 0.9
R2 = 0 0 0 0.09 0.25 0.49 0.81

ρ
1 0.057 0.039 0.053 0.054 0.054 0.049 0.024

0.98 0.062 0.049 0.065 0.071 0.082 0.096 0.094
0.96 0.078 0.076 0.099 0.115 0.142 0.192 0.305
0.94 0.106 0.119 0.152 0.179 0.239 0.356 0.663
0.92 0.147 0.184 0.227 0.274 0.368 0.559 0.906

0.9 0.204 0.27 0.325 0.389 0.518 0.744 0.981
0.88 0.277 0.377 0.442 0.519 0.663 0.868 0.995
0.86 0.365 0.503 0.564 0.646 0.783 0.937 0.999

Notes: As per Table 2 with a constant included in both regressions and a time trend in the yt regression  (for
the ),1(~4 ρΛ statistic) and a constant and time trend included in the univariate unit root tests.

Table 5: Small Sample results - Constant and Time Included (case 5)
DF PT ),1(~5 ρΛ

δ = 0 0 0 0.3 0.5 0.7 0.9
R2 = 0 0 0 0.09 0.25 0.49 0.81

ρ
1 0.057 0.039 0.053 0.053 0.051 0.044 0.021

0.98 0.062 0.049 0.065 0.069 0.076 0.085 0.08
0.96 0.078 0.076 0.099 0.111 0.131 0.172 0.262
0.94 0.106 0.119 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.184 0.226 0.267 0.345 0.511 0.871

0.9 0.204 0.27 0.325 0.379 0.488 0.699 0.971
0.88 0.277 0.377 0.441 0.507 0.634 0.834 0.993
0.86 0.365 0.503 0.564 0.635 0.758 0.919 0.998

Notes: As per Table 2 with a constant and time trend included.
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Table 6: Effect of estimating R2 on test using ),1(~3 ρΛ
R2 known Estimated R2

δ = 0 0.3 0.5 0.7 0.9 0 0.3 0.5 0.7 0.9
R2 = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

ρ
1 0.063 0.06 0.061 0.056 0.053 0.064 0.061 0.06 0.054 0.039

0.98 0.144 0.152 0.167 0.193 0.29 0.145 0.154 0.167 0.192 0.254
0.96 0.283 0.305 0.356 0.45 0.758 0.285 0.308 0.355 0.445 0.716
0.94 0.465 0.497 0.573 0.716 0.967 0.466 0.499 0.572 0.709 0.946
0.92 0.647 0.684 0.761 0.882 0.997 0.648 0.685 0.759 0.875 0.991

0.9 0.796 0.824 0.881 0.956 1 0.797 0.825 0.879 0.951 0.998
0.88 0.896 0.913 0.944 0.984 1 0.897 0.914 0.943 0.981 1
0.86 0.951 0.958 0.975 0.994 1 0.951 0.959 0.974 0.992 1

Notes: As per Table 3.

Table 7: Effect of estimating R2 on test using ),1(~5 ρΛ
R2 known Estimated R2

δ = 0 0.3 0.5 0.7 0.9 0 0.3 0.5 0.7 0.9
R2 = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

ρ
1 0.053 0.052 0.052 0.048 0.05 0.053 0.053 0.051 0.044 0.021

0.98 0.065 0.068 0.076 0.087 0.131 0.065 0.069 0.076 0.085 0.08
0.96 0.099 0.109 0.131 0.176 0.342 0.099 0.111 0.131 0.172 0.262
0.94 0.152 0.172 0.221 0.327 0.686 0.152 0.173 0.223 0.32 0.599
0.92 0.225 0.265 0.345 0.522 0.923 0.226 0.267 0.345 0.511 0.871

0.9 0.323 0.377 0.489 0.714 0.989 0.325 0.379 0.488 0.699 0.971
0.88 0.44 0.504 0.639 0.853 0.999 0.441 0.507 0.634 0.834 0.993
0.86 0.562 0.633 0.764 0.93 1 0.564 0.635 0.758 0.919 0.998

Notes: As per Table 5.
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Table 8: CADF and ),1(~3 ρΛ
CADF ),1(~3 ρΛ

δ = 0 0.3 0.5 0.7 0.9 0 0.3 0.5 0.7 0.9
R2 = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

ρ
1 0.053 0.055 0.056 0.054 0.051 0.064 0.061 0.06 0.054 0.039

0.98 0.075 0.082 0.098 0.135 0.321 0.145 0.154 0.167 0.192 0.254
0.96 0.107 0.123 0.162 0.272 0.675 0.285 0.308 0.355 0.445 0.716
0.94 0.16 0.188 0.262 0.456 0.885 0.466 0.499 0.572 0.709 0.946
0.92 0.234 0.285 0.396 0.639 0.965 0.648 0.685 0.759 0.875 0.991

0.9 0.332 0.4 0.542 0.79 0.991 0.797 0.825 0.879 0.951 0.998
0.88 0.444 0.527 0.682 0.889 0.998 0.897 0.914 0.943 0.981 1
0.86 0.566 0.654 0.798 0.947 0.999 0.951 0.959 0.974 0.992 1

Notes: As per table 3.  The CADF refers to the test procedure in Hansen (1995).  In each case the same R2

estimate is used to determine the critical value.

Table 9: CADF and ),1(~5 ρΛ
CADF ),1(~5 ρΛ

δ = 0 0.3 0.5 0.7 0.9 0 0.3 0.5 0.7 0.9
R2 = 0 0.09 0.25 0.49 0.81 0 0.09 0.25 0.49 0.81

ρ
1 0.057 0.058 0.057 0.053 0.046 0.053 0.053 0.051 0.044 0.021

0.98 0.061 0.067 0.079 0.106 0.219 0.065 0.069 0.076 0.085 0.08
0.96 0.079 0.093 0.121 0.197 0.525 0.099 0.111 0.131 0.172 0.262
0.94 0.105 0.131 0.182 0.327 0.78 0.152 0.173 0.223 0.32 0.599
0.92 0.147 0.186 0.268 0.479 0.916 0.226 0.267 0.345 0.511 0.871

0.9 0.203 0.257 0.375 0.635 0.973 0.325 0.379 0.488 0.699 0.971
0.88 0.276 0.345 0.495 0.766 0.992 0.441 0.507 0.634 0.834 0.993
0.86 0.363 0.451 0.613 0.861 0.998 0.564 0.635 0.758 0.919 0.998

Notes: As per table 5.  The CADF refers to the test procedure in Hansen (1995).  In each case the same R2

estimate is used to determine the critical value.
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Table 10: Blanchard-Quah Model
#lags DF DF-GLS ),1(~5 ρΛ R2 Critical

Value

1 -3.06 -1.58 16.21 0.38 6.88
2 -3.80 -1.85 23.27 0.46 7.54
3 -2.87 -1.52 18.16 0.68 12.05
4 -2.59 -1.46 15.70 0.69 12.25
5 -2.34 -1.45 18.21 0.72 13.55
6 -2.34 -1.57 16.73 0.65 11.04
7 -2.32 -1.48 19.08 0.80 19.19
8 -1.78 -1.37 17.93 0.76 16.56

Notes: The Column labelled DF gives the Augmented Dickey Fuller statistic when a constant and time trend
are included in the regression for the indicated lag length (the asymptotic critical value is -3.41).  The
column labeled DF-GLS is the Elliott. et. al. (1996) augmented Dickey Fuller statistic with GLS detrending
(the critical value is -2.89).  The critical values for the ),1(~5 ρΛ statistic are in the final column (dependent
on the estimated R2 given in the fifth column).
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