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Abstract

This paper applies quasi-static analysis to a simple closed macroeconomy. It is shown that
if the economy satisfies a conservation of income requirement, and the requirement that all
equivalent investments generate the same rate of return (non-arbitrage), then there exists
a state variable which measures the opportunity cost of moving from one macroeconomic
equilibrium to another. This state variable is an economic constraint which measures the
expenditure necessary to change equilibria. Central to this analysis is a definition of economic
time, which is an invariant quantity with respect to the state variables used as a frame of

reference.

1 Introduction

This is an application of the theory of quasi-static systems to macroeconomic analysis. Quasi-static
systems are defined as those which change state while always remaining in equilibrium. If taken literally
they most closely approximate the Classical and Neo-classical schools of thought on macroeconomic
dynamics, where prices and quantities adjust instantaneously and frictionlessly to equilibrium in the
absence of “shocks”. Disequilibrium analysis, where an economy may persist for many periods without
market clearing, is excluded by assumption.

This paper is decidedly not, however, an appeal to adopt the (Neo)Classical approach to macroe-
conomic analysis: in fact, insofar as quasi-static systems have an importance in and of themselves it is
simply that they are the framework within which to build a methodology of examining the movements
of aggregate variables (or average variables, if the number of individual components of the system be
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known). Quasi-static systems are used in this context to underscore a feature of the macroeconomy
which is often ignored in modern macroeconomic modeling: the macroeconomy is a collection of a huge
number of economic participants engaging in an enormous number of trades, all of which cannot possibly
be identified or catalogued in practice. While it is clear that some abstraction is necessary from a mod-
eling perspective, macroeconomic modeling usually swings far in the other direction. Current models
tend to place such restrictions upon the actual behavior of the economic participants that the underlying
diversity of the microeconomy becomes irrelevant. Agents are assumed to behave so that representative
agent theory holds, the “correct” equilibrium is a steady-state with purely exogenous shocks, and so on.
By assuming away the diversity of the underlying microeconomy, the resulting macroeconomy is often
bereft of either interesting dynamics or “real-world” behavior.

The application of quasi-static systems outlined here is, in the author’s opinion, a stepping-stone away
from this trend and towards a more realistic combination of the incredible diversity of the microeconomy
with their macroeconomic averages. It is a stepping-stone because it is an introduction to the tools and
techniques of quasi-static analysis, including non-exact differentials over a business cycle, the existence
of a measurement of “constraint” in an economic system (which turns out to be a form of opportunity
cost), and a simple characterization of the real interest rate as the primary vehicle for non-arbitrage.
Underlying all the results in the paper is a microeconomic interpretation which uses the diversity of
the microeconomy to its fullest advantage—put simply, the interpretation uses the power of the Average
in describing movements in macroeconomic variables. This interpretation is discussed more fully in a
companion paper.

The simple model outlined below is built upon two assumptions about any macroeconomy:

1. Spending during a quasi-static change from one equilibrium to another may come either from
savings or from income,

2. The law of non-arbitrage holds: funds will flow between portfolio holdings until their rates of
return are equal.

Under these assumptions we may state the following: any equilibrium state of the economy may
be characterized by the opportunity cost of arriving at that equilibrium from another. The magnitude
of this opportunity cost defines how “constrained” the economy is relative to the initial equilibrium.
Moreover, this economic constraint is a state variable describing the equilibrium, so that comparative
statics relating e.g. consumption, income and the price level may be derived.

In order to arrive at this characterization, a definition of economic time is introduced which links
the real rate of interest with a (normalized) path length of an equilibrium transition. It is shown that
defining an interval of time in this fashion implies that for smaller and smaller real interest rates and
a fixed value of consumption, either high prices are associated with low consumption (a high-inflation
regime) or low prices are associated with high consumption (a low-inflation regime). In addition, there
is a single equilibrium for which the real interest rate is maximized, where the high-inflation and low-
inflation regimes coincide.

The structure of the paper is as follows: Section 2 introduces quasi-static systems analysis for a very
simple economy, defines a business cycle, and states the law of the conservation of income. Section 3
states the law of non-arbitrage for this economy, and introduces the economic constraint. Section 4
defines economic time and identifies the real interest rate as a state variable. Section 5 formally derives
the economic constraint, while Section 6 places the economic constraint within the context of equilibrium
opportunity cost, and derives the income equation. Section 7 concludes.



2 Quasi-static Systems and the Business Cycle

Equilibrium is dictated by conservation (or preservation) of some quality or qualities over time. In the
case of an economic system, it can be difficult to define just what is conserved. For example, it is often a
difficult problem to separate variables which are actually stationary (or ’steady state’) from those which
are slowly-moving but ever-changing. Qualities of an economic system which are generally considered
non-stationary include productivity and per capita income, both of which may be used to define eco-
nomic growth. Nonetheless, it can be assumed that certain characteristics of an economic system are
slowly-varying enough that, over the short run, they may be considered as stationary quantities. Such
abstraction is of course quite natural in economic theory, where great pains are taken to separate the
true (assumed stationary) links of causation between variables from the (assumed exogenous) ‘back-
ground noise’ of the economy. Indeed, one often finds examples in the literature where non-stationary
time series is ‘detrended’ in order to make the resulting residuals stationary.

This paper investigates the implications of the assumption that in a closed economy, aggregate
income may be a conserved quantity. There is no increase in productivity to introduce a trend in
income growth-nor is there an international transmission mechanism of any kind to augment or diminish
aggregate income for the domestic economy. This is an economy the way it is taught in introductory
Macroeconomics: a fixed level of income which is divided into e.g. consumption, savings, taxes, etc. and
which in the long run may adopt its Classically fixed value determined by the underlying technology
of the economy. If income is conserved, then the entire economic system is itself a conservative system
which possesses some global structure (inherited from the underlying microeconomic foundations). It
is the goal of the paper to introduce a methodology by which this structure may be more thoroughly
analyzed, while at the same time providing a measure of how easy or difficult an economy may move
from one state to another. This measure is in a sense universal to any conservative economic system.

2.1 Income as a Conserved Quantity

We take as our starting point the idea that an economy may be represented by a certain collection of
state variables, and that these variables together define the state of the economy at any point in time.
To keep matters as simple as possible, we shall assume that the variables which most often (but not
exclusively) define an economy’s state are 1) the real level of aggregate income y, 2) the real level of
aggregate consumption ¢, and 3) the price level p. It is clear that this is a non-exhaustive list since (for
example) aggregate savings s may be defined as a state variable from the relation

s=y—c, (2.1)
in a simple closed economy without government. But what is meant by state variable is that given,
say, a savings level s and a consumption level ¢, there exists one (and only one) income level y which is
defined by s and c. In other words, real income is a function of state:

y =1y(s,c). (2.2)

Notice that this is simply equation (2.1) where y(s,c) := s + ¢. For the simple system which we are
investigating, all functions of state are expressible as functions of two state variables (more complicated



systems may, naturally, have functions of state which depend upon more than two state variables—we
are examining the simplest case for the sake of exposition).

Having defined the state variables, we wish to analyze how they change, i.e. what they depend upon.
In order to do so it is necessary to define what types of changes will be admissible. This is the key feature
of the quasi-static analysis: the economic system is assumed to be slowly-varying. To put this another
way, any small amount of consumption or savings added to or removed from the system is performed in
such a way as to preserve the (actually static) equilibrium at every point in time. This type of system,
in which the dynamic treatment is considered to be slowly-varying with respect to its impact upon the
state variables, is called a “quasi-static” system. It is as though any change in the features of an economy
actually traces out a sequence of equilibrium states, starting from the equilibrium state before the change
and arriving at some final equilibrium state. Indeed, we may represent the changes in a quasi-static
system by paths in the state space. In Figure (1), for example, the path traced between equilibrium
point A and equilibrium point B means that on its way from A to B, the economy may always be
represented by equilibrium state variables along the way. The economy is never in disequilibrium.

Notice that in going from points A to B in Figure (1), the price level has dropped from p4 to
pp, while the consumption level has risen from c4 to ¢g. The economy has “done something” (or has
had something done to it) which has moved it from one equilibrium state to another. How has this
been accomplished? We note that in moving from (ca,pa) to (cB,ps) there must be some change
in spending behavior—either less money is being spent on the new consumption bundle (in which case
additional income has been saved), or more money has been spent (in which case additional income has
been spent). In fact, this pattern is more general: the change in spending behavior will depend upon
the path which is taken between points A and B. In other words, the amount spent (or saved) will
depend not only upon the initial and final equilibrium states, but also upon the equilibrium states that
the economy occupies in between.

This must be the case precisely because the system is assumed to be quasi-static-the economy
cannot magically jump from point A to point B, with a simple adjustment to spending given by,
say, pgcg — paca. Rather, the economy must progress through all the stages in between, resulting
in adjustments to spending along every point in the path. What are these incremental adjustments
along the way? They are simply the value of each incremental change in consumption, i.e. pdc for
an incremental change in consumption dec. Thus, we may define this adjustment to spending (or more
descriptively, the adjustment to expenditure) in the following way:

Definition 1 The adjustment to expenditure 6 E from an initial equilibrium point A to a final equilibrium
point B is given by

OF := / pde, (2.3)
path(A,B)

where the integral is taken over the path in the state space from A to B.

Note that according to this definition, a change in the equilibrium state which preserves the value
of consumption, i.e. a change for which it is always true that pc =V for some constant V, still implies
an adjustment to expenditure 6 E which may be non-zero! This again reflects the fact that in order to
move from one equilibrium to another it is not simply the value of consumption which matters—it is how
the economy moves from one equilibrium to another that determines how “easy” or “difficult” such a
move may be. In this case, an economy which moves along an equilibrium path of constant consumption
value may perhaps be spending less than another economy which chooses a different path. But this is



not the same thing as saying that the first economy spends nothing in moving from one equilibrium to
another. Rather, all economies adjust spending when they change their state.

Where do these adjustments to expenditure come from, and where do they go? The answer to this
question is actually an assumption about how the economy operates in a simple system, and it is the far-
reaching implications of this assumption (and one other) that the remainder of this paper focuses upon.
It is assumed that nominal income Y is a conserved quantity—it may either be spent as an adjustment
to expenditure, or it may be saved, in which case it is an adjustment to savings. That is,

Axiom 1 (Conservation of Income) Nominal income Y is a conserved quantity—for a change in
nominal income dY,

dY = §E + 688, (2.4)

where O F is the adjustment to expenditure, and 6S is the adjustment to savings, defined as the residual

of 6E from dY.

Why nominal income, and not real income? The reason is that adjustments to expenditure take place
in nominal terms, and it is easier to analyze the system in nominal rather than real terms. However, we
shall assume that real and nominal income are related by

Y =pyy, (2.5)

where p, is a kind of producer (or output) price index. Furthermore, to ease exposition (and to lay
to one side an interesting investigation into the correlation between the consumer price index and the
producer price index) we shall assume that the producer price index is constant with respect to change
in state:

dY = p,dy, (2.6)

so that we may switch back and forth between nominal and real income. (Indeed, none of the forthcoming
analysis would be different if p, were simply normalized to 1, but we refrain from doing so in order
to emphasize the fact that a more general model must incorporate the value of output as well as
consumption.)

2.2 A Business Cycle

The quasi-static approach we shall adopt in this paper borrows very heavily from the systematic analysis
of aggregate conservative systems performed in the mid 19th-century, by Maxwell, Boltzmann, Clausius,
Carnot and many others. These researchers were concerned with conservative physical systems in which
the internal energy of the system is conserved. What is striking, and particularly useful from the per-
spective of economic theory, is that this physical system, and the quasi-static economic system outlined
previously, may be analyzed using nearly identical techniques. This paper is one such application of
these techniques and their implications for macroeconomic modeling. The first such application we shall
investigate is a simple model of a business cycle.

In this simple exposition we shall assume that a business cycle is truly a complete cycle, that is, the
economy ends up at the end of the cycle precisely where it began. Suppose that the economy begins at an



equilibrium point (c4,pa), and proceeds as given by the arrows in Figure (2). First there is an upswing
in the business cycle (an economic expansion) funded solely by drawing down savings (so that income
is held constant). Prices and consumption both rise to (¢p,pp). Next the value of consumption is held
constant as prices fall but consumption continues to rise, to (cc, po)—here the expansion is funded only
by income growth, and the adjustment to savings is zero. This concludes the expansionary phase of the
business cycle. From this point the level of savings is increased, holding the new income level constant,
to reduce both consumption and the price level until the value of consumption equals its value at the
beginning of the cycle-the equilibrium moves to (¢p,pp). And lastly, both the value of consumption and
savings are held constant while income is reduced. Prices rise and consumption falls until the original
equilibrium (c4,pa) is restored.

Using our earlier definitions of adjustments to expenditure and savings we can define the total
adjustment to expenditure which has occurred over this business cycle. This is the amount which has
been spent in order to drive the economy through the cycle. Once again, the fact that the economy
ends up where it began is not the same thing as saying that “nothing has happened” over the business
cycle—and it is precisely the adjustment to expenditure which measures how easy or difficult it is for an
economy to be driven through a cycle such as the one depicted.

As defined, the total adjustment to savings and the total change in income must be sufficient to
cover the total adjustment to expenditure over the business cycle:

6SA—>B + dYB—>C + 6SC—>D + dYD—>A — 76Ecycle - 7/ pdc (27)
cycle

Since income is a function of state, it is unchanged over the business cycle-this leads to the result that

0Seycie = f/ pdc. (2.8)
cycle

The amount of expenditure necessary to drive the economy over the business cycle is thus equal to
the adjustment to savings over the cycle. Savings in this sense can measure or reflect how high (or low)
an adjustment to expenditure needs to be in order for the economy to move from one equilibrium state
to another. In this simple example, we see from the figure that the adjustment to expenditure is simply
the area enclosed by the cycle. Hence, we would expect that smaller cycles (lower peaks and troughs)
would necessitate less expenditure adjustment. In other words, a smaller adjustment to savings would
be needed. This indicates the path dependence of expenditure and savings.

However, this measurement of the adjustment to expenditure, and the concomitant adjustment to
savings, can be generalized—in fact, we can identify for each equilibrium point how easy or difficult it is
to move from that point (i.e., we can measure how great or how small the adjustment to expenditure
or savings must be for a departure from equilibrium). This is an extremely valuable quantity because
it associates with any economic equilibrium a measure of how much “effort” is needed to move the
economy between equilibria. For example, such a measure might be used to evaluate just how difficult a
departure from a state of chronically high poverty will be, in terms of resources which must be expended
by the economy along the way. On the other hand, if only certain limited resources are available to effect
a change in the economy, then this measure would enable one to describe where the “best” equilibrium
is located (e.g., the equilibrium which has the highest income, or highest consumption, or lowest, price,
etc., attainable from the resources available).



On a completely different level this quantity, which we shall interchangeably refer to as the eco-
nomic constraint or the economy’s opportunity cost, has a much fuller interpretation with respect to
the underlying microeconomic activity. As detailed in a companion paper, the economic constraint is
itself defined by how easy it is for an economy to adjust its underlying microeconomic states. Thus,
while the economic constraint can outline how an economy might move from one state to another, it
is the connection of the constraint to the microeconomy which tells us how such a move changes the
underlying microeconomy, and it identifies why some changes might be more difficult than others. The
key point here is that changes in the macroeconomic state cannot be separated from, and are indeed
defined by, those changes in the microeconomic states which define it. And as might be expected from
economies which possess such a multitude of diversity, these microeconomic states are best defined as
averages of uncertain economic behavior.

Thus, the current exposition in this paper is really an introduction to a prelude. It introduces a
methodology which is too simple for the problem at hand, but which is readily expanded to 1) encompass
the great heterogeneity of the underlying microeconomy, and 2) describe changes in equilibrium which
are not quasi-static, i.e. non-conservative, in a way which can be linked to the simple model. We shall
develop this methodology further by finding a representation for the economic constraint—note that
adjustments to savings or expenditures by themselves are unable to play this role, as they are path
dependent. What we seek is a measurement of constraint which is independent of the path the economy
takes—that is, we seek a function of state which nonetheless is able to measure how much must be spent
(or saved) in order to move the economy from a give equilibrium point. In order to accomplish this goal
we shall need an assumption about the nature of economic equilibrium, one which is pervasive in the
economic and financial economic literature and which holds an esteemed position in the current theory.

3 The Law of Non-arbitrage

By the first axiom, the change in nominal income dY must be equal to the sum of the adjustment to
savings 6.5 and the adjustment to expenditure 0F :

dY = 58S + 6E. (3.1)

We may express real income y as a function of consumption ¢ and the real interest rate r, in which case
equation (3.1) may be expressed in differential form as

08 =py [(%) de + (%) dr} — pdc, (3.2)

where e.g. (%%) represents the partial derivative of y with respect to ¢, holding r constant.
T

Suppose we consider two economies which are isolated except for capital (i.e. savings) flows. We
suppose that these economies have been linked for some time, and we would expect that the law of non-
arbitrage would hold between them, i.e. their respective real interest rates must be equal. Note that
we are assuming the quasi-static framework in this statement, because we are “waiting long enough”
for any initial differences in the rates of return to even out. This is a standard assumption used when
discussing perfect capital markets—if arbitrage opportunities existed, then it would be possible to play
one investment against the other and earn something from nothing. In a world with perfect capital



markets and no uncertainty, such opportunities ought not to exist. This is the motivation behind
introducing the law of non-arbitrage as a second fundamental assumption:

Axiom 2 (The Law of Non-arbitrage) The rates of return on any two investments denominated in
the same unit of account are equal.

Thus, looking at the two economies as one economic system, we see that the state of the collective
system may be described by e.g. ¢, the consumption in the first economy, ¢z, the consumption in the
second economy, and r = r; = ra, the (identical) real interest rate in each economy. Consider now an
adjustment to savings in each country, 6S;, ¢ = 1,2. For the complete system it is clear that since these
economies are otherwise isolated, the total adjustment to savings for the collective system must be

88 = 651 + 65s. (3.3)

By substituting equation (3.2) for each economy into (3.3) we see that

0 0 0 0
5= o (52) ~m|dertm () drt | (52) —pm| et (B2) a0 )

or

0 0 0 0
68 = |:pyl <8—Z1> pl} dey + {pyz (8—Z2> pg] dca + |py, (#) + Py, (%) ] dr. (3.5)

We now have the adjustment to savings, which is an inexact differential, expressed as a function of the
exact differentials dcy, deg and dr. In order to evaluate this expression we use Carathéodory’s principle,
a version of which is stated as follows."

Theorem 1 (Carathéodory’s principle) If an inexact differential expressed as

6A = Aydxy + Axdxs + ... + Andxy, (3.6)
has the property that, in any neighborhood of a point x = (x1,x2,...xy) there exists another point
' = (2,2, ... ,x)) which is inaccessible along the solution trajectory of 6A = 0 through x, then there
exists an integrating factor g(x1 xa,... ,xy,) such that

g(x)dX = 6A = Ardxy + Asdzy + ... + Apday, (3.7)
where dX is an exact differential of a function of state X (x1,x2,... ,2y).

IThis version of Carathéodory’s Principle is taken from Reiss (1965), p.26, as is the following exposition for the
derivation of the function of state Xg. It must also be said here that the interpretation of the opportunity cost (to be
defined later) as an economic constraint owes a great debt to Reiss’ interpretation of entropy as a ‘degree of constraint’ in
quasi-static thermodynamic systems.



Carathéodory’s principle tells us that if solutions to 6S = 0 somehow restrict the allowable states
of the system, then we may find an integrating factor g(ci, ca,7) such that gdX = §S. We will then
have found the function of state X which defines, for every equilibrium, a level of constraint felt by the
economy at that equilibrium (as discussed briefly in Section 2 and in further detail in Section 6). Is
Carathéodory’s principle applicable to this economy? Consider again the prototypical business cycle in
Figure (2), where the economy passes through two stages of isoincome growth and contraction, and two
stages of isovalue growth and contraction. It is precisely along the isovalue paths that 6S = 0, so that
adjustments to expenditure are applied solely from changes in income dY. Clearly, any deviation off the
isovalue path will by Axiom (1) require an adjustment to savings so that S # 0. In other words it is
not possible to reach any other point in the state space with 65 = 0 while at the same time allowing
pc to vary. Thus, there are points in any arbitrary neighborhood around pc = V, V' a positive constant,
which are inaccessible to solutions where 6.5 remains equal to zero.

From this argument we may apply Carathéodory’s principle and conclude that there must exist an
integrating factor g(cy, co,7) such that

65 =g(ey, e, 7)dX, (3.8)

for the composite system, and
(551 = g1 (Cl, T)Xm, (39)
(552 = gg(Cg,’r‘)ng. (310)

for each individual system. Note that each adjustment to savings is only dependent upon the states of
that system, so that g; and g» only depend upon c¢; and r and ¢y and r, respectively.
Substitution of equation (3.8), (3.9) and (3.10) into (3.3) yields

gl(e1,c,7)dX = g1(cq,r)dXq + ga(co, r)dXs. (3.11)

Since X, g, g1 and g are all functions of state they are expressible as X (X1, Xa,7), (X1, X2,7), 91(X1,7)
and go(Xa,r), respectively. And since dX is an exact differential, it must be true that

0 g1(Xq,7) > 0
2 (Zanh) =2 (0),.x, =0, 3.12
or <g(X1,X2,r) X)X 3X1< )rx ( )
0 ([ g2(Xa,7) > 9
2 (222l =-2 (0)r.x, =0. 3.13
or (g<X17X2aT) X2,X1 aXQ( ) ~ ( )

Combining these expressions yields

091(Xq,7)/0r  0g2(Xa,7)/0r _ 09(Xy, Xa,7)/0r

g1(X1,7) g2(Xa,7) 9(X1, Xa,7) (3.14)



9g1(X1,r)/0r 98g2(Xa,r)/0r and 99(X1,Xa,r)/0r
g1(X1,r) 7 g2(Xa,r) 9(X1,X2,r)
cannot, in fact, depend upon either X; or Xs—in fact we can say more because the only thing which
has functionally distinguished g; and go from ¢ (and hence, from each other) has been this dependence
upon Xq or Xo.
What is the resulting expression for the adjustment to savings 657 We notice from relation (3.14)
above that

It is clear from the above expression that the functions

@ =(r) = (3.15)
In(g) = /’y(r)dr +I'(X) = (3.16)
g = el A L), (3.17)

where I'(X) is an arbitrary function of state. Let T := e X) and f(r) := e/ 74" Then we may express
the integrating factor as

g(X,r) = f(r)T. (3.18)

In summary, then, we may express S as

8S = f(r)TdX. (3.19)

If we now define the function of state which represents the degree of constraint for an economy as

Xg = / TdX, (3.20)

then we may relate this function of state to the adjustment to savings by

S = f(r)dXs. (3.21)

Our task is nearly complete-what we have shown so far is that there exists a function of state which
at a given equilibrium measures, independent of path, the adjustment to expenditure (or adjustment to
savings) which occurs following a change from one equilibrium to another. As this measurement is a
function of state, it is intimately related to other functions of state such as income, consumption, the
price level, etc. through various transformations which will be examined in Section 6. The only part of
the goal left undone is to identify how the integrating factor f(r) depends upon the real interest rate.

In order to do this let us reintroduce equation (3.2), which ties together changes in income with
adjustments to savings and expenditure:

10



05 =py [(%) de + <%> dr] — pdec. (3.22)

We now know that §S = f(r)dXg, so that

[py (%) —p} Py (%)
dXg = L ¢d

de + 7. 3.23
) ) 52
Once again we have an exact differential, so it must be true that
d o
or f(r) S dc | f(r) '

@) A (), @) (), oo

or (since dy is an exact differential)

10 |p (52) ~o] -0 () =0 (3.26)

In order to evaluate this expression there must be a relationship between the real interest rate r, and
the state variables y, ¢, and p. Defining this relationship highlights the nature of economic time in this
system, so we shall devote a separate section to it en route to the final specification of the integrating
factor.

4  Economic Time and the Interest Rate

The role of the interest rate in an economy is simply to represent the possible opportunities forgone
when one investment is made at the expense of another. In other words, interest is the opportunity cost
of investment measured as an incremental (or instantaneous) return over time. Thus what is needed is
a relationship between the time state of the system, which is not modeled explicitly, and the economic
state of the system. The key assumption here is that longer paths in state space take a longer amount
of time to traverse. Under this assumption we may link time changes with changes in state variables
and hence the level of the interest rate with changes in state variables.

Consider the small change of state from point A to point B in Figure (3). Along this path we may
define the real interest rate to be

dc
Tdtpath(A,B) = ?a (41)

11



where dtqin(4,p) is the interval of time taken to traverse the path between A and B, i.e. the amount of
time to accumulate a real return de, starting from c. The real interest rate is defined as an instantaneous
real return. Thus, the incremental rate of return earned from holdings of real consumption over a small
time interval dt, i.e. %, must be equal to this instantaneous rate of return r over dt.

The amount of time taken to move from point A to point B, and hence the amount of time necessary
for holdings of consumption to appreciate by the amount de, depends upon the path between A and B.
We might just as easily have defined another path from A to B as in Figure (4). Here, it takes much
longer to arrive at the final appreciation amount dc due to the intermediate values the consumption
good takes. This implies that the instantaneous interest rate over this time period will be less—in
the limiting case where the path length between an initial equilibrium A and a final equilibrium B is
infinite, we should expect the real interest rate to be zero: it takes an infinitely long time to accumulate
an infinitesimal amount of the consumption good, which is no rate of return at all.

By now there may be the very reasonable objection from the reader that the interval of time just
defined cannot have a unique value. For if one were to choose a different state space representation,using
say income and consumption instead of price and consumption in Figure (3), then the resulting time
interval may be longer or shorter than the one initially defined! In fact this is quite correct—the time
interval must be normalized with respect to one path, in order to define it as an invariant quantity over
all paths.

4.1 A side-note on the nominal interest rate

Before moving further in this direction it is useful to define the nominal interest rate along the way. We
define the nominal interest rate i simply as the proportional change in the value of a particular holding
of the consumption good, i.e. a change in pc :

d(pc)
pc
This corresponds with the intuitive notion that the nominal interest rate is dependent upon changes in

the price level as well as changes in consumption. Indeed, performing the total differentiation of the left
hand side we find

= idtparn.- (4.2)

d, d,
pac +cap _ idt parn, = (4.3)
pc
de dp
— 4+ = = idtyan, 4.4
- + . 1Alpath (4.4)
or
r4+mT =i, (4.5)

where we have used the relation rdtpq:n, = % and have defined a quantity mdtpq:n = 42, where 7 is the

instantaneous rate of inflation. Thus we arrive at the usual definition of the real interest rate as the
difference between the nominal interest rate and the rate of inflation:

r=1i—m. (4.6)
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4.1.1 Normalization coefficients of economic time

Next consider an arbitrary path between two equilibrium states A and B. The arc-length s between A
and B is defined as the length of the path between these two points. For an infinitesimal movement
(de, dp) along this path we may define a corresponding infinitesimal change in the arc-length as

(dse,p)® = (de)® + (dp)?. (4.7)

The economic time assumption stated earlier may then be represented as

dtpath X dscp, (4.8)

so that longer paths correspond to longer times spent between states A and B.
Now we need to address the problem of scaling. Suppose instead that we selected as our state
variables (c,y) instead of (¢,p). Then the arc-length under consideration would be

(dse,y)® = (de)? + (dy)?. (4.9)
The principle of invariance of economic time simply states that regardless of the state variables used to

represent the economy (i.e., regardless of the frame of reference of state variables used), the measurement
of economic time must be the same for the same economic change. That is,

dtpath — kldsc,p - deSc,ya (410)

where the k; are normalizing coefficients. These coefficients are related by

2 2 ) i )2 dp 2
(%> - (jiif) B 233212382 - E;lc; Eiigd izg = (4.11)

&

dp 2

ky 1t (d_>

Ry dy\? (dp\?
v (i) (%)

One may express all representations arc-length of the same economic change (i.e., the same change
dc) as ratios governed by the normalizing coefficients. As one might expect, these coefficients are de-
termined only relative to each other—once a scale has been fixed, the rest are determined by the rules
of transformation from one coordinate system to another. In this context, then, we are free to choose

one coordinate system for which to fix our normalizing coefficient, and proceed from there. Note that
although it is tempting to select, say, k1 = 1 and define all other coefficients in this relative way, this

(4.12)
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approach will not identify the correct scaling quantity to be used. The value for any particular normal-
izing coefficient must (in a testable context) be determined by the data (discussed in the concluding
remarks). The rest of the normalizing coefficients may then be found from such relations as (4.12).

Thus, we shall pick one coordinate system and stick with it—we shall select the (¢, p) system and
define the time interval over a particular path in that system as

dt parh, = ke pds, (4.13)

where k., is the normalizing coefficient in the (c,p) system.
By substitution of (4.7) and (4.13) into(4.1) we arrive at

de = ke pry/(de)? + (dp)?, (4.14)
c

where the positive root of the arc-length is chosen for obvious reasons. Rearrangement of this relationship
yields

(C,Z(k—lpr)2 - 1) (dc)? = (dp)? = (4.15)
<02(k71p7’)2 - 1) v de = dp. (4.16)

Thus we see that, as expected, the real interest rate is a function of state: if we specify, for example,
the interest rate and the price level, then we have determined the level of consumption.

As an example let us consider what happens to the real and nominal interest rates along curves in
the state space of constant value of consumption, i.e. curves for which

pc=V (4.17)

for some constant V' > 0.

What happens to the nominal interest rate in this case? By construction, if the economy moves
along an isovalue line, so that equality (4.17) is preserved at all times, then there is no appreciation in
the value of consumption holdings—hence, the nominal interest rate is zero. We may also observe this
just by taking the total differential of (4.17):

— 4+ — =0 =idtpe=v, 4.18
c * D {@tpe=v (4.18)
from which
d d
rdtpey = — = —L = _rdty._y. (4.19)
c p
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What is the length of time that it takes to move along an isovalue curve an infinitesimal length (dc, dp)?
From above it must be equal to the infinitesimal arc-length, which is computed from above as

(ds)? = (dc)2+<—€dc)2 (4.20)

(1 + Z—f) (dc)? (4.21)

where we have first used (4.19) to express dp as a function of de, and then used the isovalue relation
pc=1V.
The amount of time spent along a small section of the path along the isovalue curve is then

2
dtpe=y = ke pds = ke pdcy/1+ V—4 (4.22)
c

from which we arrive at the relation?

kopryf14 L =1, (4.23)

Before continuing to the solution (which simply involves substituting pc = V' back into the equation
and solving for ¢) we can stop here to investigate the way in which, for a given value V, the consumption
level depends upon the interest rate. This equation is a fourth-order polynomial in ¢, and thus has four
roots. Two of these roots are negative, which we discard—the remaining two positive real roots are

1 1 —4V2(kepr)? 12
_ - - p
“T ( 2(ke,pr)? ) ’ 2

1/2
14 /T—4V2(kepr)?
= ’ : 4.2
" ( 2(ke,pr)? (429)

These roots exist for all positive values of V' and r. Notice that for each isovalue curve and each level of
the real interest rate there exist two values of consumption ¢ for which

d
rdtpe—y = —. (4.26)
C

In the two-dimensional state space (¢, p) it may be readily seen that these two points have an axis of
symmetry around the line defined by the origin and the single point where ¢; = ¢g, which is found to be

2Note that we are being a bit sloppy here: to be completely precise we should not simply cancel the differentials but
should integrate both sides along the path dc from a reference point ¢* to an arbitrary consumption level ¢ and then
compare the results. For small changes dc, however, the two approaches can be shown to yield identical results in this
case, and we adopt the less precise but more compact method for the exposition.
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L V2

= . 4.27

¢ 2ke pr* ( )

The key point here is to note simply that for the isovalue lines, those values of consumption and

price for which (%) = — (%) must have the same interest rate! Intuitively it is clear that
c=cC c=cC2

this must be the case, as the relative appreciation of the consumption good, when accounting for price
movements, will be the same if the relative trade-off between consumption and the price level is the
same. The second point to note is that as the value pc rises, i.e. as V increases, the interest rate at a
given price level must fall. This is due to the fact that an infinitesimal change dc will become less and
less significant, the larger is c. These two facts are simply reflected in the fact that for a given interest
rate, the points (c¢,p) must lie on a circle, as in Figure (5). As r decreases, the points of intersection
of the isovalue line with the constant-interest-rate circle must diverge further and further away from
ray between the origin and ¢*. This also implies that as the overall value of consumption increases, the
maximum interest rate which can sustain this value (i.e. r*) must fall. The lowest interest rate levels
will exist at the “endpoints” of the isovalue curve, i.e. at those points where either 1) consumption is low
and the price level is high (by the same argument, this is a low-inflationary state), or 2) consumption
is high and the price level is low (which is a high-inflationary state). If we observe very low interest
rate levels coupled with a high value of consumption V, then there are only two economic ‘regimes’
which can exist, one with high inflation and one with low inflation. Economies with a very low value of
consumption, on the other hand, may exist at all interest rate levels.

Let us continue with the solution for the isovalue case: using the relation pc = V we may resubstitute

this back into (4.23) to yield
/ 2
p 1
kc 1 —_ = - = 4.28
T + 02 c ( )

c= <m —p2>1/2 (4.29)

_1
(kC,pT)Q .

As stated before, the equilibrium values of ¢ and p for which the interest rate is constant lie on the
quarter-circle where ¢ and p are both positive.

or

& +p*= (4.30)

For our grand purpose of finding the unknown integrating factor what is important is the function
of state for c—or equivalently for p, i.e.

p= (ﬁ — 02>1/2 , (4.31)

which is simply rewriting equation (4.29).
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5 The Economic Constraint

Recall that considering an arbitrary equilibrium path along which 6S = f(r)dXgs we arrived at the

relation (3.26):
70 | (3) 5] - 100 (32) o 6.1

This may be rewritten as

roy__ (B),
() = o, (%)T *p7 (5.2)

from which we see that since the left hand side depends only upon r, the right hand side must satisfy

o ().

SO0 )-@6E @)=

e (py (Z—l) - <%2)) (5.5)
B )

This relation must be true along any path in the state space—in particular, it must also be true along
the curve given by (4.30), i.e. along curves of constant real interest rate. This allows us to find several

=0= (5.3)

1/2
of the quantities present in equation (5.5), from p = (W — 02) :

AR T A | 56)
o).~ \lepr? © (hep)2r3 — (hop)?pr® '
Jdp 1 —1/2 c
<6_> - <<k >> ()= (57)
T c,p
*r I 2. o c (5.8)
orde (ke,pr)? ¢ (kep)2r3 - (kep)2p3r3 ’

Mass substitution into (5.5) yields



0%y c c oy c
Py <@> T R <E>r e (5.10)

Py\ ¢ [0y 2c
(@) o (%l Ny (5.11)

Letting h(c,r) := (%ﬁ) , this defines a first-order partial differential equation:

r

oh c 2c
— = —h - —. 5.12
dc p? pyp (5.12)

Solutions to this partial differential define a family of solutions which depend upon an arbitrary function
of the real interest rate—in this case, the solution can be written as

2
h<cv71) = _C_ —i A(T) 5
pyp  keprp

(5.13)

where A is the arbitrary function of r, and i is the imaginary number /—1.
For simplicity we shall consider only the solution for which A(r) = 0.* Under this simplification we
find that

8y> 2
— = ——. 5.14
<<9c r Dyp (5.14)

We may now substitute this result, and the earlier result for (%) , into equation (5.2) to arrive at
c
a solution for the integrating factor:

1 1
f'(r)  Gepm® G 1

_ : = ==, 5.15
TG TRy 19
Integration of both sides then yields
In(f(r)) = —In(r), or (5.16)
1
f(r)= o (5.17)

Our representation of the adjustment to savings is complete: since we know that f(r) has the same
functional form regardless of state, we have that

3Note that this is not the same thing as considering only real solutions—for it is perfectly reasonable that A too may
depend upon i in such a way as to make the second term on the right hand side real as well.
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1
68 = ~dXs. (5.18)

This is the fundamental equation we seek—it relates the adjustment to savings (and hence, as described
earlier, the adjustments to expenditure) which occurs during a change of state to the state of the economy
which exists just prior to the change. Measurement of the path dependent adjustment is now possible
by measuring a change of state, which is path independent. Some implications of this result are outlined
in the next section—they are not exhaustive by any means.

6 Economic Implications

The relationship (5.18) between the economic constraint Xg and the adjustment to savings is in fact a
definition of opportunity cost. Consider a move from one equilibrium, say «, to another equilibrium 3.
The change in economic constraint may be given as

B
X.(8) - Xs(a) = / r8S. (6.1)

«

Thus, the change in the economic constraint measures the return of the adjustment to savings between
states a and (8, and this change is independent of the path taken between o and (3. Suppose that, for
a fixed level of income, the movement from a to B required a positive adjustment to expenditure (so
that 6E > 0). For the same movement, then, the adjustment to savings was negative (since in this
case 6E + 8S = 0), and the economic constraint falls from « to (. This fall may be interpreted as the
return foregone by adjusting 6 E upwards instead of investing the same amount at the real interest rate
r. Note that this remains in the realm of interpretation because we have said nothing about how savings
is invested, or a return accrued, except with regard to the non-arbitrage law and the definition of real
consumption accumulation. The return foregone is the opportunity cost of moving from equilibrium
state a to equilibrium state (.

If the change in the economic constraint is negative, then, there is a cost to moving from one
equilibrium to another, while if the constraint is positive there is an excess expenditure which is absorbed
into savings and generates a return. It is intuitively appealing to refer to those equilibria which induce
an opportunity cost (rather than a return) from a given reference state as more constrained precisely
because they require an application of expenditure to generate. Somehow, something must be spent or
sacrificed in order to obtain the new equilibrium—in other words, more conditions are imposed upon the
system which require additional adjustments to expenditure.

Note that with this interpretation we must be very careful to distinguish between adjustments to
expenditure which generate a net investment (generating a real opportunity cost), and those adjustments
which would not lead to a net investment because the interest rate changes at the same time. For example,
since the economic constraint is a function of state, over any quasi-static business cycle the net change
in this constraint is zero, even though adjustments to expenditure are made along the way. The net
change in the opportunity cost over any quasi-static business cycle is zero, because the interest rate
adjusts so as to balance any gains or losses along the way:

AX, = réS = 0. (6.2)

cycle
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Thus we can interpret the economic constraint Xg as an opportunity cost of moving from one
equilibrium state to another equilibrium state. While it is certainly plausible to infer that at a given
equilibrium state this opportunity cost is minimized (so that any infinitesimal deviation of Xg away
from its equilibrium value is zero), this does not appear to be deducible from the foregoing analysis. A
deeper investigation into the microeconomic foundations of the opportunity cost are necessary before
such a statement can be rigorously derived.

We are now in a position to derive the equation for the economic constraint in order to see how it
changes with respect to e.g. consumption and the real interest rate, to see if it confirms our intuition that
1) the opportunity cost ought to rise (i.e., Xg as defined should fall) with consumption, as resources are
committed at the expense of investment, and 2) the opportunity cost should rise with the real interest
rate, as the return foregone increases.

To derive the economic constraint we utilize the following (Legendre) transformation: we define a
function of state A(p, ¢) such that

Afp.c) = inf [pyy(X, o) — %X} . (6.3)

We know that the infimum is achieved when X = X¢(p, ¢), i.e. at the economic constraint, because

<%>X—X§; - pir (6.4)

when X = Xg(p, ¢). Thus,

Alp.¢) = pyy(Xs(p.c)) — > Xs(prc), (65)

or

A(p,©) = pyy(Xs(p,¢) — kop (2 +°) " Xs(p, ) (6.6)

and

(M)c _ py(ay(xs,c)> <aXS(p,c)> (@ )2 25 Xs(p.0)

op 0Xs dp .2
— ke p(c + p?)1/? (L(Sag’ C)> : (6.7)

(M>p . <6y(Xs,C)> <3XS(P7 C)>p+py (M)p_ L (@ 4 1?)"12(—20) X s (p, )

de 0Xg oc dc 2
(P 4 P22 <3X%(CP7C)> . (6.8)
p
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These relations can be considerably simplified by noting that

ay(XSa C) _ 1
< aXS c B Pyr ’ (69)
(L(XS ’ C)> _ L (6.10)
Oc » Dy
so that by substitution
0A(p, _
( g; C)> = kepp (& +0%) " Xs(p,c), (6.11)
0A _
(%) =p+ ke pe (CQ + pQ) 1/2 Xs(p,c). (6.12)
P

Since A(p, c) is a function of state we know that

or (after simplifying)

~1/2 0X5(p, ¢)
oc

_1/2 0Xs(p, 1
—e(E+p?) 1/2% = (6.14)
P

p(® +p?)

A closed-form family of solutions to this partial differential equation exists—it is

Xspe) =+ (& +9°) " T arctan[2] + $(c? 1 ?) (6.15)

¢,p ¢

or

1 9 1/2
Xs(r,c) = £t arct (=) v (6.16)
s\r,c) = (kcp)Q'r arctan c (kc’p'r)Q .

Again for simplicity we shall consider the solutions for which ® = 0, and will select the positive root
as it is this solution which agrees with our requirement that dy be an exact differential (this can be
seen by finding the conditions under which mixed partial derivatives of y with respect to ¢ and r are
equal-see the income analysis below). We note immediately that with this solution
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(axgg, C)>c _ m (]ED + arccot[%}) . (6.18)

Since the state variables ¢, p, and r are all positive, both of these partial derivatives are negative—that

is, the economic constraint (or opportunity cost) rises as either consumption rises (for a fixed interest

rate) or the interest rate rises (for a fixed level of consumption). Our intuition is confirmed. In addition,

it is to be noted that by far the greatest impact upon the economic constraint comes from the interest
1

rate, due to the =5z term in equation (6.16).

We next derive income as a function of state. We know that

(252), - (52) (242) -

Elr <m <£ +arccot[1—i]>> , (6.20)

(52) - () (50 -(292) - v
1 1 P

and

— () + —. 6.22
pyr( plkep)®r”  py (6:22)
Note that (6.22) is equivalent to (5.14), since
1 1 (2 + 2 2
(- _ Hﬂzi(c P p_ < (6.23)
pyr- plkep)?r’ " py Pyp Py Dyp

This confirms that our selection of the positive root of (6.16) with ® = 0 is consistent with what we
already know about income (further evidence is given in deriving the consistency conditions for the
mixed partial derivatives in (6.26), which we omit here for brevity).

These partial derivatives for income again confirm our intuition that as consumption or the interest
rate rises, income will fall. Although the exact mechanisms dictating these changes are left unspecified
(for they belong to the realm of the underlying microeconomy), the effect upon income is nonetheless
what we would expect.

We may now define the exact differential dY = p,dy with respect to c and r as

y(r,c oy(r,c
it = (B0 g (D) 4o -
1 1 c c 1 1
—(— — +arccot|—| |dr+ | - (———=—) + dc, 6.25
T( (kC,PT)Q (p [p}> <T( p(kc,p)zr) p) ( )
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from which it may be verified that
a9 (Oy(r,c)\ 0 (0y(r,c)
dc < or >c - Or < oc ), (6.26)

as expected.
Integrating (6.24) yields the solution (neglecting constants of integration):

1 1 S\ 2 1 _ ™
Y(C, T’) = pyy(c, ’I“) = 50 <W —C > — W (arcsm(kzc,prc) — 5) y (627)
or
1 1 . T
Y = 5P~ W (arcsm(kc,prc) - 5) . (6.28)

Thus nominal income is half of the value of consumption adjusted for the interest rate. It is clear from
this that a higher interest rate implies lower attainable values for p and ¢ (from equation [4.30]) or
equivalently a higher opportunity cost penalty. As with the economic constraint it is the interest rate
which has the greatest effect, since changes in consumption or the price level only significantly change
output as either of them approach zero. Lower interest rates imply a lower opportunity cost, higher
possible levels of consumption, and consequently a higher level of income.

7 Concluding Remarks

The methodology introduced in this paper carries with it a host of implications which cannot be given
in their entirety here-the outline sketched here is meant to simply 'whet the appetite’. Readers well-
versed in the study of conservative systems, and primarily thermodynamics, will have no difficulty in
following the arguments made, and are free to generate useful economic parallels to other quantities such
as the thermodynamic potentials (one of which has already been used briefly here). But the point of
the exercise has been to show that a few straightforward assumptions about the gross properties of any
macroeconomy (namely, the conservation of income and the law of non-arbitrage) can generate a rich
assortment of conclusions without having to place too much unnecessary or unrealistic structure upon
its surface. The existence of the economic constraint and its deep relation to the concept of opportunity
cost is one such benefit.

But the analysis, as such, is incomplete. We know that any macroeconomy is (at least) the sum of its
microeconomic parts, and any treatment of the gross properties must at some point be reconciled with
what is known about the microeconomy before stronger conclusions may be drawn. Such a reconciliation
is a program for future research, in which it is to be shown that aggregate state variables are well-defined
averages of known microeconomic activity. Such activity does not imply the existence of a representative
agent with a well-defined utility function, although the underlying microeconomic agents may possess
and use such functions. Rather, the macroeconomy is a summary of countless interactions which must be
addressed at the statistical level so that the organizing properties of the macroeconomy are understood.
In this light, the more complicated and assuredly more realistic non-conservative dynamical systems
which appear to compose the majority of macroeconomic behavior may find a more fundamental and
hence more palatable foundation.
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Figure 1: An Equilibrium Transition

24



Figure 2: A Simple Business Cycle
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Figure 3: A Small Change in Consumption Over a Smooth Path
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Figure 5: High and Low Inflationary Regimes
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