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Local power functions of tests for double unit roots
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ABSTRACT. The purpose of this paper is to characterize three commonly
used double unit root tests in terms of their asymptotic local power. To this
end, we study a class of nearly doubly integrated processes which in the limit
will behave as a weighted integral of a double indexed Ornstein-Uhlenbeck
process. Based on a numerical examination of the analytical distributions, a
comparison of the tests is made via their asymptotic local power functions.

KEYWORDS: Asymptotic local power function, Brownian motion, Ornstein-Uhlenbeck

process.

JEL CLASSIFICATION: C12, C14, C22.

1. INTRODUCTION
Most economic time series have properties that mimic those characterizing unit root
(integrated) processes. A characterization in terms of integration of order one, I(1),
seems appropriate for the majority of the series, however, some variables like prices,
wages, money balances!, stock-variables etc., appear to be smoother than normally
observed for variables integrated of order one; such series are potentially integrated of
order 2 whereby double differencing is needed to render the series stationary. We will
refer to such series as having double unit roots. By now there is a growing literature
focusing on the complications implied by double unit roots. This literature is not
only concerned with univariate testing for 1(2), (Hasza and Fuller (1979), Dickey
and Pantula (1987), Sen and Dickey (1987), Shin and Kim (1999), and Haldrup
(1994a)), but it also focuses on the rather complex dynamic interactions occurring
in I(2) cointegrated models (compare Johansen (1995, 1997), Kitamura (1995), Choi,

*This paper was completed while the first author was visiting University of California, San
Diego, in the spring of 2000. The Economics Department at UCSD is gratefully acknowledged for
its hospitality. We also want to thank Sgren Johansen for useful comments. The usual disclaimer
applies.

For instance King et. al. (1991) find that both money and prices for the US can be described
as 1(2) processes.
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Park, and Yu (1997), and Haldrup (1994Db)). In Haldrup (1998) recent advances in
the theoretical and empirical literature on 1(2) are reviewed.

In the present paper, our attention is directed towards univariate testing for the
order of integration, and the purpose is to compare the asymptotic local power func-
tions of three commonly used unit root tests designed to test the null of I(2). The
tests are: 1) the sequential Dickey-Pantula test, (which relies on prior differencing
before testing for 1(2), 2) the Hasza-Fuller test, (which is a joint test for the number
of unit roots), and 3) the Sen-Dickey test, (which is a symmetric version of the Hasza-
Fuller test). These tests have been compared in a number of settings via Monte Carlo
simulation in terms of their power against a fixed alternative for a given sample size.
However, as far as we know of, no systematical comparison has been conducted of the
tests in terms of their asymptotic local power properties. In order to do so we define a
class of nearly doubly integrated processes which extends similar analyses conducted
for I(1) tests by Chan and Wei (1987) and Phillips (1987a) inter alia. Nearly doubly
integrated processes have also been used in a different context by Nabeya and Perron
(1994) and Perron and Ng (1996, 1998). It occurs that the limiting distributions
can be described in terms of functionals of a twice indexed weighted integral of an
Ornstein-Uhlenbeck process where the non-centrality parameters measure the (local)
distance from the exact I(2) case. Consequently, the asymptotic distributions can be
evaluated numerically by varying these parameters. This can serve different purposes;
firstly, the simulated distributions may provide an approximation to the exact finite
sample distributions when roots are close to but not exactly one, and secondly, the
distributions can describe the asymptotic local power functions in terms of the two
non-centrality parameters. The numerical results indicate that the superiority of the
various tests to a large extent will depend upon the region where the non-centrality
parameters are located. The symmetric test of Sen and Dickey is found to be superior
against locally stationary alternatives, whereas the Dickey Pantula test has relative
high powers against explosive alternatives. Also, the Dickey Pantula test performs
rather well when one exact unit root is present. As a by product of the theoretical
analysis we evaluate the adequacy of the analytical expressions to approximate the
exact finite sample distributions of the various tests when a local discrepancy from
the precise I(2) case applies.

The paper proceeds as follows. In section 2 the three double unit root tests
scrutinized in section 4 are presented. Section 3 defines the class of nearly doubly
integrated processes and the analytical distributions of the three test statistics are
reported as a function of the non-centrality parameters. A numerical characterization
of the local asymptotic power functions is subsequently provided in section 4 and in
section 5 we compare exact finite sample distributions with some of the distributions
that follow from the local to unity asymptotics. The final section concludes. All
proofs are reported in a technical appendix.
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2. TEST STATISTICS FOR DOUBLE UNIT ROOTS

In this section three commonly used procedures in testing for I(2) are briefly de-
scribed. The main purpose is to present the statistics with the aim of comparing their
asymptotic local power functions in section 3. All three tests can be represented in
both parametric and semiparametric versions in order to remove the influence from
possible nuisance parameters which otherwise would be harmful with respect to the
limit theory. Since both the parametric and semiparametric tests have the same lim-
iting distribution under the null of double unit roots, it appears that we can consider
the simplifying assumption where the error term wu; is i.i.d in the data generating
mechanism

(1—aL)(1—al)yy=u  t=12,....T (1)

This assumption will have no quantitative or qualitative implications with respect
to the analytical findings of the paper but it will greatly simplify the analytical
derivations. With no loss of generality, we also assume the initial conditions to be
fixed; in particular, we let yg = y_1 = 0 to simplify the notation. To make the points
clear, we will abstract from the presence of deterministic components in the regression
models although we realize the importance of this aspect in unit root testing.

2.1. The Dickey-Pantula test. The first test is due to Dickey and Pantula
(1987) who suggest a sequence of testing where initially I(2) is tested against I(1).
This can be accomplished by prior differencing of the time series and then conduct-
ing a standard Dickey-Fuller test for an additional unit root. Hence the auxiliary
regression reads (after imposing a single unit root, ay = 1) :

APy, = (@~ 1)Ay, 1 + (2)

where the t-ratio associated with the regressor Ay;_; is used to test Hg : @ = 1. This
is nothing else than a standard I(1) problem for the first differenced data, and the
test statistic follows the Dickey-Fuller distribution. Observe that under the null of
double unit roots we have that oy = ay = 1 in accordance with (1) and w; = .
When the null hypothesis is rejected, I(1) is subsequently tested against I(0) using
standard I(1) tests. In the presence of non i.i.d. errors the augmented Dickey-Fuller,

(Dickey and Fuller (1979)), or the Phillips (1987b) and Phillips-Perron (1988) tests

can be used under rather general conditions?.

2.2. The Hasza-Fuller test. An alternative way of writing the data generating
mechanism (1) is A%y, = (o — Dy 1 + (v — 1)Ay; 1 + u; where (@ — 1) = oy + ay —

2The general conditions concerning u; which are permitted in the semi-parametric class of tests
can be found in e.g. Phillips (1987b), Assumption 2.1.
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ajas—1 and (v — 1) = ayas—1. Hence, a joint test of the hypothesis Hy : cy = cip = 1
(corresponding to & =y = 1) can be constructed from the auxiliary regression

Ay, = (& — Dy 1+ (7 — 1Ay, 1 + Uy (3)

Hasza and Fuller (1979) were the first to suggest an F-test for the double unit root
hypothesis. Observe that since the F'-test is two-sided, the alternative hypothesis is
quite general as it includes situations where z; is either explosive, 1(0), or I(1). In
the paper by Hasza and Fuller the non-standard limiting distribution of the F-test
statistic is derived. By using a slightly different notation than in their paper, the
distribution can be shown to read, see Haldrup (1994a):

0

Fay = % /0 L Glryaw( /0 GGy dr) ! / LGy (4)

where G(r) = (W(r), W(r)), and W(r) is a standard Brownian motion on C[0, 1], i.e.
the space of continuous functions on the unit interval, and W(r) = [5 W (s)ds. Em-
pirical fractiles are reported in Hasza and Fuller’s paper®.

When u; is not i.i.d. then under rather general conditions the Hasza-Fuller regres-
sion (3) can be augmented with lags of A%y, to whiten the errors. As an alternative

test, one of the authors, Haldrup (1994a) has constructed the semiparametric equiv-
alent of this test.

2.3. The Sen and Dickey symmetric test. A different class of (non-sequential)
tests is the so-called symmetric tests which, in an I(2) setting, were initially suggested
by Sen (1986) and Sen and Dickey (1987). The test is a symmetric version of Hasza
and Fuller’s (1979) joint F-test. The motivation arises from the interesting property
that if the stationary difference equation defining the time series is given by

Yo = 01+ P2t oo T QY p + Uy (5)

where u; is white noise with variance 02, then the series with the same difference
equation equal to
Yt = O1Yer1 + Poltia + oo + OpYeip + Ut (6)

will also have white noise errors v; with the same error variance as for u;, 02 = 02 see

Fuller (1976). The basic idea is thus to jointly estimate (5) and (6), in a symmetric
fashion, and use it to test for double unit roots.

3Note that the distribution result (4) also will apply for the asymptotically equivalent likelihood
ratio test of the joint hypthesis. Hence we do not consider the likelihood ratio test in the present
context.
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Assuming y; to be an AR(2) process, the symmetrized version of the Hasza-Fuller
regression model (3) is given by the pair of regression equations

A%y, = (G—Dye 1+ (7 — DAy 1+, t=3,...,T (7)
A%y, = (&= Dy 1 — (Y= 1DAy 4+ 0y 9, t =3, ...,T (8)

where certain cross-equation restrictions on the parameters are seen to apply, and
hence intuition suggests that under stationary alternatives this will provide more
efficient estimates of the parameters of interest, o and ~.

From this ’extended’ Hasza-Fuller regression the F-test of the hypothesis Hy : o =
v =1 can be constructed. Due to the symmetry of the regression model, the limiting
distribution of the F-test statistic becomes somewhat simplified as cross terms appear
to cancel. The distribution is still non-standard and reads

S o ([ WP )an) ([ Weaw + ([ wrean) (9)

The empirical distributions reported in Sen and Dickey’s article only consider the
situation where an intercept and a possible time trend are included in the regression.
Since we have deliberately decided to abstract from deterministic components in the
present paper, the critical values for this case have been simulated, see Table 1.

Again the above test can be generalized to the case with non i.i.d. errors through
augmentating lags of the second differenced series; which lags to include is non-trivial
in this case, see Sen and Dickey’s article for details. As an alternative test, Shin and
Kim (1999) have suggested a semiparametric analogue of the symmetric test.

Insert Table 1 about here

3. AsYMPTOTIC DISTRIBUTIONS OF I(2) TESTS UNDER LOCAL ALTERNATIVES
In Bobkoski (1983), Phillips (1987a), Chan (1988), and Chan and Wei (1987), a class

of autoregressive models with a root local to unity has been introduced. In particular,
they consider the model

ye = exp(c/ Ty 1 +

where u; can satisfy rather general requirements. The model is quite general: The
unit root model is encompassed by letting ¢ = 0, mildly explosive processes occur
when ¢ > 0, and nearly integrated processes show up for ¢ < 0. By letting ¢ — 400
(after letting T' — 00) the stationary or explosive region is reached although only a
heuristic description can be given in this case, see Phillips (1987a).

Here we study the double unit root tests presented in the previous section by
assuming nearly doubly integrated processes. This class of models has previously
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been considered in a different context by Nabeya and Perron (1994), and Perron
and Ng (1996, 1998). See also! Jeganathan (1991) and Swensen® (1993). The data

generating mechanism is given by

ye = exp(er/T)ye 1+ vy (10)
vy = exp(e/T vy + w (11)

where for simplicity u; is assumed to be i.i.d. (0,02) and again we let y | = yo = 0.
Alternatively, the process can be represented as

yr = (exp(c1/T) + exp(ca/T)) -1 — exp((c1 + c2) /T)ye—2 + ue (12)

As T — oo, y; is seen to have two unit roots hence suggesting the terminology of
y; being "nearly doubly integrated”. By varying ¢; and ¢y a wide range of different
processes can be examined including mildly explosive processes, single and double
unit root processes, and nearly (doubly) integrated processes.

A few remarks on the limiting behavior of y; will provide some insight. It can be
shown, see Bobkoski (1983), Phillips (1987a), and Nabeya and Perron (1994), that

as ' — oo,
T V% = o, /OT exp((r — 8)e1)dW (s) = oy J;, (1) (13)
T3%, = o, /OT exp((r — v)ey)Je, (v)dv = 0,Qe, (Joy (1))

Jo(r) is known as an Ornstein-Uhlenbeck process and corresponds to a Brownian
motion for ¢ = 0, i.e. J._o(r) = W(r). The expression Q.,(/J.,(r)) is a double indexed
weighted integral of an Ornstein-Uhlenbeck process, and hence, for ¢; = co = 0 it is

seen that Q.,—o(Jey—0(r)) = Jo W(s)ds = W (r) as previously defined.

First we study the properties of the Dickey-Pantula test which relies on the Dickey-
Fuller ¢-statistic from the regression (2). It occurs that the equation (12), can be
rewritten in a different form by exploiting the series expansion

T T
The remainder Ry is of the order O(T~?) which appears to vanish from the asymptotic

exp <£> =1+ ° + Ry (14)

expressions, and hence, in the sequel the approximation exp (%) ~ 1+ £ will show

4Jeganathan (1991) presents a general approach to the asymptotic behaviour of least squares
estimators in AR time series having roots close to the unit circle.

5Using contiguity arguments, Swensen (1993) shows how the local power function for the likeli-
hood ratio test of the double unit root null can be expressed in terms of a Radon-Nikodym derivative
of an Ito process with respect to a Brownian motion.
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useful. It is shown in the appendix that the autoregressive model (12) is equivalent
to writing

c1+cy  Cle
T T2

C1Co

)Ayt 1— T2 5 Yi— 1+Ut+0< 3/2) (15)

AQ% = <
and hence, in terms of the notation (2)

C1+ Co C1Co
—1= 42
¢ ( T T2>

and e
1C2
We =~y Yo 1+ + O (T77)

The following theorem holds:

Theorem 1. Assume that v, is nearly doubly integrated according to (12) and con-
sider the Dickey-Pantula t-test of Hy : a = 1 based on the regression (2). Then as
T — o0

(a) si, = lzt 2 & _”72
() T@—1)=ci+cp+ 0y (Jer(1))?}

() tar= (e +e) T+, z {\h — 28Q, (J,(1)?)

In the above expressions ¥; = {01 fol Qey (Jop (1)dW () + fol Jey (T)dW(T)} and Uy =
{1Qe (T (1))2 = & Jo Qy (o (r))2dr + [ Ty ()2}

Proof: See appendix.

Observe that the limiting results for ¢, ; will mimic the usual Dickey-Fuller dis-
tribution when ¢; = ¢9 = 0.

Next we shall focus our attention on the joint Hasza-Fuller F-test which is based
on the regression (3). With the data generating mechanism (15) parameters are given
as @ — 1= —ciep/T? and v — 1 = (1 + ¢3) /T + 162/ T?. If we write the regression
equation more compactly as A2y, = x, 18 + 4 with B/: (& —1),(y — 1)) and
x; = (y, Ay,)', the F'—statistic for the null hypothesis Hy : « = v = 1 is defined as

B/<Zg:1 XtXQ)B

2
2s2

Fa:fy:l =

The limiting distributions are given as follows:



LOCAL POWER FUNCTIONS OF TESTS FOR DOUBLE UNIT ROOTS 8

Theorem 2. Assume that vy, is nearly doubly integrated according to (12). Based
upon the Hasza-Fuller regression (3) the following holds as T — oo :

T (%
(€©) Foyy =1 {k:’ N +k

c1c2 c1c2

2 _
() (T o 1 >=>/€0102+M1N
Mbkeye; + N'keyey + N'MTINY.

The following symbols have been used:

_ ( fo Q01< ( ))er %Qm(‘]cz(l))Q )
3Qe: (J,(1))? T,

N ( Jo Qey (ey (r))dW (1) ) and k.. :( —ci0s )

\Ijl C1+ Co
Proof: See appendix.

Again the distributions simplify when ¢; = ¢y = 0; for instance, the Hasza and
Fuller (1979) distribution reported in (4) follows as a special case of Theorem 2¢ as
can be easily verified.

Finally, we focus our attention on the Sen-Dickey symmetric version of the Hasza-
Fuller test. This is based on joint estimation of the equations (7) and (8) and construc-
tion of the F'—test statistic for the null hypothesis Hy : @ = v = 1. Likewise the Hasza-
Fuller test, a—1 = —cyco/T? and y—1 = (cy+¢9) /T +c19/T?. To construct the statis-
tic we need to define the matrix of regressors X = (X, X5) and the regressand vec-
tor Y where Xy = (y3,...,¥r 1,Ur 1, - %), Xo = (A, Ayr 1, —Ayr, ..., —Ays)’,
and Y = (A%y;, ..., A?yp A?yp, ..., A?y3). Using this notation, Y = X3 + u with
B'=(a — 1,7 — 1) and where the errors are given by u = (us,...up,vr 9,...01)"
The F'—statistic reads y N

s BOXX)B

el 952
where 52 (2T) v'u. The asymptotic results are given as follows:

Theorem 3. Assume that y, is nearly doubly integrated according to (12). Joint
estimation of the symmetric regression equations (7) and (8) yield the following results
as'l" — oo
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sym

T2(a —1
(b) ( %O‘ AN Keyes + Mot Ny
(C) FO‘CS mfl = l k/ Nsym + k/ Msymkclcg _I_ N/

2 c1Co c1C2 sym

Feres + Ny Moyt Noym §

sym*tsym

k. ., has been defined in Theorem 2 and we use the following additional symbols:

_{ 2J0 Qe (Jep(r))?dr O
Msym_( B 2‘I’2>

N. — 2]101 QC1<J02 (T))dW<T) + (Cl + 62)Q01<‘]02<1))2
sym e 2((31 + CQ)\IJQ
Proof: See appendix.
The semi-parametric analogies of the above tests, which were referred to in section
2, will have the same limiting distributions as those reported in Theorems 1-3.

4. A NUMERICAL COMPARISON OF POWER FUNCTIONS UNDER LOCAL
ALTERNATIVES

It remains to compare and evaluate the quantitative implications of the derived an-
alytical distributions under local alternatives for the three tests under scrutiny. In
this section the tests are compared numerically with respect to their asymptotic local
power functions.

The design of the numerical simulation was conducted as follows. The data gen-
erating process was given as

ye = [exp(c1/T) + exp(ea/T) ye-1 — exp((c1 + ¢2)/T)ye—2 + ue.

with u; ~n.i1.d.(0,1) and with the non-centrality parameters taking the values {c1,co} €
{£10,48,+6,+4 +3,+2 +1.5, +£1, £.5,0} . Note, that because the role of ¢; and ¢y
enters symmetrically in the limiting distributions, the number of parameter combi-
nations in the simulations can be remarkably reduced. For each of the test statistics
in Theorems 1-3 the analytical distributions expressed as functionals of Ornstein-
Uhlenbeck processes were approximated with discretized Riemann sums with N =
1000 steps. For instance, fi Q., (J.,(r))dW (1) can be approximated by N-2 N v, 1u,.
Hence, for the simulation purposes 7' = N. Chan (1988) found that this way of ap-
proximating stochastic integrals was superior, both in terms of better approximation
compared to other methods but also with respect to speed of convergence. 5000 draws
from each simulated distribution were registered and the rejection frequencies at a
nominal 5% level were calculated. In Tables 2-4 the rejection frequencies correspond-
ing to the asymptotic local powers are displayed. Table 2 concerns the case where
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two roots are locally stationary. Table 3 has two roots locally explosive, and Table
4 displays situations with one locally stationary root and one locally explosive root.
Figures 1-3 display the power surfaces for each of the three tests.

Insert Table 2 about here
Insert Table 3 about here
Insert Table 4 about here
Insert Figure 1 about here
Insert Figure 2 about here

Insert Figure 3 about here

Generally, the comparative advantages of the various tests (in terms of asymptotic
local power) depend upon the region being studied. For instance, when both roots
are locally explosive the Dickey-Pantula test appears to have marginally better power
than the two joint tests, (see Table 3); e.g, when ¢; = ¢o = 1 power is .50 as opposed
to .43 and .37 for the other two tests®. When the process has one unit root and one
explosive root, the Dickey Pantula test has superior power properties. This is not
surprising because in this case the prior differencing of the data when conducting
the Dickey Pantula test is a valid restriction. From Table 2 it can be seen that for
processes with one unit root and one locally stationary root, the Sen-Dickey test
performs quite well for alternatives close to the double unit root case, whereas for
alternatives further away, i.e. for larger values of ¢y, the Dickey-Pantula test has
slightly higher power. On the other hand, diverging away from the null towards
the locally stationary region for both roots, the Sen-Dickey symmetric test clearly
outperforms the two other tests, e.g. compare ¢; = ¢y = —6 where the Sen-Dickey
test has a power of .91 as opposed to .76 and .78. The superiority of the Sen-Dickey
test in the (locally) stationary region is what we would expect a priori. In fact, in
motivating their test, Sen and Dickey (1987) noted that the symmetric version of the
model is permissable in the stationary region and hence it is in this region power
gains can be expected. Our results show that this conjecture is indeed correct. In
comparing the Dickey-Pantula test and the Hasza-Fuller test no clear ranking can
be given unless one of the roots is very close to one (e.g. ¢; = 0) in which case the
Dickey-Pantula test has better power.

5For the the number of replications conducted in the simulations a difference of powers exceeding
.02 can be considered significant.
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Finally, observe from Table 4 (i.e. the case with an explosive and a stationary
root), that the power function is not everywhere monotonic in ¢; and ¢o. For instance,
when ¢; is positive whilst ¢s is negative, the influence from a locally explosive root
and a locally stationary root may off-set the influence from each other and hence
may lead to reduced power. No unambiguous ranking of the tests can be given in
this case, however, the general impression is that when one root exceeds unity and
the other is less than unity, then in most cases the Dickey-Pantula test performs the
best.

5. APPROXIMATING THE EXACT DISTRIBUTIONS VIA LOCAL TO UNITY
ASYMPTOTICS

In order to examine the adequacy of the local to unity asymptotic distributions to
approximate distributions in finite samples a simulation experiment was conducted.
Figures 4-7 display quantile-quantile (QQ) plots of exact finite sample distributions
against the associated theoretical distributions obtained from simulating the various
test distributions reported in Theorems 1-3 for particular values of ¢; and c¢y. Obvi-
ously, points lying on a 45 degree line will indicate that the two distributions are quite
similar. The local to unity distributions were simulated according to the procedure
outlined in the previous section. For given values of ¢; and ¢y, the corresponding finite
sample distributions were found by noting that for a series of length 1" the associated
values of a7 and @y can be found as

(7)
ap = exp|—
T

Co
Qg = exp <T>

According to this scheme, AR(2) processess with N(0,1) innovations and zero ini-
tial conditions were simulated for various combinations of ¢y, ¢, and 1. The three
statistics were subsequently constructed for each data series and based upon 10000
replications an estimate of the exact distribution was found.

Three basic experimental designs implying autoregressive roots getting closer and
closer to unity were considered ({¢; = ¢y = =10}, {1 = —4,¢90 = =6}, {c; = —1, ¢co = —2});
one experiment was such that a stationary and an explosive root were allowed,
({e1 = —4,¢9 = 1}). The sample sizes were 1" = 25,50, 100, 250,500, 1000 and the

corresponding AR roots oy and as, can be seen from Table 5.

Insert Table 5 about here

Insert Table 6 about here
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A goodness of fit measure in comparing the exact and asymptotic distributions
can be made by use of the Smirnov test, see e.g. Conover (1980). Since both the exact
and asymptotic distributions are simulated from two independent samples, (with a
large number of replications n), the test can be constructed from the statistic

D,, = sup|S;(z) — So(z)|

where S;(z),and Sy(x) are the empirical distribution functions of the exact and
asymptotic distributions, respectively. The null hypothesis states equality of the
two distributions (against a two-sided alternative) and critical values are given by
1.92n" Y2 at a 5% level and 2.30n" /2 at a 1% level. n = 10000 replications is used
in construction of the empirical distribution functions. The test values are reported
in Table 6.

As can be seen from the Smirnov tests the limiting theory gives a far from complete
characterization of the exact finite sample distributions, but this is what we would
expect. Especially given the large number of Monte Carlo repetitions (n = 10000)
upon which the comparison is made. In some situations, however, we cannot exclude
that the the exact and limiting distributions are identical, even for as small sample
sizes as 100-250; see in particular the Dickey-Pantula test for {¢; = —1, ¢y = —2}
and ({¢; = —4,¢9 = 1}. The QQ plots provide a visual impression in comparing the
two distributions. Obviously, the limit theory approximations are fairly bad in most
cases with a small sample size (smaller than 100), but also, the approximations tend
to improve considerably as the number of observations increases. Generally, the exact
distribution of the Dickey-Pantula test is described better than the Hasza-Fuller and
Sen-Dickey tests which is also indicated in the Smirnov tests , i.e. the Dickey-Pantula
Smirnov test statistics appear to be of a smaller magnitude than for the two other
tests.

Insert Figure 4 about here
Insert Figure 5 about here

Insert Figure 6 about here

Insert Figure 7 about here

6. CONCLUSION

In this paper we have derived asymptotic local power functions for a number of
commonly used tests for double unit roots. Asymptotic local powers for I(2) tests
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were compared using theory for nearly doubly integrated processes. This asymp-
totic theory is very useful in describing processes that have roots close to but not
exactly on the unit circle and hence provides a convenient framework for bridging
the apparent divergent theories describing stationary and non-stationary data. A
numerical comparison of the asymptotic local power functions indicate that the sym-
metric test of Sen and Dickey is clearly advantageous compared to the Hasza-Fuller
and the Dickey-Pantula test when the movement is towards (locally) stationary pro-
cesses. The Dickey-Pantula test appears to be better when the explosive region is
approached however.

We also used the limiting distributions of our asymptotic theory as a benchmark
for comparison with exact finite sample distributions. The characterization was far
from being complete as one would expect, but clearly the limiting theory was describ-
ing the distributions quite well when the number of observations exceeded 250. This
points to the fact that finite sample distributions can be hard to describe properly
by use of asymptotic theory, however, a local to unity approximation is clearly better
than relying on asymptotic results for stationary processes, say, when the near unit
root region of the parameter space is approached.

In the paper we have abstracted from the presence of deterministic components in
the models. In practice, it is of immense importance to properly deal with the possible
presence of drifts, trends, and quadratic trends, for instance. It remains for future
work to extend the analysis of the present paper to these more realistic situations, but
at least our analysis has provided an initial guidance toward the relative properties
of the various tests.

7. TECHNICAL APPENDIX
Proof of results reported in section (3).

The following Lemma 4 contains results reported in Nabeya and Perron (1994)
and Perron and Ng (1996,1998):

Lemma 4. Let {y,} be generated by (12), or equally (15) where u, satisfies the gen-
eral conditions of Phillips (1987b), Assumption 2.1. Then for T' — oo the following
limit results apply:

(@) T ATyt = 0% [y Qe (Joy(r))?dr

(b)
(€) T3YTy 1Ay = %%(chl) 2

(d) T 25Ty v = 02 3§ Qo (Joy (r))dW (7)

(&) TVST Ayryur = 02 {e1 3 Qe (Juy(N))AW () + [ Juy (AW (r) } = 02

T2 5T (A 1)? = 02 {e1Quy (T (1) — & 3 Qoy (o (7)) 2dr + 3 Ty ()2} = 02,



LOCAL POWER FUNCTIONS OF TESTS FOR DOUBLE UNIT ROOTS 14

Proof of Theorem 1. First we prove (15). We use the series expansions

c c

exp <Tl> = 1+ 71 + Ry (16)
c c

exp <TQ> = 1+ 72 + Ror (17)

where Fy; and Ryt are both O(T”). It follows that (12) can be rewritten as

c1+c¢ c1C
A%y, = <1T 2+%+R1T+R2T+R1TT+R2TT+R1TR2T>Ayt 1

cic ¢
+ <_% — RITT — RQT% — RlTR2T> Ye1 + U

Since RipAys 1, Ror Ay 1, Rir 7 ye 1, and Ryr 7y, 1 are all of order Op(T73/2) and
the remaining terms involving Ry, Ry are of a lesser order, the result (15) follows.

Now, the regression model we consider is given by (2) with a—1 = {(CHCQ) + "’1"’2} ,

and wy = =SR2y, 1 + O, (1~ 3/2) 4 uy.
First we prove (b): The least squares estimate of a (after appropriate scaling using

Lemma (4)) is given by
T -1
T@—a) = T2 (Z Ayt21> X
(Zﬁyt 1( e Qyt 1+ O0,(T 3/2)—|—u>>

From this, and by using Lemma 4, (¢) and (e), the second term is seen to satisfy:

(Zﬁyt 1( ClCQyt L4 Op(T" 3/2)—|—ut>>

C1Co

= -1 ZA% 1Yt s

+71! Z Ayp qug + 0p(1)

S e QL () + oy

whilst the limit of the first term is given in Lemma 4(b).
Since T'(@—a) =T(@—1) — (¢; + ¢3) + O(T 1), the result (b) follows.
Result (@) follows from the consistency of @ and the fact that

1T
T2

T

2 2
Z t+op _>O_u
2

~ |
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The limiting result (¢) can be deduced by using results (@), and (b) of Theorem
1, and Lemma 4(b) in evaluating t, 1 = (@ — 1)/[s.(Z1, Ay2 )~ V2].

Proof of Theorem 2. Result (a) holds trivially given the consistency of the
parameter estimates reported in (b) below.

To prove (b), define Dy = diag(T%/2, T/2) such that Dy (y,v) = (6uQe, (Jey (7)),
0ude, (1)) Tt follows from Lemma 4 that by letting x; = (¢, Ayy)’

. T TAYTyr TSy Ay
Lo < < Dol 1 Y1 LY12Ye—1 ) L 2ar
T 21: e (T3 STy T2E7 Ayl '

with M defined in the Theorem. Similarly it holds that
1 e T 251 ye1ug 2
WDT lexplm B ( T3 Ay quy = oul
The (scaled) least squares estimator can now be written as:

-1
1 T

TYV2Dr(B - B) = ( - th X, T) TI/QD;lzxt,lut;stlN

1

Because
-0 =) )= (G0 ) (e ) o

the desired result has been obtained with the definition k.., = (—cicq, c1 + ¢2)'.
In deriving the distribution of the F'—statistic (¢), we exploit that

B (STxx, )BTV Dy (17D ST x 1%, Dy') DrTV?B

Foryr = =
=7=1 2 2
2s% 2s%

The previously used procedure can be applied again, and hence we evaluate each
component in this quantity, realizing that each term is non-degenerate. The result
follows subsequently.

Proof of Theorem 3. We start by proving (b). Using Dy = diag(T%?, T"/?) we
have that

TY2Dp(B - B) = (1 DF'X'X Dy >1<T1/2DT1X’U>:
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1
2141 y? T3vs ! (Ayt)Q + Yo Ays — yr_1Ayr
T3 { ;{71 (Ayt)Q + yoAyy — nylAyT} 7222 Z;{fl (Ayt)Q + (Ay2)2 + (AyT)2
T2 Z;{ Y qup + T2 Z;{ Yt—1Vt—2
T Z;{ uAy —T71 Z;{ Aypvy_o

The first task is to compute the limiting distributions of the terms in (%D;lX’XD;l) .
It can be seen from Lemma 4 that the off-diagonal terms in the matrix (%D}IX’ XD}l)

will be O,(T~1) which is implied by the construction of the symmetric regression.

Also,
T-1 ) ) ) T—1 )
T {2 > (Ay)” + (Aya)” + (Ayr) } =213 (Aye)” + 0p(1)
3 3
which together with Lemma 4(a) establishes that
1
<7DT1X’XDT1> = 02 Myym

where Mgy, is defined in the Theorem.

The second task is to compute the limiting distributions of the terms in

1 ) T2 Z;{ Y qug + T2 Z;{ Yt 1Vt-2
<Tl/2 DrX u) B { T Z;{ wAy; =T Z;{ Ayveg (18)

First, we will calculate the limit distribution of the first entry of this matrix which
also reads

T
TﬁQZytfl@lft + v o) (19)
3

For that purpose we need to expand the coefficients in the "reverse regression”
by the second order expansions (16) and (17) to obtain an expression for v;_». Using
arguments similar to those in the proof of theorem 1, it can be easily shown that

c1+cy 10
T * 12

c1e _
Vg = Ny + [ } ANy + %ytﬂ + Op(T 3/2) (20)
Using the expression for A%y, (15), and inserting into (20), (19) can be rewritten

c1+cy | 10
T T2

T T T
TﬁQZyt%(ut +upg) = 2T72Zytflut +T72Zyt71 [
3 3 3

T

-~ c1+c¢ c1e
+T 22%1[ lT - —l-%} Ay + op(1)
3
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_ —2 d —92 4 c1+ ¢
= 27 Zytflut + 27T Z Yt-1 T Ayt,l + 0p<1)
3 3

N 203/QCI(JCQ(T))dW(7") + (1 4 )02 Qe (Jy (1))

Now we will calculate the limit distribution of the second entry in (18), namely

T T
Til ZutAytfl - Til Z Ayﬂ}t72 (21)
3 3

Doing the same trick as above, that is, inserting (15) into (20) and again into

T
T Z Ayve_g
3

yields
T T e e T T e e
T ZAythQ =7 ZAytAytfl - T 2+T ! Z Ayyu+T ! Z (Ayt)Q - T 2+0p<1)
3 3 3 3
Inserting the above expression into (21), and rearranging
-1 4 4 -1 4 2 1CG1 ¢ a
T ZutAytfl - Z Ayy o) = =T ZUtA y—T T Z AN TAN V7
3 3 3 3
et ey &
—7 ! = 23: (Aye)® + 0,(1)
T e tey L
= —T 1 Z’U,tA Y — 2T71 ! T 2 Z (Ayt)Q ‘I‘ 0p<1)
3 3

where we have exploited that Ay, = A%y, + Ay,_;.
Now substitute A2y, for (15) to get

T

= —02—2(c; + )02,

1 a d 1 a 2 11t 6 d 2
T Zutﬁytq - Z Ayy o) = =T Zut —2T Z (D)™ + 0p(1)
3 3 3 3

Hence we have established that

TY2Dr(B - B) = Mt Neym

sym
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where Ny, is defined in the Theorem. Because

o= =77 )= (G0 ) (e ) o

the result (b) in the Theorem is now proven.

To derive (a), we need to establish that 62 — o2 :

;= —uu=
“ooor 2 T 2 T

T -2 T 2
.y 1 ~/ﬁ_lz3 uy 135307

As 3 is consistent,
T -2
135 43 _ 1 o2
2 T 2
Inserting (15) into (20) and letting 7' — oo, it is clear that

Vi—9 =— Ut + Op<T71/2)
and
Vg =t} +0p(1)
Result (a) follows from the consistency of 3, and the fact that

150, _ 1554
2 T 2 T

2
u

+ 0,(1) — 37

Result (¢) can be deduced by using arguments analogous to those in the proof
of Theorem 2. In particular, with the present notation, the symmetric F'—statistic
reads _, N

1/2 “1p-1 ~1 1/2
psun T8 D1 (T71D7'X'XD;") DyTY B

—y=1 ~
o= 252

Taking appropriate limits the result (¢) reported in Theorem 3 is seen to apply.
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8. TABLES

Table 1. Percentiles of the Sen-Dickey F Sggnzl test without deterministic

components. The fractiles are found from 250000 Monte Carlo replications.

Probability of a smaller value

T .01 .025 .05 .10 .50 90 .95 975 .99

25 002 004 006 011 080 320 436 559 7.32

50  0.05 0.07 0.11 0.18 1.06 3.72 486 6.07 7.71

100 0.08 0.12 017 026 1.30 424 541 6.59  8.23

250 013 018 024 036 153 477 6.05 734 9.01

500  0.15  0.21 029 042 168 509 641 7.74 9.4
00(1000) 017 023 031 045 1.78 528 6.68 803 9.82
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Table 2. Asymptotic local powers. Two locally stationary roots. For each entry
of ¢; and ¢y the powers are calculated respectively for the Dickey-Pantula,
Hasza-Fuller, and Sen-Dickey tests.

Co (5]

-10 -8 -6 -4 -3 -2 -1.5 -1 -0.5 0
0.05
0 - - - - - - - - - 0.05
0.05
0.04 0.04
-0.5 | - - - - - - - - 0.05 0.05
0.07 0.05
0.07 0.05 0.04
-1 - - - - - - - 0.08 0.06 0.06
0.10 0.08 0.07
0.11 0.08 0.06 0.05
-1.5 | - - - - - - 0.10 0.10 0.08 0.06
0.14 0.13 0.10 0.08
0.15 0.12 0.10 0.08 0.06
-2 - - - - - 0.15 0.13 0.11 0.10 0.07
0.20 0.17 0.14 0.12 0.10
0.28 0.21 0.18 0.15 0.12 0.09
-3 - - - - 0.26 0.20 0.16 0.14 0.12 0.10
0.36 0.27 0.23 0.20 0.15 0.12
0.46 0.36 0.28 0.25 0.21 0.17 0.13
-4 - - - 0.42 0.34 0.26 0.23 0.18 0.16 0.13
0.58 0.46 0.35 0.29 0.26 0.21 0.17
0.76 0.62 0.55 0.46 0.41 0.36 0.31 0.25
-6 - - 0.78 0.61 0.51 0.39 0.34 0.30 0.27 0.22
0.91 0.76 0.65 0.52 0.46 0.37 0.32 0.28
0.94 0.88 0.77 0.71 0.62 0.58 0.52 0.47 0.42
-8 - 0.97 0.91 0.78 0.69 0.55 0.50 0.45 0.37 0.32
1.00 0.97 0.89 0.80 0.69 0.62 0.54 0.47 0.38
0.99 0.98 0.94 0.88 0.83 0.76 0.73 0.70 0.65 0.57
-10 1.00 0.99 0.97 0.88 0.81 0.70 0.65 0.58 0.51 0.46
1.00 1.00 0.99 0.96 0.91 0.82 0.76 0.70 0.62 0.53

Note. The asymptotic distributions of the test statistics as described in Theorems 1-3

have been simulated (see main text for details). The table reports the rejection frequencies

after 5000 Monte Carlo draws. The rejection frequencies approximate the true powers.

If p; and Py denote the estimated powers of two different tests against a specific
alternative, then, given the number of Monte Carlo replications, std(p;— po) < .01. A
difference of .02 is thus to be considered significant.
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Table 3. Asymptotic local powers. Two locally explosive roots. For each entry

of ¢; and ¢y the powers are calculated respectively for the Dickey-Pantula,
Hasza-Fuller, and Sen-Dickey tests.

Co

1

0 0.5 1 1.5 2 3 4 6 8 10

1.00

10 - 1.00
1.00

1.00 1.00

8 - 1.00 1.00
1.00 1.00

1.00 1.00 1.00

6 - 1.00 1.00 1.00
1.00 1.00 1.00

0.99 1.00 1.00 1.00

4 - 0.99 1.00 1.00 1.00
0.98 1.00 1.00 1.00

0.96 0.98 1.00 1.00 1.00

3 0.96 0.98 1.00 1.00 1.00
0.94 0.98 1.00 1.00 1.00

0.85 0.93 0.97 0.99 1.00 1.00

2 0.84 0.92 0.97 1.00 1.00 1.00
0.83 0.90 0.96 0.99 1.00 1.00

0.72 0.81 0.91 0.96 1.00 1.00 1.00

1.5 0.69 0.79 0.90 0.96 0.99 1.00 1.00
0.65 0.75 0.88 0.95 0.99 1.00 1.00

0.50 0.65 0.75 0.90 0.96 0.99 1.00 1.00

1 0.43 0.57 0.71 0.88 0.95 0.99 1.00 1.00
0.37 0.54 0.68 0.86 0.94 0.99 1.00 1.00

0.22 0.38 0.54 0.68 0.86 0.95 0.99 1.00 1.00

0.5 0.14 0.28 0.45 0.63 0.85 0.94 0.99 1.00 1.00
0.11 0.24 0.42 0.60 0.83 0.94 0.99 1.00 1.00

0.05 0.11 0.24 0.44 0.62 0.83 0.94 0.99 1.00 1.00

0 0.05 0.07 0.15 0.33 0.54 0.83 0.94 0.99 1.00 1.00
0.05 0.06 0.13 0.31 0.50 0.81 0.93 0.99 1.00 1.00

See Note of Table 2.
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Table 4. Asymptotic local powers. One root locally stationary and one root

locally explosive. For each entry of ¢; and ¢y the powers are calculated
respectively for the Dickey-Pantula, Hasza-Fuller, and Sen-Dickey tests.

Cy (&1
0 0.5 1 1.5 2 3 4 6 8 10
0.05 0.11 0.24 0.44 0.62 0.83 0.94 0.99 1.00 1.00
0 0.05 0.07 0.15 0.33 0.54 0.83 0.94 0.99 1.00 1.00
0.05 0.06 0.13 0.31 0.50 0.81 0.93 1.00 1.00 1.00
0.04 0.06 0.15 0.32 0.54 0.82 0.94 0.99 1.00 1.00
-0.5| 0.05 0.06 0.09 0.23 0.46 0.80 0.93 0.99 1.00 1.00
0.05 0.06 0.07 0.21 0.43 0.79 0.93 0.99 1.00 1.00
0.04 0.05 0.09 0.24 0.47 0.79 0.93 0.99 1.00 1.00
-1 0.06 0.05 0.07 0.17 0.37 0.78 0.92 0.99 1.00 1.00
0.07 0.06 0.06 0.13 0.36 0.76 0.91 0.99 1.00 1.00
0.05 0.04 0.06 0.18 0.40 0.77 0.93 0.99 1.00 1.00
-1.5 | 0.06 0.05 0.05 0.10 0.31 0.75 0.92 0.99 1.00 1.00
0.08 0.06 0.05 0.10 0.29 0.73 0.91 0.99 1.00 1.00
0.06 0.05 0.05 0.12 0.35 0.76 0.91 0.99 1.00 1.00
-2 0.07 0.06 0.06 0.08 0.25 0.73 0.92 0.99 1.00 1.00
0.10 0.08 0.05 0.07 0.23 0.70 0.90 0.99 1.00 1.00
0.09 0.07 0.06 0.08 0.25 0.71 0.91 0.99 1.00 1.00
-3 0.10 0.08 0.07 0.07 0.19 0.68 0.90 0.98 1.00 1.00
0.12 0.10 0.07 0.06 0.16 0.65 0.89 0.99 1.00 1.00
0.13 0.11 0.09 0.08 0.19 0.64 0.89 0.99 1.00 1.00
-4 0.13 0.12 0.09 0.08 0.15 0.67 0.90 0.99 1.00 1.00
0.17 0.13 0.11 0.09 0.11 0.62 0.88 0.99 1.00 1.00
0.25 0.21 0.15 0.12 0.13 0.58 0.87 0.99 1.00 1.00
-6 0.22 0.18 0.15 0.13 0.16 0.62 0.89 0.99 1.00 1.00
0.28 0.20 0.16 0.12 0.10 0.53 0.85 0.99 1.00 1.00
0.42 0.34 0.27 0.19 0.16 0.53 0.85 0.99 1.00 1.00
-8 0.32 0.27 0.24 0.20 0.20 0.62 0.87 0.99 1.00 1.00
0.38 0.30 0.25 0.17 0.14 0.46 0.84 0.98 1.00 1.00
0.57 0.50 0.40 0.29 0.19 0.49 0.83 0.98 1.00 1.00
-10 | 0.46 0.41 0.35 0.30 0.28 0.62 0.88 0.98 1.00 1.00
0.53 0.44 0.35 0.26 0.19 0.42 0.83 0.98 1.00 1.00

See Note of Table 2.
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Table 5. Implied values of the AR parameters o and s in the AR(1) model
(1-ay L)(1 — ae L)y = ¢ for various combinations of the sample size T, and non-centrality
parameters c¢q, and cs.

(Cl,CQ) = (-10, —10) (Cl,CQ) = (-4, —6) (Cl,CQ) = (-1, —2) (Cl,CQ) = (-4, 1)

T (Oél, 042) (Oél, 042) (Oél, 042) (Oél, 042)

%5 (.670,670) (852, .787) ((961,.023) (852, 1.041)
50 (819, 819) (.923,.887) (.980, .961) (.923,1.020)
100 (.905, 905) (.961,.942) (.990, .980) (.961,1.010)
250 (.961,961) (.984,.976) (.996,.992) (.984, 1.004)
500 (.980, 980) (.992, .988) (.998,.996) (.992,1.002)
1000 (.990, 990) (.996,.994) (.999,.998) (.996, 1.001)
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Table 6. Smirnov goodness-of-fit test for equality of the exact distribution and the
local to unity asymptotic distribution for various combinations of the sample size

T, and the non-centrality parameters c;, and cy. The distributions were approximated
via 10000 Monte Carlo repetitions. Equality of the distributions is rejected at 5%
level (**) if the test value exceeds .019. At 1% level the critical value is .023 (***).

T (c1,09)

(—10,—10) (—4,—6) (—1,—-2) (—4,1)
Dickey-Pantula
25 119** .085*** .040** 028"
50 .069*** 046 .022* .019
100 .028** .022* 012 .009
250 033** .017 .018 .009
500 .036** 031 .032%* 011
1000 051" .039*** .029** .009

Hasza-Fuller

25 2637 1677 096 082+
50 148 085 .052%* .044%*
100 0627 035 .023* .022*
250 028 .016 012 .013
500 047> 0337 .024 .016
1000 057 0427+ .023* .013
Sen-Dickey

25 376* 341 2427 2127
50 .258*** 2147 137 11
100 170 1267 0737 070
250 086" 047+ 022 0307
500 043 .023** .016 .023*

1000 047+ 024 .016 .016
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9. FIGURES

Local power plane for Dickey Pantula test

Figure 1. Asymptotic local power function for the Dickey-Pantula test.

Local power plane for Hasza Fuller test

Figure 2. Asymptotic local power function for the Hasza-Fuller test.
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Local power plane for Sen Dickey test

Figure 3. Asymptotic local power function for the Sen-Dickey test.
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Figure 4. QQ plot: Exact finite sample distribution (vertical axis) versus asymp-
totic local to unity distribution (horizonzal axis). ¢; = ¢o = —10. T = 25,50, 100, 250, 500, 1000.
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Figure 6. QQ plot: Exact finite sample distribution (vertical axis) versus local to
unity distribution (horizontal axis). ¢; = —1,¢o = —2. T = 25,50, 100, 250, 500, 1000.
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