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Abstract

The paper introduces a nonlinear model that belongs to the STAR, fam-
ily of models. The main feature of the suggested Bi-parameter Smooth
Transition Autoregressive (BSTAR) model is that it allows for different
speeds of transition between the middle regime and each of the identical
outer regimes. Thus, the BSTAR model can be considered as a generaliza-
tion of the LSTR2 model introduced in Terdsvirta (1998) which imposes
symmetric speed of adjustment between the middle and each of the iden-
tical outer regimes.
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1 Introduction.

While linear models have proved to be quite useful as a modelling device in
both applied and theoretical sciences, such models have their limitations. Po-
tentially, nonlinear models are naturally called for to overcome these inherent
limitations. However, the price to be paid is increasing complexity of estimation
and inference in nonlinear models and also such models can be too flexible to
be powerfully rejected against alternative models. Nevertheless, the recent ad-
vances in computer technology makes the life of an applied scientist somewhat
easier as regarding implementation and estimation of nonlinear models. This
in turn gives rise to an increasing number of applications of nonlinear models
in science more generally and in economics in particular, e.g. see Tong (1990)
and Granger and Terasvirta (1993) for introduction to the fascinating world of
non-linear time series models.

Several non-linear models have been suggested in the literature. The present
paper confines itself to the class of non-linear models popularized by Timo
Terésvirta and co-authors in a series of articles over the recent decade. This
research agenda is summarized in Terésvirta (1994a), Terédsvirta (1998), and
van Dijk, Terdsvirta, and Franses (2000).

In these articles the authors suggest the so-called Smooth Transition Thresh-
old Autoregressive (STAR) models. The STAR type of models involve two,
three or, possibly, more regimes such that the transition between the different
regimes can occur rather smoothly. The STAR model family can be considered
the generalization of the multiple regime Self-Exciting Threshold Autoregres-
sive (SETAR) class of models where the transition between the different regimes
takes place rather abruptly. The latter type of models approximate the under-
lying nonlinear process piecewise linearly such that the process is linear in each
regime, see Tong (1990) for a presentation of the SETAR models.

The transition function in the STAR type of models plays the central role.
As a rule the transition function has two types of parameters, namely, the slope
and the threshold parameters. The former parameter denotes the speed of the
transition between the different regimes whereas the latter denotes the location
of the transition from one regime to another.

Terdsvirta (1994b) proposed two types of STAR models depending on whether
a logistic or an exponential transition function is used. Note that both these
transition functions posses only one slope and threshold parameter. The for-
mer corresponds to the so-called LSTR1 model with two regimes and the latter
forms the ESTAR model with three regimes in such a way that the two outer
regimes becomes identical. The drawback of the latter transition function is
that both for small and large slope parameter values the nonlinearity practi-
cally disappears. To correct for this unfortunate fact Teréisvirta (1998) suggests
to replace the transition function of the ESTAR model with another transition
function whereby for large values of the slope parameter the nonlinear model is
no longer indistinguishable from the linear model. This is achieved by introduc-
ing the second threshold parameter. The resulting model with a new transition
function has been denoted the LSTR2 model.
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The ESTAR model of Terésvirta (1994b) involves a transition function that is
symmetric around the threshold value. Anderson (1997) extends the exponential
transition function to be asymmetric around the threshold value, henceforth
referred as the AESTAR model. However, this asymmetric transition function
suffers from the same drawback as the symmetric one in the ESTAR model. So
far no corresponding counterpart of the LSTR2 model has been suggested which
allows for different speeds of transition between the outer and middle regimes.

The contribution of the present paper is to fill this gap in the literature,
and in so doing it proposes a STAR family model with a transition function
that allows for different transition speeds between the middle and outer regimes.
This is achieved by incorporating an additional slope parameter in the transition
function. Thus, the suggested transition function has two threshold parameters
and two slope parameters. Henceforth, the model in question is referred to as
the Bi-parameter Smooth Transition Autoregressive model (BSTAR in short).

The paper proceeds as follows. Section 2 provides an overview of the STAR
family of models and Section 3 introduces the BSTAR model. The estimation of
the BSTAR model by means of the maximum likelihood method is discussed in
Section 4. Section 5 derives the Lagrange Multiplier test for linearity against the
BSTAR model. Application of the misspecification tests suggested in Eirtheim
and Terdsvirta (1996) to the BSTAR model is discussed in Section 6. Section 7
contains an empirical example. The final section concludes.

All computations were performed using the object-oriented programming
language Ox 2.20 Professional, see Doornik (1999), and the empirical modelling
program package PcGive 9.1, see Hendry and Doornik (1999).

2 Literature review.
In general, the scalar univariate STAR(p) family of models looks like
Yo = @' % + O'XFy (y—a) + ue (1)

where x; = {1,y,-1, ..., ¥t—p}’ is a vector of the lags of the dependent variable
including the constant term. The vectors of the autoregressive parameters are
¢ = (0o, b1, ...,d>p)l and @ = (6,04, ...,0,)". The error term u; is usually as-
sumed to be the N'ZD random variable with mean zero and variance o2. The
transition function Fy (y;—4) can take different forms discussed below in more
detail.

The natural starting point in describing the STAR model family is the two-
regime LSTR1 model with the following logistic transition function, which takes
values in the interval between zero and one:

1
F; TYi—d) = 0. 2
t (77 C Yt d) 1+ exp (_'Y (ytfd — C)) y V> ( )

At this stage, it is convenient to introduce some terminology for further ref-
erence. The transition function (2) has several parameters such as the slope
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Figure 1: LSTR1 model; transition function (2) with slope parameter v = [0.1, 5]
and step 0.1, and with location parameter ¢ = 0.

parameter -y, the threshold parameter ¢, and the delay parameter d. The mag-
nitude of the slope parameter measures the speed of transition between the two
regimes while the value of the threshold parameter indicates the location of the
transition. The delay parameter, which appears in connection with the transi-
tion variable y;_4, can take values that are either less or equal, 0 < d < p, or
greater, p < d, than the order of the STAR model.!

Figure 1 presents an example of the LSTRI transition function for differ-
ent slope parameter values, v = [0.1,5]. Note that as v — 0, the transition
function tends to a constant value of 0.5 such that the LSTR1 model becomes
linear. On the other hand, the larger the value of v, the steeper is the slope
of the transition function (2) at the point y;—q = c¢. As v — oo the LSTR1
transition function approaches the step function. Therefore, in the limit LSTR1
turns into a two-regime Self-Exciting Threshold Autoregressive (SETAR) model,
(see Tong (1990) p.101).

The other possible choice of the transition function is given by the exponen-
tial transition function:

Fy (v, ¢y1-a) =1 —exp <_'7(ytfd - 0)2) , v>0. 3)

The ESTAR model is a three-regime model that comprises one middle regime
and two equivalent outer regimes. The transition function of the ESTAR model
is depicted in Figure 2 with the slope parameter « taking values in the interval
[0.1,5]. Notice that on the one hand the ESTAR model is practically linear
when v — 0. On the other hand, as v — oo, the transition function is equal to
unity elsewhere except at the threshold point ¢, where it equals zero. Thus for
large values of v the ESTAR model becomes practically indistinguishable from
the linear model as well. This also implies that the three-regime SETAR model
does not constitute a special case of the ESTAR model.

I Moreover, the transition variable can be any other variable or even a linear combination
of several variables rather than own lags of the endogenous variable, y;_q4. Similarly, other
exogenous variables can be used in (1) as the explanatory variables.
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Figure 2: ESTAR model; transition function (3) with slope parameter v =
[0.1,5] and step 0.1, and with location parameter ¢ = 0.

B w s m o N @ o w

Figure 3: LSTR2 model; transition function (4) with slope parameter v =
[0.01,1] and step 0.01, and with location parameters ¢; = 0 and ¢5 = 10.

If such a limiting behavior of the ESTAR model is undesirable, i.e. for

~ — 00, then one can resort to the LSTR2 model suggested in Teréisvirta (1998).

The transition function of the LSTR2 model is the second-order logistic function:
1

1+ exp (=7 (Ye—a — 1) (Yt—a — ¢2))

Fy (v, e1,c0191-a) = ., v>0. (4

Figure 3 depicts this transition function for different values of the slope pa-
rameter v = [0.01,1]. The LSTR2 transition function resembles the transition
function of the LSTR1 model but it involves two threshold parameters ¢; and
co. From Figure 3 it is seen that as v — oo the transition function no longer
collapses to a point but becomes a three-regime SETAR model. Therefore, the
LSTR2 model is free from the drawback of the ESTAR model as v — oco. At
the same time, however, the range of the transition function depends on the

value of the slope parameter.
The three-regime ESTAR and LSTAR2 models considered above are char-
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Figure 4: AESTAR model; transition function (5) with slope parameter v =
[0.1,5] and 0.1 step, and with asymmetry parameter § = —17, and with location
parameter ¢ = 0.

acterized by their respective symmetric transition functions which allow for the
same transition speed between the outer-lower and middle regime on the one
hand, and on the other hand between the middle and outer-higher regime, as
seen in Figures 2 and 3. In some cases, this might be too restrictive an assump-
tion.

To circumvent this property Anderson (1997) modifies the ESTAR transition
function (3) in such a way that it becomes asymmetric around the location pa-
rameter value c¢. Henceforth the model with the asymmetric transition function
given below is correspondingly referred as to the Asymmetric ESTAR model
(AESTAR in short):

Fy(v,e,8ye-a) = l—exp{—y[p-a—d*xh(yea)}, v>0, (5
he (e, 8yi—a) = {05+ (1+exp{—6lyr—a—c)""}, 6 £0.

Notice that positive or negative values of the parameter ¢ introduce asymmetry
in the transition function given in (5), see Figures 4 and 5. Hence the AESTAR
model allows for different speeds of transition between the middle regime and
each of its outer regimes.

Figures 4 and 5 reveal the fact that the AESTAR model entails the same
problem as the ESTAR model, i.e. for large values of 7 it becomes difficult to
distinguish it from a linear model. Hence the three-regime SETAR model is not
nested within the AESTAR model either.

The next section introduces the BSTAR model which extends the LSTR2
model to allow for asymmetric speed of transition between the outer and middle
regimes, similarly as the model of Anderson (1997) extends the ESTAR model.
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Figure 5: AESTAR model; transition function (5) with slope parameter v =
[0.1,5] and 0.1 step, and with the asymmetry parameter § = 17, and with
location parameter ¢ = 0.

3 BSTAR model.

It was stated earlier that the asymmetric transition function of Anderson (1997)
provides an extension of the transition function of the ESTAR model. Therefore
it has a similar inherent problem when the slope parameter tends to infinity: it
is problematic to distinguish this non-linear model from a linear one.

In this section, the following transition function is introduced:

exp [=v1 (yr—a — c1)] +exp[y2 (Yt—d — c2)] (©)

F 7c ) 7c ; -
e eivi-a = T e el T exp e (e — e

> 07 Y2 > 07 ¢ < .

This transition function has two threshold parameters ¢; and ¢y, and two
slope parameters v; and v,. The latter parameters are, in general, different and
therefore the slopes of the transition function at the two threshold parameters ¢
and ¢, are, in general, different in the BSTAR model. This allows for asymmetric
speed of transition from the outer-lower regime to the middle one and from the
middle one to the outer-higher one. Thus it serves as a natural extension of
the LSTR2 model to allow for asymmetric transition similar to the AESTAR
model of Anderson (1997), which itself is an extension of the ESTAR model. In
this way the problems associated with very large slope parameter values in the
(A)ESTAR models are avoided.

Notice that the transition function (6) offers a more expository way to cap-
ture the asymmetry in the speed of transition when it is compared to the
approach of Anderson (1997) and embodied in the transition function of the
AESTAR model. In the transition function of the BSTAR model each slope pa-
rameter determines the steepness of the transition function at the corresponding
transition location. Whereas in the AESTAR transition function (5) the only
slope parameter determines the overall steepness of the transition function such
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Figure 6: BSTAR model; transition function (6) with slope parameters vy, =
[0.1,10], v, = [0.1,10] with step 0.1, restriction 7y = <5, and with location
parameters ¢; = 0,co = 10.

that the asymmetry of the AESTAR transition function is the result of the
interplay between the slope parameter v and the asymmetry parameter 6.

Figures 6, 7, and 8 illustrate the possible shapes of the transition function.
It is seen that as long as the two threshold parameters ¢; and co are different,
the BSTAR transition function no longer collapses to a point. On the contrary,
the magnitude of each slope parameter determines the steepness of the corre-
sponding slope of the transition function and thus the corresponding speed of
transition between the outer and middle regimes. Also notice that the BSTAR
transition function offers greater shape variety than the AESTAR transition
function. To see this, compare Figures 7, 8 and 4, 5.

Note that when the restriction of equality of the slope parameters is imposed,
ie. vy = 75 = 7, the BSTAR transition function closely approximates the
LSTR2 transition function, especially for large values of the slope parameter as
seen at Figure 6.

Given such a large variety of shapes of the transition function of the BSTAR
model and its close resemblance to the transition functions of the other models
suggested in the literature, it seems that the BSTAR model could serve as an
interesting alternative to these models.

One remark deserving attention regards the relationship between the BSTAR
model and the Multiple Regime STAR (MRSTAR) model suggested in van Dijk
(1999). The MRSTAR model can potentially comprise more than two regimes.
This is achieved by adding the logistic transition functions, each of which has
its own location and slope parameters, such that, for example, the MRSTAR
model can be written as

Yy = </>/37t + Z%%&Gi (V4» Ci3 Ye—a) + €t
i=1

where it is assumed that all the m transition functions depend on the same
transition variable y;_g4.
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Figure 7: BSTAR model; transition function (6) with slope parameters v; = 1,
~v5 = [0.1,10] and step 0.1, and with location parameters ¢; = 0, cg = 10.

Figure 8: BSTAR model; transition function (6) with slope parameters vy; =
[0.1,10] and step 0.1, v, =1, and with location parameters ¢; = 0,cp = 10.
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Figure 9: MRSTAR model (8). Transition function with location parameters
¢y = 0 and ¢3 = 2.5. Upper panel: slope parameters v; = 75, = [0.1,10] and
with step 0.1. Lower panel: slope parameters v; = 1, v, = [0.1,10] and with
step 0.1.

This approach offers great flexibility of the resulting transition function. In
fact, I would argue, too much flexibility for the specific case of the three-regime
LSTR2, ESTAR, and BSTAR models with one middle and two equivalent outer
regimes as considered here. To illustrate this point, consider the case when
m = 2, such that the MRSTAR model involves three regimes:

ye = ¢y + ollxtGl (Y113 Ye—a) + o/zxth (Y2, €23 Ye—a) + €. (7)

Furthermore, assume that the parameter vector is such that 61 = 63 = ™. The
transition functions Gy (71, ¢1;y¢—q) and Gz (74, ¢2; y¢—q) are as follows
1
1+ exp( vy (Ye—a — 1))
1
1+ exp (=72 (yt—a — ¢2))

G1 (71, ¢1; Ye—a)

G2 (V2 €2; Yi—a)

where y; > 0, 75 > 0, and ¢; < ¢3. Then model (7) simplifies to

ye = ¢ + 072 [Gr (1, c13Y—a) + G2 (v, c25ye—a)] + v (8)

The upper panel of Figure 9 displays possible shapes of the transition func-
tion under the restriction of equal slope coefficients. Note that when the slopes
parameters v; and v, are equal, the resulting transition function resembles the
transition function of either the BSTAR with equal slope coefficients or the
LSTR2 model.

The lower panel of Figure 9 displays the resulting transition function when
the slope coefficients are allowed to differ. Potentially, this transition function is
expected to reflect a three-regime model with different transition speeds between
the middle and each of the equivalent outer regimes. As is seen, this is not quite
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the case, as the range of the transition function is no longer bounded to be
in the interval between zero and one as a result of humps that appear around
the location parameters c¢; and cy. Thus, in this specific case of a three-regime
model with two identical outer regimes and with asymmetric speed of transition,
the greater flexibility of the MRSTAR transition function constitutes its slight
drawback. This implies that in this situation the BSTAR models should be
preferred to the MRSTAR, model.

4 ML estimation.

In this section the question of estimation of the BSTAR model using the max-
imum likelihood method is addressed. Below the gradient vector under the
assumption of a normally distributed error term is derived. This is used to
calculate the BHHH approximation to the information matrix. The variance-
covariance matrix of the parameter estimators is calculated in the usual way
using the inverted information matrix.

To recall, the BSTAR(p) model is defined as

v = P'xe+ (G/Xt) Fy (ys—a) +us ug ~ NID (0702) )

Ssc Sc

F . =
! (yt d) 1+ ex (_ W’l[yzfd—cl]) (W’z[ytﬂl—fh]) ’
p + exp

sc sc

exp (_’Y [Z/t—d*cl]) + exp (’)’lg[l/t—d*cz])

Y1 > 07 Y2 > 07 c1 < C2,

where x¢ = {1, ys—1, ..., ys—p}’ is a vector of the lags of the dependent variable
including the constant term. The vectors of the autoregressive parameters are
d) = (d)Oz ¢17 ey ¢p)/ and 6 = (007 917 X3 ep)l .

Notice that the values of the slope parameters v; and vy, are not indepen-
dent of the values that are taken by the transition variable y, 4. Terisvirta
(1994a) suggests to standardize the transition variable in the usual way by di-
viding it by scaling factor sc, which is equal to the sample standard deviation
of the transition variable. Such scaling is necessary in order to make the slope
parameter scale free from the variance of the transition variable. Terésvirta
(1998) mentions two advantages of such scaling. First, there is an advantage in
numerical estimation, as scaling may bring the slope parameters to the similar
magnitude of the other parameters in the model - unless the slope parameters
are very large. Second, such scaling may facilitate the search for initial values
of the slope parameters.

The likelihood function of the model, assuming the AN'ZD nature of the error
term, is
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The log-likelihood of one observation, Inly, for t =1,...T is

Inl, = ~3 In2r — =Ino? — 1 [yt —¢P'xs — (O/Xt) F (yt,d)]Q

2 202

The partial derivatives of Inl; with respect to the model parameters are

Olnly 1
3% = e
85;& = %etXtFt (Yt—a)
881—21% - %et (0'x,) % exp (%) 1 F(yea))?
T = g ) e (=S

Notice that in deriving the score vector the variance of the error term o2

is assumed fixed. This is because the second partial derivative with respect
to the parameter o2 forms its own block such that the resulting information
matrix is block-diagonal. The assumption of treating the parameter o2 fixed
in deriving the score vector is similarly made, for example, in Eirtheim and
Terésvirta (1996).

The maximum likelihood parameter values are obtained in the usual way as a
solution to the likelihood equations using numerical optimization methods. The
standard errors are computed by inverting the BHHH approximation® to the
information matrix evaluated at the maximum likelihood parameter estimates

T —1
I_1 ((’2570,5/\1,/0\1,5/\2,/0\2) = [Zﬁtﬁ{t] )
t=1

~ 81n2\t 8ln7t 311171‘, 3111/[\1‘, 81n2\t 811171‘, 7 : :
where g; = { % o 0 o et e } is a vector of dimension con-

formable with the number of the estimated parameters in the model.

In small samples, when the estimated transition function is close to being
a step function, the estimated information matrix may appear singular and
hence noninvertible. To understand why this might happen consider the partial

2 Alternatively, one can approximate the information matrix with either analytical or nu-
merical Hessian evaluated at the ML estimates. However, as presented below the BHHH
approximation nicely illustrates what causes the calculated information matrix to be reported
as being singular.
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Figure 10: BSTAR model Upper panels: terms [1— F; (ys—q)],
lower  panels: terms (exp (,M) - F (yt_d)]) , and

8c

(exp (2= 1 - R(gea)]) . d = 1, 71 = 100, e = ~0.5, 9 = 10,

C

c2 = 0.5, T' = 2000.

derivatives of the log-likelihood of one observation with respect to ; and ¢;. In
these expressions, the following terms are of interest:

exp <—w> 1-F (yt—d)]2 (9)
for v, and ¢y, and
exp <—72 [yt;Z — CQ]> [1-F (yt—d)]2 (10)

for v, and ca.

Figures 10 and 11 display these terms. Figures 10 and 11 were generated
using artificial data with the following parameters of the transition function:
v1 = 100, ¢c; = —0.5, 79 = 10, co = 0.5 for the sample size of 2000 observations.
Notice that the slope parameters are allowed to differ such that the transition
function has rather steep slope at the first location parameter value ¢; = —0.5
and somewhat lesser slope at the second location parameter value ca = 0.5.

The terms given in (9) and (10) are the multiplication product of the terms
depicted at the corresponding upper and lower panels in Figure 10. The lower
panels of Figure 11 depict the results of such multiplication. Observe that
the only nonzero values of expression (9) are those that lie in the ultimate
neighborhood of the first location parameter value. By contrast, the nonzero
values of expression (10) are more spread out in the neighborhood of the second
location parameter.

Thus, for a small sample size and large values of the slope parameter -,
i = 1,2, there might only be a few observations that lie in the ultimate neigh-
borhood of the threshold. Consequently, in such a situation there might be
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Figure 11: BSTAR model. Upper panels: terms [1 — F} (y:—q)], Lower panels:
terms (9) and (10). d =1, v, = 100, ¢; = —0.5, v, = 10, c2 = 0.5, T' = 2000.

rather few observations that have a corresponding nonzero value for the respec-
tive partial derivative expression. This, in turn, implies that the calculated
information matrix might be reported as being singular and therefore impossi-
ble to invert due to an insufficient number of observations in the neighborhood
of the threshold parameters. To solve the problem of a singular information
matrix Terdsvirta (1998) suggests that one omits the partial derivatives of the
individual log-likelihoods with respect to those slope and location parameters
that cause the problem.

5 LM-type test against BSTAR model.

Estimation of nonlinear models is more complex when compared to estimation
of linear models. As a result one needs to assess whether it is worth spending
extra time and efforts to fit a nonlinear model when much simpler linear mod-
els are available. This section derives the LM-type linearity test against the
BSTAR model, both when the slope parameters are different and when they
are equivalent. The approach undertaken here is similar to the derivation of
linearity tests against the other STAR family models suggested in Terésvirta
(1994a), for example.
The BSTAR(p) model is

= @' x + 0" Fy (y—q) +ue (11)

where x; = {1,y,-1, ..., yt—p}’ is a vector of the lags of the dependent variable
including the constant term. For later use, define X; = {y—1,...,0%—p}" as a
vector of the lags of the dependent variable. The vectors of the autoregressive
parameters are ¢ = (qﬁo, Dryeeny qﬁp)/ and 6 = (g, 04, ..., Hp)/. The error term u;
is assumed to be an N'ZD random variable with variance 0. The corresponding
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transition function is

exp [=v1 (y1—a — 1) + exp [y2 (Y1—d — ¢2)]
14+exp |~ (Ye—a — c1)] +exp [V (Ye—aq — c2)]
Y1 > 0,’}/2>0,Cl < C2.

Fy (v, ¢1.72, €25 Yi—a)

First, consider the BSTAR model when the slope parameters are allowed to
differ. The model given in (11) is linear when both the slope parameters are
equal to zero y; = v, = 0 and/or when the parameter vector 6 is equal to zero
6 = 0. This means that under the null hypothesis of linearity the model is not
identified. This identification problem is similarly relevant to the other STAR
family models. Therefore, the method for circumventing this problem is the
same as when testing for linearity against the other STAR family models - see,
for example, Saikkonen and Luukkonen (1988) and Luukkonen, Saikkonen, and
Terasvirta (1988). That is, one should consider a Taylor series expansion of the
transition function around the point y; = v, = 0.

In the following I will work with the redefined transition function F}* (-) =
F,(-) — 2/3, such that it takes a value of zero under the null hypothesis of
linearity, such that the resulting linear model reads

Y = d'x + .

The first-order Taylor series expansion of the transition function around the
point v, = 5 = 0 yields

OF; ()

Iy = F'()ly=y=0+t 97, l=7a=0 %71 +
oOFy (-
+ 87:")/( ) "7’1:’72:0 * Yo + Rl (717727 C1, CQQyt—d)
2
1 1 1 1
= (—g*yt—d—i-g*61)*71+(§*yt—d—5*02)*72

+Ry (71, 7v2, €1, €25 Ye—a) -

After substituting the Taylor series approximation into the regression equa-
tion (11) and rearranging the terms we get

Yy = 5/1Xt + 6/2)(,5 “Yi—d T €, (12)

where e; = 0’'x:R; + u; and

1 1
B = ¢+§’Y1019—§72029
1
By = 59(72*71)-

Equation (12) represents the auxiliary test regression for the case when the
transition variable y,_q4 is not an element of the vector X; = {yr—1, ..., yt—p}’-
This happens when the order of the BSTAR model is less than the delay pa-
rameter value, i.e. p < d.
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From the coeflicient expressions it is seen that the null hypothesis of linearity
vy = 75 = 0 corresponds to the condition that the parameter vector 3, equals
zero, i.e. B35, = 0. Also notice that under the null hypothesis we have e, = u;, as
the remaining term in the Taylor expansion Ry (v7,7q, 1, C2;Yz—d) equals zero.
Given this then, linearity testing amounts to testing for insignificance of the
parameter vector 3,, a procedure which can be carried out in a straightforward
manner by means of a LM-type test under the assumption of normality of the
error term. Under the regularity conditions discussed in Luukkonen, Saikkonen,
and Terasvirta (1988), the test statistic is x2 (p + 1) - distributed under the null
hypothesis.

In the case the transition variable y;_4 corresponds to an element of the
vector X; the auxiliary regression (12) needs be rearranged as

~/ ~/
Yo = 51,0 + 6% + 52,oyt—d +BoXt yr-ater

such that the auxiliary regression takes the form

/

=" __ ~/
Yt = Bro+ B1Xe + BoXe - Yo + €1, (13)

with E] == {6‘7’1, "'7ﬂj,p}l fOI‘j == 1, 27 and

s By ifi#dl
P {ﬁuwg,o z’fz'—d}l o

There is one more remark regarding the use of regression equation (13)
for linearity testing. The parameter fy does not enter into the expressions
for the parameter vector of interest B,. This implies that the test based on
the regression equation is likely to have rather low power when the intercept
is the only parameter that is changing across the different regimes. See the
discussion in Terdsvirta (1994a) of the similar problem that arises in the LSTR1
model when the auxiliary test equation is based on the first-order Taylor series
expansion of the logistic transition function.

It is interesting to note that the condition of the slope coefficient equality,
1 = 72, also implies B, = 0 in equation (12) and B, = 0 in equation (13) . This
in turn implies that the linearity test based on regressions (12) and (13) fails
to distinguish between a linear underlying model and a nonlinear underlying
model which is characterized by a BSTAR transition function with equal slope
parameters. Hence, it would be not advisable to use regression equations (12)
and (13) for linearity testing when one believes that the underlying model is the
BSTAR model with equal slope coefficients.

This result is interesting to compare with the auxiliary regression that is
used to test for linearity against the ESTAR and LSTR2 models because these
models closely resemble the BSTAR model with equal slope coefficients. Indeed,
when testing linearity against the ESTAR or LSTR2 models, the corresponding
auxiliary test regressions have additional regressors such as x; ~y§_ 4 and x; ~yf_ >
(see Tersisvirta (1998) p.516).
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One can thus conclude that a higher-order Taylor series expansion of the
transition function is needed in order to devise a linearity test that is free from
the deficiencies illustrated above. Now, consider the second-order Taylor series
expansion of the transition function Fy* (-) around the point v; = v5 = 0.

* OF} (7) OF (-
L = Ft () |’Y],:’Y2:0 + 8t—,y1|'71:’72:0 k1 + at—,h|’h:’72:0 * Y2
1PFy () O*Fy ()
T2 gy gy, 0t R g T s 1
10%Fy (-
+§ 37;352) |y =y,=0 * 73 + R1 (71,72, €15 €23 Ye—a)
= (—1* —i—l*c)* —i—(l* —l*c)*
= gyt—d g F e Y1 gyt—d g "2 Y2
1 1 1 1
g * Wea - c1)® + 3% (g *v—a—gra)* (=yeate)) * vi+
1 1 1 1 1 1
—i—(g *(_5*yt7d+§*02)*(_yt7d+cl)+§ *(5 *ytfd—g*01)*(%7(1—02))*72*71
1 1 1 1
Jr(1_8 * (Y =)’ + 3% (—5 *Yed + gk ¢2) * (ye—a — ¢2)) * 3 + Ry (71,72, €1, €23 Ye—a) -

Substitution of the Taylor series expansion expression for the transition func-
tion in (11) yields the following auxiliary regression model

yr = B1x¢ + Boxy - yi—a + By - yf_d + e, (14)

where e; = 0% R + u; and

1 1 1 2 1
Bi = ¢t+gnad- 572@“@730?9 + 5= 72me2e10 + 5—473039
1 1 2 2 1
By = 000 —7)— 57l — Zrmiad — 27371000 — o958
_ 1 2 2 1 2
B = 54719"‘ 2772710 + 54729-

The null hypothesis of linearity v, = 7; = 0 implies that the parameter
vectors B, and 3, are equal to zero for the case when p < d. The test statistic
has a standard 2 distribution with 2 (p + 1) degrees of freedom.

When it is the case that 1 < d < p the auxiliary test regression is reported
as in equation (15) below.

~/ __ ~/ >/~
Yt = B0+ B1Xe + BooYt—a + BoXeYt—a + ﬁg,oyt{d + BsXeyp g+ e

where Ej = {81, B, for j=1,2,3.

/ ~/

~ oz ~1
Yt = B0+ B1Xt + BoXeYta + BsXi 4 + e, (15)
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where

= | By ifi#d]|
ﬂl’i_{ B1i+Ba if i=d } P=hep

and

:.: NBQ,%’ if i#d -
/62,1 { ﬁQ,i+53’0 if i=d }Z s ey D

Hence, when the transition variable y;_q4 is an element of the vector X; =
{Yi-1, .., y1—p}’ the linearity test against the BSTAR model with different slope
coeflicients reduces to testing for the joint insignificance of the auxiliary regres-

sion parameters ,@2 and ,B?,. The corresponding test statistics have the standard
x?2 distribution with 2p degrees of freedom under the null hypothesis.

The linearity test based on test the regression (15) also has power in a
situation when the intercept is the only parameter that takes different values in

different regimes. This is observed since the parameter vector Bz only equals
zero when all the elements of the parameter vector @ are equal to zero too, i.e.
when 90 = 91 = 92.

Again, notice that the test regression (15) is exactly the same as the test
regressions used to carry out the linearity tests against the ESTAR and LSTR2
models, see equation (3.16) in Teréisvirta (1994a) and Terdsvirta (1998) (p.516).

In the case when both slopes parameters in the transition function are equal,
the null hypothesis of linearity is

Hy:~v=0.
Then the transition function is

exp [—y (ye—a — c1)] +exp [y (yr—a — ¢2)]
1+exp[—y(yt—a — c1)] +exp [y (Yt—a — c2)]
v > 0, g >co.

Fy (v,c1,¢2396—a)

The linearity test can be similarly derived using a second-order Taylor series
expansion of the BSTAR transition function around the point v =0 :

OF; ()
Oy

O?F; (+)

Ty = Fy () |y=0 + 2

|w:0 * 72 + R (% C1, CQEYthd) .

ly=0 %7+

Substituting it into the BSTAR model and rearranging terms results in aux-
iliary regression (16) below when the value of the delay parameter d is greater
than the order of the BSTAR model.

Yo = Bix + BoXy - yi—a + BXe - vy + e, (16)
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where e, = 0'x¢Ry + uy and 3; = {3, 0.08;1,....3;,} for j =1,2,3

1 1 2
By = ¢+ §’Y9 (c1 —c2) + a’y29 (C§ + cg) + 2—7'y290102
1
By = —570(c2—c)
L o
= —~0.
Bs 97

Observe that, the null hypothesis of linearity v = 0 implies that the regression
coeflicient vectors B, and (35 are equal to zero when the transition variable is
not an element of the vector X; = {y;—1, ..., Yt—p}’-

In case the transition variable is an element of the vector xX; = {y4—1, ..., y1—p}’
the corresponding auxiliary test regression is given in (17). To see this, we need
to collect similar terms in equation (16), as follows:

~/ __ ~/ __ ~/ __
Yt = P10+ B1Xe + Baoyt—d + BoXt - Yr—a + ﬂg,oyf_d + BaXe - yi_g + e

and B; = {84, ... 3;,} for j =1,2,3.

/ ~/

~ oz ~/
Yt = P10+ 81Xt + BoXt - Yr—a + BaXt - Yi et (17)
where
x By if i#d | .
Bri=14 = /BM ,f 7_6 1=1,...,p
B1:+ By if i=d
and

54 P afi#d |
= {ﬁz,ﬁﬂs,o ifi—d}l bk

Next, note that the null hypothesis of linearity v = 0 implies that the coef-

ficients Bz and [~33 in equation (17) are equal to zero. Hence, the linearity test
against the BSTAR model with equal slope coefficients reduces to testing for

the joint significance of the auxiliary regression parameters Bz and ,B?,. The test
statistic has a standard y? distribution with 2p degrees of freedom under the
null hypothesis.

In small samples the asymptotic x? distribution might be a rather poor
approximation to the distribution of the test statistics. Therefore Terédsvirta
(1998) suggests using the F'—test instead, which is carried out in the following
three steps:

1. calculate the restricted residual sum of squares SSRy = 2321 (W,)? after
regressing y; on X;
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2. calculate the unrestricted residual sum of squares SSR; = 23:1 (@)*
after regressing y; on X¢, X¢ - Y+_a, and Xy - y2_, in the case when p < d,
and y; on X4, X; - Y a, and X; - y2_, in the case when 1 < d < p.

3. calculate

(SSRo — SSRy) /df1
SSRy/df2 ’

F =

where df1 =2(p+1) and df2 =T — 3p — 3 in the case when p < d, and
df1 =2p and df2 =T —3p—1 in the case when 1 < d < p. Under the null

hypotheses Hp : B, = 33 = 0 and Hy : BQ = Bs = 0 the respective test
statistics have approximate distributions F (2(p+1),7 —3p—3) and
F(2p, T—3p—1).

6 Misspecification testing.

The misspecification tests that check the adequacy of the estimated STAR fam-
ily models comprise an important part of the modelling cycle. Of interest are
the test of no autocorrelation, the test of parameter constancy and the test of
no remaining nonlinearity. All these tests were first suggested in Eirtheim and
Terisvirta (1996) for the LSTR1 and ESTAR models. In this paper they are
adapted to the BSTAR models either with or without the restriction of equal
slope parameters. As all details of the tests can be found in the reference above,
I will only briefly outline what should be changed in order to adapt them to the
BSTAR model.

In fact, only the expressions for the first partial derivatives of the BSTAR
transition function with respect to the parameters of the respective transition
functions need to be derived. First, consider the BSTAR model without im-
posing the restriction of equal slope parameters v; and «,. The needed partial
derivatives are

OF; (Yt—a — c1) [Yt—a — c1] 2
oy, - O e o | [ Rlue]
OF; —d —

g 0w T (B R

OF; (Ye—q — 2) [Wi—a — c2] 2
gy~ O T ee (e - Fied)

OF; —d =

_805 = —(0'x) ﬁ exp (72—[% C;C cﬂ) [1-F (y-a)]”.

Second, consider the BSTAR model with the equal slope parameter restric-
tion imposed. In this case, the vector of the first derivatives of the corresponding
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Figure 12: IIP Canada, growth rate, x102.

transition function reads:

1 (6'x) % exp <71 w> [1— F; (ge-a)]”
Z_i‘ = (0'x)) % exp (71 %) [1-F (yea)
g_if = —(0'x) % exp (71 %) [1—Fi(yea)

7 Empirical example.

As an illustration of the empirical relevance of the suggested model, the modeling
strategy suggested in Teréisvirta (1998) is applied to the industrial production
index of Canada® taken from the OECD database. The seasonally unadjusted
quarterly data span the period from 1960:1 until 1998:2. The sample size is 154
observations.

The first difference of the logarithmic transformation of the time series is
displayed in Figure 12. Note that in order to avoid having to deal with small
numbers the transformed time series was multiplied by 100.

In the first step a linear autoregressive model is fitted to the data at hand:

= 0.307 0. 127 - 0. 031 0.327y;_
Yt @ 080).% 1+ 0.0 yt 2 . yz‘ 3+ (0.075)% 4
—0.289y;_5 — 0. 170 Yi_g — 0.071yt_ + 0.245y;_g
(0.072) (0.076) (0.077) (0.074)
+0.429S; —0.207 S5 —1.284 S3 +2.956 S,
(0.622) (0.584) (0.580) (0.583)

3This data were kindly provided by Birgit Strikholm.
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Table 1: Linearity test.

F-test p-value df1l df2
a)l 1.0477 0.4105 12 121
b)? 1.9540 0.0106 24 109

! based on a first-order of Taylor series expansion of the transition function.
2 based on a second-order of Taylor series expansion of the transition function.

T = 145, R? = 0.847, G015, 0, = 1671, Fag,_,(5,128) = 0.675(0.643),
Farca(4,125) = 0.537[0.708], X2, ariry (2) = 4.672(0.097],
F,2(19,113) = 0.911[0.571], Frpspr(1, 132) = 0.651(0.421].

Under the estimated regression the following useful information is provided:
T— a sample size; R?— a squared multiple correlation coefficient; 5oz, sy — 2
standard deviation of residuals; Fag, .— a F-test for 5 order of residual au-
tocorrelation, Godfrey (1978); Farcra— a F-test for 4'* order of ARCH, Engle
(1982); Xfwmmliw— a chi-square test for normally distributed residuals, Doornik
and Hansen (1994); F,2 — a F-test for heteroscedasticity using squares of re-
gressors, White (1980); Frrspr— a F-test for functional form mis-specification,
Ramsey (1969). All the tests were calculated using PcGive 9.1, see Hendry and
Doornik (1999). Notice that the standard errors are reported in parentheses
under the parameter estimates.

The AR(8) model above was used as a basis for the linearity test as it
seems to remove autocorrelation in residuals and satisfy the other model design
criteria. The results of the test using the trend as a transition variable, are
shown in Table 1. The test statistic was calculated using first- and second-order
Taylor series expansions of the BSTAR transition function.

Note that the linearity test based on the first-order Taylor expansion accepts
the null of linearity. However, the test based on the second-order expansion
rejects the null hypothesis of linearity at the 5% significance level. Hence, the
next step is nonlinear modeling of the time series in question. The estimated
non-linear model has the general form:

Y= ¢'% +SPDy + [0'%;, + SYD] F (t/T) + e

where X; = (y¢_1, ...,yt,p)/ and Dy is a vector of the seasonal dummies. S¢ =
(Sld’, ceey SZ))’ and S? = (S¢,...,S9) are seasonal parameter vectors, whereas ¢
and @ are autoregressive parameter vectors. Fy (t/T') is the BSTAR transition
function (6) , where the trend variable ¢, divided by the total number of available
observations T, is used as the transition variable. Hence, the transition variable
is normalized to take values in the interval (0, 1].

First, the BSTAR model was estimated using a maximum of eight lags of the
dependent variable both in the linear as well as nonlinear parts of the model.
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The estimation results (not reported in order to save the space) were unsatisfac-
tory as the various model specification assumptions were violated. The model
that passes all the misspecification tests is given in (18) below. Observe that
together with the usual exclusion restrictions ¢; = 0 and 8; = 0, restrictions
of the type ¢, = —6; were imposed on the coeflicients that correspond to 9¢h,
10th, and 11th lags as well as on the coefficient that corresponds to the first
seasonal dummy Sy.

v = 0.397y;_1 +0. 274 Yi—2 —0. 262 Ye—a —0.185 y;_5 (18)
(0.055) (0.06 (0.118) (0.066)

—0.141y,_9 +0. 304 Yt—10 —0 338 Yr—11
(0.113) (0.10

+6.37254 —8.890 Sg 75.810 S3 +10.620 Sy +
(1.342) (1.429) (1.144) (1.33)

[—0.261?#,3 +0551 ye—q +0.141 94 o
(0.086) (0.150) (0.113)

—0.304y: 10 +0 338 Yt—11 +0 330 Yt—16 +
(0.105)

—6.3725] +6.942 52 +4.967 S5 —7.561 Sy] * Fy (t/T)
(1.342) (1.361) (1.306) (1.375)

7.129 652 06
_ gi.7491 0.
exp ( & [t/T 0 %%%D +exp ( [ /T 0. 707])

(0.00022)

7.129 652.06 ’
1+ exp < .19 [t/T 0. 339D + exp < 0 [t/T 0. 707])
(0.019) (0.00022)

ﬁt (t/T) =

= 137, Gpsrar = 1.355, Gyyp = 0.280, x4 popa (4) = 2.816[0.588],
X ormatity (2) = 2.335[0.311], G557 AR/TOLS A1) = 1.355/1.597 = 0.85.

Standard errors are reported in parentheses under the parameter estimates.
Also notice that the standard error is not reported for the second threshold
parameter estimate 75. This is because the estimated slope parameter is so
steep that for the given sample size the number of observations that lie in the
very neighborhood of the corresponding location parameter estimate ¢y is not
sufficient to ensure the full rank of the reported information marix, see Figure
14 and Section 4 for an explanation of the problem.

The estimated residual values, correlogram, and density are reported in Fig-
ure 13. Actual and fitted values along with the estimated transition function are
depicted in Figure 14. The ratio of standard deviations of the residuals of the
BSTAR and linear AR(16) models is (A"BSTAR/(A"OLSAR@@ =1.355/1.597 = 0.85,
such that the variance of the BSTAR residuals is only about 72% of that of the
linear AR(16) model. Figure 15 displays estimated residuals from the nonlinear
BSTAR and linear AR(16) models.
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Table 2: LM test of no serial correlation.

F —test p—walue dfl df2 F —test p—value dfl df2
0.011 0.916 1 114 1.229 0.289 8 100
0.047 0.953 2 112 1.111 0.362 9 98
0.525 0.665 3 110 0.985 0.461 10 96
0.750 0.559 4 108 0.871 0.570 11 94
0.794 0.556 5 106 0.821 0.628 12 92
0.724 0.630 6 104 1.063 0.400 13 90
0.649 0.713 7 102
Table 3: LM test of parameter constancy.
F-test p-value dfl df2
All 0.811  0.780 51 65
All linear 1.179  0.286 21 95
All nonlinear 0.754  0.806 30 86
AR linear 0.756  0.693 12 104
Dummies linear 0.593  0.800 9 107
AR nonlinear 0.878  0.605 18 98
Dummies nonlinear 0.571  0.860 12 104
Table 4: LM test of no remaining nonlinearity.
TV! F-test p-value dfl df2 TV F-test p-value dfl df2
veo1 1421 0.090 48 68 yi;10 0923 0.611 48 68
yve—2 1.340 0.131 48 68  yi_11 1.264 0.185 48 68
ve—s 0.959  0.555 48 68 y;—12 0.668 0.929 48 68
vi—a 0.820 0.763 483 68 y; 13 0.716  0.888 48 68
ve—s 1427  0.087 483 68 y; 14 0.728 0.876 48 68
viee 1.134  0.312 48 68  y;15 0.777  0.819 48 68
yve—7 1.068  0.395 48 68 y;—16 0.803 0.786 48 68
ve—g 0.714  0.890 48 68 trend 1.235 0.213 60 68
vi—g 0.982  0.520 48 68
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Figure 13: IIP Canada, growth rate. BSTAR model (18). Residuals, its correl-
ogram, histogram, and estimated density.
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Figure 14: IIP Canada, growth rate. Actual and fitted values of a BSTAR
model (18). Transition function.
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Figure 15: IIP Canada, growth rate. Estimated residuals of a BSTAR model
(18) and a linear AR(16) model.

8 Conclusion.

The present paper has introduced a nonlinear model that is related to the STAR
class of models. The so-called BSTAR model, which here is fitted to the growth
rate of the Canadian Index of Industrial Production time series, is a generaliza-
tion of the three regime LSTR2 model suggested earlier in Terésvirta (1998).
The LSTR2 model has one slope parameter and two threshold parameters, such
that the speed of transition between the outer and the middle regimes - mea-
sured by the slope parameter - is the same. In contrast, the suggested BSTAR
model possesses two slope and two threshold parameters, such that when the
slope parameters differ from each other, different speeds of transition between
the outer-lower and the middle regimes, as well as between the middle regime
and the outer-upper regimes, is allowed for. In the case with equal slope pa-
rameters, the BSTAR model closely substitutes the LSTR2 model.

In addition, the fact that the three-regime BSTAR model has two generally
different threshold parameters helps avoid the unfortunate properties of the
ESTAR and AESTAR models in a situation when the only slope parameter in
these models is rather large.
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