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Abstract

This paper considers optimal investment behaviour when investment op-
tions evolve deterministically or stochastically over time and investments
are irreversible and indivisible. It extends the standard investment-under-
uncertainty set-up with a single investment option to the case of repeated
options. Analytical solutions are derived for the deterministic case and for
the case of a geometric Brownian motion. It is argued that when investment
options are repeated, the simple net-present-value rule in general fares better
as an investment criterion than the rule derived from the single-option ap-
proach. Furthermore, sensitivity analyses reveal that the effects of parameter
changes are very different when using the repeated-options approach instead
of the single-option approach.
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1 Introduction

During the last two decades a large number of studies have analysed the
real-option approach to investment decisions and Dixit and Pindyck (1994)
present a unified account of this approach. The object of analysis is optimal
investment behaviour when: i) investments are irreversible and indivisible;
ii) there is uncertainty about the future, e.g. about the cost and profitability
of an investment; and iii) there is an option to postpone the investment. It is
argued that incorporating these features into the optimisation problem often
provides a more appropriate description of the investment decision than more
orthodox and static formulations using a simple net-present-value (NPV)
criterion. Furthermore, since i) - iii) usually create a (considerable) value of
waiting, the derived decision rules are often significantly different from those
implied by the simple NPV criterion.

The core model in Dixit and Pindyck (1994), and in much of the related
literature, is a single-option model first developed by McDonald and Siegel
(1986). In this model, the option is “killed” when the investment is un-
dertaken. Hence no future re-investment can take place. While this type
of model has rightly received considerable attention in the literature, there
exist situations where it is inappropriate.

As an example, think of an individual or a firm considering when to
invest in new IT equipment. New and more productive IT equipment is
continuously introduced at the market, and prices are constantly changing.
Hence the option value aspect is clearly present in this decision problem.
However, the agent knows that the current IT investment is not a unique
event. In a few years, it will be optimal for him to buy an even bigger IT
system. Therefore, being rational, he cannot consider the current investment
option as independent of future options. When he buys new IT equipment,
he “kills” the current option, but he immediately receives a new option — the
option to buy even newer I'T equipment. The optimal timing of his current
investment is therefore likely to depend on — and influence — the pattern
of future investments. Hence, these considerations should be incorporated
explicitly into a formulation of the decision problem of the agent.

The aim of the present paper is to extend the methodology of the real-
option literature to include these aspects, and to analyse the implications for
optimal investment behaviour. Central questions are: Do the insights derived
from the single-option model carry over to the case of repeated options? Or
does the single-option model yield invalid descriptions of optimal behaviour
when investment options are actually repeated? Furthermore, are the effects
of changes in the underlying parameters different in the two models?

More specifically, the intertemporal decision problem is modelled as fol-
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lows: In each period, production is assumed to depend only on the produc-
tivity of installed technology. There is no effort or input of other factors.
However, productivity may be increased by investing in the currently avail-
able technology in the economy. The productivity of this exogenous technol-
ogy is assumed to evolve according to a stochastic process. All investments
are irreversible and indivisible, in the sense that the agent has to pay for
the productivity level of the exogenous technology, not just the difference in
productivity levels between installed and exogenous technology, which would
make continuous (or incremental) investments optimal.

An analytical solution is derived for the case where the productivity of
exogenous technology evolves according to a geometric Brownian motion.
The derived optimal decision rule is compared to those derived from the
simple net present value (NPV) criterion and the single-option criterion of
Dixit and Pindyck (1994). An important finding is that when investment
options are repeated as in this set-up, the simple NPV rule is often a better
guide to optimal investments than the rule derived from the single-option
approach. In addition, the implications of changes in growth rates, interest
rates, and uncertainty levels for optimal investment behaviour under repeated
options are very different from — and often opposite to — those found using
the single-option approach. Instead, the effects resemble those of the simple
NPV approach.

The problem analysed in this paper can also be interpreted as an optimal
replacement problem. When an investment is made, the installed technology
is replaced by a new and more productive technology. Replacement problems
of this sort have been subject to much research in the literature. However,
only few previous studies have similarities to this study. Ye (1990) analyses
a replacement problem where maintenance and operation cost of installed
equipment follows an Ito process. By investing in new equipment, the process
is returned to its initial state. With everything else constant, Ye (1990)
derives the closed form decision rule for the case of a simple Brownian motion.
More recently, Mauer and Ott (1995) analyse a related replacement problem,
where maintenance and operation cost follows a geometric Brownian motion.
Asin Ye (1990), the process is reset to its initial value whenever an investment
in new equipment is made.

In both these papers, the uncertainty is related to the installed technol-
ogy. In the present paper, the problem is turned upside down. Instead of
focusing on operation and maintenance cost as the variable of interest, uncer-
tainty is introduced into the exogenous investment options. This change is
considered to be of strong empirical relevance. The IT example above is just
one example illustrating that with modern technology, operation and main-
tenance cost is no longer of major importance when evaluating replacement.
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It is the productivity of installed technology relative to newer available tech-
nology which is at the core of many replacement decisions. However, even
though the interpretations are different, there is a close mathematical corre-
spondence between the previous replacement models and the model in this
paper. An appendix to this paper shows this more formally, by deriving an
analytical solution for the more general replacement problem, where both
the productivity of installed and the productivity of exogenous technology
evolve according to geometric Brownian motions.

Apart from the differences in interpretation, Ye (1990) does not obtain
as general and yet simple analytic solutions as in the present paper. Fur-
thermore, Ye (1990) does not analyse the model from an option pricing per-
spective and hence does not provide the interpretations given here. Mauer
and Ott (1995), on the other hand, impose a restriction on the level of the
stochastic process which makes them unable to derive any analytical solu-
tions. Furthermore, by aiming at a comparison of the derived decision rule
with that of the single-option approach, the focus of the present paper is
entirely different from that of both Ye (1990) and Mauer and Ott (1995).

The rest of the paper is organised as follows: In Section 2, a deterministic
version of the model is presented to build intuition. Section 3 presents the
setup of the stochastic model, using a Geometric Brownian Motion. The
stochastic model is solved and the optimal decision rule is derived in Sec-
tion 4. Section 5 contains a comparison of the derived decision rule with
those of the simple NPV approach and the single-option approach. Section
6 concludes the paper.

2 The Deterministic Model

The model is a continuous-time model, and the agent is assumed to max-
imise the net present value of all future income streams. Income is derived
solely from production, and the only costs are those associated with new in-
vestments in technology. Thus, the model abstracts from decisions regarding
other factor inputs. This is done in order to keep it analytically tractable
and to focus on the dynamics of investment.

Production, w;, at time t is given by a function of the non-stochastic
productivity level, O, of installed technology:

y=F (@t)

where F' > 0. The agent can improve this productivity level by investing
in exogenous technology. By doing this, he obtains the current productivity
level, 6;, of the exogenous technology process. His productivity is then given
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by 6; until the next date of investment. Meanwhile, the exogenous produc-
tivity level is assumed to grow according to some exogenous process. The
cost of investing in the new technology is given by C (6;), where C’' > 0.

The decision problem of the agent is thus reduced to determining the tim-
ing of investments. He can only invest in the currently available productivity
level, and he keeps this level until the next date of investment.

For the present, assume that the initial productivity level of installed
technology, ©g, is the same as the initial productivity level of exogenous
technology, 6. Wealth, W, defined as the net present value of future income
streams at the initial date, ¢y, can then be expressed as a function of the
investment dates, t1, %o, ..., 1, ...:

oo t;
W (ti,t,...) = Z (/ e F (0r,_,) dt — e_rtic(eti))
i=1 \Yti-1

where r is the exogenous rate of interest. Thus, the agent maximises W
with respect to the investment dates. The first order condition for ¢, can be
written as:

e dF (6,)
—rt- (9 — et (0 —rt tr dt
N ( t‘r—l) € ( t'r) +/tT € dtT +
re " C(0;,) — e " dcd(tetT) =0 (1)

The first term minus the second term expresses the immediate loss in
marginal production from postponing the investment. The third term rep-
resents the increase in the marginal product of the new technology obtained
from postponing the investment. The last two terms express the ambiguous
effect on the cost of the investment from waiting. On the one hand, the
present value of the cost will decrease as a consequence of discounting over
an extended period of time. This effect is captured by the fourth term. On
the other hand, the undiscounted cost of the investment might change when
the date of investment, and therefore the technology level, changes. This is
the fifth term.

Further assumptions are required to obtain a more precise characterisa-
tion of optimal behaviour.! Therefore, assume now that the productivity of
exogenous technology evolves according to:

0; = Ope™

'In the set-up above, it might even be the case that it is optimal never to invest, or
perhaps to invest only a finite number of times. It depends on the process of technological
productivity, the involved functional forms, and the parameter values.
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where 0 < a < r. Furthermore, let production take the simple form:
F(6,) =6,

and assume that the cost of investment is linear in 6;:
C(0;) = cb,

where ¢ < %

The parameters a, ¢, and r thus satisfy: co > é > % > ¢ > 0. These
assumptions are needed to ensure that the problem is well defined and that
investments are profitable. If r < «, then optimal wealth will become infinite,
which is not an interesting case. If ¢ > %, it will never be profitable to
undertake an investment. However, with co > i > % > ¢, it cannot be
optimal to postpone investments forever. It must be optimal to invest at
some finite point in time, and hence to repeat the investment within another
finite horizon.

The above specifications also imply that the problem is stationary, i.e.
optimal decisions and values do not depend on time per se. Too see this,

note that wealth, W, can now be written as:

oo t
w (tI; to, ) = 60 Z (eati_1 / ethdt . Ce(a?‘)ti)
i=1 ti—1

It follows that the optimal investment dates must be independent of 6.
Hence, the decision problem is identical every time an investment has been
undertaken — only the productivity level of installed and exogenous technol-
ogy has changed. This implies that the time span, s, between investments
must be constant, or equivalently, since # is growing exponentially, that an
investment will take place whenever § = A\© for some constant A > 1. Fur-
thermore, optimal wealth, V', must be homogenous of degree one in 6.

The fact that the time span between investments is constant, s = t, —t,_1,
can be used to rewrite the first order condition, (1), as:

r

e — Lemos = (1 - 1) (1—rc) 2)

(% (%

Equation (2) gives the optimal time span, s, indirectly as a function of r,
«, and c¢.? The condition for s can also be recast in terms of A, using that

2To see that (2) gives a unique value of s, note that the left hand side increases mono-
tonically from 1 — £ to 0 as s goes from 0 to co. The right hand side is constant in s,
strictly larger than 1 — Z, and strictly smaller than 0. Thus, there is exactly one positive
value of s satisfying (2).
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N E - Lyt = (1 — Z) (1—rc) (3)

a (6]

A closer interpretation of this condition will be offered in Section 5.

3 The Stochastic Model

The stochastic version of the model resembles the simple version of the de-
terministic model presented in the previous section. The only change is that
the productivity of exogenous technology is now assumed to evolve according
to a geometric Brownian motion:

df = abdt + o0dz

where « and o are the parameters of the process, and dz is the increment
of a Wiener process. As in the deterministic case, it is assumed that the
parameters a, ¢, and r satisfy: oo > é > % > c.

Note that the decision problem of the agent can be interpreted as an
“optimal stopping problem”. At each point in time, the agent must decide
whether to continue producing with productivity level ©;, or to stop and
adopt the current productivity level, 6;, of the exogenous technology process.

As in the deterministic case, the specification implies that the problem
is stationary, i.e. optimal decisions and values do not depend on time per
se. All relevant information is captured in the variables # and ©, together
with the parameters of the problem. Thus, drop time subscripts and let
V (0, 0) be the value function of the agent when the productivity of installed
technology is © and that of the exogenous technology is #. The value function
is then given by:

V (0,0) = max {Odt + (1 +rdt)"  E[V (0 +db,0)|0],
Odt — c + (1+rdt) "E[V (0 +d0,0)]0]} (4)

The first argument on the right-hand side is the value of continuing with
the given technology for at least one more “short” time interval, dt. This
will yield immediate output, ©dt, and result in a change of productivity of
exogenous technology to # + df. This in turn changes the expectation of
the value function, which is discounted by (1 + rdt) '. Likewise, the second
term is the value of stopping, i.e. switching to the technology producing 6.
This immediately costs cf and yields current output fdt in the next short
interval of time. After that interval, the value function will be V' (6 4 d6, 0),
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since the productivity of exogenous technology changes as above, whereas
the productivity of installed technology now equals 6.

Note that the chosen form of the stochastic process implies that the pro-
ductivity of exogenous technology can get below the productivity of installed
technology. This may at first glance seem unreasonable. However, it might
reflect that though the technology in itself has improved, the production from
the technology might not have. This could be due to lack of knowledge about
the new technology or lack of supportive infrastructure. Not all inventions
are equally profitable to everyone.

4 Solving the Model

The simple structure of the problem implies that there exists a unique stop-
ping line, 0 (©), which separates the stopping region from the continuation
region. For values of 6 above this line, it will be optimal to stop (invest), and
for values below, it will be optimal to continue with the installed technology.
Furthermore, the stationarity of the problem implies that only relative values
of 6 and © are relevant for the optimal decisions. Scaling # and © with the
same factor will not change the decision problem of the agent, but will merely
scale the optimal wealth by the same factor. Thus, V (6,0) is homogenous
of degree one in 6 and ©, and the stopping line must be given by 6 (©) = \O
for some constant A > 1.

Now, for points belonging to the continuation region, it follows from (4)
that:

rV (0,0) dt = Odt + E[dV] (5)

Expanding the last term on the right-hand side by use of Ito’s Lemma, and
dividing through by dt, (5) can be rewritten as:

1
rV =0+ 60aV, + 5@202‘/9'@ (6)

where the arguments of the value function have been suppressed. V; and Vj
are the first and second order partial derivatives with respect to 6.

The expression in (6) is a second order partial differential equation. How-
ever, the homogeneity of V' (0, ©) implies that a normalised value function,
v (w), can be defined as:

v(w) =07V (4,0)
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where w = /0. The derivatives of V' (6,0) with respect to § can then be
expressed as:

‘/9/ — ’UI elé — @—1,0//
By use of the normalised value function, the partial differential equation in
(6) can be rewritten as an ordinary differential equation:
/ 1 2. 2.1
rv =14+ wav +ywiot (7)
which has the following general solution:
V= Alw‘” + AQ’U}QQ + K (8)

where A, As, a1, as, and K are constants to be determined. Now, substi-
tuting the solution in (8) back into (7) implies that K must equal r~!, and
that a; and a; must be the roots of the following quadratic equation:

%O'QCLQ +a (a — %02> —r=0 9)
Hence a; > 1 and ay < 0.

Note that zero is an absorbing state for the productivity of exogenous
technology, i.e. if 6 becomes equal to zero, it remains equal to zero. In
this case, it will never be optimal to invest. Hence V (0,©) must equal
©r~!, which implies that v (0) = r=!. Thus, A, must equal 0, since ay < 0,
and the value function for the continuation region can then be written more
compactly as:

1
v=Aw" + - (10)
,

with:

! O‘+\/<O‘)2+1+2T_O‘>1 (11)
a=—=-—— — -
T g2 o? 4 o?
The constant A; has yet to be determined together with the stopping rule,

A. For this purpose, the value-matching and the smooth-pasting conditions
are used. The value matching condition:

v(A) = —eA + Ao (1) (12)

says that at the stopping line, where w = A\, the normalised value of continu-
ation (the left-hand side) should equal the normalised value of stopping (the
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right-hand side). Furthermore, these values should meet smoothly, which
gives a smooth-pasting condition:

v (A) =—c+v(l) (13)

Now, using the smooth-pasting condition to substitute for v (1) in the value-
matching condition yields:

v(A) = —cA+ AV (A) + (]

Inserting the obtained solution from (10), this expression becomes:
a 1 ar—1
AN+ - = —c)\—}—)\[Alal)\ ! +c}
T

which reduces to:

ATH

A
! r(l—a)

(14)
This expression for A; can then be inserted in the value-matching condition
in (12) to get:

A — gt =(1—a)(1—rc) (15)

which determines X indirectly.®> Note that the solution for ) is similar to the
one from the deterministic case. The only difference is that = is replaced by
aq.

Finally, inserting the expression for A; in (10) and multiplying through
by O, the value function V' (6,0) can be expressed as:

A 1 S
— O Mg 4 = 1
r(l— al)@ + r (16)

V(6,0) = -

with a; and A given by (11) and (15), respectively.

The last term in (16) is the present value of the technology in place,
whereas the first term expresses the value of the option to invest in new
technology. Note that the latter is decreasing in the productivity of the
technology in place and increasing in the productivity of the exogenous tech-
nology process.

3The existence of a unique value of A > 1 satisfying (15) can be verified by noting that
the left-hand side is monotonically increasing in A, from 1 —a; to 0, as A increases from 1
to oo. The right-hand side, on the other hand, is a constant which is strictly larger than
1 — ay and strictly smaller than 0.
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In the Appendix, a more general case is considered where both the pro-
ductivity of installed technology, ©, and the productivity of exogenous tech-
nology, 6, evolve according to (possibly correlated) geometric Brownian mo-
tions. An analytical solution is derived, and it is shown that in the case of
zero correlation — which is probably the likely case — the solution corresponds
exactly to the solution of a model where only 6 (or ©) evolves stochastically.
Hence, whether the uncertainty is modelled in terms of the installed or the
exogenous technology — or both — is mainly a technical issue. Focusing on the
case with just a single stochastic process, as above, is therefore a convenient
simplification.

5 A Comparison with Related Decision Rules

In this Section, the repeated-options rule given by A in (15) will be compared
with two related decision rules in the literature: The simple NPV rule and
the single-option rule.

5.1 The Simple NPV Rule

The simple NPV rule says that an investment should be undertaken if the
present value of the excess income associated with the investment exceeds the
cost. In terms of the above notation, excess income is given by r~! (6 — ©),
whereas the cost is ¢f. This implies an optimal stopping value, A, given by:

\_ 1

1 —rc

(17)

According to the simple NPV criterion, higher cost, ¢, and higher interest
rate, r, both serve to postpone an investment, since they unambiguously
decrease the present value of the net returns from the investment. Note also
that A in (17) is independent of uncertainty, o, since the investment decision
is not affected by future dynamics of 6.

5.2 The Single-Option Rule

The core model from Dixit and Pindyck (1994), i.e. the single-option model
first analysed by McDonald and Siegel (1986), takes the future dynamics of
0 into account, but it does not allow for repeated investments. When an
investment is undertaken, the option is “killed”. Applying this assumption
to the model of the previous Sections, an optimal stopping value, A\, can be
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shown to be given by the following single-option criterion:

A= ! (18)

(1 - a%) (1 —rc)

where a; is given by (11).! Note that the value of A implied by (18) is
always larger than the value implied by (17). The difference reflects the
value of waiting. Thus, according to the single-option criterion, the simple
NPV criterion dictates too rapid investments.

Using that A = 0 (©) /O, the expression in (18) can be rewritten as:

o+ 0(6) (1 - c> — 0(0) (1 - c> (19)

aiy r r

The left-hand side is then the return from holding the option, i.e. from
continuing with the installed technology, when the productivity of installed
technology is ©, whereas that of exogenous technology is 6 (©). This return
has two components: i) a current income flow of ©; and ii) an increase in
the net present value of stopping. The latter is given by aLlQ (0) (% — c),

where 6 (©) (% — c) is the net present value of stopping and obtaining the
productivity 6 (0), and r/a; is the expected growth rate of this value. Note
that 7/a; increases monotonically from a to r as o goes from 0 to co.”
Hence, in the deterministic case, the value of stopping grows at the rate of
a, the growth rate of productivity of the exogenous technology. However,
under uncertainty, the value of stopping is expected to grow at a higher
rate. The intuition is the standard one from Dixit and Pindyck (1994),
namely that uncertainty has an asymmetric effect on the value of the option,
since the agent can react differently to negative and positive realisations of
the stochastic variable. In case of a negative shock to #, he can choose to
postpone the investment, thereby mitigating the consequences of a negative
shock.

The right-hand side in (19) is the cost of keeping the investment option
alive when the productivity of exogenous technology is 6 (©). This cost is
given by the interest lost on the value of stopping. Now, for values of § where
the right-hand side is smaller than the left-hand side, i.e. where the cost of
keeping the option alive is smaller than the return, it is optimal to keep the
option alive and to continue producing © with the installed technology. At
the stopping line, 0 (©), the two values coincide.

4This stopping rule can be found by proceeding exactly as in the case with repeated
options with the value of stopping replaced by 6 (% — c).

5This follows immediately from (11) and the fact that % < 0, where the latter can be
derived from differentiation of the quadratic equation in (9).
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The expression in (19) immediately reveals that the stopping rule, A =
6 (0) /O, must be increasing in c¢. Since r > r/ay, a higher ¢ will decrease the
cost of holding the option by more than it decreases the return from holding
it. Similarly, A must be increasing in a and o, since a and ¢ will increase
r/a; and hence imply a higher return from holding the option.°

However, the effect of a change in r is more ambiguous. First, a higher
interest rate implies a lower net present value of stopping, 6 (©) (% — c),
which decreases the cost of holding the option by more than it decreases the
return. Secondly, a higher value of r directly increases the current cost of
holding the option through the first factor on the right-hand side in (19).
Thirdly, the interest rate has an unclear effect on the expected growth rate,
r/ay, of the value of stopping. Hence the aggregate effect of a change in r is
ambiguous.

5.3 The Repeated-Options Rule

Now, turn to the repeated-options approach, where the expression for A in
(15) can be rewritten as:”

r 1 B 1 1 1-a1 ~ay
@—i—al@(@) (7“ c) =16 (0) (7“ c) +a19(@) © (20)
The only difference between this expression and the expression in (19) is
the last term on the right-hand side. This term can be interpreted as the
additional net cost of keeping the option alive which arises from the existence
of future investment options. To see this more clearly, note that the term
can alternatively be expressed as:

ie(@)l_al on (T _ L) [v (0(©),0(0)) —

ai a1

o)

r

where the expression in square brackets is the difference in stopping values
under the repeated-options approach and the single-option approach. The
factor r — é gives the net cost, i.e. the cost, r, minus the expected return,
r/ay, of holding this extra option value.

It immediately follows from (20) that A must be smaller under the repeated-
options approach than under the single-option approach.® Hence the single-
option approach dictates too slow investments, when options are actually

dm

- (and %}) can be derived from differentiation of the

6 Again, the signs of % and
quadratic equation in (9).

"As in the single-option set-up, the deterministic case corresponds to the situation
where a; = Z.

®To see this, rewrite (20) as: © —0(0) (r — r/ay) (r™' —¢) = a;'0(0)' ™ O Given
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repeated. By use of (20), it can furthermore be analysed how the optimal
stopping rule, A, is affected by changes in the underlying parameter values.
As for the single-option setup, an increase in ¢ decreases the immediate
cost, 70 (©) (r~! — ¢), of holding the current option by more than it decreases
the immediate return, = (0) (r~! — ¢). In addition, it now reduces the value
of future options and therefore the cost of holding the additional option value
given by the last term in (20). Hence, a higher ¢ will unambiguously reduce
the cost of keeping the current option alive by more than it reduces the
return. It therefore implies a higher value of A\. More formally, the derivative

is given by:

o r(1-2)

% - )\72 . )\7(1+a1) >0

where the inequality follows from a; > 1 and A > 1.

Compared to the case with a single option, a higher value of a will now
have the additional effect of increasing the value of future investment options.
This has a positive effect on the last term in (20) and therefore on the cost
of keeping the current option alive. This must be compared to the increase
in the immediate return from holding the option, which is still a consequence
of a higher a. Despite these two countervailing forces, the aggregate effect
on A will still be positive.” Formally, the derivative is given by:

d\  [re—1+X1+ X" In )] 4
A e )

where % < 0.

The effect of an increase in r is even more complex. In addition to the ef-
fects from the single-option case, it now decreases the value of future options,
thereby making it less costly to keep the current option alive; the last term
in (20) becomes smaller. Hence in the repeated-options setup, an increase
in r is more likely to cause an increase in A than in the single-option setup.

O, the value of 6 (©) which caues the left-hand side to be zero corresponds to the stopping
point from the single-option setup. Since the right-hand side is always positive and the
left-hand side is monotonically decreasing in 6 (©), the value of 6 (©) that solves the above
equation must be strictly smaller than the value that makes the left-hand side equal to
Zero.

9Unfortunately, it has not been possible to show this formally in terms of the derivative,
but careful examination of the parameter space supports the conclusion.
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Formally:

Q _ _(1—G1)C+ [rc—1+)\*1+)\fa11n>\] %
dr N a <>\72 . )\7(1+a1)>

where % > 0.

An increase in o will, as in the single-option case, increase the immediate
return, r/a;, from keeping the option alive. But in addition, it will now
increase the value of future options, thereby increasing the cost of holding
the extra option value given by the last term in (20). This is precisely the
same effect as with an increase in . And as in the case of «, the aggregate
effect on A will still be positive:

A\ [re=1+ X"+ AT )]

do a ()\72 B )\7(1+a1))

where 41 < .10

As an attempt to quantify some of these effects, Figures 1 and 2 show
examples of how the three decision rules depend on r and «, respectively.
From both Figures, it is immediately apparent that the single-option crite-
rion and the repeated-options criterion have rather different implications for
optimal stopping behaviour.

In the present example, an increase in the interest rate, r, is seen to
increase X\ under the repeated-options approach, whereas it decreases A under
the single-option approach. This confirms the intuition from above. The
differences between the optimal stopping rules are most pronounced when
r is small (close to a). As r is further increased, the future becomes less
important, and the repeated-options rule converges to the single-option rule.
In the end, as r goes to %, the stopping rules will converge to infinity.

In Figure 2, an increase in a has a much more pronounced effect on the
optimal stopping rule under the single-option approach. This would also be
expected from the discussion above.

With respect to o, Figure 3 shows that a higher o only marginally influ-
ences optimal stopping under the repeated-options approach. This reflects
the two countervailing effects of increasing o that were mentioned above.
In the single-option setup, the effect is more visible, since ¢ unambiguously
increases the return from keeping the option alive.

10 Again, it has not been possible to show formally that % is always positive. However,
numerical results have confirmed that this must be the case.
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Finally, Figure 4 shows how the normalised value functions vary with
changes in 0. Two values of normalised technology have been chosen, w =1
and w = 1.5, both inside the continuation region given the chosen parameter
values. The effect of uncertainty on the value functions are now more pro-
nounced for the repeated-options case. Though uncertainty does not affect
the optimal stopping value, A, by much, it definitely has positive accumulated
effects on wealth in this case.

To sum up, the single-option approach and the repeated-options approach
have significantly different implications for optimal investment behaviour —
also when it comes to the effects of changes in the underlying parameters.
In fact, if investment options are repeated, using the simple NPV criterion
with a mark-up to guide investment behaviour seems less of a mistake than
using the single-option criterion.

How simple that mark-up might be can be illustrated by looking at Fig-
ure 1. For an interest rate of » = 0.05, the optimal rule is approximately
A = 1.4. Actually, using an interest rate of »r = 0.15 together with the simple
NPV-rule will imply a similar value of A. Since the repeated options solu-
tion is relatively insensitive to variations in o and o, this mark-up, based on
a higher interest rate, will be a rather good approximation in many cases.
Managers and other decision makers rarely have the time to undertake ad-
vanced analyses like the present. The effects of uncertainty and growth must
therefore be dealt with in a more ad hoc fashion. The results shown here
indicate, that for the case of repeated options, a sensible ad-hoc rule could
be a simple mark-up to the interest rate.
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6 Conclusion

It has been argued in this paper that investment decision problems of the
type thoroughly investigated by Dixit and Pindyck (1994) should in many
instances be extended to allow for repeated investment options. A model with
repeated investment options was solved analytically, where the productivity
of exogenous investment options evolved according to a geometric Brownian
motion. It was shown that the implications of changes in the structural
parameters for optimal investment behaviour were very different when using
a repeated-options setup instead of the single-option setup from Dixit and
Pindyck (1994). Actually, the simple NPV criterion (with a mark-up) seemed
to be a better indicator of optimal investment behaviour than the single-
option criterion when investment options are in fact repeated. So perhaps,
managers using the simple NPV criterion with a small mark-up, are not
performing that bad after all. Or at least not as bad, as one would expect
after having studied Dixit and Pindyck (1994) and the related literature.
As stressed in the introduction, the modelling approach in this paper is
related to the literature on optimal replacement. The model of this paper,
where the productivity of technology follows a geometric Brownian motion,
is related to models of Ye (1990) and Mauer and Ott (1995) who analyse
replacement problems where maintenance and operation cost of installed
equipment follows Ito processes. As shown in the Appendix, analysing un-
certainty in terms of the installed technology, as in Ye (1990) and Mauer
and Ott (1995), or in terms of the exogenous technology, as in this paper,
are actually two sides of the same coin. However, as opposed to Ye (1990)
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and Mauer and Ott (1995), general analytical solutions are derived in this
paper for the case of a geometric Brownian motion, which allows for nice
interpretations and a comparison of the optimal decison rule with the one
from the now well-established single-option approach.

It should be emphasised that the framework presented in this paper has
wide applicability. It can be used as a model of investment behaviour in both
firms and in households with home production. Furthermore, in a broader
utility sense, the repeated replacement problem is also related to the prob-
lem of having the newest car model you can afford, the newest computer or
other durables you replace from time to time to boost the utility derived.
In a different context, this question has been explored by the literature on
optimal consumption and portfolio rules when consumption is (partly) de-
rived from a stock of durables. A benchmark study in this branch of research
is Grossman and Laroque (1990) who find that optimal adjustments of the
stock of durables are lumpy. Variations over this model include Caballero
(1993), Hindy and Huang (1993), and more recently Cuoco and Liu (2000).
While the types of control obtained in these studies have similarities to the
control of this paper, the advantage of the model and results in the present
paper is the simplicity of the derived decision rule and its consequences for
optimal behaviour, which makes it practical and easy to apply. Especially,
as it is shown in many cases to behave like the well-known simple NPV rule.

One extension of the model in this paper seems obvious: The introduction
of credit constraints. This is in many situations a realistic assumption —
especially in the case of rural households in less developed countries. When an
agent is credit constrained, investments must be financed out of accumulated
wealth, and this will add additional aspects to the decision problem — and in
general preclude an analytical solution.

Introducing credit constraints in the case of a rural household is not a
simple matter, though. When credit is limited, the separability between
consumption and production (investment) decisions breaks down. Thus, the
investment problem should no longer be analysed separately from the con-
sumption problem; production and consumption decisions become interre-
lated and must be analysed simultaneously. This is done in Malchow-Mgller
and Thorsen (2000), where the benchmark model of this paper is used as
a model of the production side in an intertemporal household model with
credit constraints.



REPEATED INVESTMENT OPTIONS 19

A A General Model

In this appendix, a more general version of the model is solved, where both
f and © evolve according to stochastic processes. Specifically, let:

dd = aq0dt+ 010dz
dO = uOdt+ 090dz,

where a1, as, 01, and oy are the parameters of the respective processes, and
dz; and dzy are increments of Wiener processes with F (dz1dzy) = p. It is
assumed that » > a;. The value function can then be expressed as:

V(0,0) = max{Odt+ (1+rdt)" E[V(0+df,0+d6)|s,e],
fdt —ct+ (L+rdt) " E[V (0 +db,0+dO)0,0 =0]}

In the continuation region, the following partial differential equation applies:
1 1
rV =0 +0o,V; + 5@20%‘/9'5 + OanVy + 5@203‘%’@ + p0Oa1an Vg  (21)

Again, the homogeneity of V (6, ©) can be used to define a normalised value
function:

v(w) =07V (4,0)
where w = 0/0, and:
Vyp=2v , Vi=v—w
Hlé — @flvn , (i)/@ — @fleU// , GIé — —@*1wv”

Substituting for V' and its derivatives in the partial differential equation in
(21), it can be written as the following ordinary differential equation:

v(r—ag)+wv (g —ay) + %w%" (2pa1a2 —o? - ag) =1 (22)
which has the general solution:
v=Aw" + Aw” + K
Substituting this back into the differential equation in (22) yields K =
(r — 042)71, and a; and as as the roots of:
2 2

2 2
o o o o
az(pa1a2—§—72>+a(a2—a1—pa1a2+71+72>—H"—ozg:O
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Hence:
1 a1 — Qg
=57 "3 "2
o1+ 05 — 2pajan
1 a1 — « 2 2(r—a
5 2 12 - + = (2 2) > 1
2 o+ o05— 2p0i00 o1+ 05 — 2paga
and:
a1 — (g
a2 = - — J—

2 0?4 03— 2pajas

1 ap — Qo 2 2(r—«
-4 ~ 12 2 + . (2 1) <0
2 0]+ 05— 2pajas of + 05 — 2paje
Ay must therefore equal zero, otherwise V' would approach infinity as w

becomes small. The value-matching and smooth-pasting conditions are of
the same form as in the paper, implying that A; and \ are given by:

AT

Al:_(r—ag)(l—al)

and:
A g A =1 —a) (1 - (r—a)c)

Note that if p = 0, ap = 0, and 03 = 0, the solution reduces to the one
from the paper. Note also that when p = 0, the model with two stochastic
processes above could be transformed into a model with a single stochastic
process of the type in the paper, using the parameters o = a; — @y and
o = 0% + 03, together with the modified interest rate r — ay. This justifies
the approach taken in the paper.
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