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Abstract

This paper studies infinitely repeated games where players can
form coalitions to coordinate their actions via self-enforcing agree-
ments. The proposed notion of “stable agreements” extends a charac-
terization of the set of subgame perfect equilibrium paths by Green-
berg (1989, 1990) to account for self-enforcing coalitional deviations.
An agreement is stable if no coalition can deviate in such a way that
by solely coordinating the actions of its own members, it guarantees
a higher payoff for each member. Existence of the proposed notion is
established and its relation to other notions is investigated.
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1 Introduction

The theory of repeated games has succeeded in explaining the possibility of
cooperation among self-interested individuals through long-term interactions:
a cooperative outcome can be supported by a subgame perfect equilibrium of
an infinitely repeated game. Thus, cooperation can be achieved through “self-
enforcing agreements”. However, this very “folk theorem” asserts that, in
general, any feasible and individually rational payoff vector can be supported
by a subgame perfect equilibrium [see, e.g., Fudenberg and Maskin (1986)].
In particular, many Pareto inferior payoffs can be supported by subgame
perfect equilibria. Thus, repetition makes it possible to achieve, but by no
means singles out, cooperative outcomes.

As a noncooperative notion, subgame perfect equilibrium captures the
dynamic consistency of individual behavior. Indeed, a profile of strategies
is subgame perfect if after no history of play should a single player have
incentive to deviate unilaterally from his strategy; in particular, punishment
for every individual deviation must be credible in that if players were called
upon to carry it out, no single player would have an incentive to back out
unilaterally. Thus, as a notion of implicit self-enforcing agreement, subgame
perfect equilibrium is too weak since it does not account for behavior of
groups or coalitions.

The notion of renegotiation-proofness' in infinitely repeated games intro-
duced by Bernheim and Ray (1989) and Farrell and Maskin (1989) is one of
the attempts in the literature to capture dynamic consistency at the collective
level. At the heart of this notion is the assumption that the grand coalition
(and only the grand coalition) has the opportunity to negotiate anew (out of a
“bad” equilibrium) after every history. In particular, renegotiation-proofness
entails that after an unilateral deviation from an equilibrium, the grand coali-
tion (i.e., the coalition of all players) will renegotiate and abandon the pre-

scribed punishment as long as there exits a Pareto superior equilibrium (pos-

1See Pearce (1992) and Bergin and MacLeod (1993) for excellent surveys.



sibly the original equilibrium). Such a notion of renegotiation-proofness can
be criticized for ignoring the credibility of renegotiated equilibrium [see, e.g.,
Pearce (1987) and Abreu and Pearce (1991)] because it does not require the
“renegotiated equilibrium” to be renegotiation-proof. Moreover, a player,
in contemplating a deviation, anticipates a renegotiated equilibrium that is
most favorable to him; thus, renegotiation-proofness embeds over-optimism
on the part of a deviating player. This is illustrated through the example in
Table 1 taken from Asheim (1991).

Table 1

5] by C2 d>
ar | 3,3 |-5,-5|-5,-5|-H4
by | -5-5| 1,2 | -5,-5|-5,3
c1|-5-5|-5-5| 2,1 |-52
dy | 4-5 | 2-5 | 3,5 | 0,0

Suppose that the above game is repeated infinitely many times and the
discount factor is 0.5. Let 7w denote the path of the infinite repetition of
(ay,az). Note that 7 can only be supported by a subgame perfect equi-
librium with Pareto inferior punishments: Player 1’s deviation (to d;) is
punished by 7, the path of playing (b, b2) for one period and then reverting
to 7. Similarly, Player 2’s deviation (to dy) is punished by w9, the path of
playing (c1, c2) for one period and then reverting to 7.2 These punishments
are subject to “renegotiation” according to Bernheim and Ray (1989) and
Farrell and Maskin (1989): Player 1, for example, will deviate by playing
dy, because he believes that in the next period players 1 and 2 will renego-
tiate in order to avoid the Pareto inferior path 7. It follows that 7 is not
supported by a renegotiation-proof equilibrium. In fact, the only subgame
perfect equilibrium that is not subject to such a renegotiation is the one in

which the Nash equilibrium of the stage game, (d;,d,), is played after every

2If, in addition, player i € {1,2} deviates from 7}, j € {1,2}, 7, restarts. This specifies
a simple strategy profile in the sense of Abreu (1988).



history; this equilibrium yields each player the lowest payoff within the set
of subgame perfect equilibria.

To escape from the difficulties associated with renegotiation-proofness, we
offer an alternative notion of self-enforcing agreements — “stable agreements”
— to capture collective dynamic consistency. For an agreement to be “sta-
ble”, it must be immune to deviations of all coalitions, not just single players
and the grand coalition. Our notion aims to be inclusive but it rules out
with confidence: Each deviating coalition is cautious or averse to strategic
uncertainty in that it will not deviate from a given agreement unless doing
so “guarantees” a higher payoff for each of its members. To be more specific,
an agreement is stable if no coalition can deviate and achieve a higher payoff
for each of its members by solely coordinating the choice of strategies of its
members in a self-enforcing fashion. (Thus, while it is feasible for any coali-
tion to form and make a joint deviation from a given agreement, rationality
dictates which coalitions might actually form.) Our notion can be viewed
as the weakest notion accounting for collective consistency; it builds on a
characterization of the set of subgame perfect equilibria by Greenberg (1989,
1990): if players are cautious then the set of equilibrium paths satisfies in-
ternal and external stability akin to that of von Neumann and Morgenstern
(1944).

The organization of the rest of the paper is as follows: Section 2 formalizes
the notion of “stable agreements”. Properties of stable agreements, includ-
ing existence, are studied. In Section 3 the notion of stable agreements is
related to several notions in the literature including notions of renegotiation-
proofness, perfectly coalition proof Nash equilibrium, and the [F-core. All

proofs are relegated to the appendix.

2 Stable Agreements

Consider a (stage) normal form game G = (N, {A; }ien, {ti}ien), where N is

the finite set of players, A; is the action set of player i € N, and u; : A — R



is the payoff function of player i € N, where A = [],.y Ai. For every i € N,
A; is assumed to be compact and u; continuous. Let G* denote the infinite
repetition of G and II the set of paths, i.e., II = A*. For a € II and a
stage 7, let |, denote the continuation of « from 7 (including 7) on. All
players are assumed to discount future payoffs using the same discount factor
6 € (0,1). Thus, the (normalized discounted) payoff of player i € N from

a=(a',a? ...)ellis
Ui(a) = (1=8) ) 8Tu;(a”).

Let H = UX (A", where A = (), be the set of all histories. H can be
ordered by >: For h,h' € H, ¥ > h implies that h is a sub-history of A’.
A (pure) strategy for i € N is a mapping f; : H — A;. A coalition S is a
nonempty subset of N, denoted by S C N.* For S C N, let Ag = [],cq 4.
Let —S denote the complement of S, i.e., N\ S. Let PEP denote the set
of subgame-perfect-equilibrium outcome paths, a set that is assumed to be
nonempty.

The objective of this section is to formalize a notion of “stable agree-
ments”. We shall define our notion in the space of outcome paths, although
a definition in payoff space is also possible [see, e.g. Pearce (1992)]. A stable
agreement (for ) is a path in IT from which no coalition S C N can deviate
in such a way that by solely coordinating the strategies of its members, it
can guarantee each of its members a higher payoff. Our definition builds
on a characterization of the set of subgame perfect equilibria by Greenberg
(1989, 1990). We first state this characterization and then introduce group or
coalitional behavior. Following Greenberg (1989, 1990), let = be a mapping
that assigns to every history h € H a subset of outcome paths. = is called
a standard of behavior and Z(h) is the “solution” or the set of “plausible
continuations” once h transpires. Each player ¢« € N, in contemplating a
deviation from a path a € II at period 7 by choosing some b; € A;, has

to compare a, with the set of paths starting with (b;, a” ;) and followed by

3 All inclusions in this paper are weak.



E(h), where h = (a7, (b;,a”;)). A player is said to be uncertainty averse or
“conservative” if he does not engage the above deviation unless he prefers
every path in {(b;,a;)} x Z(h) to a,.

In view of the fact that all subgames are isomorphic to G, it seems
reasonable to assume that Z(h) = Z(h') = © for all h,h' € H; that is
the “solution set” is the same across all histories. Following von Neumann
and Morgenstern (1944), Greenberg (1989, 1990) requires that © be free of
internal contradiction or be “internally stable” and account for every outcome

it excludes or be “externally stable”*. Formally,
Definition 1 (Greenberg, 1989, 1990) Let © be a nonempty subset of II.

e O is internally stable if for every a € ©, there does not exist T > 1,
i € N, and b; € A; such that U(a|,) < Ui((b;,a”,), 8)° for all 3 € O.

e O is externally stable if for every a € II \ ©, there exist 7 > 1,1 € N,
and b; € A; such that U;(al;) < Ui((bs, ™), B) for all § € O.

e O is stable if it is both internally and externally stable, that is, a €
I\ © if and only if there exist T > 1, i € N, and b; € A; such that
Ui(al;) < Ui((bi, ™), B) for all B € ©.

Using Abreu’s (1988) characterization of PE P, Greenberg (1989) showed
that © = PEP is the unique maximal (conservative) stable standard of be-
havior with respect to set inclusion. Thus, PEP is a set-valued notion that is
internally consistent and justifies each path it excludes under the assumption
that players are conservative or cautious in evaluating the likely outcomes fol-
lowing their deviations (conservativeness or cautiousness is reflected in that
a player ¢ € N deviates from a path « if and only if there exists b; € A; such
that U;(al;) < Ui((b;,a”;), ) for all B € E). Note that each player needs

only to consider one-stage deviations.

4The literature on renegotiation-proofness also exhibits various attempts of imposing

stability (consistency). See Section 3.1.
5((b;, ™), B) is the path starting with action profile (b;, a” ;) and continued with 3.

6



Now we proceed to define a notion of stable agreements for environments
where coalitions can form to coordinate the actions of their members in
a self-enforcing fashion. PEP can be regarded as the set of “individually
stable agreements” in that no individual has an incentive to deviate from
any path in PEP, knowing that he cannot dictate the choice of the rest of
the players and is averse to such a strategic uncertainty. When coalitions can
form, a natural extension is that each deviating coalition recognizes its ability
to coordinate the actions of its own members in a self-enforcing manner
but it cannot dictate the choices of nonmembers and is averse to such a
strategic uncertainty. When coalitions can form, the conservatism of the
players has two aspects: As in Definition 1, each coalition is conservative in
evaluating the set of “likely outcomes” induced by its deviation; Moreover,
each coalition cannot dictate the choices of nonmembers and therefore, in
determining the set of “likely outcomes”, considers only what it can achieve
by solely coordinating the choices of its members in a self-enforcing fashion.
Thus, each coalition is averse to the strategic uncertainty that cannot be
resolved by solely coordinating the actions of its members.

For a path o € PEP® to be stable for N, it must be the case that no
coalition S C N can benefit from a self-enforcing deviation. Since coalitions
differ in what the coordination of their members can achieve, it is natural
to postulate a solution concept (standard of behavior) as a mapping ¥ that
specifies for every S C N a subset (S) C PEP. For every S C N, %(S) is
the set of self-enforcing agreements for S, based on which S contemplates its
deviations from any o € PEP; that is, if S C N deviates from a« € PEP
at stage 7 by choosing bg € Ag, it realizes that the set of continuations
following its deviation is 3(S). Since each § € ¥(.5) is self-enforcing for S, [
must be immune not only to self-enforcing deviations of S but also to those

of any T' C S; moreover, each T" C S, in determining ¥(7), needs to apply

SFor simplicity of exposition, here we start with PEP and introduce coalitional devi-
ations. An earlier version of this paper starts with II and therefore has to incorporate

Definition 1 in the formulation of “stable agreements”.



the same reasoning’. Thus, for all S C N, a € X(S) implies no T' C S can
benefit from self-enforcing deviations. Also, like Definition 1, we would like
to require 3(S) not to rule out arbitrarily; in particular, o € PEP \ X(S5)
implies some T' C S will benefit from a self-enforcing deviation.

When a coalition S C N deviates from o € PEP at stage 7 by choosing
some bg € Ag, it must realize not only that the set of continuations following
its deviation is 3(S) but also that it cannot choose bg € Ag arbitrarily, in the
absence of a binding agreement. Thus, to complete the formulation of self-
enforcing deviations, we need to put restrictions on the action combination
the deviating coalition S chooses. For the afore-mentioned deviation of S to
be self-enforcing, each path in {(bs, a’ S)} x Y(S) has to be self-enforcing
for S, that is,

0 # {(bs,a”g)} x B(S) C (). (C)

To illustrate the above condition, consider the infinite repetition of the pris-

oner’s dilemma in Table 2 and assume 6 = 0.4. It is easy to verify that the

Table 2
‘| r

w30 1,1

d|22]|0,3

cooperative outcome of the infinite repetition of (d, £) cannot be supported by
a subgame perfect equilibrium. In fact, the unique path in PEP, 7, is to re-
peat (u,r) infinitely. Let 3 be a standard of behavior such that ¥(S) = {7},
for all S C {1,2}. Were we to consider the joint deviation of {1,2} from 7 to
(d, ¢) at some stage, m would be ruled out. Such a deviation, however, cannot
be carried out in the absence of a binding agreement, since each individual

8

has an incentive not to take its part in this joint deviation®. Maintaining

the assumption that all agreements must be self-enforcing, deviations of a

"Thus, those paths in (S) are considered “unavoidable” by S.
S8This is in contrast to strong perfect equilibrium (see Section 3.2) that uses this devi-

ation to rule out 7.



non-singleton coalition have to respect condition (C).
The following definition extends Definition 1 to account for self-enforcing
coalitional deviations. As in Definition 1, the “if” part reflects internal sta-

bility while “only if” part external stability.

Definition 2 A standard of behavior ¥ is stable if for all S C N, a €
PEP \ X(S) if and only if there exist a coalition T C S, a stage 7 > 1,
and by € Ap such that O # {(br,a” )} x S(T) C S(T) and T “prefers”
{(br, o 1)} x X(T) to af,.

To complete the above definition, we need to be precise about the phrase
“T ‘prefers’ {(br,a” ;)} x X(T) to a|,”. Unlike Definition 1, we need to take
into account the fact that the one-stage deviation principle no longer holds
when coalitional deviations are considered. To illustrate this point, consider

the example in Table 3

Table 3
14 r l r
uw | 9,0,110,0,2 u | 0,0,1]0,0,2
d| 00,1091 d|3,3,1]|0,0,1
L R

where player 1 chooses rows, player 2 chooses columns, and player 3 chooses
matrices. Let o be the path that results from “repeating (u,r, L) forever”,
and let X(T) = PEP, where T = {1,2}. Evidently, a coordinated one-
stage deviation from a by T cannot suffice to guarantee both its members
higher payoffs, given that the set of plausible continuations is specified by
X(T); that is, there does not exist by € Ay such that (C1) is satisfied and
Ui(a) < Uy(B) for all g € {b} x X(T) and for i = 1,2. Coalition T', however,
can coordinate the actions of its members in more than one (or even infinite)
stages in a way that respects 3(T"). Suppose T deviates from « at 7 =1 by

choosing (u, £) and continues to coordinate the actions of its members in the



following way: After any history, play (d,) if player 3 is currently playing’
R; play (u,¢) if player 3 is currently playing L and if (u, ¢) has been played
no more times than (d, r); otherwise play (d,r). By using these coordinated
actions, both players 1 and 2 would be better off than they are under o from
any path that might result. It is important to note that players 1 and 2
can only coordinate their own actions, and such a coordination might not
suffice to define a unique path. Indeed, player 3’s choice is not determined.
He can (rationally) choose, at each stage, either L or R. But, no matter how
player 3 would play, by coordinating their actions, players 1 and 2 would be
better-off than they are under «.'”

It is precisely this reasoning that underlines the following definition.

Definition 3 T prefers {(br,a” )} x X(T') to a|, (in Definition 2) if there
exists a set B C {(by,a” )} x X(T) such that

Cl) € B <~ € B such that for some k > 1, " = nt for all t < k,
( U U
By =n"r, and By # 0y, and

(C2) Uj(a) < Uy(B) for all B € B and for alli € T.

Condition (C1) captures the fact that T can engage in a multi-stage co-
ordination in response to a given path « while it cannot dictate the choices
of nonmembers; condition (C2) captures the fact that 7" is averse to the
strategic uncertainty (in B) that it cannot resolve by solely coordinating the

actions of its members; conditions (C1) and (C2) extend the assumption of

9Note that the actions of players 1 and 2 may depend also on the current action of
player 3. This reflects that each coalition can only coordinate the action of its members
and cannot dictate the choice of nonmembers. This feature is embedded in any equilibrium

analysis.
10This example also illustrates the importance of considering all coalitional deviations,

since the grand coalition is not able to improve upon, for example, the infinite repetition
of (u,r, L).
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conservatism on the behavior of single players to coalitions while incorporat-
ing necessary multi-stage coordinations of coalitions.!!

For a stable standard of behavior ¥, the set X(V) is called the set of sta-
ble agreements. X captures coalitional rationality and dynamic consistency;
Y(N) contains those and only those paths that are not rejected by any S € N
whose members can coordinate their actions in a self-enforcing way without
dictating the choices of the rest of the players. It is easy to verify that in the
example in Table 1, this set consists of the unique (Pareto) efficient perfect
equilibrium path (PEP), i.e., ¥(N) = {x}.

Now we proceed to investigate some properties of stable agreements. The
following proposition states that the stable standard of behavior exists and

no stable agreement is Pareto dominated by another stable agreement.

Proposition 1 There exists a stable standard of behavior ¥ such that %(S) C
PEP for all S C N. Moreover, if a« € X(N), then there does not exist
B € X(N) such that U;(a) < Uy(B) for alli € N.

The following propositions characterize the set of stable agreements in
two special cases. The example in Table 1 serves as an example where both

propositions apply.

Proposition 2 If |[N| = 2, then X(N) coincides with the efficient frontier
of PEP.

Proposition 3 If PEP admits a unique efficient path o, then ¥(N) = {a} .

Thus, as is the case for two-player games, the set of stable agreements can
still be large. Such an indeterminacy may be resolved by mediation, social
convention, or bargaining. A mediator, for example, may simply recommend
each stable agreement with equal probability (or a stable agreement with the
same expected payoffs) on the ground of “fairness”. This is, however, beyond

the scope of this paper.

1 Alternatively, one could consider one-stage correlated deviation. But correlation

complicates the formalization of self-enforcing deviations.
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Remark 1 FEzistence of ¥ does not necessarily imply that (N, the set of
stable agreements, is nonempty. If for some game X(N) = 0, i.e., the grand
coalition cannot reach any self-enforcing agreements, then a stable standard
of behavior ¥ can be used to “predict” the coalitions that are likely to form.
Note that by external stability, > cannot be empty-valued (i.e., there exists
S C N such that £(S) # (0); hence, X is never silent as a notion of self-

enforcing agreements.

3 Related Literature

3.1 Stability and Renegotiation Proofness

Although our notion is not one of renegotiation-proofness, its connection to
various theories of renegotiation-proofness is evident. First, both our theory
and the notions of renegotiation proofness allow for coalitional deviations,
although renegotiation proofness restricts coalitional deviations to those of
the grand coalition. Secondly, the notion of stable agreements is defined
by applying the notion of stability that was originated by von Neumann
and Morgenstern (1944) and extended by Greenberg (1990); the theories of
renegotiation-proofness exhibit various attempts to apply the notion of sta-
bility. As Rubinstein (1992) wrote “... the renegotiation literature (as well as
the new approach suggested by Greenberg (1990)) is returning to the internal
and external consistency ideas suggested by von Neumann and Morgenstern
(1944). For example, (weak) renegotiation proofness of Bernheim and Ray
(1989) and Farrell and Maskin (1989) imposes a version of internal stabil-
ity (stronger than ours) while Asheim’s (1991) Pareto perfect equilibrium
imposes also external stability in addition to the same internal stability as
Bernheim and Ray (1989) and Farrell and Maskin (1989).

However, the notions of renegotiation proofness can be criticized for tak-
ing Pareto criterion too far as discussed in the introduction. They stipulate
that the grand coalition will renegotiate and abandon a punishment when-

ever there is a Pareto dominating equilibrium available even though the later

12



equilibrium may rely on punishments that are as severe. Implicitly, a deviat-
ing player counts too heavily on renegotiation. Our notion explores a natural
extension of the uncertainty aversion on the part of players embedded in the
notion of subgame perfection. Our notion can be viewed as the weakest
notion that accounts for coalitional deviations. For two-player games, it is
easy to see that an efficient (weakly) renegotiation-proof'? equilibrium also
belongs to the set of stable agreements for N. However, we do recognize the
importance and relevance of renegotiation in formalizing notions stronger
than ours. In a future project, we shall extend our analysis to account for

credible renegotiation.

3.2  Perfectly Coalition-Proof Nash Equilibrium and
Strong Perfect Equilibrium

Bernheim, Peleg, and Whinston (1987) applied their coalition-proof Nash
equilibrium to dynamic games with finite horizon and proposed the notion
of perfectly coalition-proof Nash equilibrium (PCPNE). This definition was
extended by Asheim (1988) to dynamic games with infinite horizon. Unlike
renegotiation proofness, PCPNE considers all coalitional deviations. But,
like renegotiation proofness, PCPNE stipulates that renegotiation occurs af-
ter every history. In particular, for two-player games, PCPNE coincides
with Pareto perfect equilibrium (Asheim, 1991), which “refines” renegotia-
tion proofness. Existence of PCPNE is not guaranteed. Indeed, the example
depicted by Table 1 does not admits a PCPNE or Pareto perfect equilibrium.

Rubinstein’s (1980) strong perfect equilibrium is more demanding than
PCPNE in that it requires an equilibrium to survive all conceivable devia-
tions, many of which are not credible'®. In particular, Pareto efficiency in the
space of all feasible outcomes is imposed. It is easy to see that in two-player

games, a strong perfect equilibrium is a PCPNE (thus also a Pareto perfect

12Recall that a subgame perfect equlibrium is (weakly) renegotiation-proof if no two of

its continuation equilibria can be strictly Pareto ranked.
I3 A strong perfect equilibrium is always perfectly coalition proof.

13



equilibrium) and a PCPNE is (weakly) renegotiation-proof and also a stable

agreement for V.

3.3 The (5-core

The [-core (Aumann, 1959) of the repeated game is the core of its (-
characteristic function. Let X; be the set of strategies of i € N, i.e., X; =
{zi | z;: H— A;}. The (-characteristic function v : N> — RV is given by:
for all S C N,

v(S) = ﬂ U {ueRY | u; < Uj(zs,z_s),Vj € S}.
@ g€XgxsEXs
The (-core is the set of payoff vectors ¢ in v(N) for which there does not
exist S C N such that for some £ € v(S5), &, > (; for all i € S. The similarity
between our notion and (3-core is that each coalition is certain about its ability
to coordinate the actions of its members but has to consider all contingencies
created by nonmembers. But the notion of stable agreements differs from the

(-core in the following aspects:

(1) In determining v(S), S has to consider the entire range of strategies
of the members in N \ S, including, for example, dominated strategies
of N'\ S. In the definition of stable agreements, however, members of

N\ S are assumed to be individually rational.

(2) The definition of S-core does not consider the credibility or the self-
enforceability of an “objection”. In the definition of stable agreements,
a coalition S considers the possible “internal” deviations and therefore

the credibility of an objection is verified.

(3) The B-core, as a notion for static settings, does not consider dynamic
consistency. Our notion captures the dynamic consistency at both

coalitional and individual levels (every stable agreement belongs to
PEP).

14



4 Appendix

We first introduce the following notations to facilitate the proofs: For Q2 C IT
and T' C N, let &7(Q2) denote the subsets of Q that satisfy conditions (C1)
and (C2) in Definition 3. Hence T prefers 2 to some « € II if and only if
there exists ¢ € @ (§2) such that for all 5 € ¢, Ui(a) < U; () for alli € T.

Proof of Proposition 1.

The proof of existence resembles Greenberg’s (1990) results on the exis-
tence of OSSB (optimistic stable standard of behavior) in the hierarchical
situation. For each S C N, recursively define two subsets of PEP, A(S) and
B(S), as follows:

For all s € N,

B({i}) = PEP, and
A = { a € B{i} | 3r > 1,6y € Dr[B({i})] s.t. } |
Ui(alr) < Ui(B), Y6 € ¢gy-
By Definition 1 (in particular, internal stability of PEP) and one-stage
deviation principle for individuals, A({i}) = @ for all i € N. For S C N,
assume that A(7") and B(T') are defined for all 7' C S. Define

B(S) — a € PEP|3r>1,T C S and ¢, € &7[B(T) \ A(T)]
a s.t. for all i € T, U;(al;) < Ui(B),Y8 € ¢p.

and
A(S) = { a € B(S)|3r>1and ¢g € Pg[B(S5)] s.t. for all i € T, }
Uilaly) <Ui(B3),VP € ¢s.

We shall show that the standard of behavior ¥ given by 3(S) = B(S) \
A(S) for all S C N is stable in the sense of Definition 2. This is accomplished
in the following three steps.

STEP 1. We first show that B(S) is compact for all S C N. Since PEP is a

compact set'?, B({i}) is compact. Therefore, for |S| > 1, it suffices to show

14Recall that for every i € N, A; is compact, u; is continuous, and hence PEP is
compact [see Abreu (1988)].
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that B(S) is closed. Let {c;} be a sequence of paths in 5(S) with a; — «,
we need to show that a € (3(S). Otherwise, 3r > 1,7 C S with T'# S and
o € Or[B(T) \ A(T)] such that. for all i € T,U;(c|.) < Ui(B),VB € érp.
Since U; is a continuous function for all ¢ € N, there exists J such that
for all j > J, for all i € T,U;(aj]-) < Ui(B),VB € ¢p. Then a; ¢ B(S).
Contradiction.

Now, define

Ui(al-) < Ui(B),V0 € ¢s.

STEP 2. We then show that A(S) = A*(S). We first show that A(S) C
A*(S). Consider a € A(S). Then 37 > 1 and ¢4 € ®5[B(S)] such that for
all i € T, Ui(al;) < Ui(B),Y3 € ¢g. Since B(S) is compact, I7 > 1 and
¢s € Dg[B(S)] such that. for all i € T, Ui(a|,) < Ui(B),¥0 € ¢5 and
B € ¢g implies 8 ¢ A(S). Therefore « € A*(S). To show the converse
inclusion, assume in negation that Ja € A*(S) \ A(S). Then o € A*(S)
implies that 37 > 1 and ¢g € ®[B(S) \ A(S)] such that. for all i € T,
Ui(al:) < Ui(B),Y8 € ¢g. Then 3¢'(S) € ®g[B(S9)] such that ¢g C ¢ and
bg # ¢s. Since a & A(S), V¢'(S) € ®5[B(S)] such that ¢g C ¢y and ¢g #
ds, B € ¢pg and i € S such that U;(a) £ U;(B). If B € A(S), contradiction,
since 5 € B(S) \ A(S) and yet 8 & ¢g. Otherwise § € A(S). Then, 37 > 1
and ¢ € ®g[B(S)] such that. for all i € T, U;(5|.) < Ui(n),Vn € ¢5 and
n € ¢g implies n € A(S). Again we can replace § with some n € ¢g. If
Ji € S such that U;(«) £ U;(n), then n € ¢4, which implies that 7 need not
belong ¢'s. Contradiction.

STEP 3. Finally, We show that the standard of behavior ¥ given by
X(S) = B(S) \ A(S) for all S C N is stable. Indeed, by the definition
of ¥(5), B(S), and A(S), we have that a € PEP \ 3(S) if and only if
a € [PEP\ B(S)] U A(S). Since A(S) = A*(S),a € PEP \ X(S) if and
only if « € [PEP \ B(S)] U A*(S). Then by the definition of B(S) and
A*(S),ac € PEP \ X(9) if and only if there do not exist 7 > 1,7 C S and
¢ € Op[3(T)] such that for all i € T, U;(a|,) < Ui(B),VYB € ¢p. Hence X is

A*(S) = { a € B(S)|3r > 1and ¢g € Dg[B(S) \ A(S)] s.t. forall i € T, }
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stable in the sense of Definition 2.

The second part of Proposition 1 follows from the fact that |¢y| =

1,Vy € Oy [S(N)]. B

Proof of Proposition 2. Follows from the fact that ¥({i}) = PEP for all
7: - ]_,27 and |¢{172}| - 1. .

Proof of Proposition 3. Let § € PEP\ {a}. Given that « is the only efficient
path in PEP and PEP is compact, U;(a)) > U;(8) for all i € N. It is easy to
see that by external stability, « € X(V). By internally stability, 5 ¢ ¥(N)

(otherwise N can benefit from a self-enforcing deviation). B
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